1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
|
Independent Submission S. Kanugovi
Request for Comments: 8743 Nokia Bell Labs
Category: Informational F. Baboescu
ISSN: 2070-1721 Broadcom
J. Zhu
Intel
S. Seo
Korea Telecom
March 2020
Multi-Access Management Services (MAMS)
Abstract
In multiconnectivity scenarios, the clients can simultaneously
connect to multiple networks based on different access technologies
and network architectures like Wi-Fi, LTE, and DSL. Both the quality
of experience of the users and the overall network utilization and
efficiency may be improved through the smart selection and
combination of access and core network paths that can dynamically
adapt to changing network conditions.
This document presents a unified problem statement and introduces a
solution for managing multiconnectivity. The solution has been
developed by the authors based on their experiences in multiple
standards bodies, including the IETF and the 3GPP. However, this
document is not an Internet Standards Track specification, and it
does not represent the consensus opinion of the IETF.
This document describes requirements, solution principles, and the
architecture of the Multi-Access Management Services (MAMS)
framework. The MAMS framework aims to provide best performance while
being easy to implement in a wide variety of multiconnectivity
deployments. It specifies the protocol for (1) flexibly selecting
the best combination of access and core network paths for the uplink
and downlink, and (2) determining the user-plane treatment (e.g.,
tunneling, encryption) and traffic distribution over the selected
links, to ensure network efficiency and the best possible application
performance.
Status of This Memo
This document is not an Internet Standards Track specification; it is
published for informational purposes.
This is a contribution to the RFC Series, independently of any other
RFC stream. The RFC Editor has chosen to publish this document at
its discretion and makes no statement about its value for
implementation or deployment. Documents approved for publication by
the RFC Editor are not candidates for any level of Internet Standard;
see Section 2 of RFC 7841.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
https://www.rfc-editor.org/info/rfc8743.
Copyright Notice
Copyright (c) 2020 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document.
Table of Contents
1. Introduction
2. Terminology
3. Problem Statement
4. Requirements
4.1. Access-Technology-Agnostic Interworking
4.2. Support for Common Transport Deployments
4.3. Independent Access Path Selection for Uplink and Downlink
4.4. Core Selection Independent of Uplink and Downlink Access
4.5. Adaptive Access Network Path Selection
4.6. Multipath Support and Aggregation of Access Link Capacities
4.7. Scalable Mechanism Based on User-Plane Interworking
4.8. Separate Control-Plane and User-Plane Functions
4.9. Lossless Path (Connection) Switching
4.10. Concatenation and Fragmentation for Adaptation to MTU
Differences
4.11. Configuring Network Middleboxes Based on Negotiated
Protocols
4.12. Policy-Based Optimal Path Selection
4.13. Access-Technology-Agnostic Control Signaling
4.14. Service Discovery and Reachability
5. Solution Principles
6. MAMS Reference Architecture
7. MAMS Protocol Architecture
7.1. MAMS Control-Plane Protocol
7.2. MAMS User-Plane Protocol
8. MAMS Control-Plane Procedures
8.1. Overview
8.2. Common Fields in MAMS Control Messages
8.3. Common Procedures for MAMS Control Messages
8.3.1. Message Timeout
8.3.2. Keep-Alive Procedure
8.4. Discovery and Capability Exchange
8.5. User-Plane Configuration
8.6. MAMS Path Quality Estimation
8.6.1. MX Control PDU Definition
8.6.2. Keep-Alive Message
8.6.3. Probe-REQ/ACK Message
8.7. MAMS Traffic Steering
8.8. MAMS Application MADP Association
8.9. MAMS Network ID Indication
8.10. MAMS Client Measurement Configuration and Reporting
8.11. MAMS Session Termination Procedure
8.12. MAMS Network Analytics Request Procedure
9. Generic MAMS Signaling Flow
10. Relationship to IETF Technologies
11. Applying MAMS Control Procedures with MPTCP Proxy as User Plane
12. Applying MAMS Control Procedures for Network-Assisted Traffic
Steering When There Is No Convergence Layer
13. Coexistence of MX Adaptation and MX Convergence Layers
14. Security Considerations
14.1. MAMS Control-Plane Security
14.2. MAMS User-Plane Security
15. Implementation Considerations
16. Applicability to Multi-Access Edge Computing
17. Related Work in Other Industry and Standards Forums
