1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
|
Internet Engineering Task Force (IETF) S. Vallin
Request for Comments: 8632 Stefan Vallin AB
Category: Standards Track M. Bjorklund
ISSN: 2070-1721 Cisco
September 2019
A YANG Data Model for Alarm Management
Abstract
This document defines a YANG module for alarm management. It
includes functions for alarm-list management, alarm shelving, and
notifications to inform management systems. There are also
operations to manage the operator state of an alarm and
administrative alarm procedures. The module carefully maps to
relevant alarm standards.
Status of This Memo
This is an Internet Standards Track document.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in Section 2 of RFC 7841.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
https://www.rfc-editor.org/info/rfc8632.
Copyright Notice
Copyright (c) 2019 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
Vallin & Bjorklund Standards Track [Page 1]
^L
RFC 8632 A YANG Data Model for Alarm Management September 2019
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1. Terminology and Notation . . . . . . . . . . . . . . . . 3
2. Objectives . . . . . . . . . . . . . . . . . . . . . . . . . 5
3. Alarm Data Model Concepts . . . . . . . . . . . . . . . . . . 5
3.1. Alarm Definition . . . . . . . . . . . . . . . . . . . . 5
3.2. Alarm Type . . . . . . . . . . . . . . . . . . . . . . . 6
3.3. Identifying the Alarming Resource . . . . . . . . . . . . 8
3.4. Identifying Alarm Instances . . . . . . . . . . . . . . . 9
3.5. Alarm Lifecycle . . . . . . . . . . . . . . . . . . . . . 9
3.5.1. Resource Alarm Lifecycle . . . . . . . . . . . . . . 10
3.5.2. Operator Alarm Lifecycle . . . . . . . . . . . . . . 11
3.5.3. Administrative Alarm Lifecycle . . . . . . . . . . . 11
3.6. Root Cause, Impacted Resources, and Related Alarms . . . 11
3.7. Alarm Shelving . . . . . . . . . . . . . . . . . . . . . 13
3.8. Alarm Profiles . . . . . . . . . . . . . . . . . . . . . 13
4. Alarm Data Model . . . . . . . . . . . . . . . . . . . . . . 13
4.1. Alarm Control . . . . . . . . . . . . . . . . . . . . . . 15
4.1.1. Alarm Shelving . . . . . . . . . . . . . . . . . . . 15
4.2. Alarm Inventory . . . . . . . . . . . . . . . . . . . . . 16
4.3. Alarm Summary . . . . . . . . . . . . . . . . . . . . . . 16
4.4. The Alarm List . . . . . . . . . . . . . . . . . . . . . 17
4.5. The Shelved-Alarm List . . . . . . . . . . . . . . . . . 19
4.6. Alarm Profiles . . . . . . . . . . . . . . . . . . . . . 19
4.7. Operations . . . . . . . . . . . . . . . . . . . . . . . 20
4.8. Notifications . . . . . . . . . . . . . . . . . . . . . . 20
5. Relationship to the ietf-hardware YANG Module . . . . . . . . 20
6. Alarm YANG Module . . . . . . . . . . . . . . . . . . . . . . 21
7. The X.733 Mapping Module . . . . . . . . . . . . . . . . . . 53
8. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 65
9. Security Considerations . . . . . . . . . . . . . . . . . . . 65
10. References . . . . . . . . . . . . . . . . . . . . . . . . . 67
10.1. Normative References . . . . . . . . . . . . . . . . . . 67
10.2. Informative References . . . . . . . . . . . . . . . . . 68
Appendix A. Vendor-Specific Alarm Types Example . . . . . . . . 70
Appendix B. Alarm Inventory Example . . . . . . . . . . . . . . 71
Appendix C. Alarm List Example . . . . . . . . . . . . . . . . . 71
Appendix D. Alarm Shelving Example . . . . . . . . . . . . . . . 73
Appendix E. X.733 Mapping Example . . . . . . . . . . . . . . . 74
Appendix F. Relationship to Other Alarm Standards . . . . . . . 74
F.1. Definition of "Alarm" . . . . . . . . . . . . . . . . . . 74
F.2. Data Model . . . . . . . . . . . . . . . . . . . . . . . 76
F.2.1. X.733 . . . . . . . . . . . . . . . . . . . . . . . . 76
F.2.2. The Alarm MIB (RFC 3877) . . . . . . . . . . . . . . 77
F.2.3. 3GPP Alarm IRP . . . . . . . . . . . . . . . . . . . 77
F.2.4. G.7710 . . . . . . . . . . . . . . . . . . . . . . . 78
Vallin & Bjorklund Standards Track [Page 2]
^L
RFC 8632 A YANG Data Model for Alarm Management September 2019
Appendix G. Alarm-Usability Requirements . . . . . . . . . . . . 78
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . 82
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 82
1. Introduction
This document defines a YANG module [RFC7950] for alarm management.
The purpose is to define a standardized alarm interface for network
devices that can be easily integrated into management applications.
The model is also applicable as a northbound alarm interface in the
management applications.
Alarm monitoring is a fundamental part of monitoring the network.
Raw alarms from devices do not always tell the status of the network
services or necessarily point to the root cause. However, being able
to feed alarms to the alarm-management application in a standardized
format is a starting point for performing higher-level network
assurance tasks.
The design of the module is based on experience from using and
implementing available alarm standards from ITU [X.733], 3GPP
[ALARMIRP], and ANSI [ISA182].
1.1. Terminology and Notation
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in
BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
capitals, as shown here.
The following terms are defined in [RFC7950]:
o action
o client
o data tree
o server
The following terms are used within this document:
Alarm (the general concept): An alarm signifies an undesirable state
in a resource that requires corrective action.
Vallin & Bjorklund Standards Track [Page 3]
^L
RFC 8632 A YANG Data Model for Alarm Management September 2019
Fault: A fault is the underlying cause of an undesired behavior.
There is no trivial one-to-one mapping between faults and alarms.
One fault may result in several alarms in case the system lacks
root-cause and correlation capabilities. An alarm might not have
an underlying fault as a cause. For example, imagine a bad Mean
Opinion Score (MOS) alarm from a Voice over IP (VOIP) probe and
the cause being non-optimal QoS configuration.
Alarm Type: An alarm type identifies a possible unique alarm state
for a resource. Alarm types are names to identify the state like
"link-alarm", "jitter-violation", and "high-disk-utilization".
Resource: A fine-grained identification of the alarming resource,
for example, an interface and a process.
Alarm Instance: The alarm state for a specific resource and alarm
type, for example, ("GigabitEthernet0/15", "link-alarm"). An
entry in the alarm list.
Cleared Alarm: A cleared alarm is an alarm where the system
considers the undesired state to be cleared. Operators cannot
clear alarms; clearance is managed by the system. For example, a
"linkUp" notification can be considered a clear condition for a
"linkDown" state.
Closed Alarm: Operators can close alarms irrespective of the alarm
being cleared or not. A closed alarm indicates that the alarm
does not need attention because either the corrective action has
been taken or it can be ignored for other reasons.
Alarm Inventory: A list of all possible alarm types on a system.
Alarm Shelving: Blocking alarms according to specific criteria.
Corrective Action: An action taken by an operator or automation
routine in order to minimize the impact of the alarm or resolve
the root cause.
Management System: The alarm-management application that consumes
the alarms, i.e., acts as a client.
System: The system that implements this YANG module, i.e., acts as a
server. This corresponds to a network device or a management
application that provides a northbound alarm interface.
Tree diagrams used in this document follow the notation defined in
[RFC8340].
Vallin & Bjorklund Standards Track [Page 4]
^L
RFC 8632 A YANG Data Model for Alarm Management September 2019
2. Objectives
The objectives for the design of the alarm data model are:
o Users find it simple to use. If a system supports this module, it
shall be straightforward to integrate it into a YANG-based alarm
manager.
o Alarms are viewed as states on resources and not as discrete
notifications.
o A precise definition of "alarm" is provided in order to exclude
general events that should not be forwarded as alarm
notifications.
o Precise identification of alarm types and alarm instances is
provided.
o A management system should be able to pull all available alarm
types from a system, i.e., read the alarm inventory from a system.
This makes it possible to prepare alarm operators with
corresponding alarm instructions.
o Alarm-usability requirements are addressed; see Appendix G. While
IETF and telecom standards have addressed alarms mostly from a
protocol perspective, the process industry has published several
relevant standards addressing requirements for a useful alarm
interface; see [EEMUA] and [ISA182]. This document defines
usability requirements as well as a YANG data model.
o Mapping to [X.733], which is a requirement for some alarm systems,
is achievable. Still, keep some of the X.733 concepts out of the
core model in order to make the model small and easy to
understand.
3. Alarm Data Model Concepts
This section defines the fundamental concepts behind the data model.
This section is rooted in the works of Vallin et. al [ALARMSEM].
3.1. Alarm Definition
An alarm signifies an undesirable state in a resource that requires
corrective action.
Vallin & Bjorklund Standards Track [Page 5]
^L
RFC 8632 A YANG Data Model for Alarm Management September 2019
There are two main things to remember from this definition:
1. It focuses on leaving out events and logging information in
general. Alarms should only be used for undesired states that
require action.
2. It also focuses on alarms as a state on a resource, not the
notifications that report the state changes.
See Appendix F for information on how this definition relates to
other alarm standards.
3.2. Alarm Type
This document defines an alarm type with an alarm-type id and an
alarm-type qualifier.
The alarm-type id is modeled as a YANG identity. With YANG
identities, new alarm types can be defined in a distributed fashion.
YANG identities are hierarchical, which means that a hierarchy of
alarm types can be defined.
Standards and vendors should define their own alarm-type identities
based on this definition.
The use of YANG identities means that all possible alarms are
identified at design time. This explicit declaration of alarm types
makes it easier to allow for alarm qualification reviews and
preparation of alarm actions and documentation.
There are occasions where the alarm types are not known at design
time. An example is a system with digital inputs that allows users
to connect detectors, such as smoke detectors, to the inputs. In
this case, it is a configuration action that says certain connectors
are fire alarms, for example.
In order to allow for dynamic addition of alarm types, the alarm data
model permits further qualification of the identity-based alarm type
using a string. A potential drawback of this is that there is a
significant risk that alarm operators will receive alarm types as a
surprise. They do not know how to resolve the problem since a
defined alarm procedure does not necessarily exist. To avoid this
risk, the system MUST publish all possible alarm types in the alarm
inventory; see Section 4.2.
Vallin & Bjorklund Standards Track [Page 6]
^L
RFC 8632 A YANG Data Model for Alarm Management September 2019
A vendor or standards organization can define their own alarm-type
hierarchy. The example below shows a hierarchy based on X.733 event
types:
import ietf-alarms {
prefix al;
}
identity vendor-alarms {
base al:alarm-type;
}
identity communications-alarm {
base vendor-alarms;
}
identity link-alarm {
base communications-alarm;
}
Alarm types can be abstract. An abstract alarm type is used as a
base for defining hierarchical alarm types. Concrete alarm types are
used for alarm states and appear in the alarm inventory. There are
two kinds of concrete alarm types:
1. The last subordinate identity in the "alarm-type-id" hierarchy is
concrete, for example, "alarm-identity.environmental-
alarm.smoke". In this example, "alarm-identity" and
"environmental-alarm" are abstract YANG identities, whereas
"smoke" is a concrete YANG identity.
2. The YANG identity hierarchy is abstract, and the concrete alarm
type is defined by the dynamic alarm-qualifier string, for
example, "alarm-identity.environmental-alarm.external-detector"
with alarm-type-qualifier "smoke".
Vallin & Bjorklund Standards Track [Page 7]
^L
RFC 8632 A YANG Data Model for Alarm Management September 2019
For example:
// Alternative 1: concrete alarm type identity
import ietf-alarms {
prefix al;
}
identity environmental-alarm {
base al:alarm-type;
description "Abstract alarm type";
}
identity smoke {
base environmental-alarm;
description "Concrete alarm type";
}
// Alternative 2: concrete alarm type qualifier
import ietf-alarms {
prefix al;
}
identity environmental-alarm {
base al:alarm-type;
description "Abstract alarm type";
}
identity external-detector {
base environmental-alarm;
description
"Abstract alarm type; a runtime configuration
procedure sets the type of alarm detected. This will
be reported in the alarm-type-qualifier.";
}
A server SHOULD strive to minimize the number of dynamically defined
alarm types.
3.3. Identifying the Alarming Resource
It is of vital importance to be able to refer to the alarming
resource. This reference must be as fine-grained as possible. If
the alarming resource exists in the data tree, an instance-identifier
MUST be used with the full path to the object.
When the module is used in a controller/orchestrator/manager, the
original device resource identification can be modified to include
the device in the path. The details depend on how devices are
identified and are out of scope for this specification.
Vallin & Bjorklund Standards Track [Page 8]
^L
RFC 8632 A YANG Data Model for Alarm Management September 2019
Example:
The original device alarm might identify the resource as
"/dev:interfaces/dev:interface[dev:name='FastEthernet1/0']".
The resource identification in the manager could look something
like: "/mgr:devices/mgr:device[mgr:name='xyz123']/dev:interfaces/
dev:interface[dev:name='FastEthernet1/0']"
This module also allows for alternate naming of the alarming resource
if it is not available in the data tree.
3.4. Identifying Alarm Instances
A primary goal of the alarm data model is to remove any ambiguity in
how alarm notifications are mapped to an update of an alarm instance.
The X.733 [X.733] and 3GPP [ALARMIRP] documents were not clear on
this point. This alarm data model states that the tuple (resource,
alarm-type identifier, and alarm-type qualifier) corresponds to a
single alarm instance. This means that alarm notifications for the
same resource and same alarm type are matched to update the same
alarm instance. These three leafs are therefore used as the key in
the alarm list:
list alarm {
key "resource alarm-type-id alarm-type-qualifier";
...
}
3.5. Alarm Lifecycle
The alarm model clearly separates the resource alarm lifecycle from
the operator and administrative lifecycles of an alarm.
o resource alarm lifecycle: the alarm instrumentation that controls
alarm raise, clearance, and severity changes.
o operator alarm lifecycle: operators acting upon alarms with
actions like acknowledging and closing. Closing an alarm implies
that the operator considers the corrective action performed.
Operators can also shelve (block/filter) alarms in order to avoid
nuisance alarms.
o administrative alarm lifecycle: purging (deleting) unwanted alarms
and compressing the alarm status-change list. This module exposes
operations to manage the administrative lifecycle. The server may
also perform these operations based on other policies, but how
that is done is out of scope for this document.
Vallin & Bjorklund Standards Track [Page 9]
^L
RFC 8632 A YANG Data Model for Alarm Management September 2019
A server SHOULD describe how long it retains cleared/closed alarms
until they are manually purged or if it has an automatic removal
policy. How this is done is outside the scope of this document.
