summaryrefslogtreecommitdiff
path: root/doc/rfc/rfc8609.txt
blob: 1ff4d723eeaf807c74588bbe029353315e5f2e81 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
Internet Research Task Force (IRTF)                             M. Mosko
Request for Comments: 8609                                    PARC, Inc.
Category: Experimental                                          I. Solis
ISSN: 2070-1721                                                 LinkedIn
                                                                 C. Wood
                                         University of California Irvine
                                                               July 2019


        Content-Centric Networking (CCNx) Messages in TLV Format

Abstract

   Content-Centric Networking (CCNx) is a network protocol that uses a
   hierarchical name to forward requests and to match responses to
   requests.  This document specifies the encoding of CCNx messages in a
   TLV packet format, including the TLV types used by each message
   element and the encoding of each value.  The semantics of CCNx
   messages follow the encoding-independent CCNx Semantics
   specification.

   This document is a product of the Information Centric Networking
   research group (ICNRG).  The document received wide review among
   ICNRG participants and has two full implementations currently in
   active use, which have informed the technical maturity of the
   protocol specification.

Status of This Memo

   This document is not an Internet Standards Track specification; it is
   published for examination, experimental implementation, and
   evaluation.

   This document defines an Experimental Protocol for the Internet
   community.  This document is a product of the Internet Research Task
   Force (IRTF).  The IRTF publishes the results of Internet-related
   research and development activities.  These results might not be
   suitable for deployment.  This RFC represents the consensus of the
   Information-Centric Networking Research Group of the Internet
   Research Task Force (IRTF).  Documents approved for publication by
   the IRSG are not candidates for any level of Internet Standard; see
   Section 2 of RFC 7841.

   Information about the current status of this document, any errata,
   and how to provide feedback on it may be obtained at
   https://www.rfc-editor.org/info/rfc8609.





Mosko, et al.                 Experimental                      [Page 1]
^L
RFC 8609                        CCNx TLV                       July 2019


Copyright Notice

   Copyright (c) 2019 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   3
     1.1.  Requirements Language . . . . . . . . . . . . . . . . . .   5
   2.  Definitions . . . . . . . . . . . . . . . . . . . . . . . . .   5
   3.  Type-Length-Value (TLV) Packets . . . . . . . . . . . . . . .   5
     3.1.  Overall Packet Format . . . . . . . . . . . . . . . . . .   7
     3.2.  Fixed Headers . . . . . . . . . . . . . . . . . . . . . .   8
       3.2.1.  Interest Fixed Header . . . . . . . . . . . . . . . .   9
         3.2.1.1.  Interest HopLimit . . . . . . . . . . . . . . . .   9
       3.2.2.  Content Object Fixed Header . . . . . . . . . . . . .   9
       3.2.3.  Interest Return Fixed Header  . . . . . . . . . . . .  10
         3.2.3.1.  Interest Return HopLimit  . . . . . . . . . . . .  10
         3.2.3.2.  Interest Return Flags . . . . . . . . . . . . . .  10
         3.2.3.3.  Return Code . . . . . . . . . . . . . . . . . . .  10
     3.3.  Global Formats  . . . . . . . . . . . . . . . . . . . . .  11
       3.3.1.  Pad . . . . . . . . . . . . . . . . . . . . . . . . .  11
       3.3.2.  Organization-Specific TLVs  . . . . . . . . . . . . .  12
       3.3.3.  Hash Format . . . . . . . . . . . . . . . . . . . . .  12
       3.3.4.  Link  . . . . . . . . . . . . . . . . . . . . . . . .  13
     3.4.  Hop-by-Hop TLV Headers  . . . . . . . . . . . . . . . . .  14
       3.4.1.  Interest Lifetime . . . . . . . . . . . . . . . . . .  14
       3.4.2.  Recommended Cache Time  . . . . . . . . . . . . . . .  15
       3.4.3.  Message Hash  . . . . . . . . . . . . . . . . . . . .  16
     3.5.  Top-Level Types . . . . . . . . . . . . . . . . . . . . .  17
     3.6.  CCNx Message TLV  . . . . . . . . . . . . . . . . . . . .  18
       3.6.1.  Name  . . . . . . . . . . . . . . . . . . . . . . . .  19
         3.6.1.1.  Name Segments . . . . . . . . . . . . . . . . . .  20
         3.6.1.2.  Interest Payload ID . . . . . . . . . . . . . . .  20
       3.6.2.  Message TLVs  . . . . . . . . . . . . . . . . . . . .  21
         3.6.2.1.  Interest Message TLVs . . . . . . . . . . . . . .  21
         3.6.2.2.  Content Object Message TLVs . . . . . . . . . . .  23
       3.6.3.  Payload . . . . . . . . . . . . . . . . . . . . . . .  25
       3.6.4.  Validation  . . . . . . . . . . . . . . . . . . . . .  25
         3.6.4.1.  Validation Algorithm  . . . . . . . . . . . . . .  25
         3.6.4.2.  Validation Payload  . . . . . . . . . . . . . . .  32



Mosko, et al.                 Experimental                      [Page 2]
^L
RFC 8609                        CCNx TLV                       July 2019


   4.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  33
     4.1.  Packet Type Registry  . . . . . . . . . . . . . . . . . .  33
     4.2.  Interest Return Code Registry . . . . . . . . . . . . . .  34
     4.3.  Hop-by-Hop Type Registry  . . . . . . . . . . . . . . . .  35
     4.4.  Top-Level Type Registry . . . . . . . . . . . . . . . . .  36
     4.5.  Name Segment Type Registry  . . . . . . . . . . . . . . .  37
     4.6.  Message Type Registry . . . . . . . . . . . . . . . . . .  37
     4.7.  Payload Type Registry . . . . . . . . . . . . . . . . . .  38
     4.8.  Validation Algorithm Type Registry  . . . . . . . . . . .  39
     4.9.  Validation-Dependent Data Type Registry . . . . . . . . .  40
     4.10. Hash Function Type Registry . . . . . . . . . . . . . . .  40
   5.  Security Considerations . . . . . . . . . . . . . . . . . . .  41
   6.  References  . . . . . . . . . . . . . . . . . . . . . . . . .  44
     6.1.  Normative References  . . . . . . . . . . . . . . . . . .  44
     6.2.  Informative References  . . . . . . . . . . . . . . . . .  44
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  46

1.  Introduction

   This document specifies a Type-Length-Value (TLV) packet format and
   the TLV type and value encodings for CCNx messages.  A full
   description of the CCNx network protocol, providing an encoding-free
   description of CCNx messages and message elements, may be found in
   [RFC8569].  CCNx is a network protocol that uses a hierarchical name
   to forward requests and to match responses to requests.  It does not
   use endpoint addresses; the Internet Protocol does.  Restrictions in
   a request can limit the response by the public key of the response's
   signer or the cryptographic hash of the response.  Every CCNx
   forwarder along the path does the name matching and restriction
   checking.  The CCNx protocol fits within the broader framework of
   Information-Centric Networking (ICN) protocols [RFC7927].

   This document describes a TLV scheme using a fixed 2-byte T and a
   fixed 2-byte L field.  The rational for this choice is described in
   Section 5.  Briefly, this choice avoids multiple encodings of the
   same value (aliases) and reduces the work of a validator to ensure
   compliance.  Unlike some uses of TLV in networking, each network hop
   must evaluate the encoding, so even small validation latencies at
   each hop could add up to a large overall forwarding delay.  For very
   small packets or low-throughput links, where the extra bytes may
   become a concern, one may use a TLV compression protocol, for
   example, [compress] and [CCNxz].

   This document uses the terms CCNx Packet, CCNx Message, and CCNx
   Message TLV.  A CCNx Packet refers to the entire Layer 3 datagram as
   specified in Section 3.1.  A CCNx Message is the ABNF token defined
   in the CCNx Semantics document [RFC8569].  A CCNx Message TLV refers
   to the encoding of a CCNx Message as specified in Section 3.6.



Mosko, et al.                 Experimental                      [Page 3]
^L
RFC 8609                        CCNx TLV                       July 2019


   This document specifies:

   o  the CCNx Packet format,

   o  the CCNx Message TLV format,

   o  the TLV types used by CCNx messages,

   o  the encoding of values for each type,

   o  top-level types that exist at the outermost containment,

   o  Interest TLVs that exist within Interest containment, and

   o  Content Object TLVs that exist within Content Object containment.

   This document is supplemented by these documents:

   o  [RFC8569], which covers message semantics and the protocol
      operation regarding Interest and Content Object, including the
      Interest Return protocol.

   o  [CCNxURI], which covers the CCNx URI notation.

   The type values in Section 4 conform to the IANA-assigned numbers for
   the CCNx protocol.  This document uses the symbolic names defined in
   that section.  All TLV type values are relative to their parent
   containers.  For example, each level of a nested TLV structure might
   define a "type = 1" with a completely different meaning.

   Packets are represented as 32-bit wide words using ASCII art.  Due to
   the nested levels of TLV encoding and the presence of optional fields
   and variable sizes, there is no concise way to represent all
   possibilities.  We use the convention that ASCII art fields enclosed
   by vertical bars "|" represent exact bit widths.  Fields with a
   forward slash "/" are variable bit widths, which we typically pad out
   to word alignment for picture readability.

   The document represents the consensus of the ICN RG.  It is the first
   ICN protocol from the RG, created from the early CCNx protocol [nnc]
   with significant revision and input from the ICN community and RG
   members.  The document has received critical reading by several
   members of the ICN community and the RG.  The authors and RG chairs
   approve of the contents.  The document is sponsored under the IRTF
   and is not issued by the IETF and is not an IETF standard.  This is
   an experimental protocol and may not be suitable for any specific
   application and the specification may change in the future.




Mosko, et al.                 Experimental                      [Page 4]
^L
RFC 8609                        CCNx TLV                       July 2019


1.1.  Requirements Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in
   BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.

2.  Definitions

   These definitions summarize items defined in [RFC8569].  This
   document defines their encodings.

   o  Name: A hierarchically structured variable-length identifier.  It
      is an ordered list of path segments, which are variable-length
      octet strings.  In human-readable form, it is represented in URI
      format as "ccnx:/path/part".  There is no host or query string.
      See [CCNxURI] for complete details.

   o  Interest: A message requesting a Content Object with a matching
      Name and other optional selectors to choose from multiple objects
      with the same Name.  Any Content Object with a Name and attributes
      that matches the Name and optional selectors of the Interest is
      said to satisfy the Interest.

   o  Content Object: A data object sent in response to an Interest
      request.  It has an optional Name and a content payload that are
      bound together via cryptographic means.