18. IANA Considerations
19. References
19.1. Normative References
19.2. Informative References
Appendix A. MAMS Control-Plane Optimization over Secure
Connections
Appendix B. MAMS Application Interface
B.1. Overall Design
B.2. Notation
B.3. Error Indication
B.4. CCM APIs
B.4.1. GET Capabilities
B.4.2. Posting Application Requirements
B.4.3. Getting Predictive Link Parameters
Appendix C. MAMS Control-Plane Messages Described Using JSON
C.1. Protocol Specification: General Processing
C.1.1. Notation
C.1.2. Discovery Procedure
C.1.3. System Information Procedure
C.1.4. Capability Exchange Procedure
C.1.5. User-Plane Configuration Procedure
C.1.6. Reconfiguration Procedure
C.1.7. Path Estimation Procedure
C.1.8. Traffic-Steering Procedure
C.1.9. MAMS Application MADP Association
C.1.10. MX SSID Indication
C.1.11. Measurements
C.1.12. Keep-Alive
C.1.13. Session Termination Procedure
C.1.14. Network Analytics
C.2. Protocol Specification: Data Types
C.2.1. MXBase
C.2.2. Unique Session ID
C.2.3. NCM Connections
C.2.4. Connection Information
C.2.5. Features and Their Activation Status
C.2.6. Anchor Connections
C.2.7. Delivery Connections
C.2.8. Method Support
C.2.9. Convergence Methods
C.2.10. Adaptation Methods
C.2.11. Setup of Anchor Connections
C.2.12. Init Probe Results
C.2.13. Active Probe Results
C.2.14. Downlink Delivery
C.2.15. Uplink Delivery
C.2.16. Traffic Flow Template
C.2.17. Measurement Report Configuration
C.2.18. Measurement Report
C.3. Schemas in JSON
C.3.1. MX Base Schema
C.3.2. MX Definitions
C.3.3. MX Discover
C.3.4. MX System Info
C.3.5. MX Capability Request
C.3.6. MX Capability Response
C.3.7. MX Capability Acknowledge
C.3.8. MX Reconfiguration Request
C.3.9. MX Reconfiguration Response
C.3.10. MX UP Setup Configuration Request
C.3.11. MX UP Setup Confirmation
C.3.12. MX Traffic Steering Request
C.3.13. MX Traffic Steering Response
C.3.14. MX Application MADP Association Request
C.3.15. MX Application MADP Association Response
C.3.16. MX Path Estimation Request
C.3.17. MX Path Estimation Results
C.3.18. MX SSID Indication
C.3.19. MX Measurement Configuration
C.3.20. MX Measurement Report
C.3.21. MX Keep-Alive Request
C.3.22. MX Keep-Alive Response
C.3.23. MX Session Termination Request
C.3.24. MX Session Termination Response
C.3.25. MX Network Analytics Request
C.3.26. MX Network Analytics Response
C.4. Examples in JSON
C.4.1. MX Discover
C.4.2. MX System Info
C.4.3. MX Capability Request
C.4.4. MX Capability Response
C.4.5. MX Capability Acknowledge
C.4.6. MX Reconfiguration Request
C.4.7. MX Reconfiguration Response
C.4.8. MX UP Setup Configuration Request
C.4.9. MX UP Setup Confirmation
C.4.10. MX Traffic Steering Request
C.4.11. MX Traffic Steering Response
C.4.12. MX Application MADP Association Request
C.4.13. MX Application MADP Association Response
C.4.14. MX Path Estimation Request
C.4.15. MX Path Estimation Results
C.4.16. MX SSID Indication
C.4.17. MX Measurement Configuration
C.4.18. MX Measurement Report
C.4.19. MX Keep-Alive Request
C.4.20. MX Keep-Alive Response
C.4.21. MX Session Termination Request
C.4.22. MX Session Termination Response
C.4.23. MX Network Analytics Request
C.4.24. MX Network Analytics Response
Appendix D. Definition of APIs Provided by the CCM to the
Applications at the Client
Appendix E. Implementation Example Using Python for MAMS Client
and Server
E.1. Client-Side Implementation
E.2. Server-Side Implementation
Acknowledgments
Contributors
Authors' Addresses
1. Introduction
Multi-Access Management Services (MAMS) is a programmable framework
that provides mechanisms for the flexible selection of network paths
in a multi-access (MX) communication environment, based on the
application's needs. The MAMS framework leverages network
intelligence and policies to dynamically adapt traffic distribution
across selected paths and user-plane treatments (e.g., encryption
needed for transport over Wi-Fi, or tunneling needed to overcome a
NAT between client and multipath proxy) to changing network/link
conditions. The network path selection and configuration messages
are carried as user-plane data between the functional elements in the
network and the client, and thus without any impact on the control-
plane signaling schemes of the underlying access networks. For
example, in a multi-access network with LTE and Wi-Fi technologies,
existing LTE and Wi-Fi signaling procedures will be used to set up
the LTE and Wi-Fi connections, respectively, and MAMS-specific
control-plane messages are carried as LTE or Wi-Fi user-plane data.