3.5.1. Resource Alarm Lifecycle
From a resource perspective, an alarm can, for example, have the
following lifecycle: raise, change severity, change severity, clear,
being raised again, etc. All of these status changes can have
different alarm texts generated by the instrumentation. Two
important things to note:
1. Alarms are not deleted when they are cleared. Deleting alarms is
an administrative process. The "ietf-alarms" YANG module defines
an action "purge-alarms" that deletes alarms.
2. Alarms are not cleared by operators; only the underlying
instrumentation can clear an alarm. Operators can close alarms.
The YANG tree representation below illustrates the resource-oriented
lifecycle:
+--ro alarm* [resource alarm-type-id alarm-type-qualifier]
...
+--ro is-cleared boolean
+--ro last-raised yang:date-and-time
+--ro last-changed yang:date-and-time
+--ro perceived-severity severity
+--ro alarm-text alarm-text
+--ro status-change* [time] {alarm-history}?
+--ro time yang:date-and-time
+--ro perceived-severity severity-with-clear
+--ro alarm-text alarm-text
For every status change from the resource perspective, a row is added
to the "status-change" list, if the server implements the feature
"alarm-history". The feature "alarm-history" is optional to
implement, since keeping the alarm history may have an impact on the
server's memory resources.
The last status values are also represented as leafs for the alarm.
Note well that the alarm severity does not include "cleared"; alarm
clearance is a boolean flag.
Therefore, an alarm can look like this: (("GigabitEthernet0/25",
"link-alarm",""), false, 2018-04-08T08:20:10.00Z,
2018-04-08T08:20:10.00Z, major, "Interface GigabitEthernet0/25
down").
Vallin & Bjorklund Standards Track [Page 10]
^L
RFC 8632 A YANG Data Model for Alarm Management September 2019
3.5.2. Operator Alarm Lifecycle
Operators can act upon alarms using the set-operator-state action:
+--ro alarm* [resource alarm-type-id alarm-type-qualifier]
...
+--ro operator-state-change* [time] {operator-actions}?
| +--ro time yang:date-and-time
| +--ro operator string
| +--ro state operator-state
| +--ro text? string
+---x set-operator-state {operator-actions}?
+---w input
+---w state writable-operator-state
+---w text? string
The operator state for an alarm can be "none", "ack", "shelved", and
"closed". Alarm deletion (using the action "purge-alarms") can use
this state as a criterion. For example, a closed alarm is an alarm
where the operator has performed any required corrective actions.
Closed alarms are good candidates for being purged.
3.5.3. Administrative Alarm Lifecycle
Deleting alarms from the alarm list is considered an administrative
action. This is supported by the "purge-alarms" action. The "purge-
alarms" action takes a filter as input. The filter selects alarms
based on the operator and resource alarm lifecycle such as "all
closed cleared alarms older than a time specification". The server
may also perform these operations based on other policies, but how
that is done is out of scope for this document.
Purged alarms are removed from the alarm list. Note well that if the
alarm resource state changes after a purge, the alarm will reappear
in the alarm list.
Alarms can be compressed. Compressing an alarm deletes all entries
in the alarm's "status-change" list except for the last status
change. A client can perform this using the "compress-alarms"
action. The server may also perform these operations based on other
policies, but how that is done is out of scope for this document.
3.6. Root Cause, Impacted Resources, and Related Alarms
The alarm data model does not mandate any requirements for the system
to support alarm correlation or root-cause and service-impact
analysis. However, if such features are supported, this section
describes how the results of such analysis are represented in the
Vallin & Bjorklund Standards Track [Page 11]
^L
RFC 8632 A YANG Data Model for Alarm Management September 2019
data model. These parts of the model are optional. The module
supports three scenarios:
Root-cause analysis: An alarm can indicate candidate root-cause
resources, for example, a database issue alarm referring to a
full-disk partition.
Service-impact analysis: An alarm can refer to potential impacted
resources, for example, an interface alarm referring to impacted
network services.
Alarm correlation: Dependencies between alarms; several alarms can
be grouped as relating to each other, for example, a streaming
media alarm relating to a high-jitter alarm.
Different systems have varying degrees of alarm correlation and
analysis capabilities, and the intent of the alarm data model is to
enable any capability, including none.
The general principle of this alarm data model is to limit the amount
of alarms. In many cases, several resources are affected for a given
underlying problem. A full disk will of course impact databases and
applications as well. The recommendation is to have a single alarm
for the underlying problem and list the affected resources in the
alarm rather than having separate alarms for each resource.
The alarm has one leaf-list to identify a possible "impacted-
resource" and a leaf-list to identify a possible "root-cause-
resource". These serve as hints only. It is up to the client
application to use this information to present the overall status.
Using the disk-full example, a good alarm would be to use the hard-
disk partition as the alarming resource and add the database and
applications into the "impacted-resource" leaf-list.
A system should always strive to identify the resource that can be
acted upon as the "resource" leaf. The "impacted-resource" leaf-list
shall be used to identify any side effects of the alarm. The
impacted resources cannot be acted upon to fix the problem. The disk
full example above illustrates the principle; you cannot fix the
underlying issue by database operations. However, you need to pay
attention to the database to perform any operations that limit the
impact of the problem.
On some occasions, the system might not be capable of detecting the
root cause, the resource that can be acted upon. The instrumentation
in this case only monitors the side effect and raises an alarm to
indicate a situation requiring attention. The instrumentation still
might identify possible candidates for the root-cause resource. In
Vallin & Bjorklund Standards Track [Page 12]
^L
RFC 8632 A YANG Data Model for Alarm Management September 2019
this case, the "root-cause-resource" leaf-list can be used to
indicate the candidate root-cause resources. An example of this kind
of alarm might be an active test tool that detects a Service Level
Agreement (SLA) violation on a VPN connection and identifies the
devices along the chain as candidate root causes.
The alarm data model also supports a way to associate different
alarms with each other using the "related-alarm" list. This list
enables the server to inform the client that certain alarms are
related to other alarms.
Note well that this module does not prescribe any dependencies or
preference between the above alarm correlation mechanisms. Different
systems have different capabilities, and the above described
mechanisms are available to support the instrumentation features.
3.7. Alarm Shelving
Alarm shelving is an important function in order for alarm-management
applications and operators to stop superfluous alarms. A shelved
alarm implies that any alarms fulfilling these criteria are ignored
(blocked/filtered). Shelved alarms appear in a dedicated shelved-
alarm list; thus, they can be filtered out so that the main alarm
list only contains entries of interest. Shelved alarms do not
generate notifications, but the shelved-alarm list is updated with
any alarm-state changes.
Alarm shelving is optional to implement, since matching alarms
against shelf criteria may have an impact on the server's processing
resources.
3.8. Alarm Profiles
Alarm profiles are used to configure further information to an alarm
type. This module supports configuring severity levels overriding
the system-default levels. This corresponds to the Alarm Severity
Assignment Profile (ASAP) functionality in M.3100 [M.3100] and M.3160
[M.3160]. Other standard or enterprise modules can augment this list
with further alarm-type information.
4. Alarm Data Model
The fundamental parts of the data model are the "alarm-list" with
associated notifications and the "alarm-inventory" list of all
possible alarm types. These MUST be implemented by a system. The
rest of the data model is made conditional with these YANG features:
"operator-actions", "alarm-shelving", "alarm-history", "alarm-
summary", "alarm-profile", and "severity-assignment".
Vallin & Bjorklund Standards Track [Page 13]
^L
RFC 8632 A YANG Data Model for Alarm Management September 2019
The data model has the following overall structure:
+--rw control
| +--rw max-alarm-status-changes? union
| +--rw notify-status-changes? enumeration
| +--rw notify-severity-level? severity
| +--rw alarm-shelving {alarm-shelving}?
| ...
+--ro alarm-inventory
| +--ro alarm-type* [alarm-type-id alarm-type-qualifier]
| ...
+--ro summary {alarm-summary}?
| +--ro alarm-summary* [severity]
| | ...
| +--ro shelves-active? empty {alarm-shelving}?
+--ro alarm-list
| +--ro number-of-alarms? yang:gauge32
| +--ro last-changed? yang:date-and-time
| +--ro alarm* [resource alarm-type-id alarm-type-qualifier]
| | ...
| +---x purge-alarms
| | ...
| +---x compress-alarms {alarm-history}?
| ...
+--ro shelved-alarms {alarm-shelving}?
| +--ro number-of-shelved-alarms? yang:gauge32
| +--ro shelved-alarms-last-changed? yang:date-and-time
| +--ro shelved-alarm*
| | [resource alarm-type-id alarm-type-qualifier]
| | ...
| +---x purge-shelved-alarms
| | ...
| +---x compress-shelved-alarms {alarm-history}?
| ...
+--rw alarm-profile*
[alarm-type-id alarm-type-qualifier-match resource]
{alarm-profile}?
+--rw alarm-type-id alarm-type-id
+--rw alarm-type-qualifier-match string
+--rw resource resource-match
+--rw description string
+--rw alarm-severity-assignment-profile
{severity-assignment}?
...
Vallin & Bjorklund Standards Track [Page 14]
^L
RFC 8632 A YANG Data Model for Alarm Management September 2019
4.1. Alarm Control
The "/alarms/control/notify-status-changes" leaf controls whether
notifications are sent for all state changes, only raise and clear,
or only notifications more severe than a configured level. This
feature, in combination with alarm shelving, corresponds to the ITU
Alarm Report Control functionality; see Appendix F.2.4.
Every alarm has a list of status changes. The length of this list is
controlled by "/alarms/control/max-alarm-status-changes". When the
list is full and a new entry created, the oldest entry is removed.
4.1.1. Alarm Shelving
The shelving control tree is shown below:
+--rw control
+--rw alarm-shelving {alarm-shelving}?
+--rw shelf* [name]
+--rw name string
+--rw resource* resource-match
+--rw alarm-type*
| [alarm-type-id alarm-type-qualifier-match]
| +--rw alarm-type-id alarm-type-id
| +--rw alarm-type-qualifier-match string
+--rw description? string
Shelved alarms are shown in a dedicated shelved-alarm list. Matching
alarms MUST appear in the "/alarms/shelved-alarms/shelved-alarm"
list, and non-matching alarms MUST appear in the "/alarms/alarm-list/
alarm" list. The server does not send any notifications for shelved
alarms.
Shelving and unshelving can only be performed by editing the shelf
configuration. It cannot be performed on individual alarms. The
server will add an operator state indicating that the alarm was
shelved/unshelved.
A leaf, "/alarms/summary/shelves-active", in the alarm summary
indicates if there are shelved alarms.
A system can select not to support the shelving feature.
Vallin & Bjorklund Standards Track [Page 15]
^L
RFC 8632 A YANG Data Model for Alarm Management September 2019
4.2. Alarm Inventory
The alarm inventory represents all possible alarm types that may
occur in the system. A management system may use this to build alarm
procedures. The alarm inventory is relevant for the following
reasons:
The system might not implement all defined alarm type identities,
and some alarm identities are abstract.
The system has configured dynamic alarm types using the alarm
qualifier. The inventory makes it possible for the management
system to discover these.
Note that the mechanism whereby dynamic alarm types are added using
the alarm-type qualifier MUST populate this list.
The optional leaf-list "resource" in the alarm inventory enables the
system to publish for which resources a given alarm type may appear.
A server MUST implement the alarm inventory in order to enable
controlled alarm procedures in the client.
A server implementer may want to document the alarm inventory for
offline processing by clients. The file format defined in
[YANG-INSTANCE] can be used for this purpose.
The alarm inventory tree is shown below:
+--ro alarm-inventory
+--ro alarm-type* [alarm-type-id alarm-type-qualifier]
+--ro alarm-type-id alarm-type-id
+--ro alarm-type-qualifier alarm-type-qualifier
+--ro resource* resource-match
+--ro will-clear boolean
+--ro severity-level* severity
+--ro description string
4.3. Alarm Summary
The alarm summary list summarizes alarms per severity: how many
cleared, cleared and closed, and closed. It also gives an indication
if there are shelved alarms.
Vallin & Bjorklund Standards Track [Page 16]
^L
RFC 8632 A YANG Data Model for Alarm Management September 2019
The alarm summary tree is shown below:
+--ro summary {alarm-summary}?
+--ro alarm-summary* [severity]
| +--ro severity severity
| +--ro total? yang:gauge32
| +--ro not-cleared? yang:gauge32
| +--ro cleared? yang:gauge32
| +--ro cleared-not-closed? yang:gauge32
| | {operator-actions}?
| +--ro cleared-closed? yang:gauge32
| | {operator-actions}?
| +--ro not-cleared-closed? yang:gauge32
| | {operator-actions}?
| +--ro not-cleared-not-closed? yang:gauge32
| {operator-actions}?
+--ro shelves-active? empty {alarm-shelving}?
4.4. The Alarm List
The alarm list, "/alarms/alarm-list", is a function from the tuple
(resource, alarm type, alarm-type qualifier) to the current composite
alarm state. The composite state includes states for the resource
alarm lifecycle such as severity, clearance flag, and operator states
such as acknowledged. This means that for a given resource and alarm
type, the alarm list shows the current states of the alarm such as
acknowledged and cleared.
+--ro alarm-list
+--ro number-of-alarms? yang:gauge32
+--ro last-changed? yang:date-and-time
+--ro alarm* [resource alarm-type-id alarm-type-qualifier]
| +--ro resource resource
| +--ro alarm-type-id alarm-type-id
| +--ro alarm-type-qualifier alarm-type-qualifier
| +--ro alt-resource* resource
| +--ro related-alarm*
| | [resource alarm-type-id alarm-type-qualifier]
| | {alarm-correlation}?
| | +--ro resource
| | | -> /alarms/alarm-list/alarm/resource
| | +--ro alarm-type-id leafref
| | +--ro alarm-type-qualifier leafref
| +--ro impacted-resource* resource
| | {service-impact-analysis}?
| +--ro root-cause-resource* resource
| | {root-cause-analysis}?
| +--ro time-created yang:date-and-time
Vallin & Bjorklund Standards Track [Page 17]
^L
RFC 8632 A YANG Data Model for Alarm Management September 2019
| +--ro is-cleared boolean
| +--ro last-raised yang:date-and-time
| +--ro last-changed yang:date-and-time
| +--ro perceived-severity severity
| +--ro alarm-text alarm-text
| +--ro status-change* [time] {alarm-history}?
| | +--ro time yang:date-and-time
| | +--ro perceived-severity severity-with-clear
| | +--ro alarm-text alarm-text
| +--ro operator-state-change* [time] {operator-actions}?
| | +--ro time yang:date-and-time
| | +--ro operator string
| | +--ro state operator-state
| | +--ro text? string
| +---x set-operator-state {operator-actions}?
| | +---w input
| | +---w state writable-operator-state
| | +---w text? string
| +---n operator-action {operator-actions}?
| +-- time yang:date-and-time
| +-- operator string
| +-- state operator-state
| +-- text? string
+---x purge-alarms
| +---w input
| | +---w alarm-clearance-status enumeration
| | +---w older-than!
| | | +---w (age-spec)?
| | | +--:(seconds)
| | | | +---w seconds? uint16
| | | +--:(minutes)
| | | | +---w minutes? uint16
| | | +--:(hours)
| | | | +---w hours? uint16
| | | +--:(days)
| | | | +---w days? uint16
| | | +--:(weeks)
| | | +---w weeks? uint16
| | +---w severity!
| | | +---w (sev-spec)?
| | | +--:(below)
| | | | +---w below? severity
| | | +--:(is)
| | | | +---w is? severity
| | | +--:(above)
| | | +---w above? severity
| | +---w operator-state-filter! {operator-actions}?