3.  Type-Length-Value (TLV) Packets

   We use 16-bit Type and 16-bit Length fields to encode TLV-based
   packets.  This provides 65,536 different possible types and value
   field lengths of up to 64 KiB.  With 65,536 possible types at each
   level of TLV encoding, there should be sufficient space for basic
   protocol types, while also allowing ample room for experimentation,
   application use, vendor extensions, and growth.  This encoding does
   not allow for jumbo packets beyond 64 KiB total length.  If used on a
   media that allows for jumbo frames, we suggest defining a media
   adaptation envelope that allows for multiple smaller frames.











Mosko, et al.                 Experimental                      [Page 5]
^L
RFC 8609                        CCNx TLV                       July 2019


   +--------+------------------+---------------------------------------+
   | Abbrev |       Name       | Description                           |
   +--------+------------------+---------------------------------------+
   | T_ORG  | Vendor Specific  | Information specific to a vendor      |
   |        |   Information    | implementation (Section 3.3.2).       |
   |        |                  |                                       |
   | T_PAD  |     Padding      | Adds padding to a field (Section      |
   |        |                  | 3.3.1).                               |
   |        |                  |                                       |
   |  n/a   |   Experimental   | Experimental use.                     |
   +--------+------------------+---------------------------------------+

                        Table 1: Reserved TLV Types

   There are several global TLV definitions that we reserve at all
   hierarchical contexts.  The TLV types in the range 0x1000 - 0x1FFF
   are Reserved for Experimental Use.  The TLV type T_ORG is also
   Reserved for Vendor Extensions (see Section 3.3.2).  The TLV type
   T_PAD is used to optionally pad a field out to some desired
   alignment.

                        1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +---------------+---------------+---------------+---------------+
   |              Type             |            Length             |
   +---------------+---------------+---------------+---------------+

                    Figure 1: Type and Length encoding

   The Length field contains the length of the Value field in octets.
   It does not include the length of the Type and Length fields.  The
   Length MAY be zero.

   TLV structures are nestable, allowing the Value field of one TLV
   structure to contain additional TLV structures.  The enclosing TLV
   structure is called the container of the enclosed TLV.

   Type values are context dependent.  Within a TLV container, one may
   reuse previous type values for new context-dependent purposes.












Mosko, et al.                 Experimental                      [Page 6]
^L
RFC 8609                        CCNx TLV                       July 2019


3.1.  Overall Packet Format

   Each CCNx Packet includes the 8-byte fixed header, described below,
   followed by a set of TLV fields.  These fields are optional hop-by-
   hop headers and the Packet Payload.

                        1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +---------------+---------------+---------------+---------------+
   |    Version    |  PacketType   |         PacketLength          |
   +---------------+---------------+---------------+---------------+
   |           PacketType-specific fields          | HeaderLength  |
   +---------------+---------------+---------------+---------------+
   / Optional hop-by-hop header TLVs                               /
   +---------------+---------------+---------------+---------------+
   / PacketPayload TLVs                                            /
   +---------------+---------------+---------------+---------------+

                      Figure 2: Overall Packet Format

   The PacketPayload of a CCNx Packet is the protocol message itself.
   The Content Object Hash is computed over the PacketPayload only,
   excluding the fixed and hop-by-hop headers, as those might change
   from hop to hop.  Signed information or similarity hashes should not
   include any of the fixed or hop-by-hop headers.  The PacketPayload
   should be self-sufficient in the event that the fixed and hop-by-hop
   headers are removed.  See Message Hash (Section 3.4.3).

   Following the CCNx Message TLV, the PacketPayload may include
   optional Validation TLVs.

                        1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +---------------+---------------+---------------+---------------+
   | CCNx Message TLV                                              /
   +---------------+---------------+---------------+---------------+
   / Optional CCNx ValidationAlgorithm TLV                         /
   +---------------+---------------+---------------+---------------+
   / Optional CCNx ValidationPayload TLV (ValidationAlg required)  /
   +---------------+---------------+---------------+---------------+

                       Figure 3: PacketPayload TLVs

   After discarding the fixed and hop-by-hop headers, the remaining
   PacketPayload should be a valid protocol message.  Therefore, the
   PacketPayload always begins with 4 bytes of type-length that
   specifies the protocol message (whether it is an Interest, Content
   Object, or other message type) and its total length.  The embedding



Mosko, et al.                 Experimental                      [Page 7]
^L
RFC 8609                        CCNx TLV                       July 2019


   of a self-sufficient protocol data unit inside the fixed and hop-by-
   hop headers allows a network stack to discard the headers and operate
   only on the embedded message.  It also decouples the PacketType field
   -- which specifies how to forward the packet -- from the
   PacketPayload.

   The range of bytes protected by the Validation includes the CCNx
   Message TLV and the ValidationAlgorithm TLV.

   The ContentObjectHash begins with the CCNx Message TLV and ends at
   the tail of the CCNx Packet.

3.2.  Fixed Headers

   In Figure 2, the fixed header fields are:

   o  Version: defines the version of the packet, which MUST be 1.

   o  HeaderLength: The length of the fixed header (8 bytes) and hop-by-
      hop headers.  The minimum value MUST be 8.

   o  PacketType: describes forwarder actions to take on the packet.

   o  PacketLength: Total octets of packet including all headers (fixed
      header plus hop-by-hop headers) and protocol message.

   o  PacketType-specific Fields: specific PacketTypes define the use of
      these bits.

   The PacketType field indicates how the forwarder should process the
   packet.  A Request Packet (Interest) has PacketType PT_INTEREST, a
   Response (Content Object) has PacketType PT_CONTENT, and an Interest
   Return has PacketType PT_RETURN.

   HeaderLength is the number of octets from the start of the CCNx
   Packet (Version) to the end of the hop-by-hop headers.  PacketLength
   is the number of octets from the start of the packet to the end of
   the packet.  Both lengths have a minimum value of 8 (the fixed header
   itself).

   The PacketType-specific fields are reserved bits whose use depends on
   the PacketType.  They are used for network-level signaling.









Mosko, et al.                 Experimental                      [Page 8]
^L
RFC 8609                        CCNx TLV                       July 2019


3.2.1.  Interest Fixed Header

   If the PacketType is PT_INTEREST, it indicates that the packet should
   be forwarded following the Interest pipeline in Section 2.4.4 of
   [RFC8569].  For this type of packet, the Fixed Header includes a
   field for a HopLimit as well as Reserved and Flags fields.  The
   Reserved field MUST be set to 0 in an Interest.  There are currently
   no flags defined, so the Flags field MUST be set to 0.

                        1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +---------------+---------------+---------------+---------------+
   |    Version    |  PT_INTEREST  |         PacketLength          |
   +---------------+---------------+---------------+---------------+
   |   HopLimit    |   Reserved    |     Flags     | HeaderLength  |
   +---------------+---------------+---------------+---------------+

                         Figure 4: Interest Header

3.2.1.1.  Interest HopLimit

   For an Interest message, the HopLimit is a counter that is
   decremented with each hop.  It limits the distance an Interest may
   travel on the network.  The node originating the Interest MAY put in
   any value up to the maximum of 255.  Each node that receives an
   Interest with a HopLimit decrements the value upon reception.  If the
   value is 0 after the decrement, the Interest MUST NOT be forwarded
   off the node.

   It is an error to receive an Interest from a remote node with the
   HopLimit field set to 0.

3.2.2.  Content Object Fixed Header

   If the PacketType is PT_CONTENT, it indicates that the packet should
   be forwarded following the Content Object pipeline in Section 2.4.4
   of [RFC8569].  A Content Object defines a Flags field; however, there
   are currently no flags defined, so the Flags field must be set to 0.

                        1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +---------------+---------------+---------------+---------------+
   |    Version    |  PT_CONTENT   |         PacketLength          |
   +---------------+---------------+---------------+---------------+
   |            Reserved           |     Flags     | HeaderLength  |
   +---------------+---------------+---------------+---------------+

                      Figure 5: Content Object Header



Mosko, et al.                 Experimental                      [Page 9]
^L
RFC 8609                        CCNx TLV                       July 2019


3.2.3.  Interest Return Fixed Header

   If the PacketType is PT_RETURN, it indicates that the packet should
   be processed following the Interest Return rules in Section 10 of
   [RFC8569].  The only difference between this Interest Return message
   and the original Interest is that the PacketType is changed to
   PT_RETURN and a ReturnCode is put into the ReturnCode field.  All
   other fields are unchanged from the Interest packet.  The purpose of
   this encoding is to prevent packet length changes so no additional
   bytes are needed to return an Interest to the previous hop.

                        1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +---------------+---------------+---------------+---------------+
   |    Version    |   PT_RETURN   |         PacketLength          |
   +---------------+---------------+---------------+---------------+
   |   HopLimit    |  ReturnCode   |     Flags     | HeaderLength  |
   +---------------+---------------+---------------+---------------+

                     Figure 6: Interest Return Header

3.2.3.1.  Interest Return HopLimit

   This is the original Interest's HopLimit, as received before
   decrement at the node sending the Interest Return.

3.2.3.2.  Interest Return Flags

   These are the original Flags as set in the Interest.

3.2.3.3.  Return Code

   This section maps the Return Code name [RFC8569] to the TLV symbolic
   name.  Section 4.2 maps the symbolic names to numeric values.  This
   field is set by the node creating the Interest Return.

   A return code of "0" MUST NOT be used, as it indicates that the
   returning system did not modify the Return Code field.













Mosko, et al.                 Experimental                     [Page 10]
^L
RFC 8609                        CCNx TLV                       July 2019


   +-------------------------------------+-----------------------------+
   |             Return Type             | Name in RFC 8569            |
   +-------------------------------------+-----------------------------+
   |          T_RETURN_NO_ROUTE          | No Route                    |
   |                                     |                             |
   |       T_RETURN_LIMIT_EXCEEDED       | Hop Limit Exceeded          |
   |                                     |                             |
   |        T_RETURN_NO_RESOURCES        | No Resources                |
   |                                     |                             |
   |         T_RETURN_PATH_ERROR         | Path Error                  |
   |                                     |                             |
   |         T_RETURN_PROHIBITED         | Prohibited                  |
   |                                     |                             |
   |          T_RETURN_CONGESTED         | Congested                   |
   |                                     |                             |
   |        T_RETURN_MTU_TOO_LARGE       | MTU too large               |
   |                                     |                             |
   | T_RETURN_UNSUPPORTED_HASH_RESTRICTI | Unsupported ContentObjectHa |
   |                  ON                 | shRestriction               |
   |                                     |                             |
   |     T_RETURN_MALFORMED_INTEREST     | Malformed Interest          |
   +-------------------------------------+-----------------------------+

                           Table 2: Return Codes

3.3.  Global Formats

   This section defines global formats that may be nested within other
   TLVs.

