summaryrefslogtreecommitdiff
path: root/doc/rfc/rfc8578.txt
blob: b6315bc2d52edbace2387ed3c8921115946c8e3e (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
Internet Engineering Task Force (IETF)                  E. Grossman, Ed.
Request for Comments: 8578                                         DOLBY
Category: Informational                                         May 2019
ISSN: 2070-1721


                   Deterministic Networking Use Cases

Abstract

   This document presents use cases for diverse industries that have in
   common a need for "deterministic flows".  "Deterministic" in this
   context means that such flows provide guaranteed bandwidth, bounded
   latency, and other properties germane to the transport of time-
   sensitive data.  These use cases differ notably in their network
   topologies and specific desired behavior, providing as a group broad
   industry context for Deterministic Networking (DetNet).  For each use
   case, this document will identify the use case, identify
   representative solutions used today, and describe potential
   improvements that DetNet can enable.

Status of This Memo

   This document is not an Internet Standards Track specification; it is
   published for informational purposes.

   This document is a product of the Internet Engineering Task Force
   (IETF).  It represents the consensus of the IETF community.  It has
   received public review and has been approved for publication by the
   Internet Engineering Steering Group (IESG).  Not all documents
   approved by the IESG are candidates for any level of Internet
   Standard; see Section 2 of RFC 7841.

   Information about the current status of this document, any errata,
   and how to provide feedback on it may be obtained at
   https://www.rfc-editor.org/info/rfc8578.















Grossman                      Informational                     [Page 1]
^L
RFC 8578                    DetNet Use Cases                    May 2019


Copyright Notice

   Copyright (c) 2019 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1. Introduction ....................................................6
   2. Pro Audio and Video .............................................7
      2.1. Use Case Description .......................................7
           2.1.1. Uninterrupted Stream Playback .......................8
           2.1.2. Synchronized Stream Playback ........................9
           2.1.3. Sound Reinforcement .................................9
           2.1.4. Secure Transmission ................................10
                  2.1.4.1. Safety ....................................10
      2.2. Pro Audio Today ...........................................10
      2.3. Pro Audio in the Future ...................................10
           2.3.1. Layer 3 Interconnecting Layer 2 Islands ............10
           2.3.2. High-Reliability Stream Paths ......................11
           2.3.3. Integration of Reserved Streams into IT Networks ...11
           2.3.4. Use of Unused Reservations by Best-Effort Traffic ..11
           2.3.5. Traffic Segregation ................................11
                  2.3.5.1. Packet-Forwarding Rules, VLANs,
                           and Subnets ...............................12
                  2.3.5.2. Multicast Addressing (IPv4 and IPv6) ......12
           2.3.6. Latency Optimization by a Central Controller .......12
           2.3.7. Reduced Device Costs due to Reduced Buffer Memory ..13
      2.4. Pro Audio Requests to the IETF ............................13
   3. Electrical Utilities ...........................................14
      3.1. Use Case Description ......................................14
           3.1.1. Transmission Use Cases .............................14
                  3.1.1.1. Protection ................................14
                  3.1.1.2. Intra-substation Process Bus
                           Communications ............................21
                  3.1.1.3. Wide-Area Monitoring and Control Systems ..23
                  3.1.1.4. WAN Engineering Guidelines
                           Requirement Classification ................25




Grossman                      Informational                     [Page 2]
^L
RFC 8578                    DetNet Use Cases                    May 2019


           3.1.2. Generation Use Case ................................26
                  3.1.2.1. Control of the Generated Power ............26
                  3.1.2.2. Control of the Generation Infrastructure ..27
           3.1.3. Distribution Use Case ..............................32
                  3.1.3.1. Fault Location, Isolation, and
                           Service Restoration (FLISR) ...............32
      3.2. Electrical Utilities Today ................................33
           3.2.1. Current Security Practices and Their Limitations ...34
      3.3. Electrical Utilities in the Future ........................35
           3.3.1. Migration to Packet-Switched Networks ..............36
           3.3.2. Telecommunications Trends ..........................37
                  3.3.2.1. General Telecommunications Requirements ...37
                  3.3.2.2. Specific Network Topologies of
                           Smart-Grid Applications ...................38
                  3.3.2.3. Precision Time Protocol ...................38
           3.3.3. Security Trends in Utility Networks ................39
      3.4. Electrical Utilities Requests to the IETF .................41
   4. Building Automation Systems (BASs) .............................41
      4.1. Use Case Description ......................................41
      4.2. BASs Today ................................................42
           4.2.1. BAS Architecture ...................................42
           4.2.2. BAS Deployment Model ...............................44
           4.2.3. Use Cases for Field Networks .......................45
                  4.2.3.1. Environmental Monitoring ..................45
                  4.2.3.2. Fire Detection ............................46
                  4.2.3.3. Feedback Control ..........................46
           4.2.4. BAS Security Considerations ........................46
      4.3. BASs in the Future ........................................46
      4.4. BAS Requests to the IETF ..................................47
   5. Wireless for Industrial Applications ...........................47
      5.1. Use Case Description ......................................47
           5.1.1. Network Convergence Using 6TiSCH ...................48
           5.1.2. Common Protocol Development for 6TiSCH .............48
      5.2. Wireless Industrial Today .................................49
      5.3. Wireless Industrial in the Future .........................49
           5.3.1. Unified Wireless Networks and Management ...........49
                  5.3.1.1. PCE and 6TiSCH ARQ Retries ................51
           5.3.2. Schedule Management by a PCE .......................52
                  5.3.2.1. PCE Commands and 6TiSCH CoAP Requests .....52
                  5.3.2.2. 6TiSCH IP Interface .......................54
           5.3.3. 6TiSCH Security Considerations .....................54
      5.4. Wireless Industrial Requests to the IETF ..................54









Grossman                      Informational                     [Page 3]
^L
RFC 8578                    DetNet Use Cases                    May 2019


   6. Cellular Radio .................................................54
      6.1. Use Case Description ......................................54
           6.1.1. Network Architecture ...............................54
           6.1.2. Delay Constraints ..................................55
           6.1.3. Time-Synchronization Constraints ...................57
           6.1.4. Transport-Loss Constraints .........................59
           6.1.5. Cellular Radio Network Security Considerations .....60
      6.2. Cellular Radio Networks Today .............................60
           6.2.1. Fronthaul ..........................................60
           6.2.2. Midhaul and Backhaul ...............................60
      6.3. Cellular Radio Networks in the Future .....................61
      6.4. Cellular Radio Networks Requests to the IETF ..............64
   7. Industrial Machine to Machine (M2M) ............................64
      7.1. Use Case Description ......................................64
      7.2. Industrial M2M Communications Today .......................66
           7.2.1. Transport Parameters ...............................66
           7.2.2. Stream Creation and Destruction ....................67
      7.3. Industrial M2M in the Future ..............................67
      7.4. Industrial M2M Requests to the IETF .......................67
   8. Mining Industry ................................................68
      8.1. Use Case Description ......................................68
      8.2. Mining Industry Today .....................................68
      8.3. Mining Industry in the Future .............................69
      8.4. Mining Industry Requests to the IETF ......................70
   9. Private Blockchain .............................................70
      9.1. Use Case Description ......................................70
           9.1.1. Blockchain Operation ...............................71
           9.1.2. Blockchain Network Architecture ....................71
           9.1.3. Blockchain Security Considerations .................72
      9.2. Private Blockchain Today ..................................72
      9.3. Private Blockchain in the Future ..........................72
      9.4. Private Blockchain Requests to the IETF ...................72
   10. Network Slicing ...............................................73
      10.1. Use Case Description .....................................73
      10.2. DetNet Applied to Network Slicing ........................73
           10.2.1. Resource Isolation across Slices ..................73
           10.2.2. Deterministic Services within Slices ..............74
      10.3. A Network Slicing Use Case Example - 5G Bearer Network ...74
      10.4. Non-5G Applications of Network Slicing ...................75
      10.5. Limitations of DetNet in Network Slicing .................75
      10.6. Network Slicing Today and in the Future ..................75
      10.7. Network Slicing Requests to the IETF .....................75
   11. Use Case Common Themes ........................................76
      11.1. Unified, Standards-Based Networks ........................76
           11.1.1. Extensions to Ethernet ............................76
           11.1.2. Centrally Administered Networks ...................76
           11.1.3. Standardized Data-Flow Information Models .........76




Grossman                      Informational                     [Page 4]
^L
RFC 8578                    DetNet Use Cases                    May 2019


           11.1.4. Layer 2 and Layer 3 Integration ...................76
           11.1.5. IPv4 Considerations ...............................76
           11.1.6. Guaranteed End-to-End Delivery ....................77
           11.1.7. Replacement for Multiple Proprietary
                   Deterministic Networks ............................77
           11.1.8. Mix of Deterministic and Best-Effort Traffic ......77
           11.1.9. Unused Reserved Bandwidth to Be Available
                   to Best-Effort Traffic ............................77
           11.1.10. Lower-Cost, Multi-Vendor Solutions ...............77
      11.2. Scalable Size ............................................78
           11.2.1. Scalable Number of Flows ..........................78
      11.3. Scalable Timing Parameters and Accuracy ..................78
           11.3.1. Bounded Latency ...................................78
           11.3.2. Low Latency .......................................78
           11.3.3. Bounded Jitter (Latency Variation) ................79
           11.3.4. Symmetrical Path Delays ...........................79
      11.4. High Reliability and Availability ........................79
      11.5. Security .................................................79
      11.6. Deterministic Flows ......................................79
   12. Security Considerations .......................................80
   13. IANA Considerations ...........................................80
   14. Informative References ........................................80
   Appendix A. Use Cases Explicitly Out of Scope for DetNet ..........90
     A.1. DetNet Scope Limitations ...................................90
     A.2. Internet-Based Applications ................................90
       A.2.1. Use Case Description ...................................91
         A.2.1.1. Media Content Delivery .............................91
         A.2.1.2. Online Gaming ......................................91
         A.2.1.3. Virtual Reality ....................................91
       A.2.2. Internet-Based Applications Today ......................91
       A.2.3. Internet-Based Applications in the Future ..............91
       A.2.4. Internet-Based Applications Requests to the IETF .......92
     A.3. Pro Audio and Video - Digital Rights Management (DRM) ......92
     A.4. Pro Audio and Video - Link Aggregation .....................92
     A.5. Pro Audio and Video - Deterministic Time to Establish
          Streaming ..................................................93
   Acknowledgments ...................................................93
   Contributors ......................................................95
   Author's Address ..................................................97












Grossman                      Informational                     [Page 5]
^L
RFC 8578                    DetNet Use Cases                    May 2019


1.  Introduction

   This memo documents use cases for diverse industries that require
   deterministic flows over multi-hop paths.  Deterministic Networking
   (DetNet) flows can be established from either a Layer 2 or Layer 3
   (IP) interface, and such flows can coexist on an IP network with
   best-effort traffic.  DetNet also provides for highly reliable flows
   through provision for redundant paths.

   The DetNet use cases explicitly do not suggest any specific design
   for DetNet architecture or protocols; these are topics for other
   DetNet documents.

   The DetNet use cases, as originally submitted, explicitly were not
   considered by the DetNet Working Group (WG) to be concrete
   requirements.  The DetNet WG and Design Team considered these use
   cases, identifying which of their elements could be feasibly
   implemented within the charter of DetNet; as a result, certain
   originally submitted use cases (or elements thereof) were moved to
   Appendix A ("Use Cases Explicitly Out of Scope for DetNet") of this
   document.

   This document provides context regarding DetNet design decisions.  It
   also serves a long-lived purpose of helping those learning (or new
   to) DetNet understand the types of applications that can be supported
   by DetNet.  It also allows those WG contributors who are users to
   ensure that their concerns are addressed by the WG; for them, this
   document (1) covers their contributions and (2) provides a long-term
   reference regarding the problems that they expect will be served by
   the technology, in terms of the short-term deliverables and also as
   the technology evolves in the future.

   This document has served as a "yardstick" against which proposed
   DetNet designs can be measured, answering the question "To what
   extent does a proposed design satisfy these various use cases?"

   The industries covered by the use cases in this document are

   o  professional audio and video (Section 2)

   o  electrical utilities (Section 3)

   o  building automation systems (BASs) (Section 4)

   o  wireless for industrial applications (Section 5)

   o  cellular radio (Section 6)




Grossman                      Informational                     [Page 6]
^L
RFC 8578                    DetNet Use Cases                    May 2019


   o  industrial machine to machine (M2M) (Section 7)

   o  mining (Section 8)

   o  private blockchain (Section 9)

   o  network slicing (Section 10)

   For each use case, the following questions are answered:

   o  What is the use case?

   o  How is it addressed today?

   o  How should it be addressed in the future?

   o  What should the IETF deliver to enable this use case?

   The level of detail in each use case is intended to be sufficient to
   express the relevant elements of the use case but no more than that.

   DetNet does not directly address clock distribution or time
   synchronization; these are considered to be part of the overall
   design and implementation of a time-sensitive network, using existing
   (or future) time-specific protocols (such as [IEEE-8021AS] and/or
   [RFC5905]).

   Section 11 enumerates the set of common properties implied by these
   use cases.

2.  Pro Audio and Video

2.1.  Use Case Description

   The professional audio and video industry ("ProAV") includes:

   o  Music and film content creation

   o  Broadcast

   o  Cinema

   o  Live sound

   o  Public address, media, and emergency systems at large venues
      (e.g., airports, stadiums, churches, theme parks)





Grossman                      Informational                     [Page 7]
^L
RFC 8578                    DetNet Use Cases                    May 2019


   These industries have already transitioned audio and video signals
   from analog to digital.  However, the digital interconnect systems
   remain primarily point to point, with a single signal or a small
   number of signals per link, interconnected with purpose-built
   hardware.

   These industries are now transitioning to packet-based
   infrastructures to reduce cost, increase routing flexibility, and
   integrate with existing IT infrastructures.

   Today, ProAV applications have no way to establish deterministic
   flows from a standards-based Layer 3 (IP) interface; this is a
   fundamental limitation of the use cases described here.  Today,
   deterministic flows can be created within standards-based Layer 2
   LANs (e.g., using IEEE 802.1 TSN ("TSN" stands for "Time-Sensitive
   Networking")); however, these flows are not routable via IP and thus
   are not effective for distribution over wider areas (for example,
   broadcast events that span wide geographical areas).

   It would be highly desirable if such flows could be routed over the
   open Internet; however, solutions of more-limited scope (e.g.,
   enterprise networks) would still provide substantial improvements.

   The following sections describe specific ProAV use cases.

2.1.1.  Uninterrupted Stream Playback

   Transmitting audio and video streams for live playback is unlike
   common file transfer in that uninterrupted stream playback in the
   presence of network errors cannot be achieved by retrying the
   transmission; by the time the missing or corrupt packet has been
   identified, it is too late to execute a retry operation.  Buffering
   can be used to provide enough delay to allow time for one or more
   retries; however, this is not an effective solution in applications
   where large delays (latencies) are not acceptable (as discussed
   below).

   Streams with guaranteed bandwidth can eliminate congestion on the
   network as a cause of transmission errors that would lead to playback
   interruption.  The use of redundant paths can further mitigate
   transmission errors and thereby provide greater stream reliability.

   Additional techniques, such as Forward Error Correction (FEC), can
   also be used to improve stream reliability.







Grossman                      Informational                     [Page 8]
^L
RFC 8578                    DetNet Use Cases                    May 2019


2.1.2.  Synchronized Stream Playback

   Latency in this context is the time between when a signal is
   initially sent over a stream and when it is received.  A common
   example in ProAV is time-synchronizing audio and video when they take
   separate paths through the playback system.  In this case, the
   latency of both the audio stream and the video stream must be bounded
   and consistent if the sound is to remain matched to the movement in
   the video.  A common tolerance for audio/video synchronization is one
   National Television System Committee (NTSC) video frame (about
   33 ms); to maintain the audience's perception of correct lip-sync,
   the latency needs to be consistent within some reasonable tolerance
   -- for example, 10%.

   A common architecture for synchronizing multiple streams that have
   different paths through the network (and thus potentially different
   latencies) enables measurement of the latency of each path and has
   the data sinks (for example, speakers) delay (buffer) all packets on
   all but the slowest path.  Each packet of each stream is assigned a
   presentation time that is based on the longest required delay.  This
   implies that all sinks must maintain a common time reference of
   sufficient accuracy, which can be achieved by various techniques.

   This type of architecture is commonly implemented using a central
   controller that determines path delays and arbitrates buffering
   delays.

2.1.3.  Sound Reinforcement

   Consider the latency (delay) between the time when a person speaks
   into a microphone and when their voice emerges from the speaker.  If
   this delay is longer than about 10-15 ms, it is noticeable and can
   make a sound-reinforcement system unusable (see slide 6 of
   [SRP_LATENCY]).  (If you have ever tried to speak in the presence of
   a delayed echo of your voice, you might be familiar with this
   experience.)

   Note that the 15 ms latency bound includes all parts of the signal
   path -- not just the network -- so the network latency must be
   significantly less than 15 ms.

   In some cases, local performers must perform in synchrony with a
   remote broadcast.  In such cases, the latencies of the broadcast
   stream and the local performer must be adjusted to match each other,
   with a worst case of one video frame (33 ms for NTSC video).






Grossman                      Informational                     [Page 9]
^L
RFC 8578                    DetNet Use Cases                    May 2019


   In cases where audio phase is a consideration -- for example,
   beam-forming using multiple speakers -- latency can be in the 10 us
   range (one audio sample at 96 kHz).

2.1.4.  Secure Transmission

2.1.4.1.  Safety

   Professional audio systems can include amplifiers that are capable of
   generating hundreds or thousands of watts of audio power.  If used
   incorrectly, such amplifiers can cause hearing damage to those in the
   vicinity.  Apart from the usual care required by the systems
   operators to prevent such incidents, the network traffic that
   controls these devices must be secured (as with any sensitive
   application traffic).

2.2.  Pro Audio Today

   Some proprietary systems have been created that enable deterministic
   streams at Layer 3; however, they are "engineered networks" that
   require careful configuration to operate and often require that the
   system be over-provisioned.  Also, it is implied that all devices on
   the network voluntarily play by the rules of that network.  To enable
   these industries to successfully transition to an interoperable
   multi-vendor packet-based infrastructure requires effective open
   standards.  Establishing relevant IETF standards is a crucial factor.

2.3.  Pro Audio in the Future

2.3.1.  Layer 3 Interconnecting Layer 2 Islands

   It would be valuable to enable IP to connect multiple Layer 2 LANs.

   As an example, ESPN constructed a state-of-the-art 194,000 sq. ft.,
   $125-million broadcast studio called "Digital Center 2" (DC2).  The
   DC2 network is capable of handling 46 Tbps of throughput with 60,000
   simultaneous signals.  Inside the facility are 1,100 miles of fiber
   feeding four audio control rooms (see [ESPN_DC2]).

   In designing DC2, they replaced as much point-to-point technology as
   they could with packet-based technology.  They constructed seven
   individual studios using Layer 2 LANs (using IEEE 802.1 TSN) that
   were entirely effective at routing audio within the LANs.  However,
   to interconnect these Layer 2 LAN islands together, they ended up
   using dedicated paths in a custom SDN (Software-Defined Networking)
   router because there is no standards-based routing solution
   available.




Grossman                      Informational                    [Page 10]
^L
RFC 8578                    DetNet Use Cases                    May 2019


2.3.2.  High-Reliability Stream Paths

   On-air and other live media streams are often backed up with
   redundant links that seamlessly act to deliver the content when the
   primary link fails for any reason.  In point-to-point systems, this
   redundancy is provided by an additional point-to-point link; the
   analogous requirement in a packet-based system is to provide an
   alternate path through the network such that no individual link can
   bring down the system.

2.3.3.  Integration of Reserved Streams into IT Networks

   A commonly cited goal of moving to a packet-based media
   infrastructure is that costs can be reduced by using off-the-shelf,
   commodity-network hardware.  In addition, economy of scale can be
   realized by combining media infrastructure with IT infrastructure.
   In keeping with these goals, stream-reservation technology should be
   compatible with existing protocols and should not compromise the use
   of the network for best-effort (non-time-sensitive) traffic.

2.3.4.  Use of Unused Reservations by Best-Effort Traffic

   In cases where stream bandwidth is reserved but not currently used
   (or is underutilized), that bandwidth must be available to
   best-effort (i.e., non-time-sensitive) traffic.  For example, a
   single stream may be "nailed up" (reserved) for specific media
   content that needs to be presented at different times of the day,
   ensuring timely delivery of that content, yet in between those times
   the full bandwidth of the network can be utilized for best-effort
   tasks such as file transfers.

   This also addresses a concern of IT network administrators that are
   considering adding reserved-bandwidth traffic to their networks that
   "users will reserve large quantities of bandwidth and then never
   unreserve it even though they are not using it, and soon the network
   will have no bandwidth left."

2.3.5.  Traffic Segregation

   Sink devices may be low-cost devices with limited processing power.
   In order to not overwhelm the CPUs in these devices, it is important
   to limit the amount of traffic that these devices must process.

   As an example, consider the use of individual seat speakers in a
   cinema.  These speakers are typically required to be cost reduced,
   since the quantities in a single theater can reach hundreds of seats.
   Discovery protocols alone in a 1,000-seat theater can generate enough
   broadcast traffic to overwhelm a low-powered CPU.  Thus, an



Grossman                      Informational                    [Page 11]
^L
RFC 8578                    DetNet Use Cases                    May 2019


   installation like this will benefit greatly from some type of traffic
   segregation that can define groups of seats to reduce traffic within
   each group.  All seats in the theater must still be able to
   communicate with a central controller.

   There are many techniques that can be used to support this feature,
   including (but not limited to) the following examples.

2.3.5.1.  Packet-Forwarding Rules, VLANs, and Subnets

   Packet-forwarding rules can be used to eliminate some extraneous
   streaming traffic from reaching potentially low-powered sink devices;
   however, there may be other types of broadcast traffic that should be
   eliminated via other means -- for example, VLANs or IP subnets.

2.3.5.2.  Multicast Addressing (IPv4 and IPv6)

   Multicast addressing is commonly used to keep bandwidth utilization
   of shared links to a minimum.

   Because Layer 2 bridges by design forward Media Access Control (MAC)
   addresses, it is important that a multicast MAC address only be
   associated with one stream.  This will prevent reservations from
   forwarding packets from one stream down a path that has no interested
   sinks simply because there is another stream on that same path that
   shares the same multicast MAC address.