Vallin & Bjorklund Standards Track [Page 18]
^L
RFC 8632 A YANG Data Model for Alarm Management September 2019
| | +---w state? operator-state
| | +---w user? string
| +--ro output
| +--ro purged-alarms? uint32
+---x compress-alarms {alarm-history}?
+---w input
| +---w resource? resource-match
| +---w alarm-type-id?
| | -> /alarms/alarm-list/alarm/alarm-type-id
| +---w alarm-type-qualifier? leafref
+--ro output
+--ro compressed-alarms? uint32
Every alarm has three important states: the resource clearance state
"is-cleared", the severity "perceived-severity", and the operator
state available in the operator-state change list.
In order to see the alarm history, the resource state changes are
available in the "status-change" list, and the operator history is
available in the "operator-state-change" list.
4.5. The Shelved-Alarm List
The shelved-alarm list has the same structure as the alarm list
above. It shows all the alarms that match the shelving criteria
"/alarms/control/alarm-shelving".
4.6. Alarm Profiles
Alarm profiles, "/alarms/alarm-profile", is a list of configurable
alarm types. The list supports configurable alarm severity levels in
the container "alarm-severity-assignment-profile". If an alarm
matches the configured alarm type, it MUST use the configured
severity level(s) instead of the system default. This configuration
MUST also be represented in the alarm inventory.
+--rw alarm-profile*
[alarm-type-id alarm-type-qualifier-match resource]
{alarm-profile}?
+--rw alarm-type-id alarm-type-id
+--rw alarm-type-qualifier-match string
+--rw resource resource-match
+--rw description string
+--rw alarm-severity-assignment-profile
{severity-assignment}?
+--rw severity-level* severity
Vallin & Bjorklund Standards Track [Page 19]
^L
RFC 8632 A YANG Data Model for Alarm Management September 2019
4.7. Operations
The alarm data model supports the following actions to manage the
alarms:
"/alarms/alarm-list/purge-alarms": Delete alarms from the "alarm-
list" according to specific criteria, for example, all cleared
alarms older than a specific date.
"/alarms/alarm-list/compress-alarms": Compress the "status-change"
list for the alarms.
"/alarms/alarm-list/alarm/set-operator-state": Change the operator
state for an alarm. For example, an alarm can be acknowledged by
setting the operator state to "ack".
"/alarms/shelved-alarm-list/purge-shelved-alarms": Delete alarms
from the "shelved-alarm-list" according to specific criteria, for
example, all alarms older than a specific date.
"/alarms/shelved-alarm-list/compress-shelved-alarms": Compress the
"status-change" list for the alarms.
4.8. Notifications
The alarm data model supports a general notification to report alarm-
state changes. It carries all relevant parameters for the alarm-
management application.
There is also a notification to report that an operator changed the
operator state on an alarm, like acknowledged.
If the alarm inventory is changed, for example, a new card type is
inserted, a notification will tell the management application that
new alarm types are available.
5. Relationship to the ietf-hardware YANG Module
RFC 8348 [RFC8348] defines the "ietf-hardware" YANG data model for
the management of hardware. The "alarm-state" in RFC 8348 is a
summary of the alarm severity levels that may be active on the
specific hardware component. It does not say anything about how
alarms are reported, and it doesn't provide any details of the
alarms.
Vallin & Bjorklund Standards Track [Page 20]
^L
RFC 8632 A YANG Data Model for Alarm Management September 2019
The mapping between the alarm YANG data model, prefix "al", and the
"alarm-state" in RFC 8348, prefix "hw", is as follows:
"al:resource": Corresponds to an entry in the list
"/hw:hardware/hw:component/".
"al:is-cleared": No bit set in "/hw:hardware/hw:component/hw:state/
hw:alarm-state".
"al:perceived-severity": Corresponding bit set in
"/hw:hardware/hw:component/hw:state/hw:alarm-state".
"al:operator-state-change/al:state": If the alarm is acknowledged by
the operator, the bit "hw:under-repair" is set in
"/hw:hardware/hw:component/hw:state/hw:alarm-state".
6. Alarm YANG Module
This YANG module references [RFC6991] and [XSD-TYPES].
<CODE BEGINS> file "ietf-alarms@2019-09-11.yang"
module ietf-alarms {
yang-version 1.1;
namespace "urn:ietf:params:xml:ns:yang:ietf-alarms";
prefix al;
import ietf-yang-types {
prefix yang;
reference
"RFC 6991: Common YANG Data Types.";
}
organization
"IETF CCAMP Working Group";
contact
"WG Web: <https://trac.ietf.org/trac/ccamp>
WG List: <mailto:ccamp@ietf.org>
Editor: Stefan Vallin
<mailto:stefan@wallan.se>
Editor: Martin Bjorklund
<mailto:mbj@tail-f.com>";
description
"This module defines an interface for managing alarms. Main
inputs to the module design are the 3GPP Alarm Integration
Reference Point (IRP), ITU-T X.733, and ANSI/ISA-18.2 alarm
standards.
Vallin & Bjorklund Standards Track [Page 21]
^L
RFC 8632 A YANG Data Model for Alarm Management September 2019
Main features of this module include:
* Alarm list:
A list of all alarms. Cleared alarms stay in
the list until explicitly purged.
* Operator actions on alarms:
Acknowledging and closing alarms.
* Administrative actions on alarms:
Purging alarms from the list according to specific
criteria.
* Alarm inventory:
A management application can read all
alarm types implemented by the system.
* Alarm shelving:
Shelving (blocking) alarms according
to specific criteria.
* Alarm profiles:
A management system can attach further
information to alarm types, for example,
overriding system-default severity
levels.
This module uses a stateful view on alarms. An alarm is a state
for a specific resource (note that an alarm is not a
notification). An alarm type is a possible alarm state for a
resource. For example, the tuple:
('link-alarm', 'GigabitEthernet0/25')
is an alarm of type 'link-alarm' on the resource
'GigabitEthernet0/25'.
Alarm types are identified using YANG identities and an optional
string-based qualifier. The string-based qualifier allows for
dynamic extension of the statically defined alarm types. Alarm
types identify a possible alarm state and not the individual
notifications. For example, the traditional 'link-down' and
'link-up' notifications are two notifications referring to the
same alarm type 'link-alarm'.
With this design, there is no ambiguity about how alarm and
alarm clear correlation should be performed; notifications that
report the same resource and alarm type are considered updates
Vallin & Bjorklund Standards Track [Page 22]
^L
RFC 8632 A YANG Data Model for Alarm Management September 2019
of the same alarm, e.g., clearing an active alarm or changing
the severity of an alarm. The instrumentation can update the
severity and alarm text on an existing alarm. The above alarm
example can therefore look like the following:
(('link-alarm', 'GigabitEthernet0/25'),
warning,
'interface down while interface admin state is up')
There is a clear separation between updates on the alarm from
the underlying resource, like clear, and updates from an
operator, like acknowledging or closing an alarm:
(('link-alarm', 'GigabitEthernet0/25'),
warning,
'interface down while interface admin state is up',
cleared,
closed)
Administrative actions like removing closed alarms older than a
given time is supported.
This YANG module does not define how the underlying
instrumentation detects and clears the specific alarms. That
belongs to the Standards Development Organization (SDO) or
enterprise that owns that specific technology.
The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL
NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'NOT RECOMMENDED',
'MAY', and 'OPTIONAL' in this document are to be interpreted as
described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
they appear in all capitals, as shown here.
Copyright (c) 2019 IETF Trust and the persons identified as
authors of the code. All rights reserved.
Redistribution and use in source and binary forms, with or
without modification, is permitted pursuant to, and subject to
the license terms contained in, the Simplified BSD License set
forth in Section 4.c of the IETF Trust's Legal Provisions
Relating to IETF Documents
(https://trustee.ietf.org/license-info).
This version of this YANG module is part of RFC 8632; see
the RFC itself for full legal notices.";
revision 2019-09-11 {
description
Vallin & Bjorklund Standards Track [Page 23]
^L
RFC 8632 A YANG Data Model for Alarm Management September 2019
"Initial revision.";
reference
"RFC 8632: A YANG Data Model for Alarm Management";
}
/*
* Features
*/
feature operator-actions {
description
"This feature indicates that the system supports operator
states on alarms.";
}
feature alarm-shelving {
description
"This feature indicates that the system supports shelving
(blocking) alarms.
Alarm shelving may have an impact on server processing
resources in order to match alarms against shelf
criteria.";
}
feature alarm-history {
description
"This feature indicates that the server maintains a history
of state changes for each alarm. For example, if an alarm
toggles between cleared and active 10 times, these state
changes are present in a separate list in the alarm.
Keeping the alarm history may have an impact on server
memory resources.";
}
feature alarm-summary {
description
"This feature indicates that the server summarizes the number
of alarms per severity and operator state.";
}
feature alarm-profile {
description
"The system enables clients to configure further information
to each alarm type.";
}
Vallin & Bjorklund Standards Track [Page 24]
^L
RFC 8632 A YANG Data Model for Alarm Management September 2019
feature severity-assignment {
description
"The system supports configurable alarm severity levels.";
reference
"ITU-T Recommendation M.3100:
Generic network information model
ITU-T Recommendation M.3160:
Generic, protocol-neutral management information model";
}
feature root-cause-analysis {
description
"The system supports identifying candidate root-cause
resources for an alarm, for example, a disk partition
root cause for a logger failure alarm.";
}
feature service-impact-analysis {
description
"The system supports identifying candidate-impacted
resources for an alarm, for example, an interface state change
resulting in a link alarm, which can refer to a link as being
impacted.";
}
feature alarm-correlation {
description
"The system supports correlating/grouping alarms
that belong together.";
}
/*
* Identities
*/
identity alarm-type-id {
description
"Base identity for alarm types. A unique identification of
the alarm, not including the resource. Different resources
can share alarm types. If the resource reports the same
alarm type, it is considered to be the same alarm. The alarm
type is a simplification of the different X.733 and 3GPP Alarm
IRP correlation mechanisms, and it allows for
hierarchical extensions.
A string-based qualifier can be used in addition to the
identity in order to have different alarm types based on
information not known at design time, such as values in
Vallin & Bjorklund Standards Track [Page 25]
^L
RFC 8632 A YANG Data Model for Alarm Management September 2019
textual SNMP Notification varbinds.
Standards and vendors can define sub-identities to clearly
identify specific alarm types.
This identity is abstract and MUST NOT be used for alarms.";
}
/*
* Common types
*/
typedef resource {
type union {
type instance-identifier {
require-instance false;
}
type yang:object-identifier;
type string;
type yang:uuid;
}
description
"This is an identification of the alarming resource, such as an
interface. It should be as fine-grained as possible to both
guide the operator and guarantee uniqueness of the alarms.
If the alarming resource is modeled in YANG, this type will
be an instance-identifier.
If the resource is an SNMP object, the type will be an
'object-identifier'.
If the resource is anything else, for example, a distinguished
name or a Common Information Model (CIM) path, this type will
be a string.
If the alarming object is identified by a Universally Unique
Identifier (UUID), use the uuid type. Be cautious when using
this type, since a UUID is hard to use for an operator.
If the server supports several models, the precedence should
be in the order as given in the union definition.";
}
typedef resource-match {
type union {
type yang:xpath1.0;
type yang:object-identifier;
Vallin & Bjorklund Standards Track [Page 26]
^L
RFC 8632 A YANG Data Model for Alarm Management September 2019
type string;
}
description
"This type is used to match resources of type 'resource'.
Since the type 'resource' is a union of different types, the
'resource-match' type is also a union of corresponding types.
If the type is given as an XPath 1.0 expression, a resource
of type 'instance-identifier' matches if the instance is part
of the node set that is the result of evaluating the XPath 1.0
expression. For example, the XPath 1.0 expression:
/ietf-interfaces:interfaces/ietf-interfaces:interface
[ietf-interfaces:type='ianaift:ethernetCsmacd']
would match the resource instance-identifier:
/if:interfaces/if:interface[if:name='eth1'],
assuming that the interface 'eth1' is of type
'ianaift:ethernetCsmacd'.
If the type is given as an object identifier, a resource of
type 'object-identifier' matches if the match object
identifier is a prefix of the resource's object identifier.
For example, the value:
1.3.6.1.2.1.2.2
would match the resource object identifier:
1.3.6.1.2.1.2.2.1.1.5
If the type is given as an UUID or a string, it is interpreted
as an XML Schema regular expression, which matches a resource
of type 'yang:uuid' or 'string' if the given regular
expression matches the resource string.
If the type is given as an XPath expression, it is evaluated
in the following XPath context:
o The set of namespace declarations is the set of prefix
and namespace pairs for all YANG modules implemented by
the server, where the prefix is the YANG module name and
the namespace is as defined by the 'namespace' statement
in the YANG module.