3.3.1.  Pad

   The pad type may be used by sources that prefer word-aligned data.
   Padding 4-byte words, for example, would use a 1-byte, 2-byte, and
   3-byte Length.  Padding 8-byte words would use a (0, 1, 2, 3, 5, 6,
   7)-byte Length.

   One MUST NOT pad inside a Name.  Apart from that, a pad MAY be
   inserted after any other TLV in the CCNx Message TLV or in the
   ValidationAlgorithm TLV.  In the remainder of this document, we will
   not show optional Pad TLVs.










Mosko, et al.                 Experimental                     [Page 11]
^L
RFC 8609                        CCNx TLV                       July 2019


                        1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +---------------+---------------+---------------+---------------+
   |             T_PAD             |             Length            |
   +---------------+---------------+---------------+---------------+
   /                 variable-length pad MUST be zeros             /
   +---------------+---------------+---------------+---------------+

                          Figure 7: Pad Encoding

3.3.2.  Organization-Specific TLVs

   Organization-specific TLVs (also known as Vendor TLVs) MUST use the
   T_ORG type.  The Length field is the length of the organization-
   specific information plus 3.  The Value begins with the 3 byte
   organization number derived from the network byte order encoding of
   the IANA "Private Enterprise Numbers" registry [IANA-PEN], followed
   by the organization-specific information.

   A T_ORG MAY be used as a path segment in a Name.  It is treated like
   any other path segment.

                        1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +---------------+---------------+---------------+---------------+
   |             T_ORG             |     Length (3+value length)   |
   +---------------+---------------+---------------+---------------+
   |   PEN[0]      |    PEN[1]     |     PEN[2]    |               /
   +---------------+---------------+---------------+               +
   /                  Vendor Specific Value                        /
   +---------------+---------------+---------------+---------------+

                   Figure 8: Organization-Specific TLVs

3.3.3.  Hash Format

   Hash values are used in several fields throughout a packet.  This TLV
   encoding is commonly embedded inside those fields to specify the
   specific hash function used and its value.  Note that the reserved
   TLV types are also reserved here for user-defined experimental
   functions.

   The LENGTH field of the hash value MUST be less than or equal to the
   hash function length.  If the LENGTH is less than the full length, it
   is taken as the left LENGTH bytes of the hash function output.  Only
   specified truncations are allowed, not arbitrary truncations.





Mosko, et al.                 Experimental                     [Page 12]
^L
RFC 8609                        CCNx TLV                       July 2019


   This nested format is used because it allows binary comparison of
   hash values for certain fields without a router needing to understand
   a new hash function.  For example, the KeyIdRestriction is bit-wise
   compared between an Interest's KeyIdRestriction field and a
   ContentObject's KeyId field.  This format means the outer field
   values do not change with differing hash functions so a router can
   still identify those fields and do a binary comparison of the hash
   TLV without need to understand the specific hash used.  An
   alternative approach, such as using T_KEYID_SHA512-256, would require
   each router keeps an up-to-date parser and supporting user-defined
   hash functions here would explode the parsing state-space.

   A CCNx entity MUST support the hash type T_SHA-256.  An entity MAY
   support the remaining hash types.

                  +-----------+------------------------+
                  |   Abbrev  |    Lengths (octets)    |
                  +-----------+------------------------+
                  | T_SHA-256 |           32           |
                  |           |                        |
                  | T_SHA-512 |         64, 32         |
                  |           |                        |
                  |    n/a    | Experimental TLV types |
                  +-----------+------------------------+

                       Table 3: CCNx Hash Functions

                        1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +---------------+---------------+---------------+---------------+
   |             T_FOO             |              36               |
   +---------------+---------------+---------------+---------------+
   |           T_SHA512            |               32              |
   +---------------+---------------+---------------+---------------+
   /                        32-byte hash value                     /
   +---------------+---------------+---------------+---------------+

                Figure 9: Example nesting inside type T_FOO

3.3.4.  Link

   A Link is the tuple: {Name, [KeyIdRestr], [ContentObjectHashRestr]}.
   It is a general encoding that is used in both the payload of a
   Content Object with PayloadType = "Link" and in a Content Object's
   KeyLink field.  A Link is essentially the body of an Interest.






Mosko, et al.                 Experimental                     [Page 13]
^L
RFC 8609                        CCNx TLV                       July 2019


                        1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +---------------+---------------+---------------+---------------+
   / Mandatory CCNx Name                                           /
   +---------------+---------------+---------------+---------------+
   / Optional KeyIdRestriction                                     /
   +---------------+---------------+---------------+---------------+
   / Optional ContentObjectHashRestriction                         /
   +---------------+---------------+---------------+---------------+

                         Figure 10: Link Encoding

3.4.  Hop-by-Hop TLV Headers

   Hop-by-hop TLV headers are unordered and meaning MUST NOT be attached
   to their ordering.  Three hop-by-hop headers are described in this
   document:

   +-------------+--------------------+--------------------------------+
   |    Abbrev   |        Name        | Description                    |
   +-------------+--------------------+--------------------------------+
   |  T_INTLIFE  | Interest Lifetime  | The time an Interest should    |
   |             |  (Section 3.4.1)   | stay pending at an             |
   |             |                    | intermediate node.             |
   |             |                    |                                |
   | T_CACHETIME | Recommended Cache  | The Recommended Cache Time for |
   |             |   Time (Section    | Content Objects.               |
   |             |       3.4.2)       |                                |
   |             |                    |                                |
   |  T_MSGHASH  |    Message Hash    | A cryptographic hash (Section  |
   |             |  (Section 3.4.3)   | 3.3.3).                        |
   +-------------+--------------------+--------------------------------+

                     Table 4: Hop-by-Hop Header Types

   Additional hop-by-hop headers are defined in higher level
   specifications such as the fragmentation specification.

3.4.1.  Interest Lifetime

   The Interest Lifetime is the time that an Interest should stay
   pending at an intermediate node.  It is expressed in milliseconds as
   an unsigned integer in network byte order.

   A value of 0 (encoded as 1 byte 0x00) indicates the Interest does not
   elicit a Content Object response.  It should still be forwarded, but
   no reply is expected and a forwarder could skip creating a PIT entry.




Mosko, et al.                 Experimental                     [Page 14]
^L
RFC 8609                        CCNx TLV                       July 2019


                        1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +---------------+---------------+---------------+---------------+
   |          T_INTLIFE            |             Length            |
   +---------------+---------------+---------------+---------------+
   /                                                               /
   /                      Lifetime (Length octets)                 /
   /                                                               /
   +---------------+---------------+---------------+---------------+

                   Figure 11: Interest Lifetime Encoding

3.4.2.  Recommended Cache Time

   The Recommended Cache Time (RCT) is a measure of the useful lifetime
   of a Content Object as assigned by a content producer or upstream
   node.  It serves as a guideline to the Content Store cache in
   determining how long to keep the Content Object.  It is a
   recommendation only and may be ignored by the cache.  This is in
   contrast to the ExpiryTime (described in Section 3.6.2.2.2) which
   takes precedence over the RCT and must be obeyed.

   Because the Recommended Cache Time is an optional hop-by-hop header
   and not a part of the signed message, a content producer may re-issue
   a previously signed Content Object with an updated RCT without
   needing to re-sign the message.  There is little ill effect from an
   attacker changing the RCT as the RCT serves as a guideline only.

   The Recommended Cache Time (a millisecond timestamp) is an unsigned
   integer in network byte order that indicates the time when the
   payload expires (as the number of milliseconds since the epoch in
   UTC).  It is a 64-bit field.

                        1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +---------------+---------------+---------------+---------------+
   |         T_CACHETIME           |               8               |
   +---------------+---------------+---------------+---------------+
   /                                                               /
   /                    Recommended Cache Time                     /
   /                                                               /
   +---------------+---------------+---------------+---------------+

                Figure 12: Recommended Cache Time Encoding







Mosko, et al.                 Experimental                     [Page 15]
^L
RFC 8609                        CCNx TLV                       July 2019


3.4.3.  Message Hash

   Within a trusted domain, an operator may calculate the message hash
   at a border device and insert that value into the hop-by-hop headers
   of a message.  An egress device should remove the value.  This
   permits intermediate devices within that trusted domain to match
   against a ContentObjectHashRestriction without calculating it at
   every hop.

   The message hash is a cryptographic hash from the start of the CCNx
   Message TLV to the end of the packet.  It is used to match against
   the ContentObjectHashRestriction (Section 3.6.2.1.2).  The Message
   Hash may be of longer length than an Interest's restriction, in which
   case the device should use the left bytes of the Message Hash to
   check against the Interest's value.

   The Message Hash may only carry one hash type and there may only be
   one Message Hash header.

   The Message Hash header is unprotected, so this header is only of
   practical use within a trusted domain, such as an operator's
   autonomous system.

                       1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +---------------+---------------+---------------+---------------+
   |          T_MSGHASH            |         (length + 4)          |
   +---------------+---------------+---------------+---------------+
   |          hash type            |            length             |
   +---------------+---------------+---------------+---------------+
   /                           hash value                          /
   +---------------+---------------+---------------+---------------+

                      Figure 13: Message Hash Header

















Mosko, et al.                 Experimental                     [Page 16]
^L
RFC 8609                        CCNx TLV                       July 2019


3.5.  Top-Level Types

   The top-level TLV types listed below exist at the outermost level of
   a CCNx Message TLV.

   +----------------------+------------+-------------------------------+
   |        Abbrev        |    Name    | Description                   |
   +----------------------+------------+-------------------------------+
   |      T_INTEREST      |  Interest  | An Interest MessageType.      |
   |                      |  (Section  |                               |
   |                      |    3.6)    |                               |
   |                      |            |                               |
   |       T_OBJECT       |  Content   | A Content Object MessageType  |
   |                      |   Object   |                               |
   |                      |  (Section  |                               |
   |                      |    3.6)    |                               |
   |                      |            |                               |
   |   T_VALIDATION_ALG   | Validation | The method of message         |
   |                      | Algorithm  | verification such as a        |
   |                      |  (Section  | Message Integrity Check       |
   |                      |  3.6.4.1)  | (MIC), Message Authentication |
   |                      |            | Code (MAC), or cryptographic  |
   |                      |            | signature.                    |
   |                      |            |                               |
   | T_VALIDATION_PAYLOAD | Validation | The validation output, such   |
   |                      |  Payload   | as the CRC32C code or the RSA |
   |                      |  (Section  | signature.                    |
   |                      |  3.6.4.2)  |                               |
   +----------------------+------------+-------------------------------+

                       Table 5: CCNx Top Level Types




















Mosko, et al.                 Experimental                     [Page 17]
^L
RFC 8609                        CCNx TLV                       July 2019


3.6.  CCNx Message TLV

   This is the format for the CCNx Message itself.  The CCNx Message TLV
   is the portion of the CCNx Packet between the hop-by-hop headers and
   the Validation TLVs.  The figure below is an expansion of the "CCNx
   Message TLV" depicted in the beginning of Section 3.  The CCNx
   Message TLV begins with MessageType and runs through the optional
   Payload.  The same general format is used for both Interest and
   Content Object messages which are differentiated by the MessageType
   field.  The first enclosed TLV of a CCNx Message TLV is always the
   Name TLV, if present.  This is followed by an optional Message TLVs
   and an optional Payload TLV.