   In other words, since each multicast MAC address can represent 32
   different IPv4 multicast addresses, there must be a process in place
   to make sure that any given multicast MAC address is only associated
   with exactly one IPv4 multicast address.  Requiring the use of IPv6
   addresses could help in this regard, due to the much larger address
   range of IPv6; however, due to the continued prevalence of IPv4
   installations, solutions that are effective for IPv4 installations
   would be practical in many more use cases.

2.3.6.  Latency Optimization by a Central Controller

   A central network controller might also perform optimizations based
   on the individual path delays; for example, sinks that are closer to
   the source can inform the controller that they can accept greater
   latency, since they will be buffering packets to match presentation
   times of sinks that are farther away.  The controller might then move
   a stream reservation on a short path to a longer path in order to
   free up bandwidth for other critical streams on that short path.  See
   slides 3-5 of [SRP_LATENCY].





Grossman                      Informational                    [Page 12]
^L
RFC 8578                    DetNet Use Cases                    May 2019


   Additional optimization can be achieved in cases where sinks have
   differing latency requirements; for example, at a live outdoor
   concert, the speaker sinks have stricter latency requirements than
   the recording-hardware sinks.  See slide 7 of [SRP_LATENCY].

2.3.7.  Reduced Device Costs due to Reduced Buffer Memory

   Device costs can be reduced in a system with guaranteed reservations
   with a small bounded latency due to the reduced requirements for
   buffering (i.e., memory) on sink devices.  For example, a theme park
   might broadcast a live event across the globe via a Layer 3 protocol.
   In such cases, the size of the buffers required is defined by the
   worst-case latency and jitter values of the worst-case segment of the
   end-to-end network path.  For example, on today's open Internet, the
   latency is typically unacceptable for audio and video streaming
   without many seconds of buffering.  In such scenarios, a single
   gateway device at the local network that receives the feed from the
   remote site would provide the expensive buffering required to mask
   the latency and jitter issues associated with long-distance delivery.
   Sink devices in the local location would have no additional buffering
   requirements, and thus no additional costs, beyond those required for
   delivery of local content.  The sink device would be receiving
   packets identical to those sent by the source and would be unaware of
   any latency or jitter issues along the path.

2.4.  Pro Audio Requests to the IETF

   o  Layer 3 routing on top of Audio Video Bridging (AVB) (and/or other
      high-QoS (Quality of Service) networks)

   o  Content delivery with bounded, lowest possible latency

   o  IntServ and DiffServ integration with AVB (where practical)

   o  Single network for A/V and IT traffic

   o  Standards-based, interoperable, multi-vendor solutions

   o  IT-department-friendly networks

   o  Enterprise-wide networks (e.g., the size of San Francisco but not
      the whole Internet (yet...))









Grossman                      Informational                    [Page 13]
^L
RFC 8578                    DetNet Use Cases                    May 2019


3.  Electrical Utilities

3.1.  Use Case Description

   Many systems that an electrical utility deploys today rely on high
   availability and deterministic behavior of the underlying networks.
   Presented here are use cases for transmission, generation, and
   distribution, including key timing and reliability metrics.  In
   addition, security issues and industry trends that affect the
   architecture of next-generation utility networks are discussed.

3.1.1.  Transmission Use Cases

3.1.1.1.  Protection

   "Protection" means not only the protection of human operators but
   also the protection of the electrical equipment and the preservation
   of the stability and frequency of the grid.  If a fault occurs in the
   transmission or distribution of electricity, then severe damage can
   occur to human operators, electrical equipment, and the grid itself,
   leading to blackouts.

   Communication links, in conjunction with protection relays, are used
   to selectively isolate faults on high-voltage lines, transformers,
   reactors, and other important electrical equipment.  The role of the
   teleprotection system is to selectively disconnect a faulty part by
   transferring command signals within the shortest possible time.

3.1.1.1.1.  Key Criteria

   The key criteria for measuring teleprotection performance are command
   transmission time, dependability, and security.  These criteria are
   defined by International Electrotechnical Commission (IEC)
   Standard 60834 [IEC-60834] as follows:

   o  Transmission time (speed): The time between the moment when a
      state change occurs at the transmitter input and the moment of the
      corresponding change at the receiver output, including propagation
      delay.  The overall operating time for a teleprotection system is
      the sum of (1) the time required to initiate the command at the
      transmitting end, (2) the propagation delay over the network
      (including equipment), and (3) the time required to make the
      necessary selections and decisions at the receiving end, including
      any additional delay due to a noisy environment.







Grossman                      Informational                    [Page 14]
^L
RFC 8578                    DetNet Use Cases                    May 2019


   o  Dependability: The ability to issue and receive valid commands in
      the presence of interference and/or noise, by minimizing the
      Probability of Missing Commands (PMC).  Dependability targets are
      typically set for a specific Bit Error Rate (BER) level.

   o  Security: The ability to prevent false tripping due to a noisy
      environment, by minimizing the Probability of Unwanted Commands
      (PUC).  Security targets are also set for a specific BER level.

   Additional elements of the teleprotection system that impact its
   performance include:

   o  Network bandwidth

   o  Failure recovery capacity (aka resiliency)

3.1.1.1.2.  Fault Detection and Clearance Timing

   Most power-line equipment can tolerate short circuits or faults for
   up to approximately five power cycles before sustaining irreversible
   damage or affecting other segments in the network.  This translates
   to a total fault clearance time of 100 ms.  As a safety precaution,
   however, the actual operation time of protection systems is limited
   to 70-80% of this period, including fault recognition time, command
   transmission time, and line breaker switching time.

   Some system components, such as large electromechanical switches,
   require a particularly long time to operate and take up the majority
   of the total clearance time, leaving only a 10 ms window for the
   telecommunications part of the protection scheme, independent of the
   distance of travel.  Given the sensitivity of the issue, new
   networks impose requirements that are even more stringent: IEC
   Standard 61850-5:2013 [IEC-61850-5:2013] limits the transfer time for
   protection messages to 1/4-1/2 cycle or 4-8 ms (for 60 Hz lines) for
   messages considered the most critical.
















Grossman                      Informational                    [Page 15]
^L
RFC 8578                    DetNet Use Cases                    May 2019


3.1.1.1.3.  Symmetric Channel Delay

   Teleprotection channels that are differential must be synchronous;
   this means that any delays on the transmit and receive paths must
   match each other.  Ideally, teleprotection systems support zero
   asymmetric delay; typical legacy relays can tolerate delay
   discrepancies of up to 750 us.

   Some tools available for lowering delay variation below this
   threshold are as follows:

   o  For legacy systems using Time-Division Multiplexing (TDM), jitter
      buffers at the multiplexers on each end of the line can be used to
      offset delay variation by queuing sent and received packets.  The
      length of the queues must balance the need to regulate the rate of
      transmission with the need to limit overall delay, as larger
      buffers result in increased latency.

   o  For jitter-prone IP networks, traffic management tools can ensure
      that the teleprotection signals receive the highest transmission
      priority to minimize jitter.

   o  Standard packet-based synchronization technologies, such as the
      IEEE 1588-2008 Precision Time Protocol (PTP) [IEEE-1588] and
      synchronous Ethernet (syncE) [syncE], can help keep networks
      stable by maintaining a highly accurate clock source on the
      various network devices.
























Grossman                      Informational                    [Page 16]
^L
RFC 8578                    DetNet Use Cases                    May 2019


3.1.1.1.4.  Teleprotection Network Requirements

   Table 1 captures the main network metrics.  (These metrics are based
   on IEC Standard 61850-5:2013 [IEC-61850-5:2013].)

   +---------------------------------+---------------------------------+
   |    Teleprotection Requirement   |            Attribute            |
   +---------------------------------+---------------------------------+
   |      One-way maximum delay      |             4-10 ms             |
   |                                 |                                 |
   |    Asymmetric delay required    |               Yes               |
   |                                 |                                 |
   |          Maximum jitter         |   Less than 250 us (750 us for  |
   |                                 |           legacy IEDs)          |
   |                                 |                                 |
   |             Topology            |     Point to point, point to    |
   |                                 |            multipoint           |
   |                                 |                                 |
   |           Availability          |             99.9999%            |
   |                                 |                                 |
   |     Precise timing required     |               Yes               |
   |                                 |                                 |
   |  Recovery time on node failure  |    Less than 50 ms - hitless    |
   |                                 |                                 |
   |      Performance management     |          Yes; mandatory         |
   |                                 |                                 |
   |            Redundancy           |               Yes               |
   |                                 |                                 |
   |           Packet loss           |            0.1% to 1%           |
   +---------------------------------+---------------------------------+

               Table 1: Teleprotection Network Requirements



















Grossman                      Informational                    [Page 17]
^L
RFC 8578                    DetNet Use Cases                    May 2019


3.1.1.1.5.  Inter-trip Protection Scheme

   "Inter-tripping" is the signal-controlled tripping of a circuit
   breaker to complete the isolation of a circuit or piece of apparatus
   in concert with the tripping of other circuit breakers.

   +---------------------------------+---------------------------------+
   |      Inter-trip Protection      |            Attribute            |
   |           Requirement           |                                 |
   +---------------------------------+---------------------------------+
   |      One-way maximum delay      |               5 ms              |
   |                                 |                                 |
   |    Asymmetric delay required    |                No               |
   |                                 |                                 |
   |          Maximum jitter         |           Not critical          |
   |                                 |                                 |
   |             Topology            |     Point to point, point to    |
   |                                 |            multipoint           |
   |                                 |                                 |
   |            Bandwidth            |             64 kbps             |
   |                                 |                                 |
   |           Availability          |             99.9999%            |
   |                                 |                                 |
   |     Precise timing required     |               Yes               |
   |                                 |                                 |
   |  Recovery time on node failure  |    Less than 50 ms - hitless    |
   |                                 |                                 |
   |      Performance management     |          Yes; mandatory         |
   |                                 |                                 |
   |            Redundancy           |               Yes               |
   |                                 |                                 |
   |           Packet loss           |               0.1%              |
   +---------------------------------+---------------------------------+

            Table 2: Inter-trip Protection Network Requirements

3.1.1.1.6.  Current Differential Protection Scheme

   Current differential protection is commonly used for line protection
   and is typically used to protect parallel circuits.  At both ends of
   the lines, the current is measured by the differential relays; both
   relays will trip the circuit breaker if the current going into the
   line does not equal the current going out of the line.  This type of
   protection scheme assumes that some form of communication is present
   between the relays at both ends of the line, to allow both relays to
   compare measured current values.  Line differential protection
   schemes assume that the telecommunications delay between both relays
   is very low -- often as low as 5 ms.  Moreover, as those systems are



Grossman                      Informational                    [Page 18]
^L
RFC 8578                    DetNet Use Cases                    May 2019


   often not time-synchronized, they also assume that the delay over
   symmetric telecommunications paths is constant; this allows the
   comparison of current measurement values taken at exactly the
   same time.

   +---------------------------------+---------------------------------+
   | Current Differential Protection |            Attribute            |
   |           Requirement           |                                 |
   +---------------------------------+---------------------------------+
   |      One-way maximum delay      |               5 ms              |
   |                                 |                                 |
   |    Asymmetric delay required    |               Yes               |
   |                                 |                                 |
   |          Maximum jitter         |   Less than 250 us (750 us for  |
   |                                 |           legacy IEDs)          |
   |                                 |                                 |
   |             Topology            |     Point to point, point to    |
   |                                 |            multipoint           |
   |                                 |                                 |
   |            Bandwidth            |             64 kbps             |
   |                                 |                                 |
   |           Availability          |             99.9999%            |
   |                                 |                                 |
   |     Precise timing required     |               Yes               |
   |                                 |                                 |
   |  Recovery time on node failure  |    Less than 50 ms - hitless    |
   |                                 |                                 |
   |      Performance management     |          Yes; mandatory         |
   |                                 |                                 |
   |            Redundancy           |               Yes               |
   |                                 |                                 |
   |           Packet loss           |               0.1%              |
   +---------------------------------+---------------------------------+

             Table 3: Current Differential Protection Metrics
















Grossman                      Informational                    [Page 19]
^L
RFC 8578                    DetNet Use Cases                    May 2019


3.1.1.1.7.  Distance Protection Scheme

   The distance (impedance relay) protection scheme is based on voltage
   and current measurements.  The network metrics are similar (but not
   identical) to the metrics for current differential protection.

   +---------------------------------+---------------------------------+
   | Distance Protection Requirement |            Attribute            |
   +---------------------------------+---------------------------------+
   |      One-way maximum delay      |               5 ms              |
   |                                 |                                 |
   |    Asymmetric delay required    |                No               |
   |                                 |                                 |
   |          Maximum jitter         |           Not critical          |
   |                                 |                                 |
   |             Topology            |     Point to point, point to    |
   |                                 |            multipoint           |
   |                                 |                                 |
   |            Bandwidth            |             64 kbps             |
   |                                 |                                 |
   |           Availability          |             99.9999%            |
   |                                 |                                 |
   |     Precise timing required     |               Yes               |
   |                                 |                                 |
   |  Recovery time on node failure  |    Less than 50 ms - hitless    |
   |                                 |                                 |
   |      Performance management     |          Yes; mandatory         |
   |                                 |                                 |
   |            Redundancy           |               Yes               |
   |                                 |                                 |
   |           Packet loss           |               0.1%              |
   +---------------------------------+---------------------------------+

                 Table 4: Distance Protection Requirements

3.1.1.1.8.  Inter-substation Protection Signaling

   This use case describes the exchange of sampled values and/or GOOSE
   (Generic Object Oriented Substation Events) messages between
   Intelligent Electronic Devices (IEDs) in two substations for
   protection and tripping coordination.  The two IEDs are in
   master-slave mode.

   The Current Transformer or Voltage Transformer (CT/VT) in one
   substation sends the sampled analog voltage or current value to the
   Merging Unit (MU) over hard wire.  The MU sends the time-synchronized
   sampled values (as specified by IEC 61850-9-2:2011
   [IEC-61850-9-2:2011]) to the slave IED.  The slave IED forwards the



Grossman                      Informational                    [Page 20]
^L
RFC 8578                    DetNet Use Cases                    May 2019


   information to the master IED in the other substation.  The master
   IED makes the determination (for example, based on sampled value
   differentials) to send a trip command to the originating IED.  Once
   the slave IED/relay receives the GOOSE message containing the command
   to trip the breaker, it opens the breaker.  It then sends a
   confirmation message back to the master.  All data exchanges between
   IEDs are through sampled values and/or GOOSE messages.

   +---------------------------------+---------------------------------+
   |   Inter-substation Protection   |            Attribute            |
   |           Requirement           |                                 |
   +---------------------------------+---------------------------------+
   |      One-way maximum delay      |               5 ms              |
   |                                 |                                 |
   |    Asymmetric delay required    |                No               |
   |                                 |                                 |
   |          Maximum jitter         |           Not critical          |
   |                                 |                                 |
   |             Topology            |     Point to point, point to    |
   |                                 |            multipoint           |
   |                                 |                                 |
   |            Bandwidth            |             64 kbps             |
   |                                 |                                 |
   |           Availability          |             99.9999%            |
   |                                 |                                 |
   |     Precise timing required     |               Yes               |
   |                                 |                                 |
   |  Recovery time on node failure  |    Less than 50 ms - hitless    |
   |                                 |                                 |
   |      Performance management     |          Yes; mandatory         |
   |                                 |                                 |
   |            Redundancy           |               Yes               |
   |                                 |                                 |
   |           Packet loss           |                1%               |
   +---------------------------------+---------------------------------+

             Table 5: Inter-substation Protection Requirements

3.1.1.2.  Intra-substation Process Bus Communications

   This use case describes the data flow from the CT/VT to the IEDs in
   the substation via the MU.  The CT/VT in the substation sends the
   analog voltage or current values to the MU over hard wire.  The MU
   converts the analog values into digital format (typically
   time-synchronized sampled values as specified by IEC 61850-9-2:2011
   [IEC-61850-9-2:2011]) and sends them to the IEDs in the substation.
   The Global Positioning System (GPS) Master Clock can send 1PPS or
   IRIG-B format to the MU through a serial port or IEEE 1588 protocol



Grossman                      Informational                    [Page 21]
^L
RFC 8578                    DetNet Use Cases                    May 2019


   via a network.  1PPS (One Pulse Per Second) is an electrical signal
   that has a width of less than 1 second and a sharply rising or
   abruptly falling edge that accurately repeats once per second.  1PPS
   signals are output by radio beacons, frequency standards, other types
   of precision oscillators, and some GPS receivers.  IRIG (Inter-Range
   Instrumentation Group) time codes are standard formats for
   transferring timing information.  Atomic frequency standards and GPS
   receivers designed for precision timing are often equipped with an
   IRIG output.  Process bus communication using IEC 61850-9-2:2011
   [IEC-61850-9-2:2011] simplifies connectivity within the substation,
   removes the requirement for multiple serial connections, and removes
   the slow serial-bus architectures that are typically used.  This also
   ensures increased flexibility and increased speed with the use of
   multicast messaging between multiple devices.

   +---------------------------------+---------------------------------+
   |   Intra-substation Protection   |            Attribute            |
   |           Requirement           |                                 |
   +---------------------------------+---------------------------------+
   |      One-way maximum delay      |               5 ms              |
   |                                 |                                 |
   |    Asymmetric delay required    |                No               |
   |                                 |                                 |
   |          Maximum jitter         |           Not critical          |
   |                                 |                                 |
   |             Topology            |     Point to point, point to    |
   |                                 |            multipoint           |
   |                                 |                                 |
   |            Bandwidth            |             64 kbps             |
   |                                 |                                 |
   |           Availability          |             99.9999%            |
   |                                 |                                 |
   |     Precise timing required     |               Yes               |
   |                                 |                                 |
   |  Recovery time on node failure  |    Less than 50 ms - hitless    |
   |                                 |                                 |
   |      Performance management     |          Yes; mandatory         |
   |                                 |                                 |
   |            Redundancy           |            Yes or No            |
   |                                 |                                 |
   |           Packet loss           |               0.1%              |
   +---------------------------------+---------------------------------+

             Table 6: Intra-substation Protection Requirements







Grossman                      Informational                    [Page 22]
^L
RFC 8578                    DetNet Use Cases                    May 2019


3.1.1.3.  Wide-Area Monitoring and Control Systems

   The application of synchrophasor measurement data from Phasor
   Measurement Units (PMUs) to wide-area monitoring and control systems
   promises to provide important new capabilities for improving system
   stability.  Access to PMU data enables more-timely situational
   awareness over larger portions of the grid than what has been
   possible historically with normal SCADA (Supervisory Control and Data
   Acquisition) data.  Handling the volume and the real-time nature of
   synchrophasor data presents unique challenges for existing
   application architectures.  The Wide-Area Management System (WAMS)
   makes it possible for the condition of the bulk power system to be
   observed and understood in real time so that protective,
   preventative, or corrective action can be taken.  Because of the very
   high sampling rate of measurements and the strict requirement for
   time synchronization of the samples, the WAMS has stringent
   telecommunications requirements in an IP network, as captured in
   Table 7:

































Grossman                      Informational                    [Page 23]
^L
RFC 8578                    DetNet Use Cases                    May 2019


   +---------------------------------+---------------------------------+
   |         WAMS Requirement        |            Attribute            |
   +---------------------------------+---------------------------------+
   |      One-way maximum delay      |              50 ms              |
   |                                 |                                 |
   |    Asymmetric delay required    |                No               |
   |                                 |                                 |
   |          Maximum jitter         |           Not critical          |
   |                                 |                                 |
   |             Topology            |     Point to point, point to    |
   |                                 |    multipoint, multipoint to    |
   |                                 |            multipoint           |
   |                                 |                                 |
   |            Bandwidth            |             100 kbps            |
   |                                 |                                 |
   |           Availability          |             99.9999%            |
   |                                 |                                 |
   |     Precise timing required     |               Yes               |
   |                                 |                                 |
   |  Recovery time on node failure  |    Less than 50 ms - hitless    |
   |                                 |                                 |
   |      Performance management     |          Yes; mandatory         |
   |                                 |                                 |
   |            Redundancy           |               Yes               |
   |                                 |                                 |
   |           Packet loss           |                1%               |
   |                                 |                                 |
   |     Consecutive packet loss     |     At least one packet per     |
   |                                 |    application cycle must be    |
   |                                 |            received.            |
   +---------------------------------+---------------------------------+

             Table 7: WAMS Special Communication Requirements


















Grossman                      Informational                    [Page 24]
^L
RFC 8578                    DetNet Use Cases                    May 2019


3.1.1.4.  WAN Engineering Guidelines Requirement Classification

   The IEC has published a technical report (TR) that offers guidelines
   on how to define and deploy Wide-Area Networks (WANs) for the
   interconnection of electric substations, generation plants, and SCADA
   operation centers.  IEC TR 61850-90-12:2015 [IEC-61850-90-12:2015]
   provides four classes of WAN communication requirements, as
   summarized in Table 8:

   +----------------+-----------+----------+----------+----------------+
   |      WAN       |  Class WA | Class WB | Class WC |    Class WD    |
   |  Requirement   |           |          |          |                |
   +----------------+-----------+----------+----------+----------------+
   |  Application   |    EHV    | HV (High |    MV    |    General-    |
   |     field      |  (Extra-  | Voltage) | (Medium  |    purpose     |
   |                |    High   |          | Voltage) |                |
   |                |  Voltage) |          |          |                |
   |                |           |          |          |                |
   |    Latency     |    5 ms   |  10 ms   |  100 ms  |    >100 ms     |
   |                |           |          |          |                |
   |     Jitter     |   10 us   |  100 us  |   1 ms   |     10 ms      |
   |                |           |          |          |                |
   |    Latency     |   100 us  |   1 ms   |  10 ms   |     100 ms     |
   |   asymmetry    |           |          |          |                |
   |                |           |          |          |                |
   | Time accuracy  |    1 us   |  10 us   |  100 us  |  10 to 100 ms  |
   |                |           |          |          |                |
   |      BER       |  10^-7 to | 10^-5 to |  10^-3   |                |
   |                |   10^-6   |  10^-4   |          |                |
   |                |           |          |          |                |
   | Unavailability |  10^-7 to | 10^-5 to |  10^-3   |                |
   |                |   10^-6   |  10^-4   |          |                |
   |                |           |          |          |                |
   | Recovery delay |    Zero   |  50 ms   |   5 s    |      50 s      |
   |                |           |          |          |                |
   | Cybersecurity  | Extremely |   High   |  Medium  |     Medium     |
   |                |    high   |          |          |                |
   +----------------+-----------+----------+----------+----------------+

             Table 8: Communication Requirements (Courtesy of
                         IEC TR 61850-90-12:2015)










Grossman                      Informational                    [Page 25]
^L
RFC 8578                    DetNet Use Cases                    May 2019


3.1.2.  Generation Use Case

   Energy generation systems are complex infrastructures that require
   control of both the generated power and the generation
   infrastructure.