If a leaf of this type is encoded in XML, all namespace
Vallin & Bjorklund Standards Track [Page 27]
^L
RFC 8632 A YANG Data Model for Alarm Management September 2019
declarations in scope on the leaf element are added to
the set of namespace declarations. If a prefix found in
the XML is already present in the set of namespace
declarations, the namespace in the XML is used.
o The set of variable bindings is empty.
o The function library is the core function library, and
the functions are defined in Section 10 of RFC 7950.
o The context node is the root node in the data tree.";
reference
"XML Schema Part 2: Datatypes Second Edition,
World Wide Web Consortium Recommendation
REC-xmlschema-2-20041028";
}
typedef alarm-text {
type string;
description
"The string used to inform operators about the alarm. This
MUST contain enough information for an operator to be able to
understand the problem and how to resolve it. If this string
contains structure, this format should be clearly documented
for programs to be able to parse that information.";
}
typedef severity {
type enumeration {
enum indeterminate {
value 2;
description
"Indicates that the severity level could not be
determined. This level SHOULD be avoided.";
}
enum warning {
value 3;
description
"The 'warning' severity level indicates the detection of a
potential or impending service-affecting fault, before any
significant effects have been felt. Action should be
taken to further diagnose (if necessary) and correct the
problem in order to prevent it from becoming a more
serious service-affecting fault.";
}
enum minor {
value 4;
description
Vallin & Bjorklund Standards Track [Page 28]
^L
RFC 8632 A YANG Data Model for Alarm Management September 2019
"The 'minor' severity level indicates the existence of a
non-service-affecting fault condition and that corrective
action should be taken in order to prevent a more serious
(for example, service-affecting) fault. Such a severity
can be reported, for example, when the detected alarm
condition is not currently degrading the capacity of the
resource.";
}
enum major {
value 5;
description
"The 'major' severity level indicates that a service-
affecting condition has developed and an urgent corrective
action is required. Such a severity can be reported, for
example, when there is a severe degradation in the
capability of the resource and its full capability must be
restored.";
}
enum critical {
value 6;
description
"The 'critical' severity level indicates that a service-
affecting condition has occurred and an immediate
corrective action is required. Such a severity can be
reported, for example, when a resource becomes totally out
of service and its capability must be restored.";
}
}
description
"The severity level of the alarm. Note well that the value
'clear' is not included. Whether or not an alarm is cleared
is a separate boolean flag.";
reference
"ITU-T Recommendation X.733: Information Technology
- Open Systems Interconnection
- System Management: Alarm Reporting Function";
}
typedef severity-with-clear {
type union {
type enumeration {
enum cleared {
value 1;
description
"The alarm is cleared by the instrumentation.";
}
}
type severity;
Vallin & Bjorklund Standards Track [Page 29]
^L
RFC 8632 A YANG Data Model for Alarm Management September 2019
}
description
"The severity level of the alarm including clear. This is used
only in notifications reporting state changes for an alarm.";
}
typedef writable-operator-state {
type enumeration {
enum none {
value 1;
description
"The alarm is not being taken care of.";
}
enum ack {
value 2;
description
"The alarm is being taken care of. Corrective action not
taken yet or has failed";
}
enum closed {
value 3;
description
"Corrective action taken successfully.";
}
}
description
"Operator states on an alarm. The 'closed' state indicates
that an operator considers the alarm being resolved. This is
separate from the alarm's 'is-cleared' leaf.";
}
typedef operator-state {
type union {
type writable-operator-state;
type enumeration {
enum shelved {
value 4;
description
"The alarm is shelved. Alarms in /alarms/shelved-alarms/
MUST be assigned this operator state by the server as
the last entry in the 'operator-state-change' list. The
text for that entry SHOULD include the shelf name.";
}
enum un-shelved {
value 5;
description
"The alarm is moved back to 'alarm-list' from a shelf.
Alarms that are moved from /alarms/shelved-alarms/ to
Vallin & Bjorklund Standards Track [Page 30]
^L
RFC 8632 A YANG Data Model for Alarm Management September 2019
/alarms/alarm-list MUST be assigned this state by the
server as the last entry in the 'operator-state-change'
list. The text for that entry SHOULD include the shelf
name.";
}
}
}
description
"Operator states on an alarm. The 'closed' state indicates
that an operator considers the alarm being resolved. This is
separate from the alarm's 'is-cleared' leaf.";
}
/* Alarm type */
typedef alarm-type-id {
type identityref {
base alarm-type-id;
}
description
"Identifies an alarm type. The description of the alarm type
id MUST indicate whether or not the alarm type is abstract.
An abstract alarm type is used as a base for other alarm type
ids and will not be used as a value for an alarm or be present
in the alarm inventory.";
}
typedef alarm-type-qualifier {
type string;
description
"If an alarm type cannot be fully specified at design time by
'alarm-type-id', this string qualifier is used in addition to
fully define a unique alarm type.
The definition of alarm qualifiers is considered to be part of
the instrumentation and is out of scope for this module. An
empty string is used when this is part of a key.";
}
/*
* Groupings
*/
grouping common-alarm-parameters {
description
"Common parameters for an alarm.
This grouping is used both in the alarm list and in the
Vallin & Bjorklund Standards Track [Page 31]
^L
RFC 8632 A YANG Data Model for Alarm Management September 2019
notification representing an alarm-state change.";
leaf resource {
type resource;
mandatory true;
description
"The alarming resource. See also 'alt-resource'. This could
be, for example, a reference to the alarming interface";
}
leaf alarm-type-id {
type alarm-type-id;
mandatory true;
description
"This leaf and the leaf 'alarm-type-qualifier' together
provide a unique identification of the alarm type.";
}
leaf alarm-type-qualifier {
type alarm-type-qualifier;
description
"This leaf is used when the 'alarm-type-id' leaf cannot
uniquely identify the alarm type. Normally, this is not the
case, and this leaf is the empty string.";
}
leaf-list alt-resource {
type resource;
description
"Used if the alarming resource is available over other
interfaces. This field can contain SNMP OIDs, CIM paths, or
3GPP distinguished names, for example.";
}
list related-alarm {
if-feature "alarm-correlation";
key "resource alarm-type-id alarm-type-qualifier";
description
"References to related alarms. Note that the related alarm
might have been purged from the alarm list.";
leaf resource {
type leafref {
path "/alarms/alarm-list/alarm/resource";
require-instance false;
}
description
"The alarming resource for the related alarm.";
}
leaf alarm-type-id {
type leafref {
path "/alarms/alarm-list/alarm"
+ "[resource=current()/../resource]"
+ "/alarm-type-id";
Vallin & Bjorklund Standards Track [Page 32]
^L
RFC 8632 A YANG Data Model for Alarm Management September 2019
require-instance false;
}
description
"The alarm type identifier for the related alarm.";
}
leaf alarm-type-qualifier {
type leafref {
path "/alarms/alarm-list/alarm"
+ "[resource=current()/../resource]"
+ "[alarm-type-id=current()/../alarm-type-id]"
+ "/alarm-type-qualifier";
require-instance false;
}
description
"The alarm qualifier for the related alarm.";
}
}
leaf-list impacted-resource {
if-feature "service-impact-analysis";
type resource;
description
"Resources that might be affected by this alarm. If the
system creates an alarm on a resource and also has a mapping
to other resources that might be impacted, these resources
can be listed in this leaf-list. In this way, the system
can create one alarm instead of several. For example, if an
interface has an alarm, the 'impacted-resource' can
reference the aggregated port channels.";
}
leaf-list root-cause-resource {
if-feature "root-cause-analysis";
type resource;
description
"Resources that are candidates for causing the alarm. If the
system has a mechanism to understand the candidate root
causes of an alarm, this leaf-list can be used to list the
root-cause candidate resources. In this way, the system can
create one alarm instead of several. An example might be a
logging system (alarm resource) that fails; the alarm can
reference the file system in the 'root-cause-resource'
leaf-list. Note that the intended use is not to also send
an alarm with the 'root-cause-resource' as an alarming
resource. The 'root-cause-resource' leaf-list is a hint and
should not also generate an alarm for the same problem.";
}
}
grouping alarm-state-change-parameters {
Vallin & Bjorklund Standards Track [Page 33]
^L
RFC 8632 A YANG Data Model for Alarm Management September 2019
description
"Parameters for an alarm-state change.
This grouping is used both in the alarm list's status-change
list and in the notification representing an alarm-state
change.";
leaf time {
type yang:date-and-time;
mandatory true;
description
"The time the status of the alarm changed. The value
represents the time the real alarm-state change appeared in
the resource and not when it was added to the alarm
list. The /alarm-list/alarm/last-changed MUST be set to the
same value.";
}
leaf perceived-severity {
type severity-with-clear;
mandatory true;
description
"The severity of the alarm as defined by X.733. Note that
this may not be the original severity since the alarm may
have changed severity.";
reference
"ITU-T Recommendation X.733: Information Technology
- Open Systems Interconnection
- System Management: Alarm Reporting Function";
}
leaf alarm-text {
type alarm-text;
mandatory true;
description
"A user-friendly text describing the alarm-state change.";
reference
"ITU-T Recommendation X.733: Information Technology
- Open Systems Interconnection
- System Management: Alarm Reporting Function";
}
}
grouping operator-parameters {
description
"This grouping defines parameters that can be changed by an
operator.";
leaf time {
type yang:date-and-time;
mandatory true;
description
Vallin & Bjorklund Standards Track [Page 34]
^L
RFC 8632 A YANG Data Model for Alarm Management September 2019
"Timestamp for operator action on the alarm.";
}
leaf operator {
type string;
mandatory true;
description
"The name of the operator that has acted on this alarm.";
}
leaf state {
type operator-state;
mandatory true;
description
"The operator's view of the alarm state.";
}
leaf text {
type string;
description
"Additional optional textual information provided by the
operator.";
}
}
grouping resource-alarm-parameters {
description
"Alarm parameters that originate from the resource view.";
leaf is-cleared {
type boolean;
mandatory true;
description
"Indicates the current clearance state of the alarm. An
alarm might toggle from active alarm to cleared alarm and
back to active again.";
}
leaf last-raised {
type yang:date-and-time;
mandatory true;
description
"An alarm may change severity level and toggle between
active and cleared during its lifetime. This leaf indicates
the last time it was raised ('is-cleared' = 'false').";
}
leaf last-changed {
type yang:date-and-time;
mandatory true;
description
"A timestamp when the 'status-change' or
'operator-state-change' list was last changed.";
}
Vallin & Bjorklund Standards Track [Page 35]
^L
RFC 8632 A YANG Data Model for Alarm Management September 2019
leaf perceived-severity {
type severity;
mandatory true;
description
"The last severity of the alarm.
If an alarm was raised with severity 'warning' but later
changed to 'major', this leaf will show 'major'.";
}
leaf alarm-text {
type alarm-text;
mandatory true;
description
"The last reported alarm text. This text should contain
information for an operator to be able to understand the
problem and how to resolve it.";
}
list status-change {
if-feature "alarm-history";
key "time";
min-elements 1;
description
"A list of status-change events for this alarm.
The entry with latest timestamp in this list MUST
correspond to the leafs 'is-cleared', 'perceived-severity',
and 'alarm-text' for the alarm.
This list is ordered according to the timestamps of alarm
state changes. The first item corresponds to the latest
state change.
The following state changes create an entry in this
list:
- changed severity (warning, minor, major, critical)
- clearance status; this also updates the 'is-cleared'
leaf
- alarm-text update";
uses alarm-state-change-parameters;
}
}
grouping filter-input {
description
"Grouping to specify a filter construct on alarm information.";
leaf alarm-clearance-status {
type enumeration {
enum any {
Vallin & Bjorklund Standards Track [Page 36]
^L
RFC 8632 A YANG Data Model for Alarm Management September 2019
description
"Ignore alarm-clearance status.";
}
enum cleared {
description
"Filter cleared alarms.";
}
enum not-cleared {
description
"Filter not-cleared alarms.";
}
}
mandatory true;
description
"The clearance status of the alarm.";
}
container older-than {
presence "Age specification";
description
"Matches the 'last-status-change' leaf in the alarm.";
choice age-spec {
description
"Filter using date and time age.";
case seconds {
leaf seconds {
type uint16;
description
"Age expressed in seconds.";
}
}
case minutes {
leaf minutes {
type uint16;
description
"Age expressed in minutes.";
}
}
case hours {
leaf hours {
type uint16;
description
"Age expressed in hours.";
}
}
case days {
leaf days {
type uint16;
description
Vallin & Bjorklund Standards Track [Page 37]
^L
RFC 8632 A YANG Data Model for Alarm Management September 2019
"Age expressed in days.";
}
}
case weeks {
leaf weeks {
type uint16;
description
"Age expressed in weeks.";
}
}
}
}
container severity {
presence "Severity filter";
choice sev-spec {
description
"Filter based on severity level.";
leaf below {
type severity;
description
"Severity less than this leaf.";
}
leaf is {
type severity;
description
"Severity level equal to this leaf.";
}
leaf above {
type severity;
description
"Severity level higher than this leaf.";
}
}
description
"Filter based on severity.";
}
container operator-state-filter {
if-feature "operator-actions";
presence "Operator state filter";
leaf state {
type operator-state;
description
"Filter on operator state.";
}
leaf user {
type string;
description
"Filter based on which operator.";
Vallin & Bjorklund Standards Track [Page 38]
^L
RFC 8632 A YANG Data Model for Alarm Management September 2019
}
description
"Filter based on operator state.";
}
}
/*
* The /alarms data tree
*/
container alarms {
description
"The top container for this module.";
container control {
description
"Configuration to control the alarm behavior.";
leaf max-alarm-status-changes {
type union {
type uint16;
type enumeration {
enum infinite {
description
"The status-change entries are accumulated
infinitely.";
}
}
}
default "32";
description
"The 'status-change' entries are kept in a circular list
per alarm. When this number is exceeded, the oldest
status change entry is automatically removed. If the
value is 'infinite', the status-change entries are
accumulated infinitely.";
}
leaf notify-status-changes {
type enumeration {
enum all-state-changes {
description
"Send notifications for all status changes.";
}
enum raise-and-clear {
description
"Send notifications only for raise, clear, and
re-raise. Notifications for severity-level changes or
alarm-text changes are not sent.";
}
enum severity-level {
Vallin & Bjorklund Standards Track [Page 39]
^L
RFC 8632 A YANG Data Model for Alarm Management September 2019
description
"Only send notifications for alarm-state changes
crossing the level specified in
'notify-severity-level'. Always send clear
notifications.";
}
}
must '. != "severity-level" or ../notify-severity-level' {
description
"When notify-status-changes is 'severity-level', a value
must be given for 'notify-severity-level'.";
}
default "all-state-changes";
description
"This leaf controls the notifications sent for alarm status
updates. There are three options:
1. Notifications are sent for all updates, severity-level
changes, and alarm-text changes.
2. Notifications are only sent for alarm raise and clear.
3. Notifications are sent for status changes equal to or
above the specified severity level. Clear
notifications shall always be sent. Notifications
shall also be sent for state changes that make an
alarm less severe than the specified level.
For example, in option 3, assume that the severity level
is set to major and that the alarm has the following state
changes:
[(Time, severity, clear)]:
[(T1, major, -), (T2, minor, -), (T3, warning, -),
(T4, minor, -), (T5, major, -), (T6, critical, -),
(T7, major. -), (T8, major, clear)]
In that case, notifications will be sent at times
T1, T2, T5, T6, T7, and T8.";
}
leaf notify-severity-level {
when '../notify-status-changes = "severity-level"';
type severity;
description
"Only send notifications for alarm-state changes crossing
the specified level. Always send clear notifications.";
}
container alarm-shelving {
Vallin & Bjorklund Standards Track [Page 40]
^L
RFC 8632 A YANG Data Model for Alarm Management September 2019
if-feature "alarm-shelving";
description
"The 'alarm-shelving/shelf' list is used to shelve
(block/filter) alarms. The conditions in the shelf
criteria are logically ANDed. The first matching shelf is
used, and an alarm is shelved only for this first match.