The MAMS framework defined in this document provides the capability
to make a smart selection of a flexible combination of access paths
and core network paths, as well as to choose the user-plane treatment
when the traffic is distributed across the selected paths. Thus, it
is a broad programmable framework that provides functions beyond the
simple sharing of network policies such as those provided by the
Access Network Discovery and Selection Function (ANDSF) [ANDSF],
which offers policies and rules for assisting 3GPP clients to
discover and select available access networks. Further, it allows
the choice and configuration of user-plane treatment for the traffic
over the paths, depending on the application's needs.
The MAMS framework mechanisms are not dependent on any specific
access network types or user-plane protocols (e.g., TCP, UDP, Generic
Routing Encapsulation (GRE) [RFC2784] [RFC2890], Multipath TCP
(MPTCP) [RFC6824]). The MAMS framework coexists and complements the
existing protocols by providing a way to negotiate and configure
those protocols to match their use to a given multi-access scenario
based on client and network capabilities, and the specific needs of
each access network path. Further, the MAMS framework allows load
balancing of the traffic flows across the selected access network
paths, and the exchange of network state information to be used for
network intelligence to optimize the performance of such protocols.
This document presents the requirements, solution principles,
functional architecture, and protocols for realizing the MAMS
framework. An important goal for the MAMS framework is to ensure
that it requires either minimum dependency or (better) no dependency
on the actual access technologies of the participating links, beyond
the fact that MAMS functional elements form an IP overlay across the
multiple paths. This allows the scheme to be "future proof" by
allowing independent technology evolution of the existing access and
core networks as well as seamless integration of new access
technologies.
The solution described in this document has been developed by the
authors, based on their experiences in multiple standards bodies,
including the IETF and the 3GPP. However, this document is not an
Internet Standards Track specification, and it does not represent the
consensus opinion of the IETF.
2. Terminology
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in BCP
14 [RFC2119] [RFC8174] when, and only when, they appear in all
capitals, as shown here.
Client: An end-user device that supports connections with multiple
access nodes, possibly over different access technologies. Also
called a user device or user equipment (UE).
Multiconnectivity Client: A client with multiple network
connections.
Access Network: The segment in the network that delivers user data
packets to the client via an access link such as a Wi-Fi airlink,
an LTE airlink, or DSL.
Core: The functional element that anchors the client IP address used
for communication with applications via the network.
Network Connection Manager (NCM): A functional entity in the network
that handles MAMS control messages from the client and configures
the distribution of data packets over the available access and
core network paths, and manages the user-plane treatment (e.g.,
tunneling, encryption) of the traffic flows.
Client Connection Manager (CCM): A functional entity in the client
that exchanges MAMS signaling messages with the NCM, and which
configures the network paths at the client for the transport of
user data.
Network Multi-Access Data Proxy (N-MADP): A functional entity in the
network that handles the forwarding of user data traffic across
multiple network paths. The N-MADP is responsible for MAMS-
related user-plane functionalities in the network.
Client Multi-Access Data Proxy (C-MADP): A functional entity in the
client that handles the forwarding of user data traffic across
multiple network paths. The C-MADP is responsible for MAMS-
related user-plane functionalities in the client.
Anchor Connection: Refers to the network path from the N-MADP to the
user-plane gateway (IP anchor) that has assigned an IP address to
the client.
Delivery Connection: Refers to the network path from the N-MADP to
the client.
Uplink (also referred to as "UL" in this document): Refers to the
direction of a connection from a client toward the network.
Downlink (also referred to as "DL" in this document): Refers to the
direction of a connection from the network toward a client.
3. Problem Statement
Typically, a client has access to multiple communication networks
based on different technologies for accessing application services,
for example, LTE, Wi-Fi, DSL, or MulteFire. Different technologies
exhibit benefits and limitations in different scenarios. For
example, Wi-Fi provides high throughput for end users when their Wi-
Fi coverage is good, but the throughput degrades significantly as a
given user moves closer to the edge of its Wi-Fi coverage area
(typically in the range of a few tens of meters) or if the user
population is large (due to a contention-based Wi-Fi access scheme).