3.1.2.1.  Control of the Generated Power

   The electrical power generation frequency must be maintained within a
   very narrow band.  Deviations from the acceptable frequency range are
   detected, and the required signals are sent to the power plants for
   frequency regulation.

   Automatic Generation Control (AGC) is a system for adjusting the
   power output of generators at different power plants, in response to
   changes in the load.

   +---------------------------------+---------------------------------+
   |     FCAG (Frequency Control     |            Attribute            |
   |      Automatic Generation)      |                                 |
   |           Requirement           |                                 |
   +---------------------------------+---------------------------------+
   |      One-way maximum delay      |              500 ms             |
   |                                 |                                 |
   |    Asymmetric delay required    |                No               |
   |                                 |                                 |
   |          Maximum jitter         |           Not critical          |
   |                                 |                                 |
   |             Topology            |          Point to point         |
   |                                 |                                 |
   |            Bandwidth            |             20 kbps             |
   |                                 |                                 |
   |           Availability          |             99.999%             |
   |                                 |                                 |
   |     Precise timing required     |               Yes               |
   |                                 |                                 |
   |  Recovery time on node failure  |               N/A               |
   |                                 |                                 |
   |      Performance management     |          Yes; mandatory         |
   |                                 |                                 |
   |            Redundancy           |               Yes               |
   |                                 |                                 |
   |           Packet loss           |                1%               |
   +---------------------------------+---------------------------------+

                 Table 9: FCAG Communication Requirements





Grossman                      Informational                    [Page 26]
^L
RFC 8578                    DetNet Use Cases                    May 2019


3.1.2.2.  Control of the Generation Infrastructure

   The control of the generation infrastructure combines requirements
   from industrial automation systems and energy generation systems.
   This section describes the use case for control of the generation
   infrastructure of a wind turbine.

   Figure 1 presents the subsystems that operate a wind turbine.

                       |
                       |
                       |  +-----------------+
                       |  |   +----+        |
                       |  |   |WTRM| WGEN   |
                  WROT x==|===|    |        |
                       |  |   +----+    WCNV|
                       |  |WNAC             |
                       |  +---+---WYAW---+--+
                       |      |          |
                       |      |          |        +----+
                              |WTRF      |        |WMET|
                              |          |        |    |
                       Wind Turbine      |        +--+-+
                       Controller        |           |
                         WTUR |          |           |
                         WREP |          |           |
                         WSLG |          |           |
                         WALG |     WTOW |           |

                  Figure 1: Wind Turbine Control Network

   The subsystems shown in Figure 1 include the following:

   o  WROT (rotor control)

   o  WNAC (nacelle control) (nacelle: housing containing the generator)

   o  WTRM (transmission control)

   o  WGEN (generator)

   o  WYAW (yaw controller) (of the tower head)

   o  WCNV (in-turbine power converter)

   o  WTRF (wind turbine transformer information)





Grossman                      Informational                    [Page 27]
^L
RFC 8578                    DetNet Use Cases                    May 2019


   o  WMET (external meteorological station providing real-time
      information to the tower's controllers)

   o  WTUR (wind turbine general information)

   o  WREP (wind turbine report information)

   o  WSLG (wind turbine state log information)

   o  WALG (wind turbine analog log information)

   o  WTOW (wind turbine tower information)

   Traffic characteristics relevant to the network planning and
   dimensioning process in a wind turbine scenario are listed below.
   The values in this section are based mainly on the relevant
   references [Ahm14] and [Spe09].  Each logical node (Figure 1) is a
   part of the metering network and produces analog measurements and
   status information that must comply with their respective data-rate
   constraints.

   +-----------+--------+----------+-----------+-----------+-----------+
   | Subsystem | Sensor |  Analog  | Data Rate |   Status  | Data Rate |
   |           | Count  |  Sample  | (bytes/s) |   Sample  | (bytes/s) |
   |           |        |  Count   |           |   Count   |           |
   +-----------+--------+----------+-----------+-----------+-----------+
   |    WROT   |   14   |    9     |    642    |     5     |     10    |
   |           |        |          |           |           |           |
   |    WTRM   |   18   |    10    |    2828   |     8     |     16    |
   |           |        |          |           |           |           |
   |    WGEN   |   14   |    12    |   73764   |     2     |     4     |
   |           |        |          |           |           |           |
   |    WCNV   |   14   |    12    |   74060   |     2     |     4     |
   |           |        |          |           |           |           |
   |    WTRF   |   12   |    5     |   73740   |     2     |     4     |
   |           |        |          |           |           |           |
   |    WNAC   |   12   |    9     |    112    |     3     |     6     |
   |           |        |          |           |           |           |
   |    WYAW   |   7    |    8     |    220    |     4     |     8     |
   |           |        |          |           |           |           |
   |    WTOW   |   4    |    1     |     8     |     3     |     6     |
   |           |        |          |           |           |           |
   |    WMET   |   7    |    7     |    228    |     -     |     -     |
   +-----------+--------+----------+-----------+-----------+-----------+

               Table 10: Wind Turbine Data-Rate Constraints





Grossman                      Informational                    [Page 28]
^L
RFC 8578                    DetNet Use Cases                    May 2019


   QoS constraints for different services are presented in Table 11.
   These constraints are defined by IEEE Standard 1646 [IEEE-1646] and
   IEC Standard 61400 Part 25 [IEC-61400-25].

   +---------------------+---------+-------------+---------------------+
   |       Service       | Latency | Reliability |   Packet Loss Rate  |
   +---------------------+---------+-------------+---------------------+
   |  Analog measurement |  16 ms  |    99.99%   |        <10^-6       |
   |                     |         |             |                     |
   |  Status information |  16 ms  |    99.99%   |        <10^-6       |
   |                     |         |             |                     |
   |  Protection traffic |   4 ms  |   100.00%   |        <10^-9       |
   |                     |         |             |                     |
   |    Reporting and    |   1 s   |    99.99%   |        <10^-6       |
   |       logging       |         |             |                     |
   |                     |         |             |                     |
   |  Video surveillance |   1 s   |    99.00%   |     No specific     |
   |                     |         |             |     requirement     |
   |                     |         |             |                     |
   | Internet connection |  60 min |    99.00%   |     No specific     |
   |                     |         |             |     requirement     |
   |                     |         |             |                     |
   |   Control traffic   |  16 ms  |   100.00%   |        <10^-9       |
   |                     |         |             |                     |
   |     Data polling    |  16 ms  |    99.99%   |        <10^-6       |
   +---------------------+---------+-------------+---------------------+

        Table 11: Wind Turbine Reliability and Latency Constraints

3.1.2.2.1.  Intra-domain Network Considerations

   A wind turbine is composed of a large set of subsystems, including
   sensors and actuators that require time-critical operation.  The
   reliability and latency constraints of these different subsystems are
   shown in Table 11.  These subsystems are connected to an intra-domain
   network that is used to monitor and control the operation of the
   turbine and connect it to the SCADA subsystems.  The different
   components are interconnected using fiber optics, industrial buses,
   industrial Ethernet, EtherCAT [EtherCAT], or a combination thereof.
   Industrial signaling and control protocols such as Modbus [MODBUS],
   PROFIBUS [PROFIBUS], PROFINET [PROFINET], and EtherCAT are used
   directly on top of the Layer 2 transport or encapsulated over TCP/IP.

   The data collected from the sensors and condition-monitoring systems
   is multiplexed onto fiber cables for transmission to the base of the
   tower and to remote control centers.  The turbine controller
   continuously monitors the condition of the wind turbine and collects




Grossman                      Informational                    [Page 29]
^L
RFC 8578                    DetNet Use Cases                    May 2019


   statistics on its operation.  This controller also manages a large
   number of switches, hydraulic pumps, valves, and motors within the
   wind turbine.

   There is usually a controller at the bottom of the tower and also in
   the nacelle.  The communication between these two controllers usually
   takes place using fiber optics instead of copper links.  Sometimes, a
   third controller is installed in the hub of the rotor and manages the
   pitch of the blades.  That unit usually communicates with the nacelle
   unit using serial communications.

3.1.2.2.2.  Inter-domain Network Considerations

   A remote control center belonging to a grid operator regulates the
   power output, enables remote actuation, and monitors the health of
   one or more wind parks in tandem.  It connects to the local control
   center in a wind park over the Internet (Figure 2) via firewalls at
   both ends.  The Autonomous System (AS) path between the local control
   center and the wind park typically involves several ISPs at different
   tiers.  For example, a remote control center in Denmark can regulate
   a wind park in Greece over the normal public AS path between the two
   locations.

   +--------------+
   |              |
   |              |
   | Wind Park #1 +----+
   |              |    |      XXXXXX
   |              |    |      X    XXXXXXXX           +----------------+
   +--------------+    |   XXXX    X      XXXXX       |                |
                       +---+                XXX       | Remote Control |
                           XXX    Internet       +----+     Center     |
                       +----+X                XXX     |                |
   +--------------+    |    XXXXXXX             XX    |                |
   |              |    |          XX     XXXXXXX      +----------------+
   |              |    |            XXXXX
   | Wind Park #2 +----+
   |              |
   |              |
   +--------------+

                Figure 2: Wind Turbine Control via Internet

   The remote control center is part of the SCADA system, setting the
   desired power output to the wind park and reading back the result
   once the new power output level has been set.  Traffic between the
   remote control center and the wind park typically consists of
   protocols like IEC 60870-5-104 [IEC-60870-5-104], OPC XML-Data Access



Grossman                      Informational                    [Page 30]
^L
RFC 8578                    DetNet Use Cases                    May 2019


   (XML-DA) [OPCXML], Modbus [MODBUS], and SNMP [RFC3411].  At the time
   of this writing, traffic flows between the remote control center and
   the wind park are best effort.  QoS requirements are not strict, so
   no Service Level Agreements (SLAs) or service-provisioning mechanisms
   (e.g., VPNs) are employed.  In the case of such events as equipment
   failure, tolerance for alarm delay is on the order of minutes, due to
   redundant systems already in place.

   Future use cases will require bounded latency, bounded jitter, and
   extraordinarily low packet loss for inter-domain traffic flows due to
   the softwarization and virtualization of core wind-park equipment
   (e.g., switches, firewalls, and SCADA server components).  These
   factors will create opportunities for service providers to install
   new services and dynamically manage them from remote locations.  For
   example, to enable failover of a local SCADA server, a SCADA server
   in another wind-park site (under the administrative control of the
   same operator) could be utilized temporarily (Figure 3).  In that
   case, local traffic would be forwarded to the remote SCADA server,
   and existing intra-domain QoS and timing parameters would have to be
   met for inter-domain traffic flows.

   +--------------+
   |              |
   |              |
   | Wind Park #1 +----+
   |              |    |      XXXXXX
   |              |    |      X    XXXXXXXX           +----------------+
   +--------------+    |   XXXX           XXXXX       |                |
                       +---+      Operator-   XXX     | Remote Control |
                           XXX    Administered   +----+     Center     |
                       +----+X    WAN         XXX     |                |
   +--------------+    |    XXXXXXX             XX    |                |
   |              |    |          XX     XXXXXXX      +----------------+
   |              |    |            XXXXX
   | Wind Park #2 +----+
   |              |
   |              |
   +--------------+

       Figure 3: Wind Turbine Control via Operator-Administered WAN











Grossman                      Informational                    [Page 31]
^L
RFC 8578                    DetNet Use Cases                    May 2019


3.1.3.  Distribution Use Case

3.1.3.1.  Fault Location, Isolation, and Service Restoration (FLISR)

   "Fault Location, Isolation, and Service Restoration (FLISR)" refers
   to the ability to automatically locate the fault, isolate the fault,
   and restore service in the distribution network.  This will likely
   be the first widespread application of distributed intelligence in
   the grid.

   The static power-switch status (open/closed) in the network dictates
   the power flow to secondary substations.  Reconfiguring the network
   in the event of a fault is typically done manually on site to
   energize/de-energize alternate paths.  Automating the operation of
   substation switchgear allows the flow of power to be altered
   automatically under fault conditions.

   FLISR can be managed centrally from a Distribution Management System
   (DMS) or executed locally through distributed control via intelligent
   switches and fault sensors.































Grossman                      Informational                    [Page 32]
^L
RFC 8578                    DetNet Use Cases                    May 2019


   +---------------------------------+---------------------------------+
   |        FLISR Requirement        |            Attribute            |
   +---------------------------------+---------------------------------+
   |      One-way maximum delay      |              80 ms              |
   |                                 |                                 |
   |    Asymmetric delay required    |                No               |
   |                                 |                                 |
   |          Maximum jitter         |              40 ms              |
   |                                 |                                 |
   |             Topology            |     Point to point, point to    |
   |                                 |    multipoint, multipoint to    |
   |                                 |            multipoint           |
   |                                 |                                 |
   |            Bandwidth            |             64 kbps             |
   |                                 |                                 |
   |           Availability          |             99.9999%            |
   |                                 |                                 |
   |     Precise timing required     |               Yes               |
   |                                 |                                 |
   |  Recovery time on node failure  |    Depends on customer impact   |
   |                                 |                                 |
   |      Performance management     |          Yes; mandatory         |
   |                                 |                                 |
   |            Redundancy           |               Yes               |
   |                                 |                                 |
   |           Packet loss           |               0.1%              |
   +---------------------------------+---------------------------------+

                Table 12: FLISR Communication Requirements

3.2.  Electrical Utilities Today

   Many utilities still rely on complex environments consisting of
   multiple application-specific proprietary networks, including TDM
   networks.

   In this kind of environment, there is no mixing of Operation
   Technology (OT) and IT applications on the same network, and
   information is siloed between operational areas.

   Specific calibration of the full chain is required; this is costly.

   This kind of environment prevents utility operations from realizing
   operational efficiency benefits, visibility, and functional
   integration of operational information across grid applications and
   data networks.





Grossman                      Informational                    [Page 33]
^L
RFC 8578                    DetNet Use Cases                    May 2019


   In addition, there are many security-related issues, as discussed in
   the following section.

3.2.1.  Current Security Practices and Their Limitations

   Grid-monitoring and control devices are already targets for cyber
   attacks, and legacy telecommunications protocols have many intrinsic
   network-related vulnerabilities.  For example, the Distributed
   Network Protocol (DNP3) [IEEE-1815], Modbus, PROFIBUS/PROFINET, and
   other protocols are designed around a common paradigm of "request and
   respond".  Each protocol is designed for a master device such as an
   HMI (Human-Machine Interface) system to send commands to subordinate
   slave devices to perform data retrieval (reading inputs) or control
   functions (writing to outputs).  Because many of these protocols lack
   authentication, encryption, or other basic security measures, they
   are prone to network-based attacks, allowing a malicious actor or
   attacker to utilize the request-and-respond system as a mechanism for
   functionality similar to command and control.  Specific security
   concerns common to most industrial-control protocols (including
   utility telecommunications protocols) include the following:

   o  Network or transport errors (e.g., malformed packets or excessive
      latency) can cause protocol failure.

   o  Protocol commands may be available that are capable of forcing
      slave devices into inoperable states, including powering devices
      off, forcing them into a listen-only state, or disabling alarming.

   o  Protocol commands may be available that are capable of
      interrupting processes (e.g., restarting communications).

   o  Protocol commands may be available that are capable of clearing,
      erasing, or resetting diagnostic information such as counters and
      diagnostic registers.

   o  Protocol commands may be available that are capable of requesting
      sensitive information about the controllers, their configurations,
      or other need-to-know information.

   o  Most protocols are application-layer protocols transported over
      TCP; it is therefore easy to transport commands over non-standard
      ports or inject commands into authorized traffic flows.

   o  Protocol commands may be available that are capable of
      broadcasting messages to many devices at once (i.e., a
      potential DoS).





Grossman                      Informational                    [Page 34]
^L
RFC 8578                    DetNet Use Cases                    May 2019


   o  Protocol commands may be available that will query the device
      network to obtain defined points and their values (i.e., perform a
      configuration scan).

   o  Protocol commands may be available that will list all available
      function codes (i.e., perform a function scan).

   These inherent vulnerabilities, along with increasing connectivity
   between IT and OT networks, make network-based attacks very feasible.
   By injecting malicious protocol commands, an attacker could take
   control over the target process.  Altering legitimate protocol
   traffic can also alter information about a process and disrupt the
   legitimate controls that are in place over that process.  A
   man-in-the-middle attack could result in (1) improper control over a
   process and (2) misrepresentation of data that is sent back to
   operator consoles.

3.3.  Electrical Utilities in the Future

   The business and technology trends that are sweeping the utility
   industry will drastically transform the utility business from the way
   it has been for many decades.  At the core of many of these changes
   is a drive to modernize the electrical grid with an integrated
   telecommunications infrastructure.  However, interoperability
   concerns, legacy networks, disparate tools, and stringent security
   requirements all add complexity to the grid's transformation.  Given
   the range and diversity of the requirements that should be addressed
   by the next-generation telecommunications infrastructure, utilities
   need to adopt a holistic architectural approach to integrate the
   electrical grid with digital telecommunications across the entire
   power delivery chain.

   The key to modernizing grid telecommunications is to provide a
   common, adaptable, multi-service network infrastructure for the
   entire utility organization.  Such a network serves as the platform
   for current capabilities while enabling future expansion of the
   network to accommodate new applications and services.

   To meet this diverse set of requirements both today and in the
   future, the next-generation utility telecommunications network will
   be based on an open-standards-based IP architecture.  An end-to-end
   IP architecture takes advantage of nearly three decades of IP
   technology development, facilitating interoperability and device
   management across disparate networks and devices, as has already been
   demonstrated in many mission-critical and highly secure networks.






Grossman                      Informational                    [Page 35]
^L
RFC 8578                    DetNet Use Cases                    May 2019


   IPv6 is seen as a future telecommunications technology for the smart
   grid; the IEC and different national committees have mandated a
   specific ad hoc group (AHG8) to define the strategy for migration to
   IPv6 for all the IEC Technical Committee 57 (TC 57) power automation
   standards.  The AHG8 has finalized its work on the migration
   strategy, and IEC TR 62357-200:2015 [IEC-62357-200:2015] has been
   issued.

   Cloud-based SCADA systems will control and monitor the critical and
   non-critical subsystems of generation systems -- for example, wind
   parks.

3.3.1.  Migration to Packet-Switched Networks

   Throughout the world, utilities are increasingly planning for a
   future based on smart-grid applications requiring advanced
   telecommunications systems.  Many of these applications utilize
   packet connectivity for communicating information and control signals
   across the utility's WAN, made possible by technologies such as
   Multiprotocol Label Switching (MPLS).  The data that traverses the
   utility WAN includes:

   o  Grid monitoring, control, and protection data

   o  Non-control grid data (e.g., asset data for condition monitoring)

   o  Data (e.g., voice and video) related to physical safety and
      security

   o  Remote worker access to corporate applications (voice, maps,
      schematics, etc.)

   o  Field area network Backhaul for smart metering

   o  Distribution-grid management

   o  Enterprise traffic (email, collaboration tools, business
      applications)

   WANs support this wide variety of traffic to and from substations,
   the transmission and distribution grid, and generation sites; between
   control centers; and between work locations and data centers.  To
   maintain this rapidly expanding set of applications, many utilities
   are taking steps to evolve present TDM-based and frame relay
   infrastructures to packet systems.  Packet-based networks are
   designed to provide greater functionalities and higher levels of
   service for applications, while continuing to deliver reliability and
   deterministic (real-time) traffic support.



Grossman                      Informational                    [Page 36]
^L
RFC 8578                    DetNet Use Cases                    May 2019


3.3.2.  Telecommunications Trends

   These general telecommunications topics are provided in addition to
   the use cases that have been addressed so far.  These include both
   current and future telecommunications-related topics that should be
   factored into the network architecture and design.

3.3.2.1.  General Telecommunications Requirements

   o  IP connectivity everywhere

   o  Monitoring services everywhere, and from different remote centers

   o  Moving services to a virtual data center

   o  Unified access to applications/information from the corporate
      network

   o  Unified services

   o  Unified communications solutions

   o  Mix of fiber and microwave technologies - obsolescence of the
      Synchronous Optical Network / Synchronous Digital Hierarchy
      (SONET/SDH) or TDM

   o  Standardizing grid telecommunications protocols to open standards,
      to ensure interoperability

   o  Reliable telecommunications for transmission and distribution
      substations

   o  IEEE 1588 time-synchronization client/server capabilities

   o  Integration of multicast design

   o  Mapping of QoS requirements

   o  Enabling future network expansion

   o  Substation network resilience

   o  Fast convergence design

   o  Scalable headend design

   o  Defining SLAs and enabling SLA monitoring




Grossman                      Informational                    [Page 37]
^L
RFC 8578                    DetNet Use Cases                    May 2019


   o  Integration of 3G/4G technologies and future technologies

   o  Ethernet connectivity for station bus architecture

   o  Ethernet connectivity for process bus architecture

   o  Protection, teleprotection, and PMUs on IP

3.3.2.2.  Specific Network Topologies of Smart-Grid Applications

   Utilities often have very large private telecommunications networks
   that can cover an entire territory/country.  Until now, the main
   purposes of these networks have been to (1) support transmission
   network monitoring, control, and automation, (2) support remote
   control of generation sites, and (3) provide FCAPS (Fault,
   Configuration, Accounting, Performance, and Security) services from
   centralized network operation centers.

   Going forward, one network will support the operation and maintenance
   of electrical networks (generation, transmission, and distribution),
   voice and data services for tens of thousands of employees and for
   exchanges with neighboring interconnections, and administrative
   services.  To meet those requirements, a utility may deploy several
   physical networks leveraging different technologies across the
   country -- for instance, an optical network and a microwave network.
   Each protection and automation system between two points has two
   telecommunications circuits, one on each network.  Path diversity
   between two substations is key.  Regardless of the event type
   (hurricane, ice storm, etc.), one path needs to stay available so the
   system can still operate.

   In the optical network, signals are transmitted over more than tens
   of thousands of circuits using fiber optic links, microwave links,
   and telephone cables.  This network is the nervous system of the
   utility's power transmission operations.  The optical network
   represents tens of thousands of kilometers of cable deployed along
   the power lines, with individual runs as long as 280 km.

3.3.2.3.  Precision Time Protocol

   Some utilities do not use GPS clocks in generation substations.  One
   of the main reasons is that some of the generation plants are 30 to
   50 meters deep underground and the GPS signal can be weak and
   unreliable.  Instead, atomic clocks are used.  Clocks are
   synchronized amongst each other.  Rubidium clocks provide clock and
   1 ms timestamps for IRIG-B.