Matching alarms MUST appear in the
/alarms/shelved-alarms/shelved-alarm list, and
non-matching /alarms MUST appear in the
/alarms/alarm-list/alarm list. The server does not send
any notifications for shelved alarms.
The server MUST maintain states (e.g., severity
changes) for the shelved alarms.
Alarms that match the criteria shall have an
operator state 'shelved'. When the shelf
configuration removes an alarm from the shelf, the server
shall add the operator state 'un-shelved'.";
list shelf {
key "name";
ordered-by user;
leaf name {
type string;
description
"An arbitrary name for the alarm shelf.";
}
description
"Each entry defines the criteria for shelving alarms.
Criteria are ANDed. If no criteria are specified,
all alarms will be shelved.";
leaf-list resource {
type resource-match;
description
"Shelve alarms for matching resources.";
}
list alarm-type {
key "alarm-type-id alarm-type-qualifier-match";
description
"Any alarm matching the combined criteria of
'alarm-type-id' and 'alarm-type-qualifier-match'
MUST be matched.";
leaf alarm-type-id {
type alarm-type-id;
description
"Shelve all alarms that have an 'alarm-type-id' that
is equal to or derived from the given
'alarm-type-id'.";
Vallin & Bjorklund Standards Track [Page 41]
^L
RFC 8632 A YANG Data Model for Alarm Management September 2019
}
leaf alarm-type-qualifier-match {
type string;
description
"An XML Schema regular expression that is used to
match an alarm type qualifier. Shelve all alarms
that match this regular expression for the alarm
type qualifier.";
reference
"XML Schema Part 2: Datatypes Second Edition,
World Wide Web Consortium Recommendation
REC-xmlschema-2-20041028";
}
}
leaf description {
type string;
description
"An optional textual description of the shelf. This
description should include the reason for shelving
these alarms.";
}
}
}
}
container alarm-inventory {
config false;
description
"The 'alarm-inventory/alarm-type' list contains all possible
alarm types for the system.
If the system knows for which resources a specific alarm
type can appear, it is also identified in the inventory.
The list also tells if each alarm type has a corresponding
clear state. The inventory shall only contain concrete
alarm types.
The alarm inventory MUST be updated by the system when new
alarms can appear. This can be the case when installing new
software modules or inserting new card types. A
notification 'alarm-inventory-changed' is sent when the
inventory is changed.";
list alarm-type {
key "alarm-type-id alarm-type-qualifier";
description
"An entry in this list defines a possible alarm.";
leaf alarm-type-id {
type alarm-type-id;
description
Vallin & Bjorklund Standards Track [Page 42]
^L
RFC 8632 A YANG Data Model for Alarm Management September 2019
"The statically defined alarm type identifier for this
possible alarm.";
}
leaf alarm-type-qualifier {
type alarm-type-qualifier;
description
"The optionally dynamically defined alarm type identifier
for this possible alarm.";
}
leaf-list resource {
type resource-match;
description
"Optionally, specifies for which resources the alarm type
is valid.";
}
leaf will-clear {
type boolean;
mandatory true;
description
"This leaf tells the operator if the alarm will be
cleared when the correct corrective action has been
taken. Implementations SHOULD strive for detecting the
cleared state for all alarm types.
If this leaf is 'true', the operator can monitor the
alarm until it becomes cleared after the corrective
action has been taken.
If this leaf is 'false', the operator needs to validate
that the alarm is no longer active using other
mechanisms. Alarms can lack a corresponding clear due
to missing instrumentation or no logical
corresponding clear state.";
}
leaf-list severity-level {
type severity;
description
"This leaf-list indicates the possible severity levels of
this alarm type. Note well that 'clear' is not part of
the severity type. In general, the severity level
should be defined by the instrumentation based on the
dynamic state, rather than being defined statically by
the alarm type, in order to provide a relevant severity
level based on dynamic state and context. However, most
alarm types have a defined set of possible severity
levels, and this should be provided here.";
}
leaf description {
Vallin & Bjorklund Standards Track [Page 43]
^L
RFC 8632 A YANG Data Model for Alarm Management September 2019
type string;
mandatory true;
description
"A description of the possible alarm. It SHOULD include
information on possible underlying root causes and
corrective actions.";
}
}
}
container summary {
if-feature "alarm-summary";
config false;
description
"This container gives a summary of the number of alarms.";
list alarm-summary {
key "severity";
description
"A global summary of all alarms in the system. The summary
does not include shelved alarms.";
leaf severity {
type severity;
description
"Alarm summary for this severity level.";
}
leaf total {
type yang:gauge32;
description
"Total number of alarms of this severity level.";
}
leaf not-cleared {
type yang:gauge32;
description
"Total number of alarms of this severity level
that are not cleared.";
}
leaf cleared {
type yang:gauge32;
description
"For this severity level, the number of alarms that are
cleared.";
}
leaf cleared-not-closed {
if-feature "operator-actions";
type yang:gauge32;
description
"For this severity level, the number of alarms that are
cleared but not closed.";
}
Vallin & Bjorklund Standards Track [Page 44]
^L
RFC 8632 A YANG Data Model for Alarm Management September 2019
leaf cleared-closed {
if-feature "operator-actions";
type yang:gauge32;
description
"For this severity level, the number of alarms that are
cleared and closed.";
}
leaf not-cleared-closed {
if-feature "operator-actions";
type yang:gauge32;
description
"For this severity level, the number of alarms that are
not cleared but closed.";
}
leaf not-cleared-not-closed {
if-feature "operator-actions";
type yang:gauge32;
description
"For this severity level, the number of alarms that are
not cleared and not closed.";
}
}
leaf shelves-active {
if-feature "alarm-shelving";
type empty;
description
"This is a hint to the operator that there are active
alarm shelves. This leaf MUST exist if the
/alarms/shelved-alarms/number-of-shelved-alarms is > 0.";
}
}
container alarm-list {
config false;
description
"The alarms in the system.";
leaf number-of-alarms {
type yang:gauge32;
description
"This object shows the total number of
alarms in the system, i.e., the total number
of entries in the alarm list.";
}
leaf last-changed {
type yang:date-and-time;
description
"A timestamp when the alarm list was last
changed. The value can be used by a manager to
initiate an alarm resynchronization procedure.";
Vallin & Bjorklund Standards Track [Page 45]
^L
RFC 8632 A YANG Data Model for Alarm Management September 2019
}
list alarm {
key "resource alarm-type-id alarm-type-qualifier";
description
"The list of alarms. Each entry in the list holds one
alarm for a given alarm type and resource. An alarm can
be updated from the underlying resource or by the user.
The following leafs are maintained by the resource:
'is-cleared', 'last-change', 'perceived-severity', and
'alarm-text'. An operator can change 'operator-state' and
'operator-text'.
Entries appear in the alarm list the first time an alarm
becomes active for a given alarm type and resource.
Entries do not get deleted when the alarm is cleared.
Clear status is represented as a boolean flag.
Alarm entries are removed, i.e., purged, from the list by
an explicit purge action. For example, purge all alarms
that are cleared and in closed operator state that are
older than 24 hours. Purged alarms are removed from the
alarm list. If the alarm resource state changes after a
purge, the alarm will reappear in the alarm list.
Systems may also remove alarms based on locally configured
policies; this is out of scope for this module.";
uses common-alarm-parameters;
leaf time-created {
type yang:date-and-time;
mandatory true;
description
"The timestamp when this alarm entry was created. This
represents the first time the alarm appeared; it can
also represent that the alarm reappeared after a purge.
Further state changes of the same alarm do not change
this leaf; these changes will update the 'last-changed'
leaf.";
}
uses resource-alarm-parameters;
list operator-state-change {
if-feature "operator-actions";
key "time";
description
"This list is used by operators to indicate the state of
human intervention on an alarm. For example, if an
operator has seen an alarm, the operator can add a new
item to this list indicating that the alarm is
acknowledged.";
Vallin & Bjorklund Standards Track [Page 46]
^L
RFC 8632 A YANG Data Model for Alarm Management September 2019
uses operator-parameters;
}
action set-operator-state {
if-feature "operator-actions";
description
"This is a means for the operator to indicate the level
of human intervention on an alarm.";
input {
leaf state {
type writable-operator-state;
mandatory true;
description
"Set this operator state.";
}
leaf text {
type string;
description
"Additional optional textual information.";
}
}
}
notification operator-action {
if-feature "operator-actions";
description
"This notification is used to report that an operator
acted upon an alarm.";
uses operator-parameters;
}
}
action purge-alarms {
description
"This operation requests that the server delete entries
from the alarm list according to the supplied criteria.
Typically, this operation is used to delete alarms that
are in closed operator state and older than a specified
time.
The number of purged alarms is returned as an output
parameter.";
input {
uses filter-input;
}
output {
leaf purged-alarms {
type uint32;
description
"Number of purged alarms.";
Vallin & Bjorklund Standards Track [Page 47]
^L
RFC 8632 A YANG Data Model for Alarm Management September 2019
}
}
}
action compress-alarms {
if-feature "alarm-history";
description
"This operation requests that the server compress
entries in the alarm list by removing all but the
latest 'status-change' entry for all matching alarms.
Conditions in the input are logically ANDed. If no
input condition is given, all alarms are compressed.";
input {
leaf resource {
type resource-match;
description
"Compress the alarms matching this resource.";
}
leaf alarm-type-id {
type leafref {
path "/alarms/alarm-list/alarm/alarm-type-id";
require-instance false;
}
description
"Compress alarms with this 'alarm-type-id'.";
}
leaf alarm-type-qualifier {
type leafref {
path "/alarms/alarm-list/alarm/alarm-type-qualifier";
require-instance false;
}
description
"Compress the alarms with this
'alarm-type-qualifier'.";
}
}
output {
leaf compressed-alarms {
type uint32;
description
"Number of compressed alarm entries.";
}
}
}
}
container shelved-alarms {
if-feature "alarm-shelving";
config false;
description
Vallin & Bjorklund Standards Track [Page 48]
^L
RFC 8632 A YANG Data Model for Alarm Management September 2019
"The shelved alarms. Alarms appear here if they match the
criteria in /alarms/control/alarm-shelving. This list does
not generate any notifications. The list represents alarms
that are considered not relevant by the operator. Alarms in
this list have an 'operator-state' of 'shelved'. This
cannot be changed.";
leaf number-of-shelved-alarms {
type yang:gauge32;
description
"This object shows the total number of current
alarms, i.e., the total number of entries
in the alarm list.";
}
leaf shelved-alarms-last-changed {
type yang:date-and-time;
description
"A timestamp when the shelved-alarm list was last changed.
The value can be used by a manager to initiate an alarm
resynchronization procedure.";
}
list shelved-alarm {
key "resource alarm-type-id alarm-type-qualifier";
description
"The list of shelved alarms. Shelved alarms can only be
updated from the underlying resource; no operator actions
are supported.";
uses common-alarm-parameters;
leaf shelf-name {
type leafref {
path "/alarms/control/alarm-shelving/shelf/name";
require-instance false;
}
description
"The name of the shelf.";
}
uses resource-alarm-parameters;
list operator-state-change {
if-feature "operator-actions";
key "time";
description
"This list is used by operators to indicate the state of
human intervention on an alarm. For shelved alarms, the
system has set the list item in the list to 'shelved'.";
uses operator-parameters;
}
}
action purge-shelved-alarms {
description
Vallin & Bjorklund Standards Track [Page 49]
^L
RFC 8632 A YANG Data Model for Alarm Management September 2019
"This operation requests that the server delete entries from
the shelved-alarm list according to the supplied criteria.
In the shelved-alarm list, it makes sense to delete alarms
that are not relevant anymore.
The number of purged alarms is returned as an output
parameter.";
input {
uses filter-input;
}
output {
leaf purged-alarms {
type uint32;
description
"Number of purged alarms.";
}
}
}
action compress-shelved-alarms {
if-feature "alarm-history";
description
"This operation requests that the server compress entries
in the shelved-alarm list by removing all but the latest
'status-change' entry for all matching shelved alarms.
Conditions in the input are logically ANDed. If no input
condition is given, all alarms are compressed.";
input {
leaf resource {
type leafref {
path "/alarms/shelved-alarms/shelved-alarm/resource";
require-instance false;
}
description
"Compress the alarms with this resource.";
}
leaf alarm-type-id {
type leafref {
path "/alarms/shelved-alarms/shelved-alarm"
+ "/alarm-type-id";
require-instance false;
}
description
"Compress alarms with this 'alarm-type-id'.";
}
leaf alarm-type-qualifier {
type leafref {
path "/alarms/shelved-alarms/shelved-alarm"
+ "/alarm-type-qualifier";
Vallin & Bjorklund Standards Track [Page 50]
^L
RFC 8632 A YANG Data Model for Alarm Management September 2019
require-instance false;
}
description
"Compress the alarms with this
'alarm-type-qualifier'.";
}
}
output {
leaf compressed-alarms {
type uint32;
description
"Number of compressed alarm entries.";
}
}
}
}
list alarm-profile {
if-feature "alarm-profile";
key "alarm-type-id alarm-type-qualifier-match resource";
ordered-by user;
description
"This list is used to assign further information or
configuration for each alarm type. This module supports a
mechanism where the client can override the system-default
alarm severity levels. The 'alarm-profile' is also a useful
augmentation point for specific additions to alarm types.";
leaf alarm-type-id {
type alarm-type-id;
description
"The alarm type identifier to match.";
}
leaf alarm-type-qualifier-match {
type string;
description
"An XML Schema regular expression that is used to match the
alarm type qualifier.";
reference
"XML Schema Part 2: Datatypes Second Edition,
World Wide Web Consortium Recommendation
REC-xmlschema-2-20041028";
}
leaf resource {
type resource-match;
description
"Specifies which resources to match.";
}
leaf description {
type string;
Vallin & Bjorklund Standards Track [Page 51]
^L
RFC 8632 A YANG Data Model for Alarm Management September 2019
mandatory true;
description
"A description of the alarm profile.";
}
container alarm-severity-assignment-profile {
if-feature "severity-assignment";
description
"The client can override the system-default severity
level.";
reference
"ITU-T Recommendation M.3100:
Generic network information model
ITU-T Recommendation M.3160:
Generic, protocol-neutral management information model";
leaf-list severity-level {
type severity;
ordered-by user;
description
"Specifies the configured severity level(s) for the
matching alarm. If the alarm has several severity
levels, the leaf-list shall be given in rising severity
order. The original M3100/M3160 ASAP function only
allows for a one-to-one mapping between alarm type and
severity, but since YANG module supports stateful
alarms, the mapping must allow for several severity
levels.