In LTE networks, the capacity is often constrained by the limited
availability of licensed spectrum. However, the quality of the
service is predictable even in multi-user scenarios, due to
controlled scheduling and licensed-spectrum usage.
Additionally, the use of a particular access network path is often
coupled with the use of its associated core network and the services
that are offered by that network. For example, in an enterprise that
has deployed both Wi-Fi and LTE networks, the enterprise services,
such as printers and corporate audio/video conferencing, are
accessible only via Wi-Fi access connected to the enterprise-hosted
(Wi-Fi) core, whereas the LTE access can be used to get operator
services, including access to the public Internet.
Thus, application performance in different scenarios becomes
dependent on the choice of access networks (e.g., Wi-Fi, LTE) and the
network and transport protocols used (e.g., VPN, MPTCP, GRE).
Therefore, to achieve the best possible application performance in a
wide range of scenarios, a framework is needed that allows the
selection and flexible combination of access and core network paths
as well as the protocols used for uplink and downlink data delivery.
For example, in uncongested scenarios and when the user's Wi-Fi
coverage is good, to ensure best performance for enterprise
applications at all times, it would be beneficial to use Wi-Fi access
for both the uplink and downlink for connecting to enterprise
applications. However, in congested scenarios or when the user is
getting close to the edge of its Wi-Fi coverage area, the use of Wi-
Fi in the uplink by multiple users can lead to degraded capacity and
increased delays due to contention. In this case, it would be
beneficial to at least use the LTE access for increased uplink
coverage, while Wi-Fi may still continue to be used for the downlink.
4. Requirements
The requirements set out in this section define the behavior of the
MAMS mechanism and the related functional elements.
4.1. Access-Technology-Agnostic Interworking
The access nodes MAY use different technology types (LTE, Wi-Fi,
etc.). The framework, however, MUST be agnostic about the type of
underlying technology used by the access network.
4.2. Support for Common Transport Deployments
The network path selection and user data distribution MUST work
transparently across various transport deployments that include end-
to-end IPsec, VPNs, and middleboxes like NATs and proxies.
4.3. Independent Access Path Selection for Uplink and Downlink
A client SHOULD be able to transmit on the uplink and receive on the
downlink, using one or more access networks. The selections of the
access paths for the uplink and downlink SHOULD happen independently.
4.4. Core Selection Independent of Uplink and Downlink Access
A client SHOULD flexibly select the core independently of the access
paths used to reach the core, depending on the application's needs,
local policies, and the result of MAMS control-plane negotiation.
4.5. Adaptive Access Network Path Selection
The framework MUST have the ability to determine the quality of each
of the network paths, e.g., access link delay and capacity. This
information regarding network path quality needs to be considered in
the logic for the selection of the combination of network paths to be
used for transporting user data. The path selection algorithm can
use the information regarding network path quality, in addition to
other considerations like network policies, for optimizing network
usage and enhancing the Quality of Experience (QoE) delivered to the
user.
4.6. Multipath Support and Aggregation of Access Link Capacities
The framework MUST support the distribution and aggregation of user
data across multiple network paths at the IP layer. The client
SHOULD be able to leverage the combined capacity of the multiple
network connections by enabling the simultaneous transport of user
data over multiple network paths. If required, packet reordering
needs to be done at the receiver. The framework MUST allow the
flexibility to choose the flow-steering and aggregation protocols
based on capabilities supported by the client and the network user-
plane entities. The multiconnection aggregation solution MUST
support existing transport and network-layer protocols like TCP, UDP,
and GRE. The framework MUST allow the use and configuration of
existing aggregation protocols such as MPTCP and SCTP [RFC4960].
4.7. Scalable Mechanism Based on User-Plane Interworking
The framework MUST leverage commonly available transport, routing,
and tunneling capabilities to provide user-plane interworking
functionality. The addition of functional elements in the user-plane
path between the client and the network MUST NOT impact the access-
technology-specific procedures. This makes the solution easy to
deploy and scale when different networks are added and removed.
4.8. Separate Control-Plane and User-Plane Functions
The client MUST use the control-plane protocol to negotiate the
following with the network: (1) the choice of access and core network
paths for both the uplink and downlink, and (2) the user-plane
protocol treatment. The control plane MUST configure the actual
user-plane data distribution function per this negotiation. A common
control protocol SHOULD allow the creation of multiple user-plane
function instances with potentially different user-plane (e.g.,
tunneling) protocol types. This enables maintaining a clear
separation between the control-plane and user-plane functions,
allowing the framework to be scalable and extensible, e.g., using
architectures and implementations based on Software-Defined
Networking (SDN).