                        1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +---------------+---------------+---------------+---------------+
   |         MessageType           |         MessageLength         |
   +---------------+---------------+---------------+---------------+
   / Name TLV       (Type = T_NAME)                                /
   +---------------+---------------+---------------+---------------+
   / Optional Message TLVs   (Various Types)                       /
   +---------------+---------------+---------------+---------------+
   / Optional Payload TLV  (Type = T_PAYLOAD)                      /
   +---------------+---------------+---------------+---------------+

                   Figure 14: CCNx Message TLV Encoding

   +-----------+---------------+---------------------------------------+
   |   Abbrev  |      Name     | Description                           |
   +-----------+---------------+---------------------------------------+
   |   T_NAME  | Name (Section | The CCNx Name requested in an         |
   |           |     3.6.1)    | Interest or published in a Content    |
   |           |               | Object.                               |
   |           |               |                                       |
   | T_PAYLOAD |    Payload    | The message payload.                  |
   |           |    (Section   |                                       |
   |           |     3.6.3)    |                                       |
   +-----------+---------------+---------------------------------------+

                      Table 6: CCNx Message TLV Types











Mosko, et al.                 Experimental                     [Page 18]
^L
RFC 8609                        CCNx TLV                       July 2019


3.6.1.  Name

   A Name is a TLV encoded sequence of segments.  The table below lists
   the type values appropriate for these name segments.  A Name MUST NOT
   include Pad TLVs.

   As described in CCNx Semantics [RFC8569], using the CCNx URI
   [CCNxURI] notation, a T_NAME with zero length corresponds to "ccnx:/"
   (the default route).  The message grammar does not allow the first
   name segment to have zero length in a CCNx Message TLV Name.  In the
   TLV encoding, "ccnx:/" corresponds to T_NAME with zero length.

                        1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +---------------+---------------+---------------+---------------+
   |            T_NAME             |            Length             |
   +---------------+---------------+---------------+---------------+
   / Name segment TLVs                                             /
   +---------------+---------------+---------------+---------------+

                         Figure 15: Name Encoding

   +---------------+-------------+-------------------------------------+
   | Symbolic Name |     Name    | Description                         |
   +---------------+-------------+-------------------------------------+
   | T_NAMESEGMENT |     Name    | A generic name segment.             |
   |               |   segment   |                                     |
   |               |   (Section  |                                     |
   |               |   3.6.1.1)  |                                     |
   |               |             |                                     |
   |     T_IPID    |   Interest  | An identifier that represents the   |
   |               |  Payload ID | Interest Payload field. As an       |
   |               |   (Section  | example, the Payload ID might be a  |
   |               |   3.6.1.2)  | hash of the Interest Payload.  This |
   |               |             | provides a way to differentiate     |
   |               |             | between Interests based on their    |
   |               |             | payloads without having to parse    |
   |               |             | all the bytes of the payload        |
   |               |             | itself, and instead using only this |
   |               |             | Payload ID name segment.            |
   |               |             |                                     |
   |   T_APP:00 -  | Application | Application-specific payload in a   |
   |   T_APP:4096  |  Components | name segment.  An application may   |
   |               |   (Section  | apply its own semantics to the 4096 |
   |               |   3.6.1.1)  | reserved types.                     |
   +---------------+-------------+-------------------------------------+

                         Table 7: CCNx Name Types



Mosko, et al.                 Experimental                     [Page 19]
^L
RFC 8609                        CCNx TLV                       July 2019


3.6.1.1.  Name Segments

   4096 special application payload name segments are allocated.  These
   have application semantics applied to them.  A good convention is to
   put the application's identity in the name prior to using these name
   segments.

   For example, a name like "ccnx:/foo/bar/hi" would be encoded as:

                        1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +---------------+---------------+---------------+---------------+
   |            (T_NAME)           |           0x14 (20)           |
   +---------------+---------------+---------------+---------------+
   |        (T_NAME_SEGMENT)       |           0x03 (3)            |
   +---------------+---------------+---------------+---------------+
   |       f                o               o      |(T_NAME_SEGMENT)
   +---------------+---------------+---------------+---------------+
   |               |            0x03 (3)           |       b       |
   +---------------+---------------+---------------+---------------+
   |      a                r       |           (T_NAME_SEGMENT)    |
   +---------------+---------------+---------------+---------------+
   |           0x02 (2)            |       h       |       i       |
   +---------------+---------------+---------------+---------------+

                     Figure 16: Name Encoding Example

3.6.1.2.  Interest Payload ID

   The InterestPayloadID is a name segment created by the origin of an
   Interest to represent the Interest Payload.  This allows the proper
   multiplexing of Interests based on their name if they have different
   payloads.  A common representation is to use a hash of the Interest
   Payload as the InterestPayloadID.

   As part of the Value of the TLV, the InterestPayloadID contains a
   one-octet identifier of the method used to create the
   InterestPayloadID followed by a variable-length octet string.  An
   implementation is not required to implement any of the methods to
   receive an Interest; the InterestPayloadID may be treated only as an
   opaque octet string for the purposes of multiplexing Interests with
   different payloads.  Only a device creating an InterestPayloadID name
   segment or a device verifying such a segment needs to implement the
   algorithms.

   It uses the encoding of hash values specified in Section 3.3.3.





Mosko, et al.                 Experimental                     [Page 20]
^L
RFC 8609                        CCNx TLV                       July 2019


   In normal operations, we recommend displaying the InterestPayloadID
   as an opaque octet string in a CCNx URI, as this is the common
   denominator for implementation parsing.

   The InterestPayloadID, even if it is a hash, should not convey any
   security context.  If a system requires confirmation that a specific
   entity created the InterestPayload, it should use a cryptographic
   signature on the Interest via the ValidationAlgorithm and
   ValidationPayload or use its own methods inside the Interest Payload.

3.6.2.  Message TLVs

   Each message type (Interest or Content Object) is associated with a
   set of optional Message TLVs.  Additional specification documents may
   extend the types associated with each.

3.6.2.1.  Interest Message TLVs

   There are two Message TLVs currently associated with an Interest
   message: the KeyIdRestriction selector and the ContentObjectHashRestr
   selector are used to narrow the universe of acceptable Content
   Objects that would satisfy the Interest.

                        1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +---------------+---------------+---------------+---------------+
   |         MessageType           |         MessageLength         |
   +---------------+---------------+---------------+---------------+
   | Name TLV                                                      |
   +---------------+---------------+---------------+---------------+
   / Optional KeyIdRestriction TLV                                 /
   +---------------------------------------------------------------+
   / Optional ContentObjectHashRestriction TLV                     /
   +---------------------------------------------------------------+

                     Figure 17: Interest Message TLVs















Mosko, et al.                 Experimental                     [Page 21]
^L
RFC 8609                        CCNx TLV                       July 2019


   +----------------+------------------------------+-------------------+
   |     Abbrev     |             Name             | Description       |
   +----------------+------------------------------+-------------------+
   |  T_KEYIDRESTR  |  KeyIdRestriction (Section   | A representation  |
   |                |          3.6.2.1.1)          | (as per Section   |
   |                |                              | 3.3.3) of the     |
   |                |                              | KeyId             |
   |                |                              |                   |
   | T_OBJHASHRESTR | ContentObjectHashRestriction | A representation  |
   |                |     (Section 3.6.2.1.2)      | (as per Section   |
   |                |                              | 3.3.3) of the     |
   |                |                              | hash of the       |
   |                |                              | specific Content  |
   |                |                              | Object that would |
   |                |                              | satisfy the       |
   |                |                              | Interest.         |
   +----------------+------------------------------+-------------------+

                 Table 8: CCNx Interest Message TLV Types

3.6.2.1.1.  KeyIdRestriction

   An Interest MAY include a KeyIdRestriction selector.  This ensures
   that only Content Objects with matching KeyIds will satisfy the
   Interest.  See Section 3.6.4.1.4.1 for the format of a KeyId.

3.6.2.1.2.  ContentObjectHashRestriction

   An Interest MAY contain a ContentObjectHashRestriction selector.
   This is the hash of the Content Object -- the self-certifying name
   restriction that must be verified in the network, if an Interest
   carried this restriction (see Message Hash (Section 3.4.3)).  The
   LENGTH MUST be from one of the allowed values for that hash (see
   Section 3.3.3).

   The ContentObjectHashRestriction SHOULD be of type T_SHA-256 and of
   length 32 bytes.














Mosko, et al.                 Experimental                     [Page 22]
^L
RFC 8609                        CCNx TLV                       July 2019


                        1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +---------------+---------------+---------------+---------------+
   |        T_OBJHASHRESTR         |           (LENGTH+4)          |
   +---------------+---------------+---------------+---------------+
   |           hash type           |             LENGTH            |
   +---------------+---------------+---------------+---------------+
   /                     LENGTH octets of hash                     /
   +---------------+---------------+---------------+---------------+

             Figure 18: ContentObjectHashRestriction Encoding

3.6.2.2.  Content Object Message TLVs

   The following message TLVs are currently defined for Content Objects:
   PayloadType (optional) and ExpiryTime (optional).