Grossman                      Informational                    [Page 38]
^L
RFC 8578                    DetNet Use Cases                    May 2019


   Some companies plan to transition to PTP [IEEE-1588], distributing
   the synchronization signal over the IP/MPLS network.  PTP provides a
   mechanism for synchronizing the clocks of participating nodes to a
   high degree of accuracy and precision.

   PTP operates based on the following assumptions:

   o  The network eliminates cyclic forwarding of PTP messages within
      each communication path (e.g., by using a spanning tree protocol).

   o  PTP is tolerant of an occasional missed message, duplicated
      message, or message that arrived out of order.  However, PTP
      assumes that such impairments are relatively rare.

   o  As designed, PTP expects a multicast communication model; however,
      PTP also supports a unicast communication model as long as the
      behavior of the protocol is preserved.

   o  Like all message-based time transfer protocols, PTP time accuracy
      is degraded by delay asymmetry in the paths taken by event
      messages.  PTP cannot detect asymmetry, but if such delays are
      known a priori, time values can be adjusted to correct for
      asymmetry.

   The use of PTP for power automation is defined in
   IEC/IEEE 61850-9-3:2016 [IEC-IEEE-61850-9-3:2016].  It is based on
   Annex B of IEC 62439-3:2016 [IEC-62439-3:2016], which offers the
   support of redundant attachment of clocks to Parallel Redundancy
   Protocol (PRP) and High-availability Seamless Redundancy (HSR)
   networks.

3.3.3.  Security Trends in Utility Networks

   Although advanced telecommunications networks can assist in
   transforming the energy industry by playing a critical role in
   maintaining high levels of reliability, performance, and
   manageability, they also introduce the need for an integrated
   security infrastructure.  Many of the technologies being deployed to
   support smart-grid projects such as smart meters and sensors can
   increase the vulnerability of the grid to attack.  Top security
   concerns for utilities migrating to an intelligent smart-grid
   telecommunications platform center on the following trends:

   o  Integration of distributed energy resources

   o  Proliferation of digital devices to enable management, automation,
      protection, and control




Grossman                      Informational                    [Page 39]
^L
RFC 8578                    DetNet Use Cases                    May 2019


   o  Regulatory mandates to comply with standards for critical
      infrastructure protection

   o  Migration to new systems for outage management, distribution
      automation, condition-based maintenance, load forecasting, and
      smart metering

   o  Demand for new levels of customer service and energy management

   This development of a diverse set of networks to support the
   integration of microgrids, open-access energy competition, and the
   use of network-controlled devices is driving the need for a converged
   security infrastructure for all participants in the smart grid,
   including utilities, energy service providers, large commercial and
   industrial customers, and residential customers.  Securing the assets
   of electric power delivery systems (from the control center to the
   substation, to the feeders and down to customer meters) requires an
   end-to-end security infrastructure that protects the myriad of
   telecommunications assets used to operate, monitor, and control power
   flow and measurement.

   "Cybersecurity" refers to all the security issues in automation and
   telecommunications that affect any functions related to the operation
   of the electric power systems.  Specifically, it involves the
   concepts of:

   o  Integrity: data cannot be altered undetectably

   o  Authenticity (data origin authentication): the telecommunications
      parties involved must be validated as genuine

   o  Authorization: only requests and commands from authorized users
      can be accepted by the system

   o  Confidentiality: data must not be accessible to any
      unauthenticated users

   When designing and deploying new smart-grid devices and
   telecommunications systems, it is imperative to understand the
   various impacts of these new components under a variety of attack
   situations on the power grid.  The consequences of a cyber attack on
   the grid telecommunications network can be catastrophic.  This is why
   security for the smart grid is not just an ad hoc feature or product;
   it's a complete framework integrating both physical and cybersecurity
   requirements and covering the entire smart-grid networks from
   generation to distribution.  Security has therefore become one of the
   main foundations of the utility telecom network architecture and must
   be considered at every layer with a defense-in-depth approach.



Grossman                      Informational                    [Page 40]
^L
RFC 8578                    DetNet Use Cases                    May 2019


   Migrating to IP-based protocols is key to addressing these challenges
   for two reasons:

   o  IP enables a rich set of features and capabilities to enhance the
      security posture.

   o  IP is based on open standards; this allows interoperability
      between different vendors and products, driving down the costs
      associated with implementing security solutions in OT networks.

   Securing OT telecommunications over packet-switched IP networks
   follows the same principles that are foundational for securing the IT
   infrastructure, i.e., consideration must be given to (1) enforcing
   electronic access control for both person-to-machine and machine-to-
   machine communications and (2) providing the appropriate levels of
   data privacy, device and platform integrity, and threat detection and
   mitigation.

3.4.  Electrical Utilities Requests to the IETF

   o  Mixed Layer 2 and Layer 3 topologies

   o  Deterministic behavior

   o  Bounded latency and jitter

   o  Tight feedback intervals

   o  High availability, low recovery time

   o  Redundancy, low packet loss

   o  Precise timing

   o  Centralized computing of deterministic paths

   o  Distributed configuration (may also be useful)

4.  Building Automation Systems (BASs)

4.1.  Use Case Description

   A BAS manages equipment and sensors in a building for improving
   residents' comfort, reducing energy consumption, and responding to
   failures and emergencies.  For example, the BAS measures the
   temperature of a room using sensors and then controls the HVAC
   (heating, ventilating, and air conditioning) to maintain a set
   temperature and minimize energy consumption.



Grossman                      Informational                    [Page 41]
^L
RFC 8578                    DetNet Use Cases                    May 2019


   A BAS primarily performs the following functions:

   o  Periodically measures states of devices -- for example, humidity
      and illuminance of rooms, open/close state of doors, fan speed.

   o  Stores the measured data.

   o  Provides the measured data to BAS operators.

   o  Generates alarms for abnormal state of devices.

   o  Controls devices (e.g., turns room lights off at 10:00 PM).

4.2.  BASs Today

4.2.1.  BAS Architecture

   A typical present-day BAS architecture is shown in Figure 4.

                          +----------------------------+
                          |                            |
                          |       BMS        HMI       |
                          |        |          |        |
                          |  +----------------------+  |
                          |  |  Management Network  |  |
                          |  +----------------------+  |
                          |        |          |        |
                          |        LC         LC       |
                          |        |          |        |
                          |  +----------------------+  |
                          |  |     Field Network    |  |
                          |  +----------------------+  |
                          |     |     |     |     |    |
                          |    Dev   Dev   Dev   Dev   |
                          |                            |
                          +----------------------------+

                          BMS: Building Management Server
                          HMI: Human-Machine Interface
                          LC: Local Controller

                        Figure 4: BAS Architecture

   There are typically two layers of a network in a BAS.  The upper
   layer is called the management network, and the lower layer is called
   the field network.  In management networks, an IP-based communication
   protocol is used, while in field networks, non-IP-based communication




Grossman                      Informational                    [Page 42]
^L
RFC 8578                    DetNet Use Cases                    May 2019


   protocols ("field protocols") are mainly used.  Field networks have
   specific timing requirements, whereas management networks can be best
   effort.

   An HMI is typically a desktop PC used by operators to monitor and
   display device states, send device control commands to Local
   Controllers (LCs), and configure building schedules (for example,
   "turn off all room lights in the building at 10:00 PM").

   A building management server (BMS) performs the following operations.

   o  Collects and stores device states from LCs at regular intervals.

   o  Sends control values to LCs according to a building schedule.

   o  Sends an alarm signal to operators if it detects abnormal device
      states.

   The BMS and HMI communicate with LCs via IP-based "management
   protocols" (see standards [BACnet-IP] and [KNX]).

   An LC is typically a Programmable Logic Controller (PLC) that is
   connected to several tens or hundreds of devices using "field
   protocols".  An LC performs the following kinds of operations:

   o  Measures device states and provides the information to a BMS
      or HMI.

   o  Sends control values to devices, unilaterally or as part of a
      feedback control loop.

   At the time of this writing, many field protocols are in use; some
   are standards-based protocols, and others are proprietary (see
   standards [LonTalk], [MODBUS], [PROFIBUS], and [FL-net]).  The result
   is that BASs have multiple MAC/PHY modules and interfaces.  This
   makes BASs more expensive and slower to develop and can result in
   "vendor lock-in" with multiple types of management applications.














Grossman                      Informational                    [Page 43]
^L
RFC 8578                    DetNet Use Cases                    May 2019


4.2.2.  BAS Deployment Model

   An example BAS for medium or large buildings is shown in Figure 5.
   The physical layout spans multiple floors and includes a monitoring
   room where the BAS management entities are located.  Each floor will
   have one or more LCs, depending on the number of devices connected to
   the field network.

               +--------------------------------------------------+
               |                                          Floor 3 |
               |     +----LC~~~~+~~~~~+~~~~~+                     |
               |     |          |     |     |                     |
               |     |         Dev   Dev   Dev                    |
               |     |                                            |
               |---  |  ------------------------------------------|
               |     |                                    Floor 2 |
               |     +----LC~~~~+~~~~~+~~~~~+  Field Network      |
               |     |          |     |     |                     |
               |     |         Dev   Dev   Dev                    |
               |     |                                            |
               |---  |  ------------------------------------------|
               |     |                                    Floor 1 |
               |     +----LC~~~~+~~~~~+~~~~~+   +-----------------|
               |     |          |     |     |   | Monitoring Room |
               |     |         Dev   Dev   Dev  |                 |
               |     |                          |    BMS   HMI    |
               |     |   Management Network     |     |     |     |
               |     +--------------------------------+-----+     |
               |                                |                 |
               +--------------------------------------------------+

         Figure 5: BAS Deployment Model for Medium/Large Buildings

   Each LC is connected to the monitoring room via the management
   network, and the management functions are performed within the
   building.  In most cases, Fast Ethernet (e.g., 100BASE-T) is used for
   the management network.  Since the management network is not a
   real-time network, the use of Ethernet without QoS is sufficient for
   today's deployments.

   Many physical interfaces used in field networks have specific timing
   requirements -- for example, RS232C and RS485.  Thus, if a field
   network is to be replaced with an Ethernet or wireless network, such
   networks must support time-critical deterministic flows.







Grossman                      Informational                    [Page 44]
^L
RFC 8578                    DetNet Use Cases                    May 2019


   Figure 6 shows another deployment model, in which the management
   system is hosted remotely.  This model is becoming popular for small
   offices and residential buildings, in which a standalone monitoring
   system is not cost effective.

                                                     +---------------+
                                                     | Remote Center |
                                                     |               |
                                                     |  BMS     HMI  |
            +------------------------------------+   |   |       |   |
            |                            Floor 2 |   |   +---+---+   |
            |    +----LC~~~~+~~~~~+ Field Network|   |       |       |
            |    |          |     |              |   |     Router    |
            |    |         Dev   Dev             |   +-------|-------+
            |    |                               |           |
            |--- | ------------------------------|           |
            |    |                       Floor 1 |           |
            |    +----LC~~~~+~~~~~+              |           |
            |    |          |     |              |           |
            |    |         Dev   Dev             |           |
            |    |                               |           |
            |    |   Management Network          |     WAN   |
            |    +------------------------Router-------------+
            |                                    |
            +------------------------------------+

              Figure 6: Deployment Model for Small Buildings

   Some interoperability is possible in today's management networks but
   is not possible in today's field networks due to their non-IP-based
   design.

4.2.3.  Use Cases for Field Networks

   Below are use cases for environmental monitoring, fire detection, and
   feedback control, and their implications for field network
   performance.

4.2.3.1.  Environmental Monitoring

   The BMS polls each LC at a maximum measurement interval of 100 ms
   (for example, to draw a historical chart of 1-second granularity with
   a 10x sampling interval) and then performs the operations as
   specified by the operator.  Each LC needs to measure each of its
   several hundred sensors once per measurement interval.  Latency is
   not critical in this scenario as long as all sensor value
   measurements are completed within the measurement interval.
   Availability is expected to be 99.999%.



Grossman                      Informational                    [Page 45]
^L
RFC 8578                    DetNet Use Cases                    May 2019


4.2.3.2.  Fire Detection

   On detection of a fire, the BMS must stop the HVAC, close the fire
   shutters, turn on the fire sprinklers, send an alarm, etc.  There are
   typically tens of fire sensors per LC that the BMS needs to manage.
   In this scenario, the measurement interval is 10-50 ms, the
   communication delay is 10 ms, and the availability must be 99.9999%.

4.2.3.3.  Feedback Control

   BASs utilize feedback control in various ways; the most time-critical
   is control of DC motors, which require a short feedback interval
   (1-5 ms) with low communication delay (10 ms) and jitter (1 ms).  The
   feedback interval depends on the characteristics of the device and on
   the requirements for the control values.  There are typically tens of
   feedback sensors per LC.

   Communication delay is expected to be less than 10 ms and jitter less
   than 1 ms, while the availability must be 99.9999%.

4.2.4.  BAS Security Considerations

   When BAS field networks were developed, it was assumed that the field
   networks would always be physically isolated from external networks;
   therefore, security was not a concern.  In today's world, many BASs
   are managed remotely and are thus connected to shared IP networks;
   therefore, security is a definite concern.  Note, however, that
   security features are not currently available in the majority of BAS
   field network deployments.

   The management network, being an IP-based network, has the protocols
   available to enable network security, but in practice many BASs do
   not implement even such available security features as device
   authentication or encryption for data in transit.

4.3.  BASs in the Future

   In the future, lower energy consumption and environmental monitoring
   that is more fine-grained will emerge; these will require more
   sensors and devices, thus requiring larger and more-complex building
   networks.

   Building networks will be connected to or converged with other
   networks (enterprise networks, home networks, and the Internet).

   Therefore, better facilities for network management, control,
   reliability, and security are critical in order to improve resident
   and operator convenience and comfort.  For example, the ability to



Grossman                      Informational                    [Page 46]
^L
RFC 8578                    DetNet Use Cases                    May 2019


   monitor and control building devices via the Internet would enable
   (for example) control of room lights or HVAC from a resident's
   desktop PC or phone application.

4.4.  BAS Requests to the IETF

   The community would like to see an interoperable protocol
   specification that can satisfy the timing, security, availability,
   and QoS constraints described above, such that the resulting
   converged network can replace the disparate field networks.  Ideally,
   this connectivity could extend to the open Internet.

   This would imply an architecture that can guarantee

   o  Low communication delays (from <10 ms to 100 ms in a network of
      several hundred devices)

   o  Low jitter (<1 ms)

   o  Tight feedback intervals (1-10 ms)

   o  High network availability (up to 99.9999%)

   o  Availability of network data in disaster scenarios

   o  Authentication between management devices and field devices (both
      local and remote)

   o  Integrity and data origin authentication of communication data
      between management devices and field devices

   o  Confidentiality of data when communicated to a remote device

5.  Wireless for Industrial Applications

5.1.  Use Case Description

   Wireless networks are useful for industrial applications -- for
   example, (1) when portable, fast-moving, or rotating objects are
   involved and (2) for the resource-constrained devices found in the
   Internet of Things (IoT).

   Such network-connected sensors, actuators, control loops, etc.
   typically require that the underlying network support real-time QoS,
   as well as such specific network properties as reliability,
   redundancy, and security.





Grossman                      Informational                    [Page 47]
^L
RFC 8578                    DetNet Use Cases                    May 2019


   These networks may also contain very large numbers of devices -- for
   example, for factories, "big data" acquisition, and the IoT.  Given
   the large numbers of devices installed and the potential
   pervasiveness of the IoT, this is a huge and very cost-sensitive
   market such that small cost reductions can save large amounts of
   money.

5.1.1.  Network Convergence Using 6TiSCH

   Some wireless network technologies support real-time QoS and are thus
   useful for these kinds of networks, but others do not.

   This use case focuses on one specific wireless network technology
   that provides the required deterministic QoS: "IPv6 over the TSCH
   mode of IEEE 802.15.4e" (6TiSCH, where "TSCH" stands for
   "Time-Slotted Channel Hopping"; see [Arch-for-6TiSCH], [IEEE-802154],
   and [RFC7554]).

   There are other deterministic wireless buses and networks available
   today; however, they are incompatible with each other and with IP
   traffic (for example, see [ISA100] and [WirelessHART]).

   Thus, the primary goal of this use case is to apply 6TiSCH as a
   converged IP-based and standards-based wireless network for
   industrial applications, i.e., to replace multiple proprietary and/or
   incompatible wireless networking and wireless network management
   standards.

5.1.2.  Common Protocol Development for 6TiSCH

   Today, there are a number of protocols required by 6TiSCH that are
   still in development.  Another goal of this use case is to highlight
   the ways in which these "missing" protocols share goals in common
   with DetNet.  Thus, it is possible that some of the protocol
   technology developed for DetNet will also be applicable to 6TiSCH.

   These protocol goals are identified here, along with their
   relationship to DetNet.  It is likely that ultimately the resulting
   protocols will not be identical but will share design principles that
   contribute to the efficiency of enabling both DetNet and 6TiSCH.

   One such commonality is that -- although on a different time scale --
   in both TSN [IEEE-8021TSNTG] and TSCH, a packet that crosses the
   network from node to node follows a precise schedule, as does a train
   that leaves intermediate stations at precise times along its path.
   This kind of operation reduces collisions, saves energy, and enables
   engineering of the network for deterministic properties.




Grossman                      Informational                    [Page 48]
^L
RFC 8578                    DetNet Use Cases                    May 2019


   Another commonality is remote monitoring and scheduling management of
   a TSCH network by a Path Computation Element (PCE) and Network
   Management Entity (NME).  The PCE and NME manage timeslots and device
   resources in a manner that minimizes the interaction with, and the
   load placed on, resource-constrained devices.  For example, a tiny
   IoT device may have just enough buffers to store one or a few IPv6
   packets; it will have limited bandwidth between peers such that it
   can maintain only a small amount of peer information, and it will not
   be able to store many packets waiting to be forwarded.  It is
   advantageous, then, for the IoT device to only be required to carry
   out the specific behavior assigned to it by the PCE and NME (as
   opposed to maintaining its own IP stack, for example).

   It is possible that there will be some peer-to-peer communication;
   for example, the PCE may communicate only indirectly with some
   devices in order to enable hierarchical configuration of the system.

   6TiSCH depends on [PCE] and [DetNet-Arch].

   6TiSCH also depends on the fact that DetNet will maintain consistency
   with [IEEE-8021TSNTG].

5.2.  Wireless Industrial Today

   Today, industrial wireless technology ("wireless industrial") is
   accomplished using multiple deterministic wireless networks that are
   incompatible with each other and with IP traffic.

   6TiSCH is not yet fully specified, so it cannot be used in today's
   applications.

5.3.  Wireless Industrial in the Future

5.3.1.  Unified Wireless Networks and Management

   DetNet and 6TiSCH together can enable converged transport of
   deterministic and best-effort traffic flows between real-time
   industrial devices and WANs via IP routing.  A high-level view of
   this type of basic network is shown in Figure 7.












Grossman                      Informational                    [Page 49]
^L
RFC 8578                    DetNet Use Cases                    May 2019


               ---+-------- ............ ------------
                  |      External Network       |
                  |                          +-----+
               +-----+                       | NME |
               |     | LLN Border            |     |
               |     | Router                +-----+
               +-----+
             o    o   o
      o     o   o     o
         o   o LLN   o    o     o
            o   o   o       o
                    o

      LLN: Low-Power and Lossy Network

                      Figure 7: Basic 6TiSCH Network

   Figure 8 shows a backbone router federating multiple synchronized
   6TiSCH subnets into a single subnet connected to the external
   network.

                  ---+-------- ............ ------------
                     |      External Network       |
                     |                          +-----+
                     |             +-----+      | NME |
                  +-----+          |  +-----+   |     |
                  |     | Router   |  | PCE |   +-----+
                  |     |          +--|     |
                  +-----+             +-----+
                     |                   |
                     | Subnet Backbone   |
               +--------------------+------------------+
               |                    |                  |
            +-----+             +-----+             +-----+
            |     | Backbone    |     | Backbone    |     | Backbone
       o    |     | Router      |     | Router      |     | Router
            +-----+             +-----+             +-----+
       o                  o                   o                 o   o
           o    o   o         o   o  o   o         o  o   o    o
      o             o        o  LLN      o      o         o      o
         o   o    o      o      o o     o  o   o    o    o     o

                     Figure 8: Extended 6TiSCH Network








Grossman                      Informational                    [Page 50]
^L
RFC 8578                    DetNet Use Cases                    May 2019


   The backbone router must ensure end-to-end deterministic behavior
   between the LLN and the backbone.  This should be accomplished in
   conformance with the work done in [DetNet-Arch] with respect to
   Layer 3 aspects of deterministic networks that span multiple Layer 2
   domains.

   The PCE must compute a deterministic path end to end across the TSCH
   network and IEEE 802.1 TSN Ethernet backbone, and DetNet protocols
   are expected to enable end-to-end deterministic forwarding.

5.3.1.1.  PCE and 6TiSCH ARQ Retries

   6TiSCH uses the Automatic Repeat reQuest (ARQ) mechanism
   [IEEE-802154] to provide higher reliability of packet delivery.  ARQ
   is related to Packet Replication and Elimination (PRE) because there
   are two independent paths for packets to arrive at the destination.
   If an expected packet does not arrive on one path, then it checks for
   the packet on the second path.

   Although to date this mechanism is only used by wireless networks,
   this technique might be appropriate for DetNet, and aspects of the
   enabling protocol could therefore be co-developed.

   For example, in Figure 9, a track is laid out from a field device in
   a 6TiSCH network to an IoT gateway that is located on an IEEE 802.1
   TSN backbone.

                     +-----+
                     | IoT |
                     | G/W |
                     +-----+
                        ^  <---- Elimination
                       | |
        Track Branch   | |
               +-------+ +--------+ Subnet Backbone
               |                  |
            +--|--+            +--|--+
            |  |  | Backbone   |  |  | Backbone
       o    |  |  | Router     |  |  | Router
            +--/--+            +--|--+
       o     /    o     o---o----/       o
           o    o---o--/   o      o   o  o   o
      o     \  /     o               o   LLN    o
         o   v  <---- Replication
             o

                     Figure 9: 6TiSCH Network with PRE




Grossman                      Informational                    [Page 51]
^L
RFC 8578                    DetNet Use Cases                    May 2019


   In ARQ, the replication function in the field device sends a copy of
   each packet over two different branches, and the PCE schedules each
   hop of both branches so that the two copies arrive in due time at the
   gateway.  In the case of a loss on one branch, one hopes that the
   other copy of the packet will still arrive within the allocated time.
   If two copies make it to the IoT gateway, the elimination function in
   the gateway ignores the extra packet and presents only one copy to
   upper layers.