4.9. Lossless Path (Connection) Switching
When switching data traffic from one path (connection) to another,
packets may be lost or delivered out of order; this will have
negative impact on the performance of higher-layer protocols, e.g.,
TCP. The framework SHOULD provide the necessary mechanisms to ensure
in-order delivery at the receiver, e.g., during path switching. The
framework MUST NOT cause any packet loss beyond losses that access
network mobility functions may cause.
4.10. Concatenation and Fragmentation for Adaptation to MTU Differences
Different network paths may have different security and middlebox
(e.g., NAT) configurations. These configurations will lead to the
use of different tunneling protocols for the transport of data
between the network user-plane function and the client. As a result,
different effective payload sizes per network path are possible
(e.g., due to variable encapsulation header overheads). Hence, the
MAMS framework SHOULD support the fragmentation of a single payload
across MTU-sized IP packets to avoid IP packet fragmentation when
aggregating packets from different paths. Further, the concatenation
of multiple IP packets into a single IP packet to improve efficiency
in packing the MTU size SHOULD also be supported.
4.11. Configuring Network Middleboxes Based on Negotiated Protocols
The framework SHOULD enable the identification of optimal settings,
like radio link dormancy timers, binding expiry times, and supported
MTUs, based on parameters negotiated between the client and the
network, that may be used to configure middleboxes for efficient
operation of user-plane protocols, e.g., configuring a NAT with a
longer binding expiry time when UDP versus TCP is used.
4.12. Policy-Based Optimal Path Selection
The framework MUST support both the implementation of policies at the
client and guidance from the network for network path selection that
will address different application requirements.
4.13. Access-Technology-Agnostic Control Signaling
The control-plane signaling MUST NOT be dependent on the underlying
access technology procedures, i.e., it is carried transparently, like
application data, on the user plane. The MAMS framework SHOULD
support the delivery of control-plane signaling over existing
Internet protocols, e.g., TCP or UDP.
4.14. Service Discovery and Reachability
There can be multiple instances of the control-plane and user-plane
functional elements of the framework, either collocated or hosted on
separate network elements and reachable via any of the available
user-plane paths. The client MUST have the flexibility to choose the
appropriate control-plane instance in the network and use the
control-plane signaling to choose the desired user-plane functional
element instances. The client's choice can be based on
considerations such as, but not limited to, the quality of the link
through which the network function is reachable, client preferences,
preconfiguration, etc.
5. Solution Principles
This document describes the Multi-Access Management Services (MAMS)
framework for dynamic selection of a flexible combination of access
and core network paths for the uplink and downlink, as well as the
user-plane treatment for the traffic spread across the selected
links. The user-plane paths, and access and core network
connections, can be selected independently for the uplink and
downlink. For example, the network paths chosen for the uplink do
not apply any constraints on the choice of paths for the downlink.
The uplink and downlink network paths can be chosen based on the
application needs and on the characteristics and available resources
on different network connections. For example, a Wi-Fi connection
can be chosen for the downlink for transporting high-bandwidth data
from the network to the client, whereas an LTE connection can be
chosen to carry the low-bandwidth feedback to the application server.
Also, depending on the characteristics of the access network link,
different processing would be needed on the user-plane packets on
different network paths. Encryption would be needed on a Wi-Fi link
to secure user-plane packets, but not on an LTE link. Tunneling
would be needed to ensure client and network end-point reachability
over NATs. Such differentiated user-plane treatment can be
accomplished by configuration of user plane-protocols (e.g., IPsec)
specific to each link.
The MAMS framework consists of clearly separated control- and user-
plane functions in the network and the client. The control-plane
protocol allows the configuration of the user-plane protocols and
desired network paths for the transport of application traffic. The
control-plane messages are carried as user-plane data over any of the
available network paths between the peer control-plane functional
elements in the client and the network. Multiple user-plane paths
are dynamically distributed across multiple access networks and
aggregated in the network (by the N-MADP). The access network's
diversity is not exposed to the application servers, but is kept
within the scope of the elements defined in this framework. This
reduces the burden placed on application servers that would otherwise
have to react to access link changes caused by mobility events or
changing link characteristics.
The selection of paths and user-plane treatment of the traffic is
based on (1) the negotiation of client and network capabilities, and
(2) link probing (i.e., checking the quality of links between the
user-plane functional elements at the client and the network). This
framework enables leveraging network intelligence to set up and
dynamically configure the best access network path combination based
on client and network capabilities, an application's needs, and
knowledge of the network state.