                        1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +---------------+---------------+---------------+---------------+
   |         MessageType           |         MessageLength         |
   +---------------+---------------+---------------+---------------+
   | Name TLV                                                      |
   +---------------+---------------+---------------+---------------+
   / Optional PayloadType TLV                                      /
   +---------------------------------------------------------------+
   / Optional ExpiryTime TLV                                       /
   +---------------------------------------------------------------+

                  Figure 19: Content Object Message TLVs

   +-------------+-------------+---------------------------------------+
   |    Abbrev   |     Name    | Description                           |
   +-------------+-------------+---------------------------------------+
   | T_PAYLDTYPE | PayloadType | Indicates the type of Payload         |
   |             |   (Section  | contents.                             |
   |             |  3.6.2.2.1) |                                       |
   |             |             |                                       |
   |   T_EXPIRY  |  ExpiryTime | The time at which the Payload         |
   |             |   (Section  | expires, as expressed in the number   |
   |             |  3.6.2.2.2) | of milliseconds since the epoch in    |
   |             |             | UTC.  If missing, Content Object may  |
   |             |             | be used as long as desired.           |
   +-------------+-------------+---------------------------------------+

              Table 9: CCNx Content Object Message TLV Types





Mosko, et al.                 Experimental                     [Page 23]
^L
RFC 8609                        CCNx TLV                       July 2019


3.6.2.2.1.  PayloadType

   The PayloadType is an octet representing the general type of the
   Payload TLV.

   o  T_PAYLOADTYPE_DATA: Data (possibly encrypted)

   o  T_PAYLOADTYPE_KEY: Key

   o  T_PAYLOADTYPE_LINK: Link

   The Data type indicates that the Payload of the ContentObject is
   opaque application bytes.  The Key type indicates that the Payload is
   a DER-encoded public key.  The Link type indicates that the Payload
   is one or more Links (Section 3.3.4).  If this field is missing, a
   Data type is assumed.

                        1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +---------------+---------------+---------------+---------------+
   |            T_PAYLDTYPE        |               1               |
   +---------------+---------------+---------------+---------------+
   |  PayloadType  |
   +---------------+

                      Figure 20: PayloadType Encoding

3.6.2.2.2.  ExpiryTime

   The ExpiryTime is the time at which the Payload expires, as expressed
   by a timestamp containing the number of milliseconds since the epoch
   in UTC.  It is a network byte order unsigned integer in a 64-bit
   field.  A cache or end system should not respond with a Content
   Object past its ExpiryTime.  Routers forwarding a Content Object do
   not need to check the ExpiryTime.  If the ExpiryTime field is
   missing, the Content Object has no expressed expiration, and a cache
   or end system may use the Content Object for as long as desired.

                        1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +---------------+---------------+---------------+---------------+
   |           T_EXPIRY            |               8               |
   +---------------+---------------+---------------+---------------+
   /                          ExpiryTime                           /
   /                                                               /
   +---------------+---------------+---------------+---------------+

                      Figure 21: ExpiryTime encoding



Mosko, et al.                 Experimental                     [Page 24]
^L
RFC 8609                        CCNx TLV                       July 2019


3.6.3.  Payload

   The Payload TLV contains the content of the packet.  It MAY be of
   zero length.  If a packet does not have any payload, this field
   SHOULD be omitted, rather than being of zero length.

                        1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +---------------+---------------+---------------+---------------+
   |           T_PAYLOAD           |            Length             |
   +---------------+---------------+---------------+---------------+
   /                        Payload Contents                       /
   +---------------+---------------+---------------+---------------+

                        Figure 22: Payload Encoding

3.6.4.  Validation

   Both Interests and Content Objects have the option to include
   information about how to validate the CCNx Message.  This information
   is contained in two TLVs: the ValidationAlgorithm TLV and the
   ValidationPayload TLV.  The ValidationAlgorithm TLV specifies the
   mechanism to be used to verify the CCNx Message.  Examples include
   verification with a Message Integrity Check (MIC), a Message
   Authentication Code (MAC), or a cryptographic signature.  The
   ValidationPayload TLV contains the validation output, such as the
   CRC32C code or the RSA signature.

   An Interest would most likely only use a MIC type of validation -- a
   CRC, checksum, or digest.

3.6.4.1.  Validation Algorithm

   The ValidationAlgorithm is a set of nested TLVs containing all of the
   information needed to verify the message.  The outermost container
   has type = T_VALIDATION_ALG.  The first nested TLV defines the
   specific type of validation to be performed on the message.  The type
   is identified with the "ValidationType" as shown in the figure below
   and elaborated in the table below.  Nested within that container are
   the TLVs for any ValidationType-dependent data -- for example, a Key
   Id, Key Locator, etc.

   Complete examples of several types may be found in Section 3.6.4.1.5.








Mosko, et al.                 Experimental                     [Page 25]
^L
RFC 8609                        CCNx TLV                       July 2019


                        1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +---------------+---------------+---------------+---------------+
   |       T_VALIDATION_ALG        |      ValidationAlgLength      |
   +---------------+---------------+---------------+---------------+
   |        ValidationType         |            Length             |
   +---------------+---------------+---------------+---------------+
   / ValidationType-dependent data                                 /
   +---------------+---------------+---------------+---------------+

                 Figure 23: Validation Algorithm Encoding

   +-----------------+---------------+---------------------------------+
   |      Abbrev     |      Name     | Description                     |
   +-----------------+---------------+---------------------------------+
   |     T_CRC32C    |     CRC32C    | Castagnoli CRC32 (iSCSI, ext4,  |
   |                 |    (Section   | etc.) with normal form          |
   |                 |   3.6.4.1.1)  | polynomial 0x1EDC6F41.          |
   |                 |               |                                 |
   |  T_HMAC-SHA256  |  HMAC-SHA256  | HMAC (RFC 2104) using SHA256    |
   |                 |    (Section   | hash.                           |
   |                 |   3.6.4.1.2)  |                                 |
   |                 |               |                                 |
   |   T_RSA-SHA256  |   RSA-SHA256  | RSA public-key signature using  |
   |                 |    (Section   | SHA256 digest.                  |
   |                 |   3.6.4.1.3)  |                                 |
   |                 |               |                                 |
   | T_EC-SECP-256K1 |   SECP-256K1  | Elliptic Curve signature with   |
   |                 |    (Section   | SECP-256K1 parameters (see      |
   |                 |   3.6.4.1.3)  | [ECC]).                         |
   |                 |               |                                 |
   | T_EC-SECP-384R1 |   SECP-384R1  | Elliptic Curve signature with   |
   |                 |    (Section   | SECP-384R1 parameters (see      |
   |                 |   3.6.4.1.3)  | [ECC]).                         |
   +-----------------+---------------+---------------------------------+

                      Table 10: CCNx Validation Types

3.6.4.1.1.  Message Integrity Checks

   MICs do not require additional data in order to perform the
   verification.  An example is CRC32C that has a zero-length value.









Mosko, et al.                 Experimental                     [Page 26]
^L
RFC 8609                        CCNx TLV                       July 2019


3.6.4.1.2.  Message Authentication Codes

   MACs are useful for communication between two trusting parties who
   have already shared secret keys.  An example is the HMAC algorithm.
   A MAC uses the KeyId field to identify which shared secret is in use.
   The meaning of the KeyId is specific to the two parties involved and
   could be simply an integer to enumerate keys.  If a new MAC requires
   an additional field, such as an Initialization Vector, that field
   would need to be defined as part of the updated specification.

3.6.4.1.3.  Signature

   Signature type Validators specify a digest mechanism and a signing
   algorithm to verify the message.  Examples include an RSA signature
   on a SHA256 digest, an Elliptic Curve signature with SECP-256K1
   parameters, etc.  These Validators require a KeyId and a mechanism
   for locating the publisher's public key (a KeyLocator) -- and
   optionally a PublicKey or Certificate or KeyLink.

3.6.4.1.4.  Validation-Dependent Data

   Different Validation Algorithms require access to different pieces of
   data contained in the ValidationAlgorithm TLV.  As described above,
   Key Ids, Key Locators, Public Keys, Certificates, Links, and Key
   Names all play a role in different Validation Algorithms.  Any number
   of Validation-Dependent Data containers can be present in a
   Validation Algorithm TLV.
























Mosko, et al.                 Experimental                     [Page 27]
^L
RFC 8609                        CCNx TLV                       July 2019


   Below is a table of CCNx ValidationType-dependent data types:

   +-------------+-----------------+-----------------------------------+
   |    Abbrev   |       Name      | Description                       |
   +-------------+-----------------+-----------------------------------+
   |   T_KEYID   |   SignerKeyId   | An identifier of the shared       |
   |             |     (Section    | secret or public key associated   |
   |             |   3.6.4.1.4.1)  | with a MAC or Signature.          |
   |             |                 |                                   |
   | T_PUBLICKEY |    Public Key   | DER-encoded public key.           |
   |             |     (Section    |                                   |
   |             |   3.6.4.1.4.2)  |                                   |
   |             |                 |                                   |
   |    T_CERT   |   Certificate   | DER-encoded X.509 certificate.    |
   |             |     (Section    |                                   |
   |             |   3.6.4.1.4.3)  |                                   |
   |             |                 |                                   |
   |  T_KEYLINK  |     KeyLink     | A CCNx Link object.               |
   |             |     (Section    |                                   |
   |             |   3.6.4.1.4.4)  |                                   |
   |             |                 |                                   |
   |  T_SIGTIME  |  SignatureTime  | A millisecond timestamp           |
   |             |     (Section    | indicating the time when the      |
   |             |   3.6.4.1.4.5)  | signature was created.            |
   +-------------+-----------------+-----------------------------------+

              Table 11: CCNx Validation-Dependent Data Types

3.6.4.1.4.1.  KeyId

   The KeyId for a signature is the publisher key identifier.  It is
   similar to a Subject Key Identifier from X.509 (see Section 4.2.1.2
   of [RFC5280]).  It should be derived from the key used to sign, such
   as from the SHA-256 hash of the key.  It applies to both public and
   private key systems and to symmetric key systems.

   The KeyId is represented using the hash format in Section 3.3.3.  If
   an application protocol uses a non-hash identifier, it should use one
   of the reserved values.












Mosko, et al.                 Experimental                     [Page 28]
^L
RFC 8609                        CCNx TLV                       July 2019


                        1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +---------------+---------------+---------------+---------------+
   |            T_KEYID            |            LENGTH+4           |
   +---------------+---------------+---------------+---------------+
   |          <hash type>          |             LENGTH            |
   +---------------+---------------+---------------+---------------+
   /                     LENGTH octets of hash                     /
   +---------------+---------------+---------------+---------------+

                         Figure 24: KeyId Encoding

3.6.4.1.4.2.  Public Key

   A Public Key is a DER-encoded Subject Public Key Info block, as in an
   X.509 certificate.

                        1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +---------------+---------------+---------------+---------------+
   |          T_PUBLICKEY          |            Length             |
   +---------------+---------------+---------------+---------------+
   /                Public Key (DER-encoded SPKI)                  /
   +---------------+---------------+---------------+---------------+

                      Figure 25: Public Key Encoding

3.6.4.1.4.3.  Certificate

   A Certificate is a DER-encoded X.509 certificate.  The KeyId
   (Section 3.6.4.1.4.1) is derived from this encoding.