   At each 6TiSCH hop along the track, the PCE may schedule more than
   one timeslot for a packet, so as to support Layer 2 retries (ARQ).

   At the time of this writing, a deployment's TSCH track does not
   necessarily support PRE but is systematically multipath.  This means
   that a track is scheduled so as to ensure that each hop has at least
   two forwarding solutions.  The forwarding decision will be to try the
   preferred solution and use the other solution in the case of Layer 2
   transmission failure as detected by ARQ.

5.3.2.  Schedule Management by a PCE

   A common feature of 6TiSCH and DetNet is actions taken by a PCE when
   configuring paths through the network.  Specifically, what is needed
   is a protocol and data model that the PCE will use to get/set the
   relevant configuration from/to the devices, as well as perform
   operations on the devices.  Specifically, both DetNet and 6TiSCH need
   to develop a protocol (and associated data model) that the PCE can
   use to (1) get/set the relevant configuration from/to the devices and
   (2) perform operations on the devices.  These could be initially
   developed by DetNet, with consideration for their reuse by 6TiSCH.
   The remainder of this section provides a bit more context from the
   6TiSCH side.

5.3.2.1.  PCE Commands and 6TiSCH CoAP Requests

   The 6TiSCH device does not expect to place the request for bandwidth
   between itself and another device in the network.  Rather, an
   operation control system invoked through a human interface specifies
   the traffic requirements and the end nodes (in terms of latency and
   reliability).  Based on this information, the PCE must compute a path
   between the end nodes and provision the network with per-flow state
   that describes the per-hop operation for a given packet, the
   corresponding timeslots, the flow identification that enables
   recognizing that a certain packet belongs to a certain path, etc.

   For a static configuration that serves a certain purpose for a long
   period of time, it is expected that a node will be provisioned in one
   shot with a full schedule, i.e., a schedule that defines the behavior



Grossman                      Informational                    [Page 52]
^L
RFC 8578                    DetNet Use Cases                    May 2019


   of the node with respect to all data flows through that node. 6TiSCH
   expects that the programming of the schedule will be done over the
   Constrained Application Protocol (CoAP) as discussed in
   [CoAP-6TiSCH].

   6TiSCH expects that the PCE commands will be mapped back and forth
   into CoAP by a gateway function at the edge of the 6TiSCH network.
   For instance, it is possible that a mapping entity on the backbone
   transforms a non-CoAP protocol such as the Path Computation Element
   Communication Protocol (PCEP) into the RESTful interfaces that the
   6TiSCH devices support.  This architecture will be refined to comply
   with DetNet [DetNet-Arch] when the work is formalized.  Related
   information about 6TiSCH can be found in [Interface-6TiSCH-6top] and
   [RFC6550] ("RPL: IPv6 Routing Protocol for Low-Power and Lossy
   Networks").

   A protocol may be used to update the state in the devices during
   runtime -- for example, if it appears that a path through the network
   has ceased to perform as expected, but in 6TiSCH that flow was not
   designed and no protocol was selected.  DetNet should define the
   appropriate end-to-end protocols to be used in that case.  The
   implication is that these state updates take place once the system is
   configured and running, i.e., they are not limited to the initial
   communication of the configuration of the system.

   A "slotFrame" is the base object that a PCE would manipulate to
   program a schedule into an LLN node [Arch-for-6TiSCH].

   The PCE should read energy data from devices and compute paths that
   will implement policies on how energy in devices is consumed -- for
   instance, to ensure that the spent energy does not exceed the
   available energy over a period of time.  Note that this statement
   implies that an extensible protocol for communicating device
   information to the PCE and enabling the PCE to act on it will be part
   of the DetNet architecture; however, for subnets with specific
   protocols (e.g., CoAP), a gateway may be required.

   6TiSCH devices can discover their neighbors over the radio using a
   mechanism such as beacons, but even though the neighbor information
   is available in the 6TiSCH interface data model, 6TiSCH does not
   describe a protocol to proactively push the neighbor information to a
   PCE.  DetNet should define such a protocol; one possible design
   alternative is that it could operate over CoAP.  Alternatively, it
   could be converted to/from CoAP by a gateway.  Such a protocol could
   carry multiple metrics -- for example, metrics similar to those used
   for RPL operations [RFC6551].





Grossman                      Informational                    [Page 53]
^L
RFC 8578                    DetNet Use Cases                    May 2019


5.3.2.2.  6TiSCH IP Interface

   Protocol translation between the TSCH MAC layer and IP is
   accomplished via the "6top" sublayer [Sublayer-6TiSCH-6top].  The
   6top data model and management interfaces are further discussed in
   [Interface-6TiSCH-6top] and [CoAP-6TiSCH].

   An IP packet that is sent along a 6TiSCH path uses a differentiated
   services Per-Hop Behavior Group (PHB) called "deterministic
   forwarding", as described in [Det-Fwd-PHB].

5.3.3.  6TiSCH Security Considerations

   In addition to the classical requirements for protection of control
   signaling, it must be noted that 6TiSCH networks operate on limited
   resources that can be depleted rapidly in a DoS attack on the system
   -- for instance, by placing a rogue device in the network or by
   obtaining management control and setting up unexpected additional
   paths.

5.4.  Wireless Industrial Requests to the IETF

   6TiSCH depends on DetNet to define:

   o  Configuration (state) and operations for deterministic paths

   o  End-to-end protocols for deterministic forwarding (tagging, IP)

   o  A protocol for PRE

6.  Cellular Radio

6.1.  Use Case Description

   This use case describes the application of deterministic networking
   in the context of cellular telecom transport networks.  Important
   elements include time synchronization, clock distribution, and ways
   to establish time-sensitive streams for both Layer 2 and Layer 3
   user-plane traffic.

6.1.1.  Network Architecture

   Figure 10 illustrates a 3GPP-defined cellular network architecture
   typical at the time of this writing.  The architecture includes
   "Fronthaul", "Midhaul", and "Backhaul" network segments.  The
   "Fronthaul" is the network connecting base stations (Baseband Units
   (BBUs)) to the Remote Radio Heads (RRHs) (also referred to here as
   "antennas").  The "Midhaul" is the network that interconnects base



Grossman                      Informational                    [Page 54]
^L
RFC 8578                    DetNet Use Cases                    May 2019


   stations (or small-cell sites).  The "Backhaul" is the network or
   links connecting the radio base station sites to the network
   controller/gateway sites (i.e., the core of the 3GPP cellular
   network).

              Y (RRHs (antennas))
               \
           Y__  \.--.                   .--.         +------+
              \_(    `.     +---+     _(    `.       | 3GPP |
       Y------( Front- )----|eNB|----( Back-  )------| core |
             ( `  .haul )   +---+   ( ` .haul) )     | netw |
             /`--(___.-'      \      `--(___.-'      +------+
          Y_/     /            \.--.       \
               Y_/            _(Mid-`.      \
                             (   haul )      \
                            ( `  .  )  )      \
                             `--(___.-'\_____+---+    (small-cell sites)
                                   \         |SCe|__Y
                                  +---+      +---+
                               Y__|eNB|__Y
                                  +---+
                                Y_/   \_Y ("local" radios)

        Figure 10: Generic 3GPP-Based Cellular Network Architecture

   In Figure 10, "eNB" ("E-UTRAN Node B") is the hardware that is
   connected to the mobile phone network and enables the mobile phone
   network to communicate with mobile handsets [TS36300].  ("E-UTRAN"
   stands for "Evolved Universal Terrestrial Radio Access Network".)

6.1.2.  Delay Constraints

   The available processing time for Fronthaul networking overhead is
   limited to the available time after the baseband processing of the
   radio frame has completed.  For example, in Long Term Evolution (LTE)
   radio, 3 ms is allocated for the processing of a radio frame, but
   typically the baseband processing uses most of it, allowing only a
   small fraction to be used by the Fronthaul network.  In this example,
   out of 3 ms, the maximum time allocated to the Fronthaul network for
   one-way delay is 250 us, and the existing specification [NGMN-Fronth]
   specifies a maximum delay of only 100 us.  This ultimately determines
   the distance the RRHs can be located from the base stations (e.g.,
   100 us equals roughly 20 km of optical fiber-based transport).
   Allocation options regarding the available time budget between
   processing and transport are currently undergoing heavy discussion in
   the mobile industry.





Grossman                      Informational                    [Page 55]
^L
RFC 8578                    DetNet Use Cases                    May 2019


   For packet-based transport, the allocated transport time between the
   RRH and the BBU is consumed by node processing, buffering, and
   distance-incurred delay.  An example of the allocated transport time
   is 100 us (from the Common Public Radio Interface [CPRI]).

   The baseband processing time and the available "delay budget" for the
   Fronthaul is likely to change in the forthcoming "5G" due to reduced
   radio round-trip times and other architectural and service
   requirements [NGMN].

   The transport time budget, as noted above, places limitations on the
   distance that RRHs can be located from base stations (i.e., the link
   length).  In the above analysis, it is assumed that the entire
   transport time budget is available for link propagation delay.
   However, the transport time budget can be broken down into three
   components: scheduling/queuing delay, transmission delay, and link
   propagation delay.  Using today's Fronthaul networking technology,
   the queuing, scheduling, and transmission components might become the
   dominant factors in the total transport time, rather than the link
   propagation delay.  This is especially true in cases where the
   Fronthaul link is relatively short and is shared among multiple
   Fronthaul flows -- for example, in indoor and small-cell networks,
   massive Multiple Input Multiple Output (MIMO) antenna networks, and
   split Fronthaul architectures.

   DetNet technology can improve Fronthaul networks by controlling and
   reducing the time required for the queuing, scheduling, and
   transmission operations by properly assigning network resources, thus
   (1) leaving more of the transport time budget available for link
   propagation and (2) enabling longer link lengths.  However, link
   length is usually a predetermined parameter and is not a controllable
   network parameter, since RRH and BBU sites are usually located in
   predetermined locations.  However, the number of antennas in an RRH
   site might increase -- for example, by adding more antennas,
   increasing the MIMO capability of the network, or adding support for
   massive MIMO.  This means increasing the number of Fronthaul flows
   sharing the same Fronthaul link.  DetNet can now control the
   bandwidth assignment of the Fronthaul link and the scheduling of
   Fronthaul packets over this link and can provide adequate buffer
   provisioning for each flow to reduce the packet loss rate.

   Another way in which DetNet technology can aid Fronthaul networks is
   by providing effective isolation between flows -- for example,
   between flows originating in different slices within a network-sliced
   5G network.  Note, however, that this isolation applies to DetNet
   flows for which resources have been preallocated, i.e., it does not
   apply to best-effort flows within a DetNet.  DetNet technology can
   also dynamically control the bandwidth-assignment, scheduling, and



Grossman                      Informational                    [Page 56]
^L
RFC 8578                    DetNet Use Cases                    May 2019


   packet-forwarding decisions, as well as the buffer provisioning of
   the Fronthaul flows to guarantee the end-to-end delay of the
   Fronthaul packets and minimize the packet loss rate.

   [METIS] documents the fundamental challenges as well as overall
   technical goals of the future 5G mobile and wireless systems as the
   starting point.  These future systems should support much higher data
   volumes and rates and significantly lower end-to-end latency for 100x
   more connected devices (at cost and energy-consumption levels similar
   to today's systems).

   For Midhaul connections, delay constraints are driven by inter-site
   radio functions such as Coordinated Multi-Point (CoMP) processing
   (see [CoMP]).  CoMP reception and transmission constitute a framework
   in which multiple geographically distributed antenna nodes cooperate
   to improve performance for the users served in the common cooperation
   area.  The design principle of CoMP is to extend single-cell-to-
   multi-UE (User Equipment) transmission to a multi-cell-to-multi-UE
   transmission via cooperation among base stations.

   CoMP has delay-sensitive performance parameters: "Midhaul latency"
   and "CSI (Channel State Information) reporting and accuracy".  The
   essential feature of CoMP is signaling between eNBs, so Midhaul
   latency is the dominating limitation of CoMP performance.  Generally,
   CoMP can benefit from coordinated scheduling (either distributed or
   centralized) of different cells if the signaling delay between eNBs
   is within 1-10 ms.  This delay requirement is both rigid and
   absolute, because any uncertainty in delay will degrade performance
   significantly.

   Inter-site CoMP is one of the key requirements for 5G and is also a
   goal for 4.5G network architectures.

6.1.3.  Time-Synchronization Constraints

   Fronthaul time-synchronization requirements are given by [TS25104],
   [TS36104], [TS36211], and [TS36133].  These can be summarized for the
   3GPP LTE-based networks as:

   Delay accuracy:
      +-8 ns (i.e., +-1/32 Tc, where Tc is the Universal Mobile
      Telecommunications System (UMTS) Chip time of 1/3.84 MHz),
      resulting in a round-trip accuracy of +-16 ns.  The value is this
      low in order to meet the 3GPP Timing Alignment Error (TAE)
      measurement requirements.  Note that performance guarantees of
      low-nanosecond values such as these are considered to be below the
      DetNet layer -- it is assumed that the underlying implementation
      (e.g., the hardware) will provide sufficient support (e.g.,



Grossman                      Informational                    [Page 57]
^L
RFC 8578                    DetNet Use Cases                    May 2019


      buffering) to enable this level of accuracy.  These values are
      maintained in the use case to give an indication of the overall
      application.

   TAE:
      TAE is problematic for Fronthaul networks and must be minimized.
      If the transport network cannot guarantee TAE levels that are low
      enough, then additional buffering has to be introduced at the
      edges of the network to buffer out the jitter.  Buffering is not
      desirable, as it reduces the total available delay budget.

      Packet Delay Variation (PDV) requirements can be derived from TAE
      measurements for packet-based Fronthaul networks.

      *  For MIMO or TX diversity transmissions, at each carrier
         frequency, TAE measurements shall not exceed 65 ns (i.e.,
         1/4 Tc).

      *  For intra-band contiguous carrier aggregation, with or without
         MIMO or TX diversity, TAE measurements shall not exceed 130 ns
         (i.e., 1/2 Tc).

      *  For intra-band non-contiguous carrier aggregation, with or
         without MIMO or TX diversity, TAE measurements shall not exceed
         260 ns (i.e., 1 Tc).

      *  For inter-band carrier aggregation, with or without MIMO or TX
         diversity, TAE measurements shall not exceed 260 ns.

   Transport link contribution to radio frequency errors:
      +-2 PPB.  This value is considered to be "available" for the
      Fronthaul link out of the total 50 PPB budget reserved for the
      radio interface.  Note that the transport link contributes to
      radio frequency errors for the following reason: at the time of
      this writing, Fronthaul communication is direct communication from
      the radio unit to the RRH.  The RRH is essentially a passive
      device (e.g., without buffering).  The transport drives the
      antenna directly by feeding it with samples, and everything the
      transport adds will be introduced to the radio "as is".  So, if
      the transport causes any additional frequency errors, the errors
      will show up immediately on the radio as well.  Note that
      performance guarantees of low-nanosecond values such as these are
      considered to be below the DetNet layer -- it is assumed that the
      underlying implementation (e.g., the hardware) will provide
      sufficient support to enable this level of performance.  These
      values are maintained in the use case to give an indication of the
      overall application.




Grossman                      Informational                    [Page 58]
^L
RFC 8578                    DetNet Use Cases                    May 2019


   The above-listed time-synchronization requirements are difficult to
   meet with point-to-point connected networks and are more difficult to
   meet when the network includes multiple hops.  It is expected that
   networks must include buffering at the ends of the connections as
   imposed by the jitter requirements, since trying to meet the jitter
   requirements in every intermediate node is likely to be too costly.
   However, every measure to reduce jitter and delay on the path makes
   it easier to meet the end-to-end requirements.

   In order to meet the timing requirements, both senders and receivers
   must remain time synchronized, demanding very accurate clock
   distribution -- for example, support for IEEE 1588 transparent clocks
   or boundary clocks in every intermediate node.

   In cellular networks from the LTE radio era onward, phase
   synchronization is needed in addition to frequency synchronization
   [TS36300] [TS23401].  Time constraints are also important due to
   their impact on packet loss.  If a packet is delivered too late, then
   the packet may be dropped by the host.

6.1.4.  Transport-Loss Constraints

   Fronthaul and Midhaul networks assume that transport is almost
   error free.  Errors can cause a reset of the radio interfaces, in
   turn causing reduced throughput or broken radio connectivity for
   mobile customers.

   For packetized Fronthaul and Midhaul connections, packet loss may be
   caused by BER, congestion, or network failure scenarios.  Different
   Fronthaul "functional splits" are being considered by 3GPP, requiring
   strict Frame Loss Ratio (FLR) guarantees.  As one example (referring
   to the legacy CPRI split, which is option 8 in 3GPP), lower-layer
   splits may imply an FLR of less than 10^-7 for data traffic and less
   than 10^-6 for control and management traffic.

   Many of the tools available for eliminating packet loss for Fronthaul
   and Midhaul networks have serious challenges; for example,
   retransmitting lost packets or using FEC to circumvent bit errors (or
   both) is practically impossible, due to the additional delay
   incurred.  Using redundant streams for better guarantees of delivery
   is also practically impossible in many cases, due to high bandwidth
   requirements for Fronthaul and Midhaul networks.  Protection
   switching is also a candidate, but at the time of this writing,
   available technologies for the path switch are too slow to avoid a
   reset of mobile interfaces.






Grossman                      Informational                    [Page 59]
^L
RFC 8578                    DetNet Use Cases                    May 2019


   It is assumed that Fronthaul links are symmetric.  All Fronthaul
   streams (i.e., those carrying radio data) have equal priority and
   cannot delay or preempt each other.

   All of this implies that it is up to the network to guarantee that
   each time-sensitive flow meets its schedule.

6.1.5.  Cellular Radio Network Security Considerations

   Establishing time-sensitive streams in the network entails reserving
   networking resources for long periods of time.  It is important that
   these reservation requests be authenticated to prevent malicious
   reservation attempts from hostile nodes (or accidental
   misconfiguration).  This is particularly important in the case where
   the reservation requests span administrative domains.  Furthermore,
   the reservation information itself should be digitally signed to
   reduce the risk of a legitimate node pushing a stale or hostile
   configuration into another networking node.

   Note: This is considered important for the security policy of the
   network but does not affect the core DetNet architecture and design.

6.2.  Cellular Radio Networks Today

6.2.1.  Fronthaul

   Today's Fronthaul networks typically consist of:

   o  Dedicated point-to-point fiber connection (common)

   o  Proprietary protocols and framings

   o  Custom equipment and no real networking

   At the time of this writing, solutions for Fronthaul are direct
   optical cables or Wavelength-Division Multiplexing (WDM) connections.

6.2.2.  Midhaul and Backhaul

   Today's Midhaul and Backhaul networks typically consist of:

   o  Mostly normal IP networks, MPLS-TP, etc.

   o  Clock distribution and synchronization using IEEE 1588 and syncE

   Telecommunications networks in the Midhaul and Backhaul are already
   heading towards transport networks where precise time-synchronization
   support is one of the basic building blocks.  In order to meet



Grossman                      Informational                    [Page 60]
^L
RFC 8578                    DetNet Use Cases                    May 2019


   bandwidth and cost requirements, most transport networks have already
   transitioned to all-IP packet-based networks; however, highly
   accurate clock distribution has become a challenge.

   In the past, Midhaul and Backhaul connections were typically based on
   TDM and provided frequency-synchronization capabilities as a part of
   the transport media.  More recently, other technologies such as GPS
   or syncE [syncE] have been used.

   Ethernet, IP/MPLS [RFC3031], and pseudowires (as described in
   [RFC3985] ("Pseudo Wire Emulation Edge-to-Edge (PWE3) Architecture")
   for legacy transport support)) have become popular tools for building
   and managing new all-IP Radio Access Networks (RANs)
   [SR-IP-RAN-Use-Case].  Although various timing and synchronization
   optimizations have already been proposed and implemented, including
   PTP enhancements [IEEE-1588] (see also [Timing-over-MPLS] and
   [RFC8169]), these solutions are not necessarily sufficient for the
   forthcoming RAN architectures, nor do they guarantee the more
   stringent time-synchronization requirements such as [CPRI].

   Existing solutions for TDM over IP include those discussed in
   [RFC4553], [RFC5086], and [RFC5087]; [MEF8] addresses TDM over
   Ethernet transports.

6.3.  Cellular Radio Networks in the Future

   Future cellular radio networks will be based on a mix of different
   xHaul networks (xHaul = Fronthaul, Midhaul, and Backhaul), and future
   transport networks should be able to support all of them
   simultaneously.  It is already envisioned today that:

   o  Not all "cellular radio network" traffic will be IP; for example,
      some will remain at Layer 2 (e.g., Ethernet based).  DetNet
      solutions must address all traffic types (Layer 2 and Layer 3)
      with the same tools and allow their transport simultaneously.

   o  All types of xHaul networks will need some types of DetNet
      solutions.  For example, with the advent of 5G, some Backhaul
      traffic will also have DetNet requirements (for example, traffic
      belonging to time-critical 5G applications).

   o  Different functional splits between the base stations and the
      on-site units could coexist on the same Fronthaul and Backhaul
      network.







Grossman                      Informational                    [Page 61]
^L
RFC 8578                    DetNet Use Cases                    May 2019


   Future cellular radio networks should contain the following:

   o  Unified standards-based transport protocols and standard
      networking equipment that can make use of underlying deterministic
      link-layer services

   o  Unified and standards-based network management systems and
      protocols in all parts of the network (including Fronthaul)

   New RAN deployment models and architectures may require TSN services
   with strict requirements on other parts of the network that
   previously were not considered to be packetized at all.  Time and
   synchronization support are already topical for Backhaul and Midhaul
   packet networks [MEF22.1.1] and are also becoming a real issue for
   Fronthaul networks.  Specifically, in Fronthaul networks, the timing
   and synchronization requirements can be extreme for packet-based
   technologies -- for example, on the order of a PDV of +-20 ns or less
   and frequency accuracy of +-0.002 PPM [Fronthaul].

   The actual transport protocols and/or solutions for establishing
   required transport "circuits" (pinned-down paths) for Fronthaul
   traffic are still undefined.  Those protocols are likely to include
   (but are not limited to) solutions directly over Ethernet, over IP,
   and using MPLS/pseudowire transport.