6. MAMS Reference Architecture
Figure 1 illustrates the MAMS architecture for the scenario where a
client is served by multiple (n) networks. It also introduces the
following functional elements:
* The NCM and the CCM in the control plane.
* The N-MADP and the C-MADP in the user plane.
+--------------------------------------------------------+
| +----------------+ +----------------+ |
| | | | | |
| |Core (IP anchor)| ..... |Core (IP anchor)| |
| |Network 1 | |Network "n" | |
| | | | | |
| +----------------+ +----------------+ |
| \ / |
| Anchor \ ...... Anchor |
| Connection 1 Connection "n" |
| \ / |
| +---------------+\+---+/+------+ |
| | +-----+ +----------+ | |
| +--------------| NCM | | N-MADP | | |
| | | +-----+ +----------+ | |
| | +------------------------------+ |
| | / \ |
| |Control-Plane Delivery ...... Delivery |
| |Path (over any Connection 1 Connection "n" |
| |access user plane) / \ |
| | / \ |
| | +------------------+ +---------------+ |
| | | Access | ...... | Access | |
| | | Network 1 | | Network "n" | |
| | +------------------+ +---------------+ |
+-----------------------------\----------------/---------+
| \ /
| +----------\------------/-+
| | +---+ \ +------+ / |
+--------------------+CCM| \|C-MADP|/ |
| +---+ +------+ |
| Client |
+-------------------------+
Figure 1: MAMS Reference Architecture
The NCM is the functional element in the network that handles the
MAMS control-plane procedures. It configures the network (N-MADP)
and client (C-MADP) user-plane functions, such as negotiating with
the client for the use of available access network paths, protocols,
and rules for processing the user-plane traffic, as well as link-
monitoring procedures. The control-plane messages between the NCM
and the CCM are transported as an overlay on the user plane, without
any impact on the underlying access networks.
The CCM is the peer functional element in the client for handling
MAMS control-plane procedures. It manages multiple network
connections at the client. The CCM exchanges MAMS signaling messages
with the NCM to support such functions as the configuration of the UL
and DL user network path for transporting user data packets and the
adaptive selection of network path by the NCM by reporting on the
results of link probing. In the downlink, for user data received by
the client, it configures the C-MADP such that application data
packets can be received over any access link so that the packets will
reach the appropriate application on the client. In the uplink, for
the data transmitted by the client, it configures the C-MADP to
determine the best access links to be used for uplink data based on a
combination of local and network policies delivered by the NCM.
The N-MADP is the functional element in the network that handles the
forwarding of user data traffic across multiple network paths, as
well as other user-plane functionalities (e.g., encapsulation,
fragmentation, concatenation, reordering, retransmission). The
N-MADP is the distribution node that routes (1) the uplink user-plane
traffic to the appropriate anchor connection toward the core network,
and (2) the downlink user traffic to the client over the appropriate
delivery connections. In the downlink, the NCM configures the use of
delivery connections and user-plane protocols at the N-MADP for
transporting user data traffic. The N-MADP SHOULD implement ECMP
support for the downlink traffic. Alternatively, it MAY be connected
to a router with ECMP functionality. The load-balancing algorithm at
the N-MADP is configured by the NCM, based on static and/or dynamic
network policies like assigning access and core paths for a specific
user data traffic type, user-volume-based percentage distribution,
and link availability and feedback information from the exchange of
MAMS signaling messages with the CCM at the client. The N-MADP can
be configured with appropriate user-plane protocols to support both
per-flow and per-packet traffic distribution across the delivery
connections. In the uplink, the N-MADP selects the appropriate
anchor connection over which to forward the user data traffic
received from the client (via the delivery connections). The
forwarding rules in the uplink at the N-MADP are configured by the
NCM based on application requirements, e.g., enterprise-hosted
application flows via a Wi-Fi anchor or mobile-operator-hosted
applications via the cellular core.
The C-MADP is the functional element in the client that handles the
MAMS user-plane data procedures. The C-MADP is configured by the
CCM, based on the signaling exchange with the NCM and local policies
at the client. The CCM configures the selection of delivery
connections and the user-plane protocols to be used for uplink user
data traffic based on the signaling messages exchanged with the NCM.
The C-MADP entity handles the forwarding of user-plane data across
multiple delivery connections and associated user-plane functions
(e.g., encapsulation, fragmentation, concatenation, reordering,
retransmissions).
