1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
|
Internet Engineering Task Force (IETF) S. Bryant
Request for Comments: 8469 A. Malis
Updates: 4448 Huawei
Category: Standards Track I. Bagdonas
ISSN: 2070-1721 Equinix
November 2018
Recommendation to Use the Ethernet Control Word
Abstract
The pseudowire (PW) encapsulation of Ethernet, as defined in
RFC 4448, specifies that the use of the control word (CW) is
optional. In the absence of the CW, an Ethernet PW packet can be
misidentified as an IP packet by a label switching router (LSR).
This may lead to the selection of the wrong equal-cost multipath
(ECMP) path for the packet, leading in turn to the misordering of
packets. This problem has become more serious due to the deployment
of equipment with Ethernet Media Access Control (MAC) addresses that
start with 0x4 or 0x6. The use of the Ethernet PW CW addresses this
problem. This document RECOMMENDS the use of the Ethernet PW CW in
all but exceptional circumstances.
This document updates RFC 4448.
Status of This Memo
This is an Internet Standards Track document.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in Section 2 of RFC 7841.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
https://www.rfc-editor.org/info/rfc8469.
Bryant, et al. Standards Track [Page 1]
^L
RFC 8469 Ethernet CW Recommendation November 2018
Copyright Notice
Copyright (c) 2018 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
Table of Contents
1. Introduction ....................................................3
2. Specification of Requirements ...................................3
3. Background ......................................................4
4. Recommendation ..................................................5
5. Equal-Cost Multipath (ECMP) .....................................5
6. Mitigations .....................................................6
7. Operational Considerations ......................................6
8. Security Considerations .........................................7
9. IANA Considerations .............................................7
10. References .....................................................7
10.1. Normative References ......................................7
10.2. Informative References ....................................8
Acknowledgments ....................................................9
Authors' Addresses .................................................9
Bryant, et al. Standards Track [Page 2]
^L
RFC 8469 Ethernet CW Recommendation November 2018
1. Introduction
The pseudowire (PW) encapsulation of Ethernet, as defined in
[RFC4448], specifies that the use of the control word (CW) is
optional. It is common for label switching routers (LSRs) to search
past the end of the label stack to determine whether the payload is
an IP packet and then, if it is, select the next hop based on the
so-called "five-tuple" (IP source address, IP destination address,
protocol/next-header, transport-layer source port, and transport-
layer destination port). In the absence of a PW CW, an Ethernet PW
packet can be misidentified as an IP packet by a label switching
router (LSR) selecting the ECMP path based on the five-tuple. This
may lead to the selection of the wrong ECMP path for the packet,
leading in turn to the misordering of packets. Further discussion of
this topic is published in [RFC4928].
Flow misordering can also happen in a single-path scenario when
traffic classification and differential forwarding treatment
mechanisms are in use. These errors occur when a forwarder
incorrectly assumes that the packet is IP and applies a forwarding
policy based on fields in the PW payload.
IPv4 and IPv6 packets start with the values 0x4 and 0x6,
respectively. Misidentification can arise if an Ethernet PW packet
without a CW is carrying an Ethernet packet with a destination
address that starts with either of these values.
This problem has recently become more serious for a number of
reasons. First, the IEEE Registration Authority Committee (RAC) has
assigned Ethernet MAC addresses that start with 0x4 or 0x6, and
equipment that uses MAC addresses in these series has been deployed
in networks. Second, concerns over privacy have led to the use of
MAC address randomization, which assigns local MAC addresses randomly
for privacy. Random assignment results in addresses starting with
one of these two values approximately one time in eight.
The use of the Ethernet PW CW addresses this problem.
This document RECOMMENDS the use of the Ethernet PW CW in all but
exceptional circumstances.
2. Specification of Requirements
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in
BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
capitals, as shown here.
Bryant, et al. Standards Track [Page 3]
^L
RFC 8469 Ethernet CW Recommendation November 2018
3. Background
Ethernet PW encapsulation is specified in [RFC4448]. Of particular
relevance is Section 4.6, part of which is quoted below for the
convenience of the reader. Note that RFC 4448 uses the citation
[PWE3-CW] to refer to [RFC4385] and the citation [VCCV] to refer to
the document that was eventually published as [RFC5085].
The control word defined in this section is based on the Generic
PW MPLS Control Word as defined in [PWE3-CW]. It provides the
ability to sequence individual frames on the PW, avoidance of
equal-cost multiple-path load-balancing (ECMP) [RFC2992], and
Operations and Management (OAM) mechanisms including VCCV [VCCV].
[PWE3-CW] states, "If a PW is sensitive to packet misordering and
is being carried over an MPLS PSN that uses the contents of the
MPLS payload to select the ECMP path, it MUST employ a mechanism
which prevents packet misordering." This is necessary because
ECMP implementations may examine the first nibble after the MPLS
label stack to determine whether the labeled packet is IP or not.