   Interesting and important work for TSN has been done for Ethernet
   [IEEE-8021TSNTG]; this work specifies the use of PTP [IEEE-1588] in
   the context of IEEE 802.1D and IEEE 802.1Q.  [IEEE-8021AS] specifies
   a Layer 2 time-synchronizing service, and other specifications such
   as IEEE 1722 [IEEE-1722] specify Ethernet-based Layer 2 transport for
   time-sensitive streams.

   However, even these Ethernet TSN features may not be sufficient for
   Fronthaul traffic.  Therefore, having specific profiles that take
   Fronthaul requirements into account is desirable [IEEE-8021CM].

   New promising work seeks to enable the transport of time-sensitive
   Fronthaul streams in Ethernet bridged networks [IEEE-8021CM].
   Analogous to IEEE 1722, standardization efforts in the IEEE 1914.3
   Task Force [IEEE-19143] to define the Layer 2 transport encapsulation
   format for transporting Radio over Ethernet (RoE) are ongoing.

   As mentioned in Section 6.1.2, 5G communications will provide one of
   the most challenging cases for delay-sensitive networking.  In order
   to meet the challenges of ultra-low latency and ultra-high
   throughput, 3GPP has studied various functional splits for 5G, i.e.,
   physical decomposition of the 5G "gNodeB" base station and deployment
   of its functional blocks in different locations [TR38801].



Grossman                      Informational                    [Page 62]
^L
RFC 8578                    DetNet Use Cases                    May 2019


   These splits are numbered from split option 1 (dual connectivity, a
   split in which the radio resource control is centralized and other
   radio stack layers are in distributed units) to split option 8 (a
   PHY-RF split in which RF functionality is in a distributed unit and
   the rest of the radio stack is in the centralized unit), with each
   intermediate split having its own data-rate and delay requirements.
   Packetized versions of different splits have been proposed, including
   enhanced CPRI (eCPRI) [eCPRI] and RoE (as previously noted).  Both
   provide Ethernet encapsulations, and eCPRI is also capable of IP
   encapsulation.

   All-IP RANs and xHaul networks would benefit from time
   synchronization and time-sensitive transport services.  Although
   Ethernet appears to be the unifying technology for the transport,
   there is still a disconnect when it comes to providing Layer 3
   services.  The protocol stack typically has a number of layers below
   Ethernet Layer 2 that might be "visible" to Layer 3.  In a fairly
   common scenario, on top of the lowest-layer (optical) transport is
   the first (lowest) Ethernet layer, then one or more layers of MPLS,
   pseudowires, and/or other tunneling protocols, and finally one or
   more Ethernet layers that are visible to Layer 3.

   Although there exist technologies for establishing circuits through
   the routed and switched networks (especially in the MPLS/PWE space),
   there is still no way to signal the time-synchronization and
   time-sensitive stream requirements/reservations for Layer 3 flows in
   a way that addresses the entire transport stack, including the
   Ethernet layers that need to be configured.

   Furthermore, not all "user-plane" traffic will be IP.  Therefore, the
   solution in question also must address the use cases where the
   user-plane traffic is on a different layer (for example, Ethernet
   frames).


















Grossman                      Informational                    [Page 63]
^L
RFC 8578                    DetNet Use Cases                    May 2019


6.4.  Cellular Radio Networks Requests to the IETF

   A standard for data-plane transport specifications that is:

   o  Unified among all xHauls (meaning that different flows with
      diverse DetNet requirements can coexist in the same network and
      traverse the same nodes without interfering with each other)

   o  Deployed in a highly deterministic network environment

   o  Capable of supporting multiple functional splits simultaneously,
      including existing Backhaul and CPRI Fronthaul, and (potentially)
      new modes as defined, for example, in 3GPP; these goals can be
      supported by the existing DetNet use case "common themes"
      (Section 11); of special note are Sections 11.1.8 ("Mix of
      Deterministic and Best-Effort Traffic"), 11.3.1 ("Bounded
      Latency"), 11.3.2 ("Low Latency"), 11.3.4 ("Symmetrical Path
      Delays"), and 11.6 ("Deterministic Flows")

   o  Capable of supporting network slicing and multi-tenancy; these
      goals can be supported by the same DetNet themes noted above

   o  Capable of transporting both in-band and out-of-band control
      traffic (e.g., Operations, Administration, and Maintenance (OAM)
      information)

   o  Deployable over multiple data-link technologies (e.g., IEEE 802.3,
      mmWave)

   A standard for data-flow information models that is:

   o  Aware of the time sensitivity and constraints of the target
      networking environment

   o  Aware of underlying deterministic networking services (e.g., on
      the Ethernet layer)

7.  Industrial Machine to Machine (M2M)

7.1.  Use Case Description

   "Industrial automation" in general refers to automation of
   manufacturing, quality control, and material processing.  This M2M
   use case focuses on machine units on a plant floor that periodically
   exchange data with upstream or downstream machine modules and/or a
   supervisory controller within a LAN.





Grossman                      Informational                    [Page 64]
^L
RFC 8578                    DetNet Use Cases                    May 2019


   PLCs are the "actors" in M2M communications.  Communication between
   PLCs, and between PLCs and the supervisory PLC (S-PLC), is achieved
   via critical control/data streams (Figure 11).

              S (Sensor)
               \                                  +-----+
         PLC__  \.--.                   .--.   ---| MES |
              \_(    `.               _(    `./   +-----+
       A------( Local  )-------------(  L2    )
             (      Net )           (      Net )    +-------+
             /`--(___.-'             `--(___.-' ----| S-PLC |
          S_/     /       PLC   .--. /              +-------+
               A_/           \_(    `.
            (Actuator)       (  Local )
                            (       Net )
                             /`--(___.-'\
                            /       \    A
                           S         A

      Figure 11: Current Generic Industrial M2M Network Architecture

   This use case focuses on PLC-related communications; communication to
   Manufacturing Execution Systems (MESs) are not addressed.

   This use case covers only critical control/data streams; non-critical
   traffic between industrial automation applications (such as
   communication of state, configuration, setup, and database
   communication) is adequately served by prioritizing techniques
   available at the time of this writing.  Such traffic can use up to
   80% of the total bandwidth required.  There is also a subset of
   non-time-critical traffic that must be reliable even though it is not
   time sensitive.

   In this use case, deterministic networking is primarily needed to
   provide end-to-end delivery of M2M messages within specific timing
   constraints -- for example, in closed-loop automation control.
   Today, this level of determinism is provided by proprietary
   networking technologies.  In addition, standard networking
   technologies are used to connect the local network to remote
   industrial automation sites, e.g., over an enterprise or metro
   network that also carries other types of traffic.  Therefore, flows
   that should be forwarded with deterministic guarantees need to be
   sustained, regardless of the amount of other flows in those networks.








Grossman                      Informational                    [Page 65]
^L
RFC 8578                    DetNet Use Cases                    May 2019


7.2.  Industrial M2M Communications Today

   Today, proprietary networks fulfill the needed timing and
   availability for M2M networks.

   The network topologies used today by industrial automation are
   similar to those used by telecom networks: daisy chain, ring,
   hub-and-spoke, and "comb" (a subset of daisy chain).

   PLC-related control/data streams are transmitted periodically and
   carry either a preconfigured payload or a payload configured during
   runtime.

   Some industrial applications require time synchronization at the end
   nodes.  For such time-coordinated PLCs, accuracy of 1 us is required.
   Even in the case of "non-time-coordinated" PLCs, time synchronization
   may be needed, e.g., for timestamping of sensor data.

   Industrial-network scenarios require advanced security solutions.  At
   the time of this writing, many industrial production networks are
   physically separated.  Filtering policies that are typically enforced
   in firewalls are used to prevent critical flows from being leaked
   outside a domain.

7.2.1.  Transport Parameters

   The cycle time defines the frequency of message(s) between industrial
   actors.  The cycle time is application dependent, in the range of
   1-100 ms for critical control/data streams.

   Because industrial applications assume that deterministic transport
   will be used for critical control-data-stream parameters (instead of
   having to define latency and delay-variation parameters), it is
   sufficient to fulfill requirements regarding the upper bound of
   latency (maximum latency).  The underlying networking infrastructure
   must ensure a maximum end-to-end message delivery time in the range
   of 100 us to 50 ms, depending on the control-loop application.

   The bandwidth requirements of control/data streams are usually
   calculated directly from the bytes-per-cycle parameter of the control
   loop.  For PLC-to-PLC communication, one can expect 2-32 streams with
   packet sizes in the range of 100-700 bytes.  For S-PLC-to-PLC
   communication, the number of streams is higher -- up to 256 streams.
   Usually, no more than 20% of available bandwidth is used for
   critical control/data streams.  In today's networks, 1 Gbps links
   are commonly used.





Grossman                      Informational                    [Page 66]
^L
RFC 8578                    DetNet Use Cases                    May 2019


   Most PLC control loops are rather tolerant of packet loss; however,
   critical control/data streams accept a loss of no more than one
   packet per consecutive communication cycle (i.e., if a packet gets
   lost in cycle "n", then the next cycle ("n+1") must be lossless).
   After the loss of two or more consecutive packets, the network may be
   considered to be "down" by the application.

   As network downtime may impact the whole production system, the
   required network availability is rather high (99.999%).

   Based on the above parameters, some form of redundancy will be
   required for M2M communications; however, any individual solution
   depends on several parameters, including cycle time and
   delivery time.

7.2.2.  Stream Creation and Destruction

   In an industrial environment, critical control/data streams are
   created rather infrequently, on the order of ~10 times per
   day/week/month.  Most of these critical control/data streams get
   created at machine startup; however, flexibility is also needed
   during runtime -- for example, when adding or removing a machine.  As
   production systems become more flexible going forward, there will be
   a significant increase in the rate at which streams are created,
   changed, and destroyed.

7.3.  Industrial M2M in the Future

   We foresee a converged IP-standards-based network with deterministic
   properties that can satisfy the timing, security, and reliability
   constraints described above.  Today's proprietary networks could then
   be interfaced to such a network via gateways; alternatively, in the
   case of new installations, devices could be connected directly to the
   converged network.

   For this use case, time-synchronization accuracy on the order of 1 us
   is expected.

7.4.  Industrial M2M Requests to the IETF

   o  Converged IP-based network

   o  Deterministic behavior (bounded latency and jitter)

   o  High availability (presumably through redundancy) (99.999%)

   o  Low message delivery time (100 us to 50 ms)




Grossman                      Informational                    [Page 67]
^L
RFC 8578                    DetNet Use Cases                    May 2019


   o  Low packet loss (with a bounded number of consecutive lost
      packets)

   o  Security (e.g., preventing critical flows from being leaked
      between physically separated networks)

8.  Mining Industry

8.1.  Use Case Description

   The mining industry is highly dependent on networks to monitor and
   control their systems, in both open-pit and underground extraction as
   well as in transport and refining processes.  In order to reduce
   risks and increase operational efficiency in mining operations, the
   location of operators has been relocated (as much as possible) from
   the extraction site to remote control and monitoring sites.

   In the case of open-pit mining, autonomous trucks are used to
   transport the raw materials from the open pit to the refining factory
   where the final product (e.g., copper) is obtained.  Although the
   operation is autonomous, the tracks are remotely monitored from a
   central facility.

   In pit mines, the monitoring of the tailings or mine dumps is
   critical in order to minimize environmental pollution.  In the past,
   monitoring was conducted through manual inspection of preinstalled
   dataloggers.  Cabling is not typically used in such scenarios, due to
   its high cost and complex deployment requirements.  At the time of
   this writing, wireless technologies are being employed to monitor
   these cases permanently.  Slopes are also monitored in order to
   anticipate possible mine collapse.  Due to the unstable terrain,
   cable maintenance is costly and complex; hence, wireless technologies
   are employed.

   In the case of underground monitoring, autonomous vehicles with
   extraction tools travel independently through the tunnels, but their
   operational tasks (such as excavation, stone-breaking, and transport)
   are controlled remotely from a central facility.  This generates
   upstream video and feedback traffic plus downstream actuator-control
   traffic.

8.2.  Mining Industry Today

   At the time of this writing, the mining industry uses a
   packet-switched architecture supported by high-speed Ethernet.
   However, in order to comply with requirements regarding delay and
   packet loss, the network bandwidth is overestimated.  This results in
   very low efficiency in terms of resource usage.



Grossman                      Informational                    [Page 68]
^L
RFC 8578                    DetNet Use Cases                    May 2019


   QoS is implemented at the routers to separate video, management,
   monitoring, and process-control traffic for each stream.

   Since mobility is involved in this process, the connections between
   the backbone and the mobile devices (e.g., trucks, trains, and
   excavators) are implemented using a wireless link.  These links are
   based on IEEE 802.11 [IEEE-80211] for open-pit mining and "leaky
   feeder" communications for underground mining.  (A "leaky feeder"
   communication system consists of a coaxial cable, run along tunnels,
   that emits and receives radio waves, functioning as an extended
   antenna.  The cable is "leaky" in that it has gaps or slots in its
   outer conductor to allow the radio signal to leak into or out of the
   cable along its entire length.)

   Lately, in pit mines the use of Low-Power WAN (LPWAN) technologies
   has been extended: tailings, slopes, and mine dumps are monitored by
   battery-powered dataloggers that make use of robust long-range radio
   technologies.  Reliability is usually ensured through retransmissions
   at Layer 2.  Gateways or concentrators act as bridges, forwarding the
   data to the backbone Ethernet network.  Deterministic requirements
   are biased towards reliability rather than latency, as events are
   triggered slowly or can be anticipated in advance.

   At the mineral-processing stage, conveyor belts and refining
   processes are controlled by a SCADA system that provides an
   in-factory delay-constrained networking environment.

   At the time of this writing, voice communications are served by a
   redundant trunking infrastructure, independent from data networks.

8.3.  Mining Industry in the Future

   Mining operations and management are converging towards a combination
   of autonomous operation and teleoperation of transport and extraction
   machines.  This means that video, audio, monitoring, and process-
   control traffic will increase dramatically.  Ideally, all activities
   at the mine will rely on network infrastructure.

   Wireless for open-pit mining is already a reality with LPWAN
   technologies; it is expected to evolve to more-advanced LPWAN
   technologies, such as those based on LTE, to increase last-hop
   reliability or novel LPWAN flavors with deterministic access.

   One area in which DetNet can improve this use case is in the wired
   networks that make up the "backbone network" of the system.  These
   networks connect many wireless Access Points (APs) together.  The
   mobile machines (which are connected to the network via wireless)




Grossman                      Informational                    [Page 69]
^L
RFC 8578                    DetNet Use Cases                    May 2019


   transition from one AP to the next as they move about.  A
   deterministic, reliable, low-latency backbone can enable these
   transitions to be more reliable.

   Connections that extend all the way from the base stations to the
   machinery via a mix of wired and wireless hops would also be
   beneficial -- for example, to improve the responsiveness of digging
   machines to remote control.  However, to guarantee deterministic
   performance of a DetNet, the end-to-end underlying network must be
   deterministic.  Thus, for this use case, if a deterministic wireless
   transport is integrated with a wire-based DetNet network, it could
   create the desired wired plus wireless end-to-end deterministic
   network.

8.4.  Mining Industry Requests to the IETF

   o  Improved bandwidth efficiency

   o  Very low delay, to enable machine teleoperation

   o  Dedicated bandwidth usage for high-resolution video streams

   o  Predictable delay, to enable real-time monitoring

   o  Potential for constructing a unified DetNet network over a
      combination of wired and deterministic wireless links

9.  Private Blockchain

9.1.  Use Case Description

   Blockchain was created with Bitcoin as a "public" blockchain on the
   open Internet; however, blockchain has also spread far beyond its
   original host into various industries, such as smart manufacturing,
   logistics, security, legal rights, and others.  In these industries,
   blockchain runs in designated and carefully managed networks in which
   deterministic networking requirements could be addressed by DetNet.
   Such implementations are referred to as "private" blockchain.

   The sole distinction between public and private blockchain is defined
   by who is allowed to participate in the network, execute the
   consensus protocol, and maintain the shared ledger.

   Today's networks manage the traffic from blockchain on a best-effort
   basis, but blockchain operation could be made much more efficient if
   deterministic networking services were available to minimize latency
   and packet loss in the network.




Grossman                      Informational                    [Page 70]
^L
RFC 8578                    DetNet Use Cases                    May 2019


9.1.1.  Blockchain Operation

   A "block" runs as a container of a batch of primary items (e.g.,
   transactions, property records).  The blocks are chained in such a
   way that the hash of the previous block works as the pointer to the
   header of the new block.  Confirmation of each block requires a
   consensus mechanism.  When an item arrives at a blockchain node, the
   latter broadcasts this item to the rest of the nodes, which receive
   it, verify it, and put it in the ongoing block.  The block
   confirmation process begins as the number of items reaches the
   predefined block capacity, at which time the node broadcasts its
   proved block to the rest of the nodes, to be verified and chained.
   The result is that block N+1 of each chain transitively vouches for
   blocks N and previous of that chain.

9.1.2.  Blockchain Network Architecture

   Blockchain node communication and coordination are achieved mainly
   through frequent point-to-multipoint communication; however,
   persistent point-to-point connections are used to transport both the
   items and the blocks to the other nodes.  For example, consider the
   following implementation.

   When a node is initiated, it first requests the other nodes'
   addresses from a specific entity, such as DNS.  The node then creates
   persistent connections with each of the other nodes.  If a node
   confirms an item, it sends the item to the other nodes via these
   persistent connections.

   As a new block in a node is completed and is proven by the
   surrounding nodes, it propagates towards its neighbor nodes.  When
   node A receives a block, it verifies it and then sends an invite
   message to its neighbor B.  Neighbor B checks to see if the
   designated block is available and responds to A if it is unavailable;
   A then sends the complete block to B.  B repeats the process (as was
   done by A) to start the next round of block propagation.

   The challenge of blockchain network operation is not overall data
   rates, since the volume from both the block and the item stays
   between hundreds of bytes and a couple of megabytes per second;
   rather, the challenge is in transporting the blocks with minimum
   latency to maximize the efficiency of the blockchain consensus
   process.  The efficiency of differing implementations of the
   consensus process may be affected to a differing degree by the
   latency (and variation of latency) of the network.






Grossman                      Informational                    [Page 71]
^L
RFC 8578                    DetNet Use Cases                    May 2019


9.1.3.  Blockchain Security Considerations

   Security is crucial to blockchain applications; at the time of this
   writing, blockchain systems address security issues mainly at the
   application level, where cryptography as well as hash-based consensus
   play a leading role in preventing both double-spending and malicious
   service attacks.  However, there is concern that in the proposed use
   case for a private blockchain network that is dependent on
   deterministic properties the network could be vulnerable to delays
   and other specific attacks against determinism, as these delays and
   attacks could interrupt service.

9.2.  Private Blockchain Today

   Today, private blockchain runs in Layer 2 or Layer 3 VPNs, generally
   without guaranteed determinism.  The industry players are starting to
   realize that improving determinism in their blockchain networks could
   improve the performance of their service, but at present these goals
   are not being met.

9.3.  Private Blockchain in the Future

   Blockchain system performance can be greatly improved through
   deterministic networking services, primarily because low latency
   would accelerate the consensus process.  It would be valuable to be
   able to design a private blockchain network with the following
   properties:

   o  Transport of point-to-multipoint traffic in a coordinated network
      architecture rather than at the application layer (which typically
      uses point-to-point connections)

   o  Guaranteed transport latency

   o  Reduced packet loss (to the point where delay incurred by packet
      retransmissions would be negligible)

9.4.  Private Blockchain Requests to the IETF

   o  Layer 2 and Layer 3 multicast of blockchain traffic

   o  Item and block delivery with bounded, low latency and negligible
      packet loss

   o  Coexistence of blockchain and IT traffic in a single network

   o  Ability to scale the network by distributing the centralized
      control of the network across multiple control entities



Grossman                      Informational                    [Page 72]
^L
RFC 8578                    DetNet Use Cases                    May 2019


10.  Network Slicing

10.1.  Use Case Description

   Network slicing divides one physical network infrastructure into
   multiple logical networks.  Each slice, which corresponds to a
   logical network, uses resources and network functions independently
   from each other.  Network slicing provides flexibility of resource
   allocation and service quality customization.

   Future services will demand network performance with a wide variety
   of characteristics such as high data rate, low latency, low loss
   rate, security, and many other parameters.  Ideally, every service
   would have its own physical network satisfying its particular
   performance requirements; however, that would be prohibitively
   expensive.  Network slicing can provide a customized slice for a
   single service, and multiple slices can share the same physical
   network.  This method can optimize performance for the service at
   lower cost, and the flexibility of setting up and releasing the
   slices also allows the user to allocate network resources
   dynamically.

   Unlike the other use cases presented here, network slicing is not a
   specific application that depends on specific deterministic
   properties; rather, it is introduced as an area of networking to
   which DetNet might be applicable.

10.2.  DetNet Applied to Network Slicing

10.2.1.  Resource Isolation across Slices

   One of the requirements discussed for network slicing is the "hard"
   separation of various users' deterministic performance.  That is, it
   should be impossible for activity, lack of activity, or changes in
   activity of one or more users to have any appreciable effect on the
   deterministic performance parameters of any other slices.  Typical
   techniques used today, which share a physical network among users, do
   not offer this level of isolation.  DetNet can supply point-to-point
   or point-to-multipoint paths that offer a user bandwidth and latency
   guarantees that cannot be affected by other users' data traffic.
   Thus, DetNet is a powerful tool when reliability and low latency are
   required in network slicing.









Grossman                      Informational                    [Page 73]
^L
RFC 8578                    DetNet Use Cases                    May 2019


10.2.2.  Deterministic Services within Slices

   Slices may need to provide services with DetNet-type performance
   guarantees; note, however, that a system can be implemented to
   provide such services in more than one way.  For example, the slice
   itself might be implemented using DetNet, and thus the slice can
   provide service guarantees and isolation to its users without any
   particular DetNet awareness on the part of the users' applications.
   Alternatively, a "non-DetNet-aware" slice may host an application
   that itself implements DetNet services and thus can enjoy similar
   service guarantees.

10.3.  A Network Slicing Use Case Example - 5G Bearer Network

   Network slicing is a core feature of 5G as defined in 3GPP.  The
   system architecture for 5G is under development at the time of this
   writing [TS23501].  A network slice in a mobile network is a complete
   logical network, including RANs and Core Networks (CNs).  It provides
   telecommunications services and network capabilities, which may vary
   from slice to slice.  A 5G bearer network is a typical use case for
   network slicing; for example, consider three 5G service scenarios:
   eMBB, URLLC, and mMTC.

   o  eMBB (Enhanced Mobile Broadband) focuses on services characterized
      by high data rates, such as high-definition video, Virtual Reality
      (VR), augmented reality, and fixed mobile convergence.

   o  URLLC (Ultra-Reliable and Low Latency Communications) focuses on
      latency-sensitive services, such as self-driving vehicles, remote
      surgery, or drone control.

   o  mMTC (massive Machine Type Communications) focuses on services
      that have high connection-density requirements, such as those
      typically used in smart-city and smart-agriculture scenarios.