Assume a high-utilization alarm type with two thresholds
with the system-default severity levels of threshold1 =
warning and threshold2 = minor. Setting this leaf-list
to (minor, major) will assign the severity levels as
threshold1 = minor and threshold2 = major";
}
}
}
}
/*
* Notifications
*/
notification alarm-notification {
description
"This notification is used to report a state change for an
alarm. The same notification is used for reporting a newly
raised alarm, a cleared alarm, or changing the text and/or
severity of an existing alarm.";
uses common-alarm-parameters;
Vallin & Bjorklund Standards Track [Page 52]
^L
RFC 8632 A YANG Data Model for Alarm Management September 2019
uses alarm-state-change-parameters;
}
notification alarm-inventory-changed {
description
"This notification is used to report that the list of possible
alarms has changed. This can happen when, for example, a new
software module is installed or a new physical card is
inserted.";
}
}
<CODE ENDS>
7. The X.733 Mapping Module
Many alarm systems are based on the X.733 [X.733] and X.736 [X.736]
alarm standards. This module "ietf-alarms-x733" augments the alarm
inventory, the alarm lists, and the alarm notification with X.733 and
X.736 parameters.
The module also supports a feature whereby the alarm manager can
configure the mapping from alarm types to X.733 "event-type" and
"probable-cause" parameters. This might be needed when the default
mapping provided by the system is in conflict with other management
systems or not considered correct.
Note that the term "resource" in this document is synonymous to the
ITU term "managed object".
This YANG module references [RFC6991], [X.721], [X.733], and [X.736].
<CODE BEGINS> file "ietf-alarms-x733@2019-09-11.yang"
module ietf-alarms-x733 {
yang-version 1.1;
namespace "urn:ietf:params:xml:ns:yang:ietf-alarms-x733";
prefix x733;
import ietf-alarms {
prefix al;
}
import ietf-yang-types {
prefix yang;
reference
"RFC 6991: Common YANG Data Types";
}
organization
"IETF CCAMP Working Group";
Vallin & Bjorklund Standards Track [Page 53]
^L
RFC 8632 A YANG Data Model for Alarm Management September 2019
contact
"WG Web: <https://trac.ietf.org/trac/ccamp>
WG List: <mailto:ccamp@ietf.org>
Editor: Stefan Vallin
<mailto:stefan@wallan.se>
Editor: Martin Bjorklund
<mailto:mbj@tail-f.com>";
description
"This module augments the ietf-alarms module with X.733 alarm
parameters.
The following structures are augmented with the X.733 event type
and probable cause:
1) alarms/alarm-inventory: all possible alarm types
2) alarms/alarm-list: every alarm in the system
3) alarm-notification: notifications indicating alarm-state
changes
4) alarms/shelved-alarms
The module also optionally allows the alarm-management system
to configure the mapping from the ietf-alarms' alarm keys
to the ITU tuple (event-type, probable-cause).
The mapping does not include a corresponding problem value
specific to X.733. The recommendation is to use the
'alarm-type-qualifier' leaf, which serves the same purpose.
The module uses an integer and a corresponding string for
probable cause instead of a globally defined enumeration, in
order to be able to manage conflicting enumeration definitions.
A single globally defined enumeration is challenging to
maintain.
The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL
NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'NOT RECOMMENDED',
'MAY', and 'OPTIONAL' in this document are to be interpreted as
described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
they appear in all capitals, as shown here.
Copyright (c) 2019 IETF Trust and the persons identified as
authors of the code. All rights reserved.
Redistribution and use in source and binary forms, with or
without modification, is permitted pursuant to, and subject to
the license terms contained in, the Simplified BSD License set
Vallin & Bjorklund Standards Track [Page 54]
^L
RFC 8632 A YANG Data Model for Alarm Management September 2019
forth in Section 4.c of the IETF Trust's Legal Provisions
Relating to IETF Documents
(https://trustee.ietf.org/license-info).
This version of this YANG module is part of RFC 8632; see
the RFC itself for full legal notices.";
reference
"ITU-T Recommendation X.733: Information Technology
- Open Systems Interconnection
- System Management: Alarm Reporting Function";
revision 2019-09-11 {
description
"Initial revision.";
reference
"RFC 8632: A YANG Data Model for Alarm Management";
}
/*
* Features
*/
feature configure-x733-mapping {
description
"The system supports configurable X733 mapping from
the ietf-alarms' alarm-type to X733 event-type
and probable-cause.";
}
/*
* Typedefs
*/
typedef event-type {
type enumeration {
enum other {
value 1;
description
"None of the below.";
}
enum communications-alarm {
value 2;
description
"An alarm of this type is principally associated with the
procedures and/or processes required to convey
information from one point to another.";
}
enum quality-of-service-alarm {
Vallin & Bjorklund Standards Track [Page 55]
^L
RFC 8632 A YANG Data Model for Alarm Management September 2019
value 3;
description
"An alarm of this type is principally associated with a
degradation in the quality of a service.";
}
enum processing-error-alarm {
value 4;
description
"An alarm of this type is principally associated with a
software or processing fault.";
}
enum equipment-alarm {
value 5;
description
"An alarm of this type is principally associated with an
equipment fault.";
}
enum environmental-alarm {
value 6;
description
"An alarm of this type is principally associated with a
condition relating to an enclosure in which the equipment
resides.";
}
enum integrity-violation {
value 7;
description
"An indication that information may have been illegally
modified, inserted, or deleted.";
}
enum operational-violation {
value 8;
description
"An indication that the provision of the requested service
was not possible due to the unavailability, malfunction,
or incorrect invocation of the service.";
}
enum physical-violation {
value 9;
description
"An indication that a physical resource has been violated
in a way that suggests a security attack.";
}
enum security-service-or-mechanism-violation {
value 10;
description
"An indication that a security attack has been detected by
a security service or mechanism.";
Vallin & Bjorklund Standards Track [Page 56]
^L
RFC 8632 A YANG Data Model for Alarm Management September 2019
}
enum time-domain-violation {
value 11;
description
"An indication that an event has occurred at an unexpected
or prohibited time.";
}
}
description
"The event types as defined by X.733 and X.736.";
reference
"ITU-T Recommendation X.733: Information Technology
- Open Systems Interconnection
- System Management: Alarm Reporting Function
ITU-T Recommendation X.736: Information Technology
- Open Systems Interconnection
- System Management: Security Alarm Reporting Function";
}
typedef trend {
type enumeration {
enum less-severe {
description
"There is at least one outstanding alarm of a
severity higher (more severe) than that in the
current alarm.";
}
enum no-change {
description
"The Perceived severity reported in the current
alarm is the same as the highest (most severe)
of any of the outstanding alarms";
}
enum more-severe {
description
"The Perceived severity in the current alarm is
higher (more severe) than that reported in any
of the outstanding alarms.";
}
}
description
"This type is used to describe the
severity trend of the alarming resource.";
reference
"ITU-T Recommendation X.721: Information Technology
- Open Systems Interconnection
- Structure of management information:
Definition of management information
Vallin & Bjorklund Standards Track [Page 57]
^L
RFC 8632 A YANG Data Model for Alarm Management September 2019
Module Attribute-ASN1Module";
}
typedef value-type {
type union {
type int64;
type uint64;
type decimal64 {
fraction-digits 2;
}
}
description
"A generic union type to match the ITU choice of
integer and real.";
}
/*
* Groupings
*/
grouping x733-alarm-parameters {
description
"Common X.733 parameters for alarms.";
leaf event-type {
type event-type;
description
"The X.733/X.736 event type for this alarm.";
}
leaf probable-cause {
type uint32;
description
"The X.733 probable cause for this alarm.";
}
leaf probable-cause-string {
type string;
description
"The user-friendly string matching
the probable cause integer value. The string
SHOULD match the X.733 enumeration. For example,
value 27 is 'localNodeTransmissionError'.";
}
container threshold-information {
description
"This parameter shall be present when the alarm
is a result of crossing a threshold. ";
leaf triggered-threshold {
type string;
description
Vallin & Bjorklund Standards Track [Page 58]
^L
RFC 8632 A YANG Data Model for Alarm Management September 2019
"The identifier of the threshold attribute that
caused the notification.";
}
leaf observed-value {
type value-type;
description
"The value of the gauge or counter that crossed
the threshold. This may be different from the
threshold value if, for example, the gauge may
only take on discrete values.";
}
choice threshold-level {
description
"In the case of a gauge, the threshold level specifies
a pair of threshold values: the first is the value
of the crossed threshold, and the second is its
corresponding hysteresis; in the case of a counter,
the threshold level specifies only the threshold
value.";
case up {
leaf up-high {
type value-type;
description
"The going-up threshold for raising the alarm.";
}
leaf up-low {
type value-type;
description
"The going-down threshold for clearing the alarm.
This is used for hysteresis functions for gauges.";
}
}
case down {
leaf down-low {
type value-type;
description
"The going-down threshold for raising the alarm.";
}
leaf down-high {
type value-type;
description
"The going-up threshold for clearing the alarm.
This is used for hysteresis functions for gauges.";
}
}
}
leaf arm-time {
type yang:date-and-time;
Vallin & Bjorklund Standards Track [Page 59]
^L
RFC 8632 A YANG Data Model for Alarm Management September 2019
description
"For a gauge threshold, it's the time at which the
threshold was last re-armed; namely, it's the time after
the previous threshold crossing at which the hysteresis
value of the threshold was exceeded, thus again permitting
the generation of notifications when the threshold is
crossed. For a counter threshold, it's the later of the
time at which the threshold offset was last applied or the
counter was last initialized (for resettable counters).";
}
}
list monitored-attributes {
uses attribute;
key "id";
description
"The Monitored attributes parameter, when present, defines
one or more attributes of the resource and their
corresponding values at the time of the alarm.";
}
leaf-list proposed-repair-actions {
type string;
description
"This parameter, when present, is used if the cause is
known and the system being managed can suggest one or
more solutions (such as switch in standby equipment,
retry, and replace media).";
}
leaf trend-indication {
type trend;
description
"This parameter specifies the current severity
trend of the resource. If present, it indicates
that there are one or more alarms ('outstanding
alarms') that have not been cleared and that
pertain to the same resource as this alarm
('current alarm') does. The possible values are:
more-severe: The Perceived severity in the current
alarm is higher (more severe) than that reported in
any of the outstanding alarms.
no-change: The Perceived severity reported in the
current alarm is the same as the highest (most severe)
of any of the outstanding alarms.
less-severe: There is at least one outstanding alarm
of a severity higher (more severe) than that in the
current alarm.";
Vallin & Bjorklund Standards Track [Page 60]
^L
RFC 8632 A YANG Data Model for Alarm Management September 2019
}
leaf backedup-status {
type boolean;
description
"This parameter, when present, specifies whether or not the
object emitting the alarm has been backed up; therefore, it
is possible to know whether or not services provided to the
user have been disrupted when this parameter is included.
The use of this field in conjunction with the
'perceived-severity' field provides information in an
independent form to qualify the seriousness of the alarm and
the ability of the system as a whole to continue to provide
services. If the value of this parameter is true, it
indicates that the object emitting the alarm has been backed
up; if false, the object has not been backed up.";
}
leaf backup-object {
type al:resource;
description
"This parameter SHALL be present when the 'backedup-status'
parameter is present and has the value 'true'. This
parameter specifies the managed object instance that is
providing back-up services for the managed object to which
the notification pertains. This parameter is useful, for
example, when the back-up object is from a pool of objects,
any of which may be dynamically allocated to replace a
faulty object.";
}
list additional-information {
key "identifier";
description
"This parameter allows the inclusion of an additional
information set in the alarm. It is a series of data
structures, each of which contains three items of
information: an identifier, a significance indicator,
and the problem information.";
leaf identifier {
type string;
description
"Identifies the data type of the information parameter.";
}
leaf significant {
type boolean;
description
"Set to 'true' if the receiving system must be able to
parse the contents of the information subparameter
for the event report to be fully understood.";
}
Vallin & Bjorklund Standards Track [Page 61]
^L
RFC 8632 A YANG Data Model for Alarm Management September 2019
leaf information {
type string;
description
"Additional information about the alarm.";
}
}
leaf security-alarm-detector {
type al:resource;
description
"This parameter identifies the detector of the security
alarm.";
}
leaf service-user {
type al:resource;
description
"This parameter identifies the service-user whose request
for service led to the generation of the security alarm.";
}
leaf service-provider {
type al:resource;
description
"This parameter identifies the intended service-provider
of the service that led to the generation of the security
alarm.";
}
reference
"ITU-T Recommendation X.733: Information Technology
- Open Systems Interconnection
- System Management: Alarm Reporting Function
ITU-T Recommendation X.736: Information Technology
- Open Systems Interconnection
- System Management: Security Alarm Reporting Function";
}
grouping x733-alarm-definition-parameters {
description
"Common X.733 parameters for alarm definitions.
This grouping is used to define those alarm
attributes that can be mapped from the alarm-type
mechanism in the ietf-alarms module.";
leaf event-type {
type event-type;
description
"The alarm type has this X.733/X.736 event type.";
}
leaf probable-cause {
type uint32;
description
Vallin & Bjorklund Standards Track [Page 62]
^L
RFC 8632 A YANG Data Model for Alarm Management September 2019
"The alarm type has this X.733 probable cause value.
This module defines probable cause as an integer
and not as an enumeration. The reason being that the
primary use of probable cause is in the management
application if it is based on the X.733 standard.
However, most management applications have their own
defined enum definitions and merging enums from
different systems might create conflicts. By using
a configurable uint32, the system can be configured
to match the enum values in the management application.";
}
leaf probable-cause-string {
type string;
description
"This string can be used to give a user-friendly string
to the probable cause value.";
}
}
grouping attribute {
description
"A grouping to match the ITU generic reference to
an attribute.";
leaf id {
type al:resource;
description
"The resource representing the attribute.";
}
leaf value {
type string;
description
"The value represented as a string since it could
be of any type.";
}
reference
"ITU-T Recommendation X.721: Information Technology
- Open Systems Interconnection
- Structure of management information:
Definition of management information
Module Attribute-ASN1Module";
}
/*
* Add X.733 parameters to the alarm definitions, alarms,
* and notification.
*/
augment "/al:alarms/al:alarm-inventory/al:alarm-type" {
Vallin & Bjorklund Standards Track [Page 63]
^L
RFC 8632 A YANG Data Model for Alarm Management September 2019
description
"Augment X.733 mapping information to the alarm inventory.";
uses x733-alarm-definition-parameters;
}
/*
* Add X.733 configurable mapping.