Thus, if the source MAC address of an Ethernet frame carried over
the PW without a control word present begins with 0x4 or 0x6, it
could be mistaken for an IPv4 or IPv6 packet. This could,
depending on the configuration and topology of the MPLS network,
lead to a situation where all packets for a given PW do not follow
the same path. This may increase out-of-order frames on a given
PW, or cause OAM packets to follow a different path than actual
traffic (see Section 4.4.3, "Frame Ordering").
The features that the control word provides may not be needed for
a given Ethernet PW. For example, ECMP may not be present or
active on a given MPLS network, strict frame sequencing may not be
required, etc. If this is the case, the control word provides
little value and is therefore optional. Early Ethernet PW
implementations have been deployed that do not include a control
word or the ability to process one if present. To aid in
backwards compatibility, future implementations MUST be able to
send and receive frames without the control word present.
When PWs were first deployed, some equipment of commercial
significance was unable to process the Ethernet CW. In addition, at
that time, it was believed that no Ethernet MAC address had been
issued by the IEEE Registration Authority Committee (RAC) that
started with 0x4 or 0x6; thus, it was thought to be safe to deploy
Ethernet PWs without the CW.
Bryant, et al. Standards Track [Page 4]
^L
RFC 8469 Ethernet CW Recommendation November 2018
Since that time, the RAC has issued Ethernet MAC addresses that start
with 0x4 or with 0x6. Therefore, the assumption that, in practical
networks, there would be no confusion between an Ethernet PW packet
without the CW and an IP packet is no longer correct.
Possibly through the use of unauthorized Ethernet MAC addresses, this
assumption has been unsafe for a while, leading some equipment
vendors to implement more complex, proprietary methods to
discriminate between Ethernet PW packets and IP packets. Such
mechanisms rely on the heuristics of examining the transit packets to
try to find out the exact payload type of the packet and cannot be
reliable due to the random nature of the payload carried within such
packets.
A posting on the NANOG email list highlighted this problem:
<https://mailman.nanog.org/pipermail/nanog/2016-December/089395.html>
4. Recommendation
The ambiguity between an MPLS payload that is an Ethernet PW and one
that is an IP packet is resolved when the Ethernet PW CW is used.
This document updates [RFC4448] to state that both the ingress
provider edge (PE) and the egress PE SHOULD support the Ethernet PW
CW and that, if supported, the CW MUST be used.
Where the application of ECMP to Ethernet PW traffic is required and
where both the ingress and the egress PEs support Entropy Label
Indicator / Entropy Label (ELI/EL) [RFC6790] and Flow-Aware Transport
of Pseudowires (FAT PW) [RFC6391], then either method may be used.
The use of both methods on the same PW is not normally necessary and
should be avoided unless circumstances require it. In the case of
multi-segment PWs, if ELI/EL is used, then it SHOULD be used on every
segment of the PW. The method by which usage of ELI/EL on every
segment is guaranteed is out of the scope of this document.
5. Equal-Cost Multipath (ECMP)
Where the volume of traffic on an Ethernet PW is such that ECMP is
required, then one of two methods may be used:
o Flow-Aware Transport of Pseudowires over an MPLS Packet Switched
Network, specified in [RFC6391], or
o Label Switched Path (LSP) entropy labels, specified in [RFC6790].
Bryant, et al. Standards Track [Page 5]
^L
RFC 8469 Ethernet CW Recommendation November 2018
RFC 6391 works by increasing the entropy of the bottom-of-stack
label. It requires that both the ingress and egress PEs support this
feature. It also requires that sufficient LSRs on the LSP between
the ingress and egress PE be able to select an
ECMP path on an MPLS packet with the resultant stack depth.
RFC 6790 works by including an entropy value in the LSP part of the
label stack. This requires that the ingress and egress PEs support
the insertion and removal of the EL and the ELI and that sufficient
LSRs on the LSP are able to perform ECMP based on the EL.
In both cases, there are considerations in getting Operations,
Administration, and Maintenance (OAM) packets to follow the same path
as a data packet. This is described in detail in Section 7 of
[RFC6391] and Section 6 of [RFC6790]. However, in both cases, the
situation is improved compared to the ECMP behavior in the case where
the Ethernet PW CW was not used, since there is currently no known
method of getting a PW OAM packet to follow the same path as a PW
data packet subjected to ECMP based on the five-tuple of the IP
payload.
The PW label is pushed before the LSP label. As the ELI/EL labels
are part of the LSP layer rather than part of the PW layer, they are
pushed after the PW label has been pushed.
6. Mitigations
Where it is not possible to use the Ethernet PW CW, the effects of
ECMP can be disabled by carrying the PW over a traffic-engineered
path that does not subject the payload to load balancing (for
example, RSVP-TE [RFC3209]). However, such paths may be subjected to
link-bundle load balancing, and, of course, the single LSP has to
carry the full PW load.