                        1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +---------------+---------------+---------------+---------------+
   |            T_CERT             |            Length             |
   +---------------+---------------+---------------+---------------+
   /                 Certificate (DER-encoded X.509)               /
   +---------------+---------------+---------------+---------------+

                      Figure 26: Certificate Encoding










Mosko, et al.                 Experimental                     [Page 29]
^L
RFC 8609                        CCNx TLV                       July 2019


3.6.4.1.4.4.  KeyLink

   A KeyLink type KeyLocator is a Link.

   The KeyLink ContentObjectHashRestr, if included, is the digest of the
   Content Object identified by KeyLink, not the digest of the public
   key.  Likewise, the KeyIdRestr of the KeyLink is the KeyId of the
   ContentObject, not necessarily of the wrapped key.

                        1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +---------------+---------------+-------------------------------+
   |          T_KEYLINK            |            Length             |
   +---------------+---------------+-------------------------------+
   / Link                                                          /
   +---------------------------------------------------------------+

                        Figure 27: KeyLink Encoding

3.6.4.1.4.5.  SignatureTime

   The SignatureTime is a millisecond timestamp indicating the time at
   which a signature was created.  The signer sets this field to the
   current time when creating a signature.  A verifier may use this time
   to determine whether or not the signature was created during the
   validity period of a key, or if it occurred in a reasonable sequence
   with other associated signatures.  The SignatureTime is unrelated to
   any time associated with the actual CCNx Message, which could have
   been created long before the signature.  The default behavior is to
   always include a SignatureTime when creating an authenticated message
   (e.g., HMAC or RSA).

   SignatureTime is an unsigned integer in network byte order that
   indicates when the signature was created (as the number of
   milliseconds since the epoch in UTC).  It is a fixed 64-bit field.

                        1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +---------------+---------------+-------------------------------+
   |           T_SIGTIME           |               8               |
   +---------------+---------------+-------------------------------+
   /                         SignatureTime                         /
   +---------------------------------------------------------------+

                     Figure 28: SignatureTime Encoding






Mosko, et al.                 Experimental                     [Page 30]
^L
RFC 8609                        CCNx TLV                       July 2019


3.6.4.1.5.  Validation Examples

   As an example of a MIC-type validation, the encoding for CRC32C
   validation would be:

                        1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +---------------+---------------+---------------+---------------+
   |      T_VALIDATION_ALG         |               4               |
   +---------------+---------------+---------------+---------------+
   |            T_CRC32C           |               0               |
   +---------------+---------------+---------------+---------------+

                    Figure 29: CRC32C Encoding Example

   As an example of a MAC-type validation, the encoding for an HMAC
   using a SHA256 hash would be:

                        1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +---------------+---------------+---------------+---------------+
   |       T_VALIDATION_ALG        |               40              |
   +---------------+---------------+---------------+---------------+
   |        T_HMAC-SHA256          |               36              |
   +---------------+---------------+---------------+---------------+
   |             T_KEYID           |               32              |
   +---------------+---------------+---------------+---------------+
   /                            KeyId                              /
   /---------------+---------------+-------------------------------+

                  Figure 30: HMAC-SHA256 Encoding Example




















Mosko, et al.                 Experimental                     [Page 31]
^L
RFC 8609                        CCNx TLV                       July 2019


   As an example of a Signature-type validation, the encoding for an RSA
   public-key signature using a SHA256 digest and Public Key would be:

                        1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +---------------+---------------+---------------+---------------+
   |       T_VALIDATION_ALG        |   44 octets + Variable Length |
   +---------------+---------------+---------------+---------------+
   |          T_RSA-SHA256         |   40 octets + Variable Length |
   +---------------+---------------+---------------+---------------+
   |             T_KEYID           |               32              |
   +---------------+---------------+---------------+---------------+
   /                            KeyId                              /
   /---------------+---------------+-------------------------------+
   |          T_PUBLICKEY          |  Variable Length (~160 octets)|
   +---------------+---------------+---------------+---------------+
   /                Public Key (DER-encoded SPKI)                  /
   +---------------+---------------+---------------+---------------+

                  Figure 31: RSA-SHA256 Encoding Example

3.6.4.2.  Validation Payload

                        1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +---------------+---------------+---------------+---------------+
   |     T_VALIDATION_PAYLOAD      |  ValidationPayloadLength      |
   +---------------+---------------+---------------+---------------+
   / Type-dependent data                                           /
   +---------------+---------------+---------------+---------------+

                  Figure 32: Validation Payload Encoding

   The ValidationPayload contains the validation output, such as the
   CRC32C code or the RSA signature.
















Mosko, et al.                 Experimental                     [Page 32]
^L
RFC 8609                        CCNx TLV                       July 2019


4.  IANA Considerations

   This section details each kind of CCNx protocol value that can be
   registered.  Each type registry can be updated by incrementally
   expanding the type space, i.e., by allocating and reserving new
   types.  As per [RFC8126], this section details the creation of the
   "Content-Centric Networking (CCNx)" registry and several
   subregistries.

4.1.  Packet Type Registry

   IANA has created the "CCNx Packet Types" registry and allocated the
   packet types described below.  The registration procedure is RFC
   Required.  The Type value is 1 octet.  The range is 0x00-0xFF.

         +------+-------------+----------------------------------+
         | Type |     Name    |            Reference             |
         +------+-------------+----------------------------------+
         | 0x00 | PT_INTEREST | Fixed Header Types (Section 3.2) |
         |      |             |                                  |
         | 0x01 |  PT_CONTENT | Fixed Header Types (Section 3.2) |
         |      |             |                                  |
         | 0x02 |  PT_RETURN  | Fixed Header Types (Section 3.2) |
         +------+-------------+----------------------------------+

                               Packet Types

























Mosko, et al.                 Experimental                     [Page 33]
^L
RFC 8609                        CCNx TLV                       July 2019


4.2.  Interest Return Code Registry

   IANA has created the "CCNx Interest Return Code Types" registry and
   allocated the Interest Return code types described below.  The
   registration procedure is Specification Required.  The Type value is
   1 octet.  The range is 0x00-0xFF.

   +------+---------------------------------------+--------------------+
   | Type |                  Name                 |     Reference      |
   +------+---------------------------------------+--------------------+
   | 0x00 |                Reserved               |                    |
   |      |                                       |                    |
   | 0x01 |           T_RETURN_NO_ROUTE           | Fixed Header Types |
   |      |                                       | (Section 3.2.3.3)  |
   |      |                                       |                    |
   | 0x02 |        T_RETURN_LIMIT_EXCEEDED        | Fixed Header Types |
   |      |                                       | (Section 3.2.3.3)  |
   |      |                                       |                    |
   | 0x03 |         T_RETURN_NO_RESOURCES         | Fixed Header Types |
   |      |                                       | (Section 3.2.3.3)  |
   |      |                                       |                    |
   | 0x04 |          T_RETURN_PATH_ERROR          | Fixed Header Types |
   |      |                                       | (Section 3.2.3.3)  |
   |      |                                       |                    |
   | 0x05 |          T_RETURN_PROHIBITED          | Fixed Header Types |
   |      |                                       | (Section 3.2.3.3)  |
   |      |                                       |                    |
   | 0x06 |           T_RETURN_CONGESTED          | Fixed Header Types |
   |      |                                       | (Section 3.2.3.3)  |
   |      |                                       |                    |
   | 0x07 |         T_RETURN_MTU_TOO_LARGE        | Fixed Header Types |
   |      |                                       | (Section 3.2.3.3)  |
   |      |                                       |                    |
   | 0x08 | T_RETURN_UNSUPPORTED_HASH_RESTRICTION | Fixed Header Types |
   |      |                                       | (Section 3.2.3.3)  |
   |      |                                       |                    |
   | 0x09 |      T_RETURN_MALFORMED_INTEREST      | Fixed Header Types |
   |      |                                       | (Section 3.2.3.3)  |
   +------+---------------------------------------+--------------------+

                        CCNx Interest Return Types










Mosko, et al.                 Experimental                     [Page 34]
^L
RFC 8609                        CCNx TLV                       July 2019


4.3.  Hop-by-Hop Type Registry

   IANA has created the "CCNx Hop-by-Hop Types" registry and allocated
   the hop-by-hop types described below.  The registration procedure is
   RFC Required.  The Type value is 2 octets.  The range is
   0x0000-0xFFFF.

   +---------------+-------------+-------------------------------------+
   |      Type     |     Name    |              Reference              |
   +---------------+-------------+-------------------------------------+
   |     0x0000    |   Reserved  |                                     |
   |               |             |                                     |
   |     0x0001    |  T_INTLIFE  |   Hop-by-hop TLV headers (Section   |
   |               |             |                 3.4)                |
   |               |             |                                     |
   |     0x0002    | T_CACHETIME |   Hop-by-hop TLV headers (Section   |
   |               |             |                 3.4)                |
   |               |             |                                     |
   |     0x0003    |  T_MSGHASH  |   Hop-by-hop TLV headers (Section   |
   |               |             |                 3.4)                |
   |               |             |                                     |
   |    0x0004 -   |   Reserved  |                                     |
   |     0x0007    |             |                                     |
   |               |             |                                     |
   |     0x0FFE    |    T_PAD    |         Pad (Section 3.3.1)         |
   |               |             |                                     |
   |     0x0FFF    |    T_ORG    | Organization-Specific TLVs (Section |
   |               |             |                3.3.2)               |
   |               |             |                                     |
   | 0x1000-0x1FFF |   Reserved  |     Experimental Use (Section 3)    |
   +---------------+-------------+-------------------------------------+

                           CCNx Hop-by-Hop Types


















Mosko, et al.                 Experimental                     [Page 35]
^L
RFC 8609                        CCNx TLV                       July 2019


4.4.  Top-Level Type Registry

   IANA has created the "CCNx Top-Level Types" registry and allocated
   the top-level types described below.  The registration procedure is
   RFC Required.  The Type value is 2 octets.  The range is
   0x0000-0xFFFF.

     +--------+----------------------+-------------------------------+
     |  Type  |         Name         |           Reference           |
     +--------+----------------------+-------------------------------+
     | 0x0000 |       Reserved       |                               |
     |        |                      |                               |
     | 0x0001 |      T_INTEREST      | Top-Level Types (Section 3.5) |
     |        |                      |                               |
     | 0x0002 |       T_OBJECT       | Top-Level Types (Section 3.5) |
     |        |                      |                               |
     | 0x0003 |   T_VALIDATION_ALG   | Top-Level Types (Section 3.5) |
     |        |                      |                               |
     | 0x0004 | T_VALIDATION_PAYLOAD | Top-Level Types (Section 3.5) |
     +--------+----------------------+-------------------------------+

                           CCNx Top-Level Types





























Mosko, et al.                 Experimental                     [Page 36]
^L
RFC 8609                        CCNx TLV                       July 2019


4.5.  Name Segment Type Registry

   IANA has created the "CCNx Name Segment Types" registry and allocated
   the name segment types described below.  The registration procedure
   is Specification Required.  The Type value is 2 octets.  The range is
   0x0000-0xFFFF.