*/
augment "/al:alarms/al:control" {
description
"Add X.733 mapping capabilities. ";
list x733-mapping {
if-feature "configure-x733-mapping";
key "alarm-type-id alarm-type-qualifier-match";
description
"This list allows a management application to control the
X.733 mapping for all alarm types in the system. Any entry
in this list will allow the alarm manager to override the
default X.733 mapping in the system, and the final mapping
will be shown in the alarm inventory.";
leaf alarm-type-id {
type al:alarm-type-id;
description
"Map the alarm type with this alarm type identifier.";
}
leaf alarm-type-qualifier-match {
type string;
description
"A W3C regular expression that is used when mapping an
alarm type and alarm-type-qualifier to X.733 parameters.";
}
uses x733-alarm-definition-parameters;
}
}
augment "/al:alarms/al:alarm-list/al:alarm" {
description
"Augment X.733 information to the alarm.";
uses x733-alarm-parameters;
}
augment "/al:alarms/al:shelved-alarms/al:shelved-alarm" {
description
"Augment X.733 information to the alarm.";
uses x733-alarm-parameters;
}
Vallin & Bjorklund Standards Track [Page 64]
^L
RFC 8632 A YANG Data Model for Alarm Management September 2019
augment "/al:alarm-notification" {
description
"Augment X.733 information to the alarm notification.";
uses x733-alarm-parameters;
}
}
<CODE ENDS>
8. IANA Considerations
This document registers two URIs in the "IETF XML Registry"
[RFC3688]. Following the format in RFC 3688, the following
registrations have been made.
URI: urn:ietf:params:xml:ns:yang:ietf-alarms
Registrant Contact: The IESG.
XML: N/A; the requested URI is an XML namespace.
URI: urn:ietf:params:xml:ns:yang:ietf-alarms-x733
Registrant Contact: The IESG.
XML: N/A; the requested URI is an XML namespace.
This document registers two YANG modules in the "YANG Module Names"
registry [RFC6020].
name: ietf-alarms
namespace: urn:ietf:params:xml:ns:yang:ietf-alarms
prefix: al
reference: RFC 8632
name: ietf-alarms-x733
namespace: urn:ietf:params:xml:ns:yang:ietf-alarms-x733
prefix: x733
reference: RFC 8632
9. Security Considerations
The YANG modules specified in this document define a schema for data
that is designed to be accessed via network management protocols such
as NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF layer
is the secure transport layer, and the mandatory-to-implement secure
transport is Secure Shell (SSH) [RFC6242]. The lowest RESTCONF layer
is HTTPS, and the mandatory-to-implement secure transport is TLS
[RFC8446].
Vallin & Bjorklund Standards Track [Page 65]
^L
RFC 8632 A YANG Data Model for Alarm Management September 2019
The Network Configuration Access Control Model (NACM) [RFC8341]
provides the means to restrict access for particular NETCONF or
RESTCONF users to a preconfigured subset of all available NETCONF or
RESTCONF protocol operations and content.
The list of alarms itself may be potentially sensitive from a
security perspective, in that it potentially gives an attacker an
authoritative picture of the (broken) state of the network.
There are a number of data nodes defined in the YANG modules that are
writable/creatable/deletable (i.e., config true, which is the
default). These data nodes may be considered sensitive or vulnerable
in some network environments. Write operations (e.g., edit-config)
to these data nodes without proper protection can have a negative
effect on network operations. These are the subtrees and data nodes
in the "ietf-alarms" module and their sensitivity/vulnerability:
"/alarms/control/notify-status-changes": This leaf controls whether
an alarm should notify based on various state changes.
Unauthorized access to this leaf could have a negative impact on
operational procedures relying on fine-grained alarm-state change
reporting.
"/alarms/control/alarm-shelving/shelf": This list controls the
shelving (blocking) of alarms. Unauthorized access to this list
could jeopardize the alarm-management procedures, since these
alarms will not be notified or be part of the alarm list.
"/alarms/control/alarm-profile/alarm-severity-assignment-profile":
This list controls the severity levels of an alarm. Unauthorized
access to this could, for example, downgrade the severity of an
alarm and thereby have a negative impact on the alarm-monitoring
process.
Some of the RPC operations in this YANG module may be considered
sensitive or vulnerable in some network environments. It is thus
important to control access to these operations. These are the
operations and their sensitivity/vulnerability:
"/alarms/alarm-list/purge-alarms": This action deletes alarms from
the alarm list. Unauthorized use of this action could jeopardize
the alarm-management procedures since the deleted alarms may be
vital for the alarm-management application.
"/alarms/alarm-list/alarm/set-operator-state": This action can be
used by the operator to indicate the level of human intervention
on an alarm. Unauthorized use of this action could result in
alarms being ignored by operators.
Vallin & Bjorklund Standards Track [Page 66]
^L
RFC 8632 A YANG Data Model for Alarm Management September 2019
10. References
10.1. Normative References
[M.3100] International Telecommunication Union, "Generic network
information model", ITU-T Recommendation M.3100, April
2005, <https://www.itu.int/rec/T-REC-M.3100-200504-I/en>.
[M.3160] International Telecommunication Union, "Generic,
protocol-neutral management information model",
ITU-T Recommendation M.3100, November 2008,
<https://www.itu.int/rec/T-REC-M.3160-200811-I>.
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,
<https://www.rfc-editor.org/info/rfc2119>.
[RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
DOI 10.17487/RFC3688, January 2004,
<https://www.rfc-editor.org/info/rfc3688>.
[RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
the Network Configuration Protocol (NETCONF)", RFC 6020,
DOI 10.17487/RFC6020, October 2010,
<https://www.rfc-editor.org/info/rfc6020>.
[RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
and A. Bierman, Ed., "Network Configuration Protocol
(NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
<https://www.rfc-editor.org/info/rfc6241>.
[RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure
Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
<https://www.rfc-editor.org/info/rfc6242>.
[RFC6991] Schoenwaelder, J., Ed., "Common YANG Data Types",
RFC 6991, DOI 10.17487/RFC6991, July 2013,
<https://www.rfc-editor.org/info/rfc6991>.
[RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
RFC 7950, DOI 10.17487/RFC7950, August 2016,
<https://www.rfc-editor.org/info/rfc7950>.
[RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
<https://www.rfc-editor.org/info/rfc8040>.
Vallin & Bjorklund Standards Track [Page 67]
^L
RFC 8632 A YANG Data Model for Alarm Management September 2019
[RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
May 2017, <https://www.rfc-editor.org/info/rfc8174>.
[RFC8341] Bierman, A. and M. Bjorklund, "Network Configuration
Access Control Model", STD 91, RFC 8341,
DOI 10.17487/RFC8341, March 2018,
<https://www.rfc-editor.org/info/rfc8341>.
[RFC8348] Bierman, A., Bjorklund, M., Dong, J., and D. Romascanu, "A
YANG Data Model for Hardware Management", RFC 8348,
DOI 10.17487/RFC8348, March 2018,
<https://www.rfc-editor.org/info/rfc8348>.
[RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
<https://www.rfc-editor.org/info/rfc8446>.
[X.721] International Telecommunication Union, "Information
technology - Open Systems Interconnection - Structure of
management information: Definition of management
information", ITU-T Recommendation X.721, February 1992,
<https://www.itu.int/rec/T-REC-X.721-199202-I/en>.
[X.733] International Telecommunication Union, "Information
technology - Open Systems Interconnection - Systems
Management: Alarm reporting function",
ITU-T Recommendation X.733, February 1992,
<https://www.itu.int/rec/T-REC-X.733-199202-I/en>.
[XSD-TYPES]
Malhotra, A. and P. Biron, "XML Schema Part 2: Datatypes
Second Edition", World Wide Web Consortium Recommendation
REC-xmlschema-2-20041028, October 2004,
<http://www.w3.org/TR/2004/REC-xmlschema-2-20041028>.
10.2. Informative References
[ALARMIRP] 3GPP, "Telecommunication management; Fault Management;
Part 2: Alarm Integration Reference Point (IRP):
Information Service (IS)", 3GPP TS 32.111-2, March 2005,
<http://www.3gpp.org/ftp/Specs/html-info/32111-2.htm>.
[ALARMSEM] Wallin, S., Leijon, V., Nordlander, J., and N. Bystedt,
"The semantics of alarm definitions: enabling systematic
reasoning about alarms", International Journal of Network
Management, Volume 22, Issue 3, May 2012,
<http://dx.doi.org/10.1002/nem.800>.
Vallin & Bjorklund Standards Track [Page 68]
^L
RFC 8632 A YANG Data Model for Alarm Management September 2019
[EEMUA] "Alarm systems: a guide to design, management and
procurement", EEMUA Publication No. 191, Engineering
Equipment and Materials Users Association, Second Edition,
2007.
[G.7710] International Telecommunication Union, "SERIES G:
TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND
NETWORKS - Data over Transport - Generic aspects -
Transport network control aspects; Common equipment
management function requirements", ITU-T
Recommendation G.7710/Y.1701, Amendment 1, November 2012.
[ISA182] International Society of Automation, "Management of Alarm
Systems for the Process Industries", ANSI/ISA - 18.2-2016,
March 2016.
[RFC3877] Chisholm, S. and D. Romascanu, "Alarm Management
Information Base (MIB)", RFC 3877, DOI 10.17487/RFC3877,
September 2004, <https://www.rfc-editor.org/info/rfc3877>.
[RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
<https://www.rfc-editor.org/info/rfc8340>.
[X.736] International Telecommunication Union, "Information
technology - Open Systems Interconnection - Systems
Management: Security alarm reporting function",
ITU-T Recommendation X.736, January 1992,
<https://www.itu.int/rec/T-REC-X.736-199201-I/en>.
[YANG-INSTANCE]
Lengyel, B. and B. Claise, "YANG Instance Data File
Format", Work in Progress, draft-ietf-netmod-yang-
instance-file-format-02, August 2019.
Vallin & Bjorklund Standards Track [Page 69]
^L
RFC 8632 A YANG Data Model for Alarm Management September 2019
Appendix A. Vendor-Specific Alarm Types Example
This example shows how to define alarm types in a vendor-specific
module. In this case, the vendor "xyz" has chosen to define top-
level identities according to X.733 event types.
module example-xyz-alarms {
namespace "urn:example:xyz-alarms";
prefix xyz-al;
import ietf-alarms {
prefix al;
}
identity xyz-alarms {
base al:alarm-type-id;
}
identity communications-alarm {
base xyz-alarms;
}
identity quality-of-service-alarm {
base xyz-alarms;
}
identity processing-error-alarm {
base xyz-alarms;
}
identity equipment-alarm {
base xyz-alarms;
}
identity environmental-alarm {
base xyz-alarms;
}
// communications alarms
identity link-alarm {
base communications-alarm;
}
// QoS alarms
identity high-jitter-alarm {
base quality-of-service-alarm;
}
}
Vallin & Bjorklund Standards Track [Page 70]
^L
RFC 8632 A YANG Data Model for Alarm Management September 2019
Appendix B. Alarm Inventory Example
This shows an alarm inventory: one alarm type is defined only with
the identifier and another is dynamically configured. In the latter
case, a digital input has been connected to a smoke detector;
therefore, the "alarm-type-qualifier" is set to "smoke-detector" and
the "alarm-type-id" to "environmental-alarm".
<alarms xmlns="urn:ietf:params:xml:ns:yang:ietf-alarms"
xmlns:xyz-al="urn:example:xyz-alarms"
xmlns:dev="urn:example:device">
<alarm-inventory>
<alarm-type>
<alarm-type-id>xyz-al:link-alarm</alarm-type-id>
<alarm-type-qualifier/>
<resource>
/dev:interfaces/dev:interface
</resource>
<will-clear>true</will-clear>
<description>
Link failure; operational state down but admin state up
</description>
</alarm-type>
<alarm-type>
<alarm-type-id>xyz-al:environmental-alarm</alarm-type-id>
<alarm-type-qualifier>smoke-alarm</alarm-type-qualifier>
<will-clear>true</will-clear>
<description>
Connected smoke detector to digital input
</description>
</alarm-type>
</alarm-inventory>
</alarms>
Appendix C. Alarm List Example
In this example, we show an alarm that has toggled [major, clear,
major]. An operator has acknowledged the alarm.
<alarms xmlns="urn:ietf:params:xml:ns:yang:ietf-alarms"
xmlns:xyz-al="urn:example:xyz-alarms"
xmlns:dev="urn:example:device">
<alarm-list>
<number-of-alarms>1</number-of-alarms>
<last-changed>2018-04-08T08:39:50.00Z</last-changed>
<alarm>
Vallin & Bjorklund Standards Track [Page 71]
^L
RFC 8632 A YANG Data Model for Alarm Management September 2019
<resource>
/dev:interfaces/dev:interface[name='FastEthernet1/0']
</resource>
<alarm-type-id>xyz-al:link-alarm</alarm-type-id>
<alarm-type-qualifier></alarm-type-qualifier>
<time-created>2018-04-08T08:20:10.00Z</time-created>
<is-cleared>false</is-cleared>
<alt-resource>1.3.6.1.2.1.2.2.1.1.17</alt-resource>
<last-raised>2018-04-08T08:39:40.00Z</last-raised>
<last-changed>2018-04-08T08:39:50.00Z</last-changed>
<perceived-severity>major</perceived-severity>
<alarm-text>
Link operationally down but administratively up
</alarm-text>
<status-change>
<time>2018-04-08T08:39:40.00Z</time>
<perceived-severity>major</perceived-severity>
<alarm-text>
Link operationally down but administratively up
</alarm-text>
</status-change>
<status-change>
<time>2018-04-08T08:30:00.00Z</time>
<perceived-severity>cleared</perceived-severity>
<alarm-text>
Link operationally up and administratively up
</alarm-text>
</status-change>
<status-change>
<time>2018-04-08T08:20:10.00Z</time>
<perceived-severity>major</perceived-severity>
<alarm-text>
Link operationally down but administratively up
</alarm-text>
</status-change>
<operator-state-change>
<time>2018-04-08T08:39:50.00Z</time>
<state>ack</state>
<operator>joe</operator>
<text>Will investigate, ticket TR764999</text>
</operator-state-change>
</alarm>
</alarm-list>
</alarms>
Vallin & Bjorklund Standards Track [Page 72]
^L
RFC 8632 A YANG Data Model for Alarm Management September 2019
Appendix D. Alarm Shelving Example
This example shows how to shelve alarms. We shelve alarms related to
the smoke detectors, since they are being installed and tested. We
also shelve all alarms from FastEthernet1/0.