   A 5G bearer network could use DetNet to provide hard resource
   isolation across slices and within a given slice.  For example,
   consider Slice-A and Slice-B, with DetNet used to transit services
   URLLC-A and URLLC-B over them.  Without DetNet, URLLC-A and URLLC-B
   would compete for bandwidth resources, and latency and reliability
   requirements would not be guaranteed.  With DetNet, URLLC-A and
   URLLC-B have separate bandwidth reservations; there is no resource
   conflict between them, as though they were in different physical
   networks.







Grossman                      Informational                    [Page 74]
^L
RFC 8578                    DetNet Use Cases                    May 2019


10.4.  Non-5G Applications of Network Slicing

   Although the operation of services not related to 5G is not part of
   the 5G network slicing definition and scope, network slicing is
   likely to become a preferred approach for providing various services
   across a shared physical infrastructure.  Examples include providing
   services for electrical utilities and pro audio via slices.  Use
   cases like these could become more common once the work for the 5G CN
   evolves to include wired as well as wireless access.

10.5.  Limitations of DetNet in Network Slicing

   DetNet cannot cover every network slicing use case.  One issue is
   that DetNet is a point-to-point or point-to-multipoint technology;
   however, network slicing ultimately needs multipoint-to-multipoint
   guarantees.  Another issue is that the number of flows that can be
   carried by DetNet is limited by DetNet scalability; flow aggregation
   and queuing management modification may help address this issue.
   Additional work and discussion are needed to address these topics.

10.6.  Network Slicing Today and in the Future

   Network slicing has promise in terms of satisfying many requirements
   of future network deployment scenarios, but it is still a collection
   of ideas and analyses without a specific technical solution.  DetNet
   is one of various technologies that could potentially be used in
   network slicing, along with, for example, Flex-E and segment routing.
   For more information, please see the IETF 99 Network Slicing BoF
   session agenda and materials as provided in [IETF99-netslicing-BoF].

10.7.  Network Slicing Requests to the IETF

   o  Isolation from other flows through queuing management

   o  Service quality customization and guarantees

   o  Security














Grossman                      Informational                    [Page 75]
^L
RFC 8578                    DetNet Use Cases                    May 2019


11.  Use Case Common Themes

   This section summarizes the expected properties of a DetNet network,
   based on the use cases as described in this document.

11.1.  Unified, Standards-Based Networks

11.1.1.  Extensions to Ethernet

   A DetNet network is not "a new kind of network" -- it is based on
   extensions to existing Ethernet standards, including elements of
   IEEE 802.1 TSN and related standards.  Presumably, it will be
   possible to run DetNet over other underlying transports besides
   Ethernet, but Ethernet is explicitly supported.

11.1.2.  Centrally Administered Networks

   In general, a DetNet network is not expected to be "plug and play";
   rather, some type of centralized network configuration and control
   system is expected.  Such a system may be in a single central
   location, or it may be distributed across multiple control entities
   that function together as a unified control system for the network.
   However, the ability to "hot swap" components (e.g., due to
   malfunction) is similar enough to "plug and play" that this kind of
   behavior may be expected in DetNet networks, depending on the
   implementation.

11.1.3.  Standardized Data-Flow Information Models

   Data-flow information models to be used with DetNet networks are to
   be specified by DetNet.

11.1.4.  Layer 2 and Layer 3 Integration

   A DetNet network is intended to integrate between Layer 2 (bridged)
   network(s) (e.g., an AVB/TSN LAN) and Layer 3 (routed) network(s)
   (e.g., using IP-based protocols).  One example of this is making
   AVB/TSN-type deterministic performance available from Layer 3
   applications, e.g., using RTP.  Another example is connecting two
   AVB/TSN LANs ("islands") together through a standard router.

11.1.5.  IPv4 Considerations

   This document explicitly does not specify any particular
   implementation or protocol; however, it has been observed that
   various use cases (and their associated industries) described herein
   are explicitly based on IPv4 (as opposed to IPv6), and it is not
   considered practical to expect such implementations to migrate to



Grossman                      Informational                    [Page 76]
^L
RFC 8578                    DetNet Use Cases                    May 2019


   IPv6 in order to use DetNet.  Thus, the expectation is that even if
   not every feature of DetNet is available in an IPv4 context, at least
   some of the significant benefits (such as guaranteed end-to-end
   delivery and low latency) will be available.

11.1.6.  Guaranteed End-to-End Delivery

   Packets in a DetNet flow are guaranteed not to be dropped by the
   network due to congestion.  However, the network may drop packets for
   intended reasons, e.g., per security measures.  Similarly,
   best-effort traffic on a DetNet is subject to being dropped (as on a
   non-DetNet IP network).  Also note that this guarantee applies to
   actions taken by DetNet protocol software and does not provide any
   guarantee against lower-level errors such as media errors or checksum
   errors.

11.1.7.  Replacement for Multiple Proprietary Deterministic Networks

   There are many proprietary non-interoperable deterministic Ethernet-
   based networks available; DetNet is intended to provide an
   open-standards-based alternative to such networks.

11.1.8.  Mix of Deterministic and Best-Effort Traffic

   DetNet is intended to support the coexistence of time-sensitive
   operational (OT) traffic and informational (IT) traffic on the same
   ("unified") network.

11.1.9.  Unused Reserved Bandwidth to Be Available to Best-Effort
         Traffic

   If bandwidth reservations are made for a stream but the associated
   bandwidth is not used at any point in time, that bandwidth is made
   available on the network for best-effort traffic.  If the owner of
   the reserved stream then starts transmitting again, the bandwidth is
   no longer available for best-effort traffic; this occurs on a
   moment-to-moment basis.  Note that such "temporarily available"
   bandwidth is not available for time-sensitive traffic, which must
   have its own reservation.

11.1.10.  Lower-Cost, Multi-Vendor Solutions

   The DetNet network specifications are intended to enable an ecosystem
   in which multiple vendors can create interoperable products, thus
   promoting device diversity and potentially higher numbers of each
   device manufactured, promoting cost reduction and cost competition





Grossman                      Informational                    [Page 77]
^L
RFC 8578                    DetNet Use Cases                    May 2019


   among vendors.  In other words, vendors should be able to create
   DetNet networks at lower cost and with greater diversity of available
   devices than existing proprietary networks.

11.2.  Scalable Size

   DetNet networks range in size from very small (e.g., inside a single
   industrial machine) to very large (e.g., a utility-grid network
   spanning a whole country and involving many "hops" over various kinds
   of links -- for example, radio repeaters, microwave links, or fiber
   optic links).  However, recall that the scope of DetNet is confined
   to networks that are centrally administered and thereby explicitly
   excludes unbounded decentralized networks such as the Internet.

11.2.1.  Scalable Number of Flows

   The number of flows in a given network application can potentially be
   large and can potentially grow faster than the number of nodes and
   hops, so the network should provide a sufficient (perhaps
   configurable) maximum number of flows for any given application.

11.3.  Scalable Timing Parameters and Accuracy

11.3.1.  Bounded Latency

   DetNet data-flow information models are expected to provide means to
   configure the network that include parameters for querying network
   path latency, requesting bounded latency for a given stream,
   requesting worst-case maximum and/or minimum latency for a given path
   or stream, and so on.  It is expected that the network may not be
   able to provide a given requested service level; if this is indeed
   the case, the network control system should reply that the requested
   services are not available (as opposed to accepting the parameter but
   then not delivering the desired behavior).

11.3.2.  Low Latency

   Various applications may state that they require "extremely low
   latency"; however, depending on the application, "extremely low" may
   imply very different latency bounds.  For example, "low latency"
   across a utility-grid network is a different order of magnitude of
   latency values compared to "low latency" in a motor control loop in a
   small machine.  It is intended that the mechanisms for specifying
   desired latency include wide ranges and that architecturally there is
   nothing to prevent arbitrarily low latencies from being implemented
   in a given network.





Grossman                      Informational                    [Page 78]
^L
RFC 8578                    DetNet Use Cases                    May 2019


11.3.3.  Bounded Jitter (Latency Variation)

   As with the other latency-related elements noted above, parameters
   that can determine or request permitted variations in latency should
   be available.

11.3.4.  Symmetrical Path Delays

   Some applications would like to specify that the transit delay time
   values be equal for both the transmit path and the return path.

11.4.  High Reliability and Availability

   Reliability is of critical importance to many DetNet applications,
   because the consequences of failure can be extraordinarily high in
   terms of cost and even human life.  DetNet-based systems are expected
   to be implemented with essentially arbitrarily high availability --
   for example, 99.9999% uptime (where 99.9999 means "six nines") or
   even 12 nines.  DetNet designs should not make any assumptions about
   the level of reliability and availability that may be required of a
   given system and should define parameters for communicating these
   kinds of metrics within the network.

   A strategy used by DetNet for providing such extraordinarily high
   levels of reliability is to provide redundant paths so that a system
   can seamlessly switch between the paths while maintaining its
   required level of performance.

11.5.  Security

   Security is of critical importance to many DetNet applications.  A
   DetNet network must have the ability to be made secure against device
   failures, attackers, misbehaving devices, and so on.  In a DetNet
   network, the data traffic is expected to be time sensitive; thus, in
   addition to arriving with the data content as intended, the data must
   also arrive at the expected time.  This may present "new" security
   challenges to implementers and must be addressed accordingly.  There
   are other security implications, including (but not limited to) the
   change in attack surface presented by PRE.

11.6.  Deterministic Flows

   Reserved-bandwidth data flows must be isolated from each other and
   from best-effort traffic, so that even if the network is saturated
   with best-effort (and/or reserved-bandwidth) traffic, the configured
   flows are not adversely affected.





Grossman                      Informational                    [Page 79]
^L
RFC 8578                    DetNet Use Cases                    May 2019


12.  Security Considerations

   This document covers a number of representative applications and
   network scenarios that are expected to make use of DetNet
   technologies.  Each of the potential DetNet use cases will have
   security considerations from both the use-specific perspective and
   the DetNet technology perspective.  While some use-specific security
   considerations are discussed above, a more comprehensive discussion
   of such considerations is captured in [DetNet-Security]
   ("Deterministic Networking (DetNet) Security Considerations").
   Readers are encouraged to review [DetNet-Security] to gain a more
   complete understanding of DetNet-related security considerations.

13.  IANA Considerations

   This document has no IANA actions.

14.  Informative References

   [Ahm14]    Ahmed, M. and R. Kim, "Communication Network Architectures
              for Smart-Wind Power Farms", Energies 2014, pp. 3900-3921,
              DOI 10.3390/en7063900, June 2014.

   [Arch-for-6TiSCH]
              Thubert, P., Ed., "An Architecture for IPv6 over the TSCH
              mode of IEEE 802.15.4", Work in Progress,
              draft-ietf-6tisch-architecture-20, March 2019.

   [BACnet-IP]
              ASHRAE, "Annex J to ANSI/ASHRAE 135-1995 - BACnet/IP",
              January 1999, <http://www.bacnet.org/Addenda/
              Add-1995-135a.pdf>.

   [BAS-DetNet]
              Kaneko, Y. and S. Das, "Building Automation Use Cases and
              Requirements for Deterministic Networking", Work in
              Progress, draft-bas-usecase-detnet-00, October 2015.

   [CoAP-6TiSCH]
              Sudhaakar, R., Ed. and P. Zand, "6TiSCH Resource
              Management and Interaction using CoAP", Work in Progress,
              draft-ietf-6tisch-coap-03, March 2015.

   [CoMP]     NGMN Alliance, "RAN EVOLUTION PROJECT COMP EVALUATION AND
              ENHANCEMENT", VERSION 2.0, NGMN Alliance, March 2015,
              <https://www.ngmn.org/fileadmin/user_upload/
              NGMN_RANEV_D3_CoMP_Evaluation_and_Enhancement_v2.0.pdf>.




Grossman                      Informational                    [Page 80]
^L
RFC 8578                    DetNet Use Cases                    May 2019


   [Content_Protection]
              Olsen, D., "1722a Content Protection", April 2012,
              <http://grouper.ieee.org/groups/1722/contributions/2012/
              avtp_dolsen_1722a_content_protection.pdf>.

   [CPRI]     CPRI Cooperation, "Common Public Radio Interface (CPRI);
              Interface Specification", CPRI Specification V6.1,
              July 2014, <http://www.cpri.info/downloads/
              CPRI_v_6_1_2014-07-01.pdf>.

   [DCI]      Digital Cinema Initiatives, LLC, "DCI Specification,
              Version 1.3", June 2018, <https://www.dcimovies.com/>.

   [Det-Fwd-PHB]
              Shah, S. and P. Thubert, "Deterministic Forwarding PHB",
              Work in Progress,
              draft-svshah-tsvwg-deterministic-forwarding-04,
              August 2015.

   [DetNet-6TiSCH]
              Thubert, P., Ed., "6TiSCH requirements for DetNet", Work
              in Progress, draft-thubert-6tisch-4detnet-01, June 2015.

   [DetNet-Arch]
              Finn, N., Thubert, P., Varga, B., and J. Farkas,
              "Deterministic Networking Architecture", Work in Progress,
              draft-ietf-detnet-architecture-13, May 2019.

   [DetNet-Audio-Reqs]
              Gunther, C., Ed. and E. Grossman, Ed., "Deterministic
              Networking Professional Audio Requirements", Work in
              Progress, draft-gunther-detnet-proaudio-req-01,
              March 2015.

   [DetNet-Mobile]
              Zha, Y., "Deterministic Networking Use Case in Mobile
              Network", Work in Progress, draft-zha-detnet-use-case-00,
              July 2015.

   [DetNet-RAN]
              Korhonen, J., "Deterministic networking for radio
              access networks", Work in Progress,
              draft-korhonen-detnet-telreq-00, May 2015.








Grossman                      Informational                    [Page 81]
^L
RFC 8578                    DetNet Use Cases                    May 2019


   [DetNet-Security]
              Mizrahi, T., Grossman, E., Ed., Hacker, A., Das, S.,
              Dowdell, J., Austad, H., Stanton, K., and N. Finn,
              "Deterministic Networking (DetNet) Security
              Considerations", Work in Progress,
              draft-ietf-detnet-security-04, March 2019.

   [DetNet-Util-Reqs]
              Wetterwald, P. and J. Raymond, "Deterministic Networking
              Uitilities requirements", Work in Progress,
              draft-wetterwald-detnet-utilities-reqs-02, June 2015.

   [eCPRI]    IEEE Standards Association, "Common Public Radio
              Interface: eCPRI Interface Specification V1.2", June 2018,
              <http://www.cpri.info/>.

   [ESPN_DC2] Daley, D., "ESPN's DC2 Scales AVB Large", SVG News,
              June 2014, <https://sportsvideo.org/main/blog/2014/06/
              espns-dc2-scales-avb-large>.

   [EtherCAT] "EtherCAT Technology Group",
              <https://www.ethercat.org/default.htm>.

   [FL-net]   Japan Electrical Manufacturers Association, "JEMA 1479 -
              English Edition", September 2012,
              <https://www.jema-net.or.jp/Japanese/standard/opcn/pdf/
              JEM_1479e(20120927).pdf>.

   [Fronthaul]
              Chen, D. and T. Mustala, "Ethernet Fronthaul
              Considerations", IEEE 1904.3, February 2015,
              <http://www.ieee1904.org/3/meeting_archive/2015/02/
              tf3_1502_chen_1.pdf>.

   [IEC-60834]
              International Electrotechnical Commission, "Teleprotection
              equipment of power systems - Performance and testing",
              IEC 60834, October 1999.

   [IEC-60870-5-104]
              International Electrotechnical Commission, "Telecontrol
              equipment and systems - Part 5-104: Transmission protocols
              - Network access for IEC 60870-5-101 using standard
              transport profiles", IEC 60870-5-104, June 2006.







Grossman                      Informational                    [Page 82]
^L
RFC 8578                    DetNet Use Cases                    May 2019


   [IEC-61400-25]
              International Electrotechnical Commission, "Communications
              for monitoring and control of wind power plants",
              IEC 61400-25, June 2013.

   [IEC-61850-5:2013]
              International Electrotechnical Commission, "Communication
              networks and systems for power utility automation -
              Part 5: Communication requirements for functions and
              device models", IEC 61850-5, January 2013.

   [IEC-61850-9-2:2011]
              International Electrotechnical Commission, "Communication
              networks and systems for power utility automation -
              Part 9-2: Specific communication service mapping (SCSM) -
              Sampled values over ISO/IEC 8802-3", IEC 61850-9-2,
              September 2011.

   [IEC-61850-90-12:2015]
              International Electrotechnical Commission, "Communication
              networks and systems for power utility automation -
              Part 90-12: Wide area network engineering guidelines",
              IEC TR 61850-90-12, July 2015.

   [IEC-62357-200:2015]
              International Electrotechnical Commission, "Power systems
              management and associated information exchange - Part 200:
              Guidelines for migration from Internet Protocol version 4
              (IPv4) to Internet Protocol version 6 (IPv6)",
              IEC 62357-200:2015, July 2015.

   [IEC-62439-3:2016]
              International Electrotechnical Commission, "Industrial
              communication networks - High availability automation
              networks - Part 3: Parallel Redundancy Protocol (PRP) and
              High-availability Seamless Redundancy (HSR)", March 2016.

   [IEC-IEEE-61850-9-3:2016]
              International Electrotechnical Commission, "Communication
              networks and systems for power utility automation -
              Part 9-3: Precision time protocol profile for power
              utility automation", IEC 61850-9-3, May 2016.

   [IEEE-1588]
              IEEE, "IEEE Standard for a Precision Clock Synchronization
              Protocol for Networked Measurement and Control Systems",
              IEEE Standard 1588, <https://standards.ieee.org/findstds/
              standard/1588-2008.html>.



Grossman                      Informational                    [Page 83]
^L
RFC 8578                    DetNet Use Cases                    May 2019


   [IEEE-1646]
              IEEE, "IEEE Standard Communication Delivery Time
              Performance Requirements for Electric Power Substation
              Automation", IEEE Standard 1646,
              <https://standards.ieee.org/standard/1646-2004.html>.

   [IEEE-1722]
              IEEE, "IEEE Standard for a Transport Protocol for
              Time-Sensitive Applications in Bridged Local Area
              Networks", IEEE Standard 1722,
              <https://standards.ieee.org/findstds/
              standard/1722-2016.html>.

   [IEEE-1815]
              IEEE Standards Association, "IEEE Standard for Electric
              Power Systems Communications-Distributed Network Protocol
              (DNP3)", IEEE Standard 1815, <https://ieeexplore.ieee.org/
              servlet/opac?punumber=6327576>.

   [IEEE-19143]
              IEEE Standards Association, "IEEE Standard for Radio over
              Ethernet Encapsulations and Mappings", IEEE 1914.3,
              <https://standards.ieee.org/develop/project/1914.3.html>.

   [IEEE-80211]
              IEEE Standard for Information technology, "IEEE Std.
              802.11, Telecommunications and information exchange
              between systems--Local and metropolitan area networks--
              Specific requirements - Part 11: Wireless LAN Medium
              Access Control (MAC) and Physical Layer (PHY)
              Specifications",
              <https://standards.ieee.org/standard/802_11-2016.html>.

   [IEEE-802154]
              IEEE Standard for Information technology, "IEEE Std.
              802.15.4, Part 15.4: Wireless Medium Access Control (MAC)
              and Physical Layer (PHY) Specifications for Low Rate
              Wireless Personal Area Networks (WPANs)",
              <https://standards.ieee.org/standard/802_15_4-2015.html>.

   [IEEE-8021AS]
              IEEE, "IEEE Standard for Local and Metropolitan Area
              Networks - Timing and Synchronization for Time-Sensitive
              Applications in Bridged Local Area Networks",
              IEEE 802.1AS,
              <http://www.ieee802.org/1/pages/802.1as.html>.





Grossman                      Informational                    [Page 84]
^L
RFC 8578                    DetNet Use Cases                    May 2019


   [IEEE-8021CM]
              "IEEE Standard for Local and metropolitan area networks -
              Time-Sensitive Networking for Fronthaul", IEEE
              Standard 802.1CM,
              <https://standards.ieee.org/standard/802_1CM-2018.html>.

   [IEEE-8021TSNTG]
              IEEE Standards Association, "IEEE 802.1 Time-Sensitive
              Networking Task Group",
              <http://www.ieee802.org/1/pages/avbridges.html>.

   [IETF99-netslicing-BoF]
              "Network Slicing (netslicing) BoF", IETF 99, Prague,
              July 2017, <https://datatracker.ietf.org/meeting/99/
              materials/slides-99-netslicing-chairs-netslicing-bof-04>.

   [Interface-6TiSCH-6top]
              Wang, Q., Ed. and X. Vilajosana, "6TiSCH Operation
              Sublayer (6top) Interface", Work in Progress,
              draft-ietf-6tisch-6top-interface-04, July 2015.

   [ISA100]   ISA/ANSI, "ISA100, Wireless Systems for Automation",
              <https://www.isa.org/isa100/>.

   [KNX]      KNX Association, "ISO/IEC 14543-3 - KNX", November 2006.

   [LonTalk]  Echelon Corp., "LonTalk(R) Protocol Specification
              Version 3.0", 1994, <http://www.enerlon.com/JobAids/
              Lontalk%20Protocol%20Spec.pdf>.

   [MailingList-6TiSCH]
              IETF, "6TiSCH Mailing List",
              <https://mailarchive.ietf.org/arch/browse/6tisch/>.

   [MEF22.1.1]
              Metro Ethernet Forum, "Mobile Backhaul Phase 2 Amendment 1
              -- Small Cells", MEF 22.1.1, July 2014,
              <http://www.mef.net/Assets/Technical_Specifications/PDF/
              MEF_22.1.1.pdf>.

   [MEF8]     Metro Ethernet Forum, "Implementation Agreement for the
              Emulation of PDH Circuits over Metro Ethernet Networks",
              MEF 8, October 2004, <https://www.mef.net/
              Assets/Technical_Specifications/PDF/MEF_8.pdf>.







Grossman                      Informational                    [Page 85]
^L
RFC 8578                    DetNet Use Cases                    May 2019


   [METIS]    METIS, "Scenarios, requirements and KPIs for 5G mobile and
              wireless system", Document Number ICT-317669-METIS/D1.1,
              April 2013, <https://metis2020.com/wp-content/
              uploads/deliverables/METIS_D1.1_v1.pdf>.