The NCM and N-MADP can be either collocated or instantiated on
different network nodes. The NCM can set up multiple N-MADP
instances in the network. The NCM controls the selection of the
N-MADP instance by the client and the rules for the distribution of
user traffic across the N-MADP instances. This is beneficial in
multiple deployment scenarios, like the following examples:
* Different N-MADP instances to handle different sets of clients for
load balancing across clients.
* Network topologies where the N-MADP is hosted at the user-plane
node at the access edge or in the core network, while the NCM is
hosted at the access edge node.
* Access network technology architecture with an N-MADP instance at
the core network node to manage traffic distribution across LTE
and DSL networks, and an N-MADP instance at an access network node
to manage traffic distribution across LTE and Wi-Fi networks.
* A single client can be configured to use multiple N-MADP
instances. This is beneficial in addressing different application
requirements. For example, separate N-MADP instances to handle
traffic that is based on TCP and UDP transport.
Thus, the MAMS architecture flexibly addresses multiple network
deployments.
7. MAMS Protocol Architecture
This section describes the protocol structure for the MAMS user-plane
and control-plane functional elements.
7.1. MAMS Control-Plane Protocol
Figure 2 shows the default MAMS control-plane protocol stack.
WebSocket [RFC6455] is used for transporting management and control
messages between the NCM and the CCM.
+------------------------------------------+
| |
| Multi-Access (MX) Control Message |
| |
+------------------------------------------+
| |
| WebSocket |
| |
+------------------------------------------+
| |
| TCP/TLS |
| |
+------------------------------------------+
Figure 2: TCP-Based MAMS Control-Plane Protocol Stack
7.2. MAMS User-Plane Protocol
Figure 3 shows the MAMS user-plane protocol stack for transporting
the user payload, e.g., an IP Protocol Data Unit (PDU).
+-----------------------------------------------------+
| User Payload, e.g., IP Protocol Data Unit (PDU) |
+-----------------------------------------------------+
+-----------------------------------------------------------+
| +-----------------------------------------------------+ |
| | Multi-Access (MX) Convergence Layer | |
| +-----------------------------------------------------+ |
| +-----------------------------------------------------+ |
| | MX Adaptation | MX Adaptation | MX Adaptation | |
| | Layer | Layer | Layer | |
| | (optional) | (optional) | (optional) | |
| +-----------------+-----------------+-----------------+ |
| | Access #1 IP | Access #2 IP | Access #3 IP | |
| +-----------------------------------------------------+ |
| MAMS User-Plane Protocol Stack |
+-----------------------------------------------------------+
Figure 3: MAMS User-Plane Protocol Stack
The MAMS user-plane protocol consists of the following two layers:
* Multi-Access (MX) Convergence Layer: The MAMS framework configures
the Convergence Layer to perform multi-access-specific tasks in
the user plane. This layer performs such functions as access
(path) selection, multi-link (path) aggregation, splitting/
reordering, lossless switching, fragmentation, or concatenation.
The MX Convergence Layer can be implemented by using existing
user-plane protocols like MPTCP [RFC6824] or Multipath QUIC
(MPQUIC) [QUIC-MULTIPATH], or by adapting encapsulating header/
trailer schemes such as GRE [RFC2784] [RFC2890] or Generic Multi-
Access (GMA) [INTAREA-GMA].
* Multi-Access (MX) Adaptation Layer: The MAMS framework configures
the Adaptation Layer to address transport-network-related aspects
such as reachability and security in the user plane. This layer
performs functions to handle tunneling, network-layer security,
and NAT. The MX Adaptation Layer can be implemented using IPsec,
DTLS [RFC6347], or a Client NAT (Source NAT at the client with
inverse mapping at the N-MADP [INTAREA-MAMS]). The MX Adaptation
Layer is OPTIONAL and can be independently configured for each of
the access links. For example, in a deployment with LTE (assumed
secure) and Wi-Fi (assumed to not be secure), the MX Adaptation
Layer can be omitted for the LTE link, but is configured with
IPsec to secure the Wi-Fi link. Further details on the MAMS user
plane are provided in [INTAREA-MAMS].
8. MAMS Control-Plane Procedures
8.1. Overview
The CCM and NCM exchange signaling messages to configure the user-
plane functions via the C-MADP and the N-MADP at the client and the
network, respectively. The means for the CCM to obtain the NCM
credentials (Fully Qualified Domain Name (FQDN) or IP address) for
sending the initial discovery messages are out of scope for this
document. As an example, the client can obtain the NCM credentials
by using such methods as provisioning or DNS queries. Once the
discovery process is successful, the (initial) NCM can update and
assign additional NCM addresses, e.g., based on Mobile Country Code
(MCC) / Mobile Network Code (MNC) tuple information received in the
MX Discover message, for sending subsequent control-plane messages.