   +--------------+------------------+---------------------------------+
   |     Type     |       Name       |            Reference            |
   +--------------+------------------+---------------------------------+
   |    0x0000    |     Reserved     |                                 |
   |              |                  |                                 |
   |    0x0001    |  T_NAMESEGMENT   |       Name (Section 3.6.1)      |
   |              |                  |                                 |
   |    0x0002    |      T_IPID      |       Name (Section 3.6.1)      |
   |              |                  |                                 |
   |   0x0010 -   |     Reserved     |             RFC 8609            |
   |    0x0013    |                  |                                 |
   |              |                  |                                 |
   |    0x0FFF    |      T_ORG       |    Organization-Specific TLVs   |
   |              |                  |         (Section 3.3.2)         |
   |              |                  |                                 |
   |   0x1000 -   |    T_APP:00 -    | Application Components (Section |
   |    0x1FFF    |    T_APP:4096    |              3.6.1)             |
   +--------------+------------------+---------------------------------+

                          CCNx Name Segment Types

4.6.  Message Type Registry

   IANA has created the "CCNx Message Types" registry and registered the
   message segment types described below.  The registration procedure is
   RFC Required.  The Type value is 2 octets.  The range is
   0x0000-0xFFFF.

















Mosko, et al.                 Experimental                     [Page 37]
^L
RFC 8609                        CCNx TLV                       July 2019


   +---------------+----------------+----------------------------------+
   |      Type     |      Name      |            Reference             |
   +---------------+----------------+----------------------------------+
   |     0x0000    |     T_NAME     |   Message Types (Section 3.6)    |
   |               |                |                                  |
   |     0x0001    |   T_PAYLOAD    |   Message Types (Section 3.6)    |
   |               |                |                                  |
   |     0x0002    |  T_KEYIDRESTR  |   Message Types (Section 3.6)    |
   |               |                |                                  |
   |     0x0003    | T_OBJHASHRESTR |   Message Types (Section 3.6)    |
   |               |                |                                  |
   |     0x0005    |  T_PAYLDTYPE   |   Content Object Message Types   |
   |               |                |        (Section 3.6.2.2)         |
   |               |                |                                  |
   |     0x0006    |    T_EXPIRY    |   Content Object Message Types   |
   |               |                |        (Section 3.6.2.2)         |
   |               |                |                                  |
   |    0x0007 -   |    Reserved    |             RFC 8609             |
   |     0x000C    |                |                                  |
   |               |                |                                  |
   |     0x0FFE    |     T_PAD      |       Pad (Section 3.3.1)        |
   |               |                |                                  |
   |     0x0FFF    |     T_ORG      |    Organization-Specific TLVs    |
   |               |                |         (Section 3.3.2)          |
   |               |                |                                  |
   | 0x1000-0x1FFF |    Reserved    |   Experimental Use (Section 3)   |
   +---------------+----------------+----------------------------------+

                            CCNx Message Types

4.7.  Payload Type Registry

   IANA has created the "CCNx Payload Types" registry and allocated the
   payload types described below.  The registration procedure is
   Specification Required.  The Type value is 1 octet.  The range is
   0x00-0xFF.

     +------+--------------------+-----------------------------------+
     | Type |        Name        |             Reference             |
     +------+--------------------+-----------------------------------+
     | 0x00 | T_PAYLOADTYPE_DATA | Payload Types (Section 3.6.2.2.1) |
     |      |                    |                                   |
     | 0x01 | T_PAYLOADTYPE_KEY  | Payload Types (Section 3.6.2.2.1) |
     |      |                    |                                   |
     | 0x02 | T_PAYLOADTYPE_LINK | Payload Types (Section 3.6.2.2.1) |
     +------+--------------------+-----------------------------------+

                            CCNx Payload Types



Mosko, et al.                 Experimental                     [Page 38]
^L
RFC 8609                        CCNx TLV                       July 2019


4.8.  Validation Algorithm Type Registry

   IANA has created the "CCNx Validation Algorithm Types" registry and
   allocated the validation algorithm types described below.  The
   registration procedure is Specification Required.  The Type value is
   2 octets.  The range is 0x0000-0xFFFF.

   +---------------+-----------------+---------------------------------+
   |      Type     |       Name      |            Reference            |
   +---------------+-----------------+---------------------------------+
   |     0x0000    |     Reserved    |                                 |
   |               |                 |                                 |
   |     0x0002    |     T_CRC32C    |  Validation Algorithm (Section  |
   |               |                 |             3.6.4.1)            |
   |               |                 |                                 |
   |     0x0004    |  T_HMAC-SHA256  |  Validation Algorithm (Section  |
   |               |                 |             3.6.4.1)            |
   |               |                 |                                 |
   |     0x0005    |   T_RSA-SHA256  |  Validation Algorithm (Section  |
   |               |                 |             3.6.4.1)            |
   |               |                 |                                 |
   |     0x0006    | T_EC-SECP-256K1 |  Validation Algorithm (Section  |
   |               |                 |             3.6.4.1)            |
   |               |                 |                                 |
   |     0x0007    | T_EC-SECP-384R1 |  Validation Algorithm (Section  |
   |               |                 |             3.6.4.1)            |
   |               |                 |                                 |
   |     0x0FFE    |      T_PAD      |       Pad (Section 3.3.1)       |
   |               |                 |                                 |
   |     0x0FFF    |      T_ORG      |    Organization-Specific TLVs   |
   |               |                 |         (Section 3.3.2)         |
   |               |                 |                                 |
   | 0x1000-0x1FFF |     Reserved    |   Experimental Use (Section 3)  |
   +---------------+-----------------+---------------------------------+

                      CCNx Validation Algorithm Types















Mosko, et al.                 Experimental                     [Page 39]
^L
RFC 8609                        CCNx TLV                       July 2019


4.9.  Validation-Dependent Data Type Registry

   IANA has created the "CCNx Validation-Dependent Data Types" registry
   and allocated the validation-dependent data types described below.
   The registration procedure is RFC Required.  The Type value is 2
   octets.  The range is 0x0000-0xFFFF.

   +---------------+----------------+----------------------------------+
   |      Type     |      Name      |            Reference             |
   +---------------+----------------+----------------------------------+
   |     0x0000    |    Reserved    |                                  |
   |               |                |                                  |
   |     0x0009    |    T_KEYID     |    Validation-Dependent Data     |
   |               |                |       (Section 3.6.4.1.4)        |
   |               |                |                                  |
   |     0x000A    | T_PUBLICKEYLOC |    Validation-Dependent Data     |
   |               |                |       (Section 3.6.4.1.4)        |
   |               |                |                                  |
   |     0x000B    |  T_PUBLICKEY   |    Validation-Dependent Data     |
   |               |                |       (Section 3.6.4.1.4)        |
   |               |                |                                  |
   |     0x000C    |     T_CERT     |    Validation-Dependent Data     |
   |               |                |       (Section 3.6.4.1.4)        |
   |               |                |                                  |
   |     0x000D    |     T_LINK     |    Validation-Dependent Data     |
   |               |                |       (Section 3.6.4.1.4)        |
   |               |                |                                  |
   |     0x000E    |   T_KEYLINK    |    Validation-Dependent Data     |
   |               |                |       (Section 3.6.4.1.4)        |
   |               |                |                                  |
   |     0x000F    |   T_SIGTIME    |    Validation-Dependent Data     |
   |               |                |       (Section 3.6.4.1.4)        |
   |               |                |                                  |
   |     0x0FFF    |     T_ORG      |    Organization-Specific TLVs    |
   |               |                |         (Section 3.3.2)          |
   |               |                |                                  |
   | 0x1000-0x1FFF |    Reserved    |   Experimental Use (Section 3)   |
   +---------------+----------------+----------------------------------+

                   CCNx Validation-Dependent Data Types

4.10.  Hash Function Type Registry

   IANA has created the "CCNx Hash Function Types" registry and
   allocated the hash function types described below.  The registration
   procedure is Specification Required.  The Type value is 2 octets.
   The range is 0x0000-0xFFFF.




Mosko, et al.                 Experimental                     [Page 40]
^L
RFC 8609                        CCNx TLV                       July 2019


   +---------------+-----------+---------------------------------------+
   |      Type     |    Name   |               Reference               |
   +---------------+-----------+---------------------------------------+
   |     0x0000    |  Reserved |                                       |
   |               |           |                                       |
   |     0x0001    | T_SHA-256 |      Hash Format (Section 3.3.3)      |
   |               |           |                                       |
   |     0x0002    | T_SHA-512 |      Hash Format (Section 3.3.3)      |
   |               |           |                                       |
   |     0x0FFF    |   T_ORG   |  Organization-Specific TLVs (Section  |
   |               |           |                 3.3.2)                |
   |               |           |                                       |
   | 0x1000-0x1FFF |  Reserved |      Experimental Use (Section 3)     |
   +---------------+-----------+---------------------------------------+

                         CCNx Hash Function Types

5.  Security Considerations

   The CCNx protocol is a Layer 3 network protocol, which may also
   operate as an overlay using other transports such as UDP or other
   tunnels.  It includes intrinsic support for message authentication
   via a signature (e.g., RSA or elliptic curve) or Message
   Authentication Code (e.g., HMAC).  In lieu of an authenticator, it
   may instead use a Message Integrity Check (e.g., SHA or CRC).  CCNx
   does not specify an encryption envelope; that function is left to a
   high-layer protocol (e.g., Encrypted Sessions in CCNx [esic]).

   The CCNx Packet format includes the ability to attach MICs (e.g.,
   SHA-256 or CRC), MACs (e.g., HMAC), and Signatures (e.g., RSA or
   ECDSA) to all packet types.  Because Interest packets can be sent at
   will, an application should carefully select when to use a given
   ValidationAlgorithm in an Interest to avoid DoS attacks.  MICs, for
   example, are inexpensive and could be used as desired, whereas MACs
   and Signatures are more expensive and their inappropriate use could
   open a computational DoS attack surface.  Applications should use an
   explicit protocol to guide their use of packet signatures.  As a
   general guideline, an application might use a MIC on an Interest to
   detect unintentionally corrupted packets.  If one wishes to secure an
   Interest, one should consider using an encrypted wrapper and a
   protocol that prevents replay attacks, especially if the Interest is
   being used as an actuator.  Simply using an authentication code or
   signature does not make an Interest secure.  There are several
   examples in the literature on how to secure ICN-style messaging
   [mobile] [ace].