   [MODBUS]   Modbus Organization, Inc., "MODBUS Application Protocol
              Specification", April 2012,
              <http://www.modbus.org/specs.php>.

   [NGMN]     NGMN Alliance, "5G White Paper", NGMN 5G White Paper v1.0,
              February 2015, <https://www.ngmn.org/fileadmin/ngmn/
              content/downloads/Technical/2015/
              NGMN_5G_White_Paper_V1_0.pdf>.

   [NGMN-Fronth]
              NGMN Alliance, "Fronthaul Requirements for C-RAN",
              March 2015, <https://www.ngmn.org/fileadmin/user_upload/
              NGMN_RANEV_D1_C-RAN_Fronthaul_Requirements_v1.0.pdf>.

   [OPCXML]   OPC Foundation, "OPC Data Access (OPC DA) Specification",
              <http://www.opcti.com/opc-da-specification.aspx>.

   [PCE]      IETF, "Path Computation Element",
              <https://datatracker.ietf.org/doc/charter-ietf-pce/>.

   [PROFIBUS] IEC, "PROFIBUS Standard - DP Specification (IEC 61158
              Type 3)", <https://www.profibus.com/>.

   [PROFINET] "PROFINET Technology",
              <https://us.profinet.com/technology/profinet/>.

   [RFC3031]  Rosen, E., Viswanathan, A., and R. Callon, "Multiprotocol
              Label Switching Architecture", RFC 3031,
              DOI 10.17487/RFC3031, January 2001,
              <https://www.rfc-editor.org/info/rfc3031>.

   [RFC3411]  Harrington, D., Presuhn, R., and B. Wijnen, "An
              Architecture for Describing Simple Network Management
              Protocol (SNMP) Management Frameworks", STD 62, RFC 3411,
              DOI 10.17487/RFC3411, December 2002,
              <https://www.rfc-editor.org/info/rfc3411>.

   [RFC3985]  Bryant, S., Ed. and P. Pate, Ed., "Pseudo Wire Emulation
              Edge-to-Edge (PWE3) Architecture", RFC 3985,
              DOI 10.17487/RFC3985, March 2005,
              <https://www.rfc-editor.org/info/rfc3985>.





Grossman                      Informational                    [Page 86]
^L
RFC 8578                    DetNet Use Cases                    May 2019


   [RFC4553]  Vainshtein, A., Ed. and YJ. Stein, Ed., "Structure-
              Agnostic Time Division Multiplexing (TDM) over Packet
              (SAToP)", RFC 4553, DOI 10.17487/RFC4553, June 2006,
              <https://www.rfc-editor.org/info/rfc4553>.

   [RFC5086]  Vainshtein, A., Ed., Sasson, I., Metz, E., Frost, T., and
              P. Pate, "Structure-Aware Time Division Multiplexed (TDM)
              Circuit Emulation Service over Packet Switched Network
              (CESoPSN)", RFC 5086, DOI 10.17487/RFC5086, December 2007,
              <https://www.rfc-editor.org/info/rfc5086>.

   [RFC5087]  Stein, Y(J)., Shashoua, R., Insler, R., and M. Anavi,
              "Time Division Multiplexing over IP (TDMoIP)", RFC 5087,
              DOI 10.17487/RFC5087, December 2007,
              <https://www.rfc-editor.org/info/rfc5087>.

   [RFC5905]  Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,
              "Network Time Protocol Version 4: Protocol and Algorithms
              Specification", RFC 5905, DOI 10.17487/RFC5905, June 2010,
              <https://www.rfc-editor.org/info/rfc5905>.

   [RFC6550]  Winter, T., Ed., Thubert, P., Ed., Brandt, A., Hui, J.,
              Kelsey, R., Levis, P., Pister, K., Struik, R., Vasseur,
              JP., and R. Alexander, "RPL: IPv6 Routing Protocol for
              Low-Power and Lossy Networks", RFC 6550,
              DOI 10.17487/RFC6550, March 2012,
              <https://www.rfc-editor.org/info/rfc6550>.

   [RFC6551]  Vasseur, JP., Ed., Kim, M., Ed., Pister, K., Dejean, N.,
              and D. Barthel, "Routing Metrics Used for Path Calculation
              in Low-Power and Lossy Networks", RFC 6551,
              DOI 10.17487/RFC6551, March 2012,
              <https://www.rfc-editor.org/info/rfc6551>.

   [RFC7554]  Watteyne, T., Ed., Palattella, M., and L. Grieco, "Using
              IEEE 802.15.4e Time-Slotted Channel Hopping (TSCH) in the
              Internet of Things (IoT): Problem Statement", RFC 7554,
              DOI 10.17487/RFC7554, May 2015,
              <https://www.rfc-editor.org/info/rfc7554>.

   [RFC8169]  Mirsky, G., Ruffini, S., Gray, E., Drake, J., Bryant, S.,
              and A. Vainshtein, "Residence Time Measurement in MPLS
              Networks", RFC 8169, DOI 10.17487/RFC8169, May 2017,
              <https://www.rfc-editor.org/info/rfc8169>.







Grossman                      Informational                    [Page 87]
^L
RFC 8578                    DetNet Use Cases                    May 2019


   [Spe09]    Barbosa, R., Sadre, R., and A. Pras, "A First Look into
              SCADA Network Traffic", IP Network Operations and
              Management Symposium, DOI 10.1109/NOMS.2012.6211945,
              June 2012, <https://ieeexplore.ieee.org/document/6211945>.

   [SR-IP-RAN-Use-Case]
              Khasnabish, B., Hu, F., and L. Contreras, "Segment
              Routing in IP RAN use case", Work in Progress,
              draft-kh-spring-ip-ran-use-case-02, November 2014.

   [SRP_LATENCY]
              Gunther, C., "Specifying SRP Acceptable Latency",
              March 2014, <http://www.ieee802.org/1/files/public/
              docs2014/cc-cgunther-acceptable-latency-0314-v01.pdf>.

   [Sublayer-6TiSCH-6top]
              Wang, Q., Ed. and X. Vilajosana, "6TiSCH Operation
              Sublayer (6top)", Work in Progress,
              draft-wang-6tisch-6top-sublayer-04, November 2015.

   [syncE]    International Telecommunication Union, "Timing and
              synchronization aspects in packet networks", ITU-T
              Recommendation G.8261, August 2013,
              <https://www.itu.int/rec/T-REC-G.8261>.

   [Timing-over-MPLS]
              Davari, S., Oren, A., Bhatia, M., Roberts, P., and L.
              Montini, "Transporting Timing messages over MPLS
              Networks", Work in Progress,
              draft-ietf-tictoc-1588overmpls-07, October 2015.

   [TR38801]  3GPP, "Study on new radio access technology: Radio access
              architecture and interfaces (Release 14)", 3GPP TR 38.801,
              April 2017,
              <https://portal.3gpp.org/desktopmodules/Specifications/
              SpecificationDetails.aspx?specificationId=3056>.

   [TS23401]  3GPP, "General Packet Radio Service (GPRS) enhancements
              for Evolved Universal Terrestrial Radio Access Network
              (E-UTRAN) access (Release 16)", 3GPP TS 23.401,
              March 2019, <https://portal.3gpp.org/
              desktopmodules/ Specifications/
              SpecificationDetails.aspx?specificationId=849>.

   [TS23501]  3GPP, "System architecture for the 5G System (5GS)
              (Release 15)", 3GPP TS 23.501, March 2019,
              <https://portal.3gpp.org/desktopmodules/Specifications/
              SpecificationDetails.aspx?specificationId=3144>.



Grossman                      Informational                    [Page 88]
^L
RFC 8578                    DetNet Use Cases                    May 2019


   [TS25104]  3GPP, "Base Station (BS) radio transmission and reception
              (FDD) (Release 16)", 3GPP TS 25.104, January 2019,
              <https://portal.3gpp.org/desktopmodules/Specifications/
              SpecificationDetails.aspx?specificationId=1154>.

   [TS36104]  3GPP, "Evolved Universal Terrestrial Radio Access
              (E-UTRA); Base Station (BS) radio transmission and
              reception (Release 16)", 3GPP TS 36.104, January 2019,
              <https://portal.3gpp.org/desktopmodules/Specifications/
              SpecificationDetails.aspx?specificationId=2412>.

   [TS36133]  3GPP, "Evolved Universal Terrestrial Radio Access
              (E-UTRA); Requirements for support of radio resource
              management (Release 16)", 3GPP TS 36.133, January 2019,
              <https://portal.3gpp.org/desktopmodules/Specifications/
              SpecificationDetails.aspx?specificationId=2420>.

   [TS36211]  3GPP, "Evolved Universal Terrestrial Radio Access
              (E-UTRA); Physical channels and modulation (Release 15)",
              3GPP TS 36.211, January 2019,
              <https://portal.3gpp.org/desktopmodules/Specifications/
              SpecificationDetails.aspx?specificationId=2425>.

   [TS36300]  3GPP, "Evolved Universal Terrestrial Radio Access (E-UTRA)
              and Evolved Universal Terrestrial Radio Access Network
              (E-UTRAN); Overall description; Stage 2 (Release 15)",
              3GPP TS 36.300, January 2019,
              <https://portal.3gpp.org/desktopmodules/Specifications/
              SpecificationDetails.aspx?specificationId=2430>.

   [WirelessHART]
              International Electrotechnical Commission, "Industrial
              networks - Wireless communication network and
              communication profiles - WirelessHART(TM)",
              IEC 62591:2016, March 2016.
















Grossman                      Informational                    [Page 89]
^L
RFC 8578                    DetNet Use Cases                    May 2019


Appendix A.  Use Cases Explicitly Out of Scope for DetNet

   This appendix contains text regarding use cases that have been
   determined to be outside the scope of the present DetNet work.

A.1.  DetNet Scope Limitations

   The scope of DetNet is deliberately limited to specific use cases
   that are consistent with the WG charter, subject to the
   interpretation of the WG.  At the time that the DetNet use cases were
   solicited and provided by the authors, the scope of DetNet was not
   clearly defined.  As the scope has been clarified, certain use cases
   have been determined to be outside the scope of the present DetNet
   work.  Text regarding these use cases was moved to this appendix to
   clarify that they will not be supported by the DetNet work.

   The text was moved to this appendix based on the following
   "exclusion" principles.  Please note that as an alternative to moving
   all such text to this appendix some text has been modified in situ to
   reflect these same principles.

   The following principles have been established to clarify the scope
   of the present DetNet work.

   o  The scope of networks addressed by DetNet is limited to networks
      that can be centrally controlled, i.e., an "enterprise" (aka
      "corporate") network.  This explicitly excludes "the open
      Internet".

   o  Maintaining time synchronization across a DetNet network is
      crucial to its operation; however, DetNet assumes that time is to
      be maintained using other means.  One example would be PTP
      [IEEE-1588].  A use case may state the accuracy and reliability
      that it expects from the DetNet network as part of a whole system;
      however, it is understood that such timing properties are not
      guaranteed by DetNet itself.  At the time of this writing, two
      open questions remain: (1) whether DetNet protocols will include a
      way for an application to communicate expectations regarding such
      timing properties to the network and (2) if so, whether those
      properties would likely have a material effect on network
      performance as a result.

A.2.  Internet-Based Applications

   There are many applications that communicate over the open Internet
   that could benefit from guaranteed delivery and bounded latency.
   However, as noted above, all such applications, when run over the
   open Internet, are out of scope for DetNet.  These same applications



Grossman                      Informational                    [Page 90]
^L
RFC 8578                    DetNet Use Cases                    May 2019


   may be in scope when run in constrained environments, i.e., within a
   centrally controlled DetNet network.  The following are some examples
   of such applications.

A.2.1.  Use Case Description

A.2.1.1.  Media Content Delivery

   Media content delivery continues to be an important use of the
   Internet, yet users often experience poor-quality audio and video due
   to the delay and jitter inherent in today's Internet.

A.2.1.2.  Online Gaming

   Online gaming is a significant part of the gaming market; however,
   latency can degrade the end user's experience.  For example, "First
   Person Shooter" (FPS) games are highly delay sensitive.

A.2.1.3.  Virtual Reality

   VR has many commercial applications, including real estate
   presentations, remote medical procedures, and so on.  Low latency is
   critical to interacting with the virtual world, because perceptual
   delays can cause motion sickness.

A.2.2.  Internet-Based Applications Today

   Internet service today is by definition "best effort", with no
   guarantees regarding delivery or bandwidth.

A.2.3.  Internet-Based Applications in the Future

   One should be able to play Internet videos without glitches and play
   Internet games without lag.

   For online gaming, the desired maximum allowance for round-trip delay
   is typically 100 ms.  However, it may be less for specific types of
   games; for example, for FPS games, the maximum delay should be 50 ms.
   Transport delay is the dominant part, with a budget of 5-20 ms.

   For VR, a maximum delay of 1-10 ms is needed; if doing remote VR, the
   total network delay budget is 1-5 ms.

   Flow identification can be used for gaming and VR, i.e., it can
   recognize a critical flow and provide appropriate latency bounds.






Grossman                      Informational                    [Page 91]
^L
RFC 8578                    DetNet Use Cases                    May 2019


A.2.4.  Internet-Based Applications Requests to the IETF

   o  Unified control and management protocols that handle time-critical
      data flows

   o  An application-aware flow-filtering mechanism that recognizes
      time-critical flows without doing 5-tuple matching

   o  A unified control plane that provides low-latency service on
      Layer 3 without changing the data plane

   o  An OAM system and protocols that can help provide service
      provisioning that is sensitive to end-to-end delays

A.3.  Pro Audio and Video - Digital Rights Management (DRM)

   The following text was moved to this appendix because this
   information is considered a link-layer topic for which DetNet is not
   directly responsible.

   Digital Rights Management (DRM) is very important to the audio and
   video industries.  Whenever protected content is introduced into a
   network, there are DRM concerns that must be taken into account (see
   [Content_Protection]).  Many aspects of DRM are outside the scope of
   network technology; however, there are cases when a secure link
   supporting authentication and encryption is required by content
   owners to carry their audio or video content when it is outside their
   own secure environment (for example, see [DCI]).

   As an example, two such techniques are Digital Transmission Content
   Protection (DTCP) and High-bandwidth Digital Content Protection
   (HDCP).  HDCP content is not approved for retransmission within any
   other type of DRM, while DTCP content may be retransmitted under
   HDCP.  Therefore, if the source of a stream is outside of the network
   and it uses HDCP, it is only allowed to be placed on the network with
   that same type of protection (i.e., HDCP).

A.4.  Pro Audio and Video - Link Aggregation

   Note: The term "link aggregation" is used here as defined by the text
   in the following paragraph, i.e., not following a more common
   network-industry definition.

   For transmitting streams that require more bandwidth than a single
   link in the target network can support, link aggregation is a
   technique for combining (aggregating) the bandwidth available on
   multiple physical links to create a single logical link that provides




Grossman                      Informational                    [Page 92]
^L
RFC 8578                    DetNet Use Cases                    May 2019


   the required bandwidth.  However, if aggregation is to be used, the
   network controller (or equivalent) must be able to determine the
   maximum latency of any path through the aggregate link.

A.5.  Pro Audio and Video - Deterministic Time to Establish Streaming

   The DetNet WG decided that guidelines for establishing a
   deterministic time to establish stream startup are not within the
   scope of DetNet.  If the bounded timing for establishing or
   re-establishing streams is required in a given use case, it is up to
   the application/system to achieve it.

Acknowledgments

   Pro audio (Section 2)

      As also acknowledged in [DetNet-Audio-Reqs], the editor would like
      to acknowledge the help of the following individuals and the
      companies they represent.

         Jeff Koftinoff, Meyer Sound
         Jouni Korhonen, Associate Technical Director, Broadcom
         Pascal Thubert, CTAO, Cisco
         Kieran Tyrrell, Sienda New Media Technologies GmbH

   Utility telecom (Section 3)

      Information regarding utility telecom was derived from
      [DetNet-Util-Reqs].  As in that document, the following
      individuals are acknowledged here.

         Faramarz Maghsoodlou, Ph.D., IoT Connected Industries
            and Energy Practice, Cisco
         Pascal Thubert, CTAO, Cisco

      The wind power generation use case has been extracted from the
      study of wind parks conducted within the 5GPPP VirtuWind Project.
      The project is funded by the European Union's Horizon 2020
      research and innovation programme under grant agreement No. 671648
      (VirtuWind).

   Building automation systems (Section 4)

      Please see [BAS-DetNet].







Grossman                      Informational                    [Page 93]
^L
RFC 8578                    DetNet Use Cases                    May 2019


   Wireless for industrial applications (Section 5)

      See [DetNet-6TiSCH].

      [DetNet-6TiSCH] derives from the 6TiSCH architecture, which is the
      result of multiple interactions -- in particular, during the
      6TiSCH (bi)weekly interim call, relayed through the 6TiSCH mailing
      list at the IETF [MailingList-6TiSCH].

      As also acknowledged in [DetNet-6TiSCH], the editor wishes to
      thank Kris Pister, Thomas Watteyne, Xavier Vilajosana, Qin Wang,
      Tom Phinney, Robert Assimiti, Michael Richardson, Zhuo Chen,
      Malisa Vucinic, Alfredo Grieco, Martin Turon, Dominique Barthel,
      Elvis Vogli, Guillaume Gaillard, Herman Storey, Maria Rita
      Palattella, Nicola Accettura, Patrick Wetterwald, Pouria Zand,
      Raghuram Sudhaakar, and Shitanshu Shah for their participation and
      various contributions.

   Cellular radio (Section 6)

      See [DetNet-RAN].

   Internet applications and CoMP (Section 6)

      As also acknowledged in [DetNet-Mobile], authored by Yiyong Zha,
      the editor would like to thank the following people for their
      reviews, suggestions, comments, and proposed text: Jing Huang,
      Junru Lin, Lehong Niu, and Oliver Huang.

   Industrial Machine to Machine (M2M) (Section 7)

      The editor would like to thank Feng Chen and Marcel Kiessling for
      their comments and suggestions.

   Mining industry (Section 8)

      This text was written by Diego Dujovne, who worked in conjunction
      with Xavier Vilajosana.

   Private blockchain (Section 9)

      This text was written by Daniel Huang.

   Network slicing (Section 10)

      This text was written by Xuesong Geng, who would like to
      acknowledge Norm Finn and Mach Chen for their useful comments.




Grossman                      Informational                    [Page 94]
^L
RFC 8578                    DetNet Use Cases                    May 2019


Contributors

   RFC 7322 ("RFC Style Guide") generally limits the number of authors
   listed on the front page of a document to five individuals -- far
   fewer than the 19 individuals listed below, who also made important
   contributions to this document.  The editor wishes to thank and
   acknowledge each of the following authors for contributing text to
   this document.  See also the Acknowledgments section.

      Craig Gunther (Harman International)
      10653 South River Front Parkway
      South Jordan, UT  84095
      United States of America
      Phone: +1 801 568 7675
      Email: craig.gunther@harman.com

      Pascal Thubert (Cisco Systems, Inc.)
      Building D, 45 Allee des Ormes - BP1200
      Mougins - Sophia Antipolis  06254
      France
      Phone: +33 4 97 23 26 34
      Email: pthubert@cisco.com

      Patrick Wetterwald (Cisco Systems)
      45 Allee des Ormes
      Mougins  06250
      France
      Phone: +33 4 97 23 26 36
      Email: pwetterw@cisco.com

      Jean Raymond (Hydro-Quebec)
      1500 University
      Montreal, Quebec  H3A 3S7
      Canada
      Phone: +1 514 840 3000
      Email: raymond.jean@hydro.qc.ca

      Jouni Korhonen (Broadcom Corporation)
      3151 Zanker Road
      San Jose, CA  95134
      United States of America
      Email: jouni.nospam@gmail.com

      Yu Kaneko (Toshiba)
      1 Komukai-Toshiba-cho
      Saiwai-ku, Kasasaki-shi, Kanagawa
      Japan
      Email: yu1.kaneko@toshiba.co.jp



Grossman                      Informational                    [Page 95]
^L
RFC 8578                    DetNet Use Cases                    May 2019


      Subir Das (Vencore Labs)
      150 Mount Airy Road
      Basking Ridge, NJ  07920
      United States of America
      Email: sdas@appcomsci.com

      Balazs Varga (Ericsson)
      Konyves Kalman krt. 11/B
      Budapest  1097
      Hungary
      Email: balazs.a.varga@ericsson.com

      Janos Farkas (Ericsson)
      Konyves Kalman krt. 11/B
      Budapest  1097
      Hungary
      Email: janos.farkas@ericsson.com

      Franz-Josef Goetz (Siemens)
      Gleiwitzerstr. 555
      Nurnberg  90475
      Germany
      Email: franz-josef.goetz@siemens.com

      Juergen Schmitt (Siemens)
      Gleiwitzerstr. 555
      Nurnberg  90475
      Germany
      Email: juergen.jues.schmitt@siemens.com

      Xavier Vilajosana (Worldsensing)
      483 Arago
      Barcelona, Catalonia  08013
      Spain
      Email: xvilajosana@worldsensing.com

      Toktam Mahmoodi (King's College London)
      Strand, London  WC2R 2LS
      United Kingdom
      Email: toktam.mahmoodi@kcl.ac.uk

      Spiros Spirou (Intracom Telecom)
      19.7 km Markopoulou Ave.
      Peania, Attiki  19002
      Greece
      Email: spiros.spirou@gmail.com





Grossman                      Informational                    [Page 96]
^L
RFC 8578                    DetNet Use Cases                    May 2019


      Petra Vizarreta (Technical University of Munich)
      Maxvorstadt, Arcisstrasse 21
      Munich  80333
      Germany
      Email: petra.stojsavljevic@tum.de

      Daniel Huang (ZTE Corporation, Inc.)
      No. 50 Software Avenue
      Nanjing, Jiangsu  210012
      China
      Email: huang.guangping@zte.com.cn

      Xuesong Geng (Huawei Technologies)
      Email: gengxuesong@huawei.com

      Diego Dujovne (Universidad Diego Portales)
      Email: diego.dujovne@mail.udp.cl

      Maik Seewald (Cisco Systems)
      Email: maseewal@cisco.com

Author's Address

   Ethan Grossman (editor)
   Dolby Laboratories, Inc.
   1275 Market Street
   San Francisco, CA  94103
   United States of America

   Phone: +1 415 645 4726
   Email: ethan.grossman@dolby.com
   URI:   http://www.dolby.com



















Grossman                      Informational                    [Page 97]
^L