The CCM discovers and exchanges capabilities with the NCM. The NCM
provides the credentials of the N-MADP endpoint and negotiates the
parameters for the user plane with the CCM. The CCM configures the
C-MADP to set up the user-plane path (e.g., MPTCP/UDP Proxy
connection) with the N-MADP, based on the credentials (e.g.,
(MPTCP/UDP) Proxy IP address and port, associated core network path),
and the parameters exchanged with the NCM. Further, the NCM and CCM
exchange link status information to adapt traffic steering and user-
plane treatment to dynamic network conditions. The key procedures
are described in detail in the following subsections.
+-----+ +-----+
| CCM | | NCM |
+--+--+ +--+--+
| Discovery and |
| Capability |
| Exchange |
|<--------------------->|
| |
| Setup of |
| User-Plane |
| Protocols |
|<--------------------->|
| |
| Path Quality |
| Estimation |
|<--------------------->|
| |
| Network Capabilities |
| e.g., RNIS [ETSIRNIS] |
|<----------------------|
| |
| Network Policies |
|<----------------------|
+ +
"RNIS" stands for "Radio Network Information Service"
Figure 4: MAMS Control-Plane Procedures
8.2. Common Fields in MAMS Control Messages
Each MAMS control message consists of the following common fields:
* Version: Indicates the version of the MAMS control protocol.
* Message Type: Indicates the type of the message, e.g., MX
Discover, MX Capability Request (REQ) / Response (RSP).
* Sequence Number: Auto-incremented integer to uniquely identify a
particular message exchange, e.g., MX Capability Request/Response.
8.3. Common Procedures for MAMS Control Messages
This section describes the common procedures for MAMS control
messages.
8.3.1. Message Timeout
After sending a MAMS control message, the MAMS control-plane peer
(NCM or CCM) waits for a duration of MAMS_TIMEOUT ms before timing
out in cases where a response was expected. The sender of the
message will retransmit the message for MAMS_RETRY times before
declaring failure if no response is received. A failure implies that
the MAMS peer is dead or unreachable, and the sender reverts to
native non-multi-access / single-path mode. The CCM may initiate the
MAMS discovery procedure for re-establishing the MAMS session.
8.3.2. Keep-Alive Procedure
MAMS control-plane peers execute the keep-alive procedures to ensure
that the other peers are reachable and to recover from dead-peer
scenarios. Each MAMS control-plane endpoint maintains a Keep-Alive
timer that is set for a duration of MAMS_KEEP_ALIVE_TIMEOUT. The
Keep-Alive timer is reset whenever the peer receives a MAMS control
message. When the Keep-Alive timer expires, an MX Keep-Alive Request
is sent.
The values for MAMS_RETRY and MAMS_KEEP_ALIVE_TIMEOUT parameters used
in keep-alive procedures are deployment dependent, and the means for
obtaining them are out of scope for this document. As an example,
the client and network can obtain the values using provisioning. On
receipt of an MX Keep-Alive Request, the receiver responds with an MX
Keep-Alive Response. If the sender does not receive a MAMS control
message in response to MAMS_RETRY retries of the MX Keep-Alive
Request, the MAMS peer declares that the peer is dead or unreachable.
The CCM MAY initiate the MAMS discovery procedure for re-establishing
the MAMS session.
Additionally, the CCM SHALL immediately send an MX Keep-Alive Request
to the NCM whenever it detects a handover from one base station /
access point to another. During this time, the client SHALL stop
using MAMS user-plane functionality in the uplink direction until it
receives an MX Keep-Alive Response from the NCM.
The MX Keep-Alive Request includes the following information:
* Reason: Can be timeout or handover. Handover shall be used by the
CCM only on detection of a handover.
* Unique Session ID: See Section 8.4.
* Connection ID: If the reason is handover, the inclusion of this
field is mandatory.
* Delivery Node ID: Identity of the node to which the client is
attached. In the case of LTE, this is an E-UTRAN Cell Global
Identifier (ECGI). In the case of Wi-Fi, this is an AP ID or a
Media Access Control (MAC) address. If the reason is "Handover",
the inclusion of this field is mandatory.
8.4. Discovery and Capability Exchange
Figure 5 shows the MAMS discovery and capability exchange procedure.
CCM NCM
| |
|------- MX Discover Message ----------------------->|
| +-----------------+
| | Learn CCM |