<alarms xmlns="urn:ietf:params:xml:ns:yang:ietf-alarms"
xmlns:xyz-al="urn:example:xyz-alarms"
xmlns:dev="urn:example:device">
<control>
<alarm-shelving>
<shelf>
<name>FE10</name>
<resource>
/dev:interfaces/dev:interface[name='FastEthernet1/0']
</resource>
</shelf>
<shelf>
<name>detectortest</name>
<alarm-type>
<alarm-type-id>
xyz-al:environmental-alarm
</alarm-type-id>
<alarm-type-qualifier-match>
smoke-alarm
</alarm-type-qualifier-match>
</alarm-type>
</shelf>
</alarm-shelving>
</control>
</alarms>
Vallin & Bjorklund Standards Track [Page 73]
^L
RFC 8632 A YANG Data Model for Alarm Management September 2019
Appendix E. X.733 Mapping Example
This example shows how to map a dynamic alarm type (alarm-type-
id=environmental-alarm, alarm-type-qualifier=smoke-alarm) to the
corresponding X.733 "event-type" and "probable-cause" parameters.
<alarms xmlns="urn:ietf:params:xml:ns:yang:ietf-alarms"
xmlns:xyz-al="urn:example:xyz-alarms">
<control>
<x733-mapping
xmlns="urn:ietf:params:xml:ns:yang:ietf-alarms-x733">
<alarm-type-id>xyz-al:environmental-alarm</alarm-type-id>
<alarm-type-qualifier-match>
smoke-alarm
</alarm-type-qualifier-match>
<event-type>quality-of-service-alarm</event-type>
<probable-cause>777</probable-cause>
</x733-mapping>
</control>
</alarms>
Appendix F. Relationship to Other Alarm Standards
This section briefly describes how this alarm data model relates to
other relevant standards.
F.1. Definition of "Alarm"
The table below summarizes relevant definitions of the term "alarm"
in other alarm standards.
+------------+---------------------------+--------------------------+
| Standard | Definition | Comment |
+------------+---------------------------+--------------------------+
| X.733 | error: A deviation of a | The X.733 alarm |
| [X.733] | system from normal | definition is focused on |
| | operation. fault: The | the notification as such |
| | physical or algorithmic | and not the state. |
| | cause of a malfunction. | X.733 defines an alarm |
| | Faults manifest | as a deviation from a |
| | themselves as errors. | normal condition but |
| | alarm: A notification, of | without the requirement |
| | the form defined by this | that it needs corrective |
| | function, of a specific | actions. |
| | event. An alarm may or | |
| | may not represent an | |
| | error. | |
| | | |
Vallin & Bjorklund Standards Track [Page 74]
^L
RFC 8632 A YANG Data Model for Alarm Management September 2019
| G.7710 | Alarms are indications | The G.7710 definition is |
| [G.7710] | that are automatically | close to the original |
| | generated by a device as | X.733 definition. |
| | a result of the | |
| | declaration of a failure. | |
| | | |
| Alarm MIB | Alarm: Persistent | RFC 3877 defines the |
| [RFC3877] | indication of a fault. | term alarm as referring |
| | Fault: Lasting error or | back to "a deviation |
| | warning condition. | from normal operation". |
| | Error: A deviation of a | The Alarm YANG data |
| | system from normal | model adds the |
| | operation. | requirement that it |
| | | should require a |
| | | corrective action and |
| | | should be undesired, not |
| | | only a deviation from |
| | | normal. The alarm MIB |
| | | is state oriented in the |
| | | same way as the Alarm |
| | | YANG module; it focuses |
| | | on the "lasting |
| | | condition", not the |
| | | individual |
| | | notifications. |
| | | |
| ISA | Alarm: An audible and/or | The ISA standard adds an |
| [ISA182] | visible means of | important requirement to |
| | indicating to the | the "deviation from |
| | operator an equipment | normal condition state": |
| | malfunction, process | requiring a response. |
| | deviation, or abnormal | |
| | condition requiring a | |
| | response. | |
| | | |
| EEMUA | An alarm is an event to | This is the foundation |
| [EEMUA] | which an operator must | for the definition of |
| | knowingly react, respond, | alarm in this document. |
| | and acknowledge -- not | It focuses on the core |
| | simply acknowledge and | criterion that an action |
| | ignore. | is really needed. |
| | | |
Vallin & Bjorklund Standards Track [Page 75]
^L
RFC 8632 A YANG Data Model for Alarm Management September 2019
| 3GPP Alarm | 3GPP v15: An alarm | The latest 3GPP Alarm |
| IRP | signifies an undesired | IRP version uses |
| [ALARMIRP] | condition of a resource | literally the same alarm |
| | (e.g., device, link) for | definition as this alarm |
| | which an operator action | data model. It is worth |
| | is required. It | noting that earlier |
| | emphasizes a key | versions used a |
| | requirement that | definition not requiring |
| | operators [...] should | an operator action and |
| | not be informed about an | the more-broad |
| | undesired condition | definition of deviation |
| | unless it requires | from normal condition. |
| | operator action. | The earlier version also |
| | 3GPP v12: alarm: abnormal | defined an alarm as a |
| | network entity condition, | special case of "event". |
| | which categorizes an | |
| | event as a fault. | |
| | fault: a deviation of a | |
| | system from normal | |
| | operation, which may | |
| | result in the loss of | |
| | operational capabilities | |
| | [...] | |
+------------+---------------------------+--------------------------+
Table 1: Definition of the Term "Alarm" in Standards
The evolution of the definition of alarm moves from focused on events
reporting a deviation from normal operation towards a definition to a
undesired *state* that *requires an operator action*.
F.2. Data Model
This section describes how this YANG alarm data model relates to
other standard data models. Note well that we cover other data
models for alarm interfaces but not other standards such as SDO-
specific alarms.
F.2.1. X.733
X.733 has acted as a base for several alarm data models over the
years. The YANG alarm data model differs in the following ways:
X.733 models the alarm list as a list of notifications. The YANG
alarm data model defines the alarm list as the current alarm
states for the resources, which is generated from the state change
reporting notifications.
Vallin & Bjorklund Standards Track [Page 76]
^L
RFC 8632 A YANG Data Model for Alarm Management September 2019
In X.733, an alarm can have the severity level "clear". In the
YANG alarm data model, "clear" is not a severity level; it is a
separate state of the alarm. An alarm can have the following
states, for example, (major, cleared) and (minor, not cleared).
X.733 uses a flat, globally defined enumerated "probable-cause" to
identify alarm types. This alarm data model uses a hierarchical
YANG identity: "alarm-type". This enables delegation of alarm
types within organizations. It also enables management to reason
about abstract alarm types corresponding to base identities; see
Section 3.2.
The YANG alarm data model has not included the majority of the
X.733 alarm attributes. Rather, these are defined in an
augmenting module [X.733] if "strict" X.733 compliance is needed.
F.2.2. The Alarm MIB (RFC 3877)
The MIB in RFC 3877 takes a different approach; rather than defining
a concrete data model for alarms, it defines a model to map existing
SNMP-managed objects and notifications into alarm states and alarm
notifications. This was necessary since MIBs were already defined
with both managed objects and notifications indicating alarms, for
example, "linkUp" and "linkDown" notifications in combination with
"ifAdminState" and "ifOperState". So, RFC 3877 cannot really be
compared to the alarm YANG module in that sense.
The Alarm MIB maps existing MIB definitions into alarms, such as
"alarmModelTable". The upside of that is that an SNMP Manager can,
at runtime, read the possible alarm types. This corresponds to the
"alarmInventory" in the alarm YANG module.
F.2.3. 3GPP Alarm IRP
The 3GPP Alarm IRP is an evolution of X.733. Main differences
between the alarm YANG module and 3GPP are as follows:
3GPP keeps the majority of the X.733 attributes, but the alarm
YANG module does not.
3GPP introduced overlapping and possibly conflicting keys for
alarms, alarmId, and (managed object, event type, probable cause,
specific problem). (See Example 3 in Annex C of [ALARMIRP]). In
the YANG alarm data model, the key for identifying an alarm
instance is clearly defined by ("resource", "alarm-type-id",
"alarm-type-qualifier"). See also Section 3.4 for more
information.
Vallin & Bjorklund Standards Track [Page 77]
^L
RFC 8632 A YANG Data Model for Alarm Management September 2019
The alarm YANG module clearly separates the resource/
instrumentation lifecycle from the operator lifecycle. 3GPP allows
operators to set the alarm severity to clear; this is not allowed
by this module. Rather, an operator closes an alarm, which does
not affect the severity.
F.2.4. G.7710
G.7710 is different than the previously referenced alarm standards.
It does not define a data model for alarm reporting. It defines
common equipment management function requirements including alarm
instrumentation. The scope is transport networks.
The requirements in G.7710 correspond to features in the alarm YANG
module in the following way:
Alarm Severity Assignment Profile (ASAP): the alarm profile
"/alarms/alarm-profile/".
Alarm Reporting Control (ARC): alarm shelving "/alarms/control/
alarm-shelving/" and the ability to control alarm notifications
"/alarms/control/notify-status-changes". Alarm shelving
corresponds to the use case of turning off alarm reporting for a
specific resource, which is the NALM (No ALarM) state in M.3100.
Appendix G. Alarm-Usability Requirements
This section defines usability requirements for alarms. Alarm
usability is important for an alarm interface. A data model will
help in defining the format, but if the actual alarms are of low
value, we have not gained the goal of alarm management.
Common alarm problems and their causes are summarized in Table 2.
This summary is adopted to networking based on the ISA [ISA182] and
Engineering Equipment Materials Users Association (EEMUA) [EEMUA]
standards.
Vallin & Bjorklund Standards Track [Page 78]
^L
RFC 8632 A YANG Data Model for Alarm Management September 2019
+-----------------+--------------------------------+----------------+
| Problem | Cause | How this |
| | | module |
| | | addresses the |
| | | cause |
+-----------------+--------------------------------+----------------+
| Alarms are | "Nuisance" alarms (chattering | Strict |
| generated, but | alarms and fleeting alarms), | definition of |
| they are | faulty hardware, redundant | alarms |
| ignored by the | alarms, cascading alarms, | requiring |
| operator. | incorrect alarm settings, and | corrective |
| | alarms that have not been | response. See |
| | rationalized; the alarms | alarm |
| | represent log information | requirements |
| | rather than true alarms. | in Table 3. |
| | | |
| When alarms | Insufficient alarm-response | The alarm |
| occur, | procedures and not well- | inventory |
| operators do | defined alarm types. | lists all |
| not know how to | | alarm types |
| respond. | | and corrective |
| | | actions. See |
| | | alarm |
| | | requirements |
| | | in Table 3. |
| | | |
| The alarm | Nuisance alarms, stale alarms, | The alarm |
| display is full | and alarms from equipment not | definition and |
| of alarms, even | in service. | alarm |
| when there is | | shelving. |
| nothing wrong. | | |
| | | |
| During a | Incorrect prioritization of | State-based |
| failure, | alarms. Not using advanced | alarm model |
| operators are | alarm techniques (e.g., state- | and alarm-rate |
| flooded with so | based alarming). | requirements; |
| many alarms | | see Tables 4 |
| that they do | | and 5, |
| not know which | | respectively. |
| ones are the | | |
| most important. | | |
+-----------------+--------------------------------+----------------+
Table 2: Alarm Problems and Causes
Vallin & Bjorklund Standards Track [Page 79]
^L
RFC 8632 A YANG Data Model for Alarm Management September 2019
Based upon the above problems, EEMUA gives the following definition
of a good alarm:
+----------------+--------------------------------------------------+
| Characteristic | Explanation |
+----------------+--------------------------------------------------+
| Relevant | Not spurious or of low operational value. |
| | |
| Unique | Not duplicating another alarm. |
| | |
| Timely | Not long before any response is needed or too |
| | late to do anything. |
| | |
| Prioritized | Indicating the importance that the operator |
| | deals with the problem. |
| | |
| Understandable | Having a message that is clear and easy to |
| | understand. |
| | |
| Diagnostic | Identifying the problem that has occurred. |
| | |
| Advisory | Indicative of the action to be taken. |
| | |
| Focusing | Drawing attention to the most important issues. |
+----------------+--------------------------------------------------+
Table 3: Definition of a Good Alarm
Vendors SHOULD rationalize all alarms according to the table above.
Another crucial requirement is acceptable alarm notification rates.
Vendors SHOULD make sure that they do not exceed the recommendations
from EEMUA below:
+-----------------------------------+-------------------------------+
| Long-Term Alarm Rate in Steady | Acceptability |
| Operation | |
+-----------------------------------+-------------------------------+
| More than one per minute | Very likely to be |
| | unacceptable. |
| | |
| One per 2 minutes | Likely to be overdemanding. |
| | |
| One per 5 minutes | Manageable. |
| | |
| Less than one per 10 minutes | Very likely to be acceptable. |
+-----------------------------------+-------------------------------+
Table 4: Acceptable Alarm Rates -- Steady State
Vallin & Bjorklund Standards Track [Page 80]
^L
RFC 8632 A YANG Data Model for Alarm Management September 2019
+----------------------------+--------------------------------------+
| Number of alarms displayed | Acceptability |
| in 10 minutes following a | |
| major network problem | |
+----------------------------+--------------------------------------+
| More than 100 | Definitely excessive and very likely |
| | to lead to the operator abandoning |
| | the use of the alarm system. |
| | |
| 20-100 | Hard to cope with. |
| | |
| Under 10 | Should be manageable, but it may be |
| | difficult if several of the alarms |
| | require a complex operator response. |
+----------------------------+--------------------------------------+
Table 5: Acceptable Alarm Rates -- Burst
The numbers in Tables 4 and 5 are the sum of all alarms for a network
being managed from one alarm console. So every individual system or
Network Management System (NMS) contributes to these numbers.
Vendors SHOULD make sure that the following rules are used in
designing the alarm interface:
1. Rationalize the alarms in the system to ensure that every alarm
is necessary, has a purpose, and follows the cardinal rule that
it requires an operator response. Adheres to the rules of
Table 3.
2. Audit the quality of the alarms. Talk with the operators about
how well the alarm information supports them. Do they know what
to do in the event of an alarm? Are they able to quickly
diagnose the problem and determine the corrective action? Does
the alarm text adhere to the requirements in Table 3?
3. Analyze and benchmark the performance of the system and compare
it to the recommended metrics in Tables 4 and 5. Start by
identifying nuisance alarms, as well as standing alarms at normal
state and startup.
Vallin & Bjorklund Standards Track [Page 81]
^L
RFC 8632 A YANG Data Model for Alarm Management September 2019
Acknowledgements
The authors wish to thank Viktor Leijon and Johan Nordlander for
their valuable input on forming the alarm model.
The authors also wish to thank Nick Hancock, Joey Boyd, Tom Petch,
and Balazs Lengyel for their extensive reviews and contributions to
this document.
Authors' Addresses
Stefan Vallin
Stefan Vallin AB
Email: stefan@wallan.se
Martin Bjorklund
Cisco
Email: mbj@tail-f.com
Vallin & Bjorklund Standards Track [Page 82]
^L
|