7. Operational Considerations
In some cases, the inclusion of a CW in the PW is determined by
equipment configuration. Furthermore, it is possible that the
default configuration in such cases is to disable use of the CW.
Care needs to be taken to ensure that software that implements this
recommendation does not depend on existing configuration settings
that prevent the use of a CW. It is recommended that platform
software emit a rate-limited message indicating that the CW can be
used but is disabled due to existing configuration.
Instead of including a payload type in the packet, MPLS relies on the
control plane to signal the payload type that follows the bottom of
the label stack. Some LSRs attempt to deduce the packet type by MPLS
Bryant, et al. Standards Track [Page 6]
^L
RFC 8469 Ethernet CW Recommendation November 2018
payload inspection, in some cases looking past the PW CW. If the
payload appears to be IP or IP carried in an Ethernet header, they
perform an ECMP calculation based on what they assume to be the
five-tuple fields. However, deduction of the payload type in this
way is not an exact science, and where a packet that is not IP is
mistaken for an IP packet, the result can be packets delivered out of
order. Misordering of this type can be difficult for an operator to
diagnose. When enabling capability that allows information gleaned
from packet inspection past the PW CW to be used in any ECMP
calculation, operators should be aware that this may cause Ethernet
frames to be delivered out of order despite the presence of the CW.
8. Security Considerations
This document expresses a preference for one existing and widely
deployed Ethernet PW encapsulation over another. These methods have
identical security considerations, which are discussed in [RFC4448].
This document introduces no additional security issues.
9. IANA Considerations
This document has no IANA actions.
10. References
10.1. Normative References
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,
<https://www.rfc-editor.org/info/rfc2119>.
[RFC4385] Bryant, S., Swallow, G., Martini, L., and D. McPherson,
"Pseudowire Emulation Edge-to-Edge (PWE3) Control Word for
Use over an MPLS PSN", RFC 4385, DOI 10.17487/RFC4385,
February 2006, <https://www.rfc-editor.org/info/rfc4385>.
[RFC4448] Martini, L., Ed., Rosen, E., El-Aawar, N., and G. Heron,
"Encapsulation Methods for Transport of Ethernet over MPLS
Networks", RFC 4448, DOI 10.17487/RFC4448, April 2006,
<https://www.rfc-editor.org/info/rfc4448>.
[RFC4928] Swallow, G., Bryant, S., and L. Andersson, "Avoiding Equal
Cost Multipath Treatment in MPLS Networks", BCP 128,
RFC 4928, DOI 10.17487/RFC4928, June 2007,
<https://www.rfc-editor.org/info/rfc4928>.
Bryant, et al. Standards Track [Page 7]
^L
RFC 8469 Ethernet CW Recommendation November 2018
[RFC6391] Bryant, S., Ed., Filsfils, C., Drafz, U., Kompella, V.,
Regan, J., and S. Amante, "Flow-Aware Transport of
Pseudowires over an MPLS Packet Switched Network",
RFC 6391, DOI 10.17487/RFC6391, November 2011,
<https://www.rfc-editor.org/info/rfc6391>.
[RFC6790] Kompella, K., Drake, J., Amante, S., Henderickx, W., and
L. Yong, "The Use of Entropy Labels in MPLS Forwarding",
RFC 6790, DOI 10.17487/RFC6790, November 2012,
<https://www.rfc-editor.org/info/rfc6790>.
[RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
May 2017, <https://www.rfc-editor.org/info/rfc8174>.
10.2. Informative References
[RFC2992] Hopps, C., "Analysis of an Equal-Cost Multi-Path
Algorithm", RFC 2992, DOI 10.17487/RFC2992, November 2000,
<https://www.rfc-editor.org/info/rfc2992>.
[RFC3209] Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V.,
and G. Swallow, "RSVP-TE: Extensions to RSVP for LSP
Tunnels", RFC 3209, DOI 10.17487/RFC3209, December 2001,
<https://www.rfc-editor.org/info/rfc3209>.
[RFC5085] Nadeau, T., Ed. and C. Pignataro, Ed., "Pseudowire Virtual
Circuit Connectivity Verification (VCCV): A Control
Channel for Pseudowires", RFC 5085, DOI 10.17487/RFC5085,
December 2007, <https://www.rfc-editor.org/info/rfc5085>.
Bryant, et al. Standards Track [Page 8]
^L
RFC 8469 Ethernet CW Recommendation November 2018
Acknowledgments
The authors thank Job Snijders for drawing attention to this problem.
The authors also thank Pat Thaler for clarifying the matter of local
MAC address assignment. We thank Sasha Vainshtein for his valuable
review comments.
Authors' Addresses
Stewart Bryant
Huawei
Email: stewart.bryant@gmail.com
Andrew G. Malis
Huawei
Email: agmalis@gmail.com
Ignas Bagdonas
Equinix
Email: ibagdona.ietf@gmail.com>
Bryant, et al. Standards Track [Page 9]
^L
|