Mosko, et al.                 Experimental                     [Page 41]
^L
RFC 8609                        CCNx TLV                       July 2019


   As a Layer 3 protocol, this document does not describe how one
   arrives at keys or how one trusts keys.  The CCNx content object may
   include a public key embedded in the object or may use the
   PublicKeyLocator field to point to a public key (or public-key
   certificate) that authenticates the message.  One key exchange
   specification is CCNxKE [ccnxke] [mobile], which is similar to the
   TLS 1.3 key exchange except it is over the CCNx Layer 3 messages.
   Trust is beyond the scope of a Layer 3 protocol and is left to
   applications or application frameworks.

   The combination of an ephemeral key exchange (e.g., CCNxKE [ccnxke])
   and an encapsulating encryption (e.g., [esic]) provides the
   equivalent of a TLS tunnel.  Intermediate nodes may forward the
   Interests and Content Objects but have no visibility inside.  It also
   completely hides the internal names in those used by the encryption
   layer.  This type of tunneling encryption is useful for content that
   has little or no cacheability, as it can only be used by someone with
   the ephemeral key.  Short-term caching may help with lossy links or
   mobility, but long-term caching is usually not of interest.

   Broadcast encryption or proxy re-encryption may be useful for content
   with multiple uses over time or many consumers.  There is currently
   no recommendation for this form of encryption.

   The specific encoding of messages will have security implications.
   This document uses a Type-Length-Value (TLV) encoding.  We chose to
   compromise between extensibility and unambiguous encodings of types
   and lengths.  Some TLV encodings use variable-length T and variable-
   length L fields to accommodate a wide gamut of values while trying to
   be byte efficient.  Our TLV encoding uses a fixed length 2-byte T and
   2-byte L.  Using fixed-length T and L fields solves two problems.
   The first is aliases.  If one is able to encode the same value, such
   as 0x02 and 0x0002, in different byte lengths, then one must decide
   if they mean the same thing, if they are different, or if one is
   illegal.  If they are different, then one must always compare on the
   buffers not the integer equivalents.  If one is illegal, then one
   must validate the TLV encoding -- every field of every packet at
   every hop.  If they are the same, then one has the second problem:
   how to specify packet filters.  For example, if a name has 6 name
   components, then there are 7 T fields and 7 L fields, each of which
   might have up to 4 representations of the same value.  That would be
   14 fields with 4 encodings each, or 1001 combinations.  It also means
   that one cannot compare, for example, a name via a memory function,
   as one needs to consider that any embedded T or L might have a
   different format.






Mosko, et al.                 Experimental                     [Page 42]
^L
RFC 8609                        CCNx TLV                       July 2019


   The Interest Return message has no authenticator from the previous
   hop.  Therefore, the payload of the Interest Return should only be
   used locally to match an Interest.  A node should never forward that
   Interest payload as an Interest.  It should also verify that it sent
   the Interest in the Interest Return to that node and not allow anyone
   to negate Interest messages.

   Caching nodes must take caution when processing content objects.  It
   is essential that the Content Store obey the rules outlined in
   [RFC8569] to avoid certain types of attacks.  CCNx 1.0 has no
   mechanism to work around an undesired result from the network (there
   are no "excludes"), so if a cache becomes poisoned with bad content
   it might cause problems retrieving content.  There are three types of
   access to content from a Content Store: unrestricted, signature
   restricted, and hash restricted.  If an Interest has no restrictions,
   then the requester is not particular about what they get back, so any
   matching cached object is OK.  In the hash restricted case, the
   requester is very specific about what they want, and the Content
   Store (and every forward hop) can easily verify that the content
   matches the request.  In the signature restricted case (which is
   often used for initial manifest discovery), the requester only knows
   the KeyId that signed the content.  This case requires the closest
   attention in the Content Store to avoid amplifying bad data.  The
   Content Store must only respond with a content object if it can
   verify the signature -- this means either the content object carries
   the public key inside it or the Interest carries the public key in
   addition to the KeyId.  If that is not the case, then the Content
   Store should treat the Interest as a cache miss and let an endpoint
   respond.

   A user-level cache could perform full signature verification by
   fetching a public key according to the PublicKeyLocator.  However,
   that is not a burden we wish to impose on the forwarder.  A user-
   level cache could also rely on out-of-band attestation, such as the
   cache operator only inserting content that it knows has the correct
   signature.

   The CCNx grammar allows for hash algorithm agility via the HashType.
   It specifies a short list of acceptable hash algorithms that should
   be implemented at each forwarder.  Some hash values only apply to end
   systems, so updating the hash algorithm does not affect forwarders --
   they would simply match the buffer that includes the type-length-hash
   buffer.  Some fields, such as the ConObjHash, must be verified at
   each hop, so a forwarder (or related system) must know the hash
   algorithm, and it could cause backward compatibility problems if the
   hash type is updated.





Mosko, et al.                 Experimental                     [Page 43]
^L
RFC 8609                        CCNx TLV                       July 2019


   A CCNx name uses binary matching, whereas a URI uses a case-
   insensitive hostname.  Some systems may also use case-insensitive
   matching of the URI path to a resource.  An implication of this is
   that human-entered CCNx names will likely have case or non-ASCII
   symbol mismatches unless one uses a consistent URI normalization for
   the CCNx name.  It also means that an entity that registers a CCNx-
   routable prefix -- say, "ccnx:/example.com" -- would need separate
   registrations for simple variations like "ccnx:/Example.com".  Unless
   this is addressed in URI normalization and routing protocol
   conventions, there could be phishing attacks.

   For a more general introduction to ICN-related security concerns and
   approaches, see [RFC7927] and [RFC7945].

6.  References

6.1.  Normative References

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/info/rfc2119>.

   [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
              2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
              May 2017, <https://www.rfc-editor.org/info/rfc8174>.

6.2.  Informative References

   [ace]      Shang, W., Yu, Y., Liang, T., Zhang, B., and L. Zhang,
              "NDN-ACE: Access control for constrained environments over
              named data networking", NDN Technical Report NDN-0036,
              2015, <http://new.named-data.net/wp-content/uploads/2015/
              12/ndn-0036-1-ndn-ace.pdf>.

   [ccnxke]   Mosko, M., Uzun, E., and C. Wood, "CCNx Key Exchange
              Protocol Version 1.0", Work in Progress, draft-wood-icnrg-
              ccnxkeyexchange-02, March 2017.

   [CCNxURI]  Mosko, M. and C. Wood, "The CCNx URI Scheme", Work in
              Progress, draft-mosko-icnrg-ccnxurischeme-01, April 2016.

   [CCNxz]    Mosko, M., "CCNxz TLV Header Compression Experimental
              Code", commit f1093a2, March 2018,
              <https://github.com/PARC/CCNxz>.






Mosko, et al.                 Experimental                     [Page 44]
^L
RFC 8609                        CCNx TLV                       July 2019


   [compress] Mosko, M., "Header Compression for TLV-based Packets",
              ICNRG Interim Meeting, 2016,
              <https://datatracker.ietf.org/meeting/interim-2016-icnrg-
              02/materials/slides-interim-2016-icnrg-2-7>.

   [ECC]      Certicom Research, "SEC 2: Recommended Elliptic Curve
              Domain Parameters", 2010,
              <http://www.secg.org/sec2-v2.pdf>.

   [esic]     Mosko, M. and C. Wood, "Encrypted Sessions In CCNx
              (ESIC)", Work in Progress, draft-wood-icnrg-esic-01,
              September 2017.

   [IANA-PEN] IANA, "Private Enterprise Numbers",
              <http://www.iana.org/assignments/enterprise-numbers>.

   [mobile]   Mosko, M., Uzun, E., and C. Wood, "Mobile Sessions in
              Content-Centric Networks", IFIP Networking, 2017,
              <http://dl.ifip.org/db/conf/networking/
              networking2017/1570334964.pdf>.

   [nnc]      Jacobson, V., Smetters, D., Thornton, J., Plass, M.,
              Briggs, N., and R. Braynard, "Networking Named Content",
              Proceedings of the 5th international conference on
              Emerging networking experiments and technologies (CoNEXT
              '09), 2009, <http://dx.doi.org/10.1145/1658939.1658941>.

   [RFC5280]  Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
              Housley, R., and W. Polk, "Internet X.509 Public Key
              Infrastructure Certificate and Certificate Revocation List
              (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
              <https://www.rfc-editor.org/info/rfc5280>.

   [RFC7927]  Kutscher, D., Ed., Eum, S., Pentikousis, K., Psaras, I.,
              Corujo, D., Saucez, D., Schmidt, T., and M. Waehlisch,
              "Information-Centric Networking (ICN) Research
              Challenges", RFC 7927, DOI 10.17487/RFC7927, July 2016,
              <https://www.rfc-editor.org/info/rfc7927>.

   [RFC7945]  Pentikousis, K., Ed., Ohlman, B., Davies, E., Spirou, S.,
              and G. Boggia, "Information-Centric Networking: Evaluation
              and Security Considerations", RFC 7945,
              DOI 10.17487/RFC7945, September 2016,
              <https://www.rfc-editor.org/info/rfc7945>.







Mosko, et al.                 Experimental                     [Page 45]
^L
RFC 8609                        CCNx TLV                       July 2019


   [RFC8126]  Cotton, M., Leiba, B., and T. Narten, "Guidelines for
              Writing an IANA Considerations Section in RFCs", BCP 26,
              RFC 8126, DOI 10.17487/RFC8126, June 2017,
              <https://www.rfc-editor.org/info/rfc8126>.

   [RFC8569]  Mosko, M., Solis, I., and C. Wood, "Content-Centric
              Networking (CCNx) Semantics", RFC 8569,
              DOI 10.17487/RFC8569, July 2019,
              <https://www.rfc-editor.org/info/rfc8569>.

Authors' Addresses

   Marc Mosko
   PARC, Inc.
   Palo Alto, California  94304
   United States of America

   Phone: +01 650-812-4405
   Email: mmosko@parc.com


   Ignacio Solis
   LinkedIn
   Mountain View, California  94043
   United States of America

   Email: nsolis@linkedin.com


   Christopher A. Wood
   University of California, Irvine
   Irvine, California  92697
   United States of America

   Phone: +01 315-806-5939
   Email: woodc1@uci.edu















Mosko, et al.                 Experimental                     [Page 46]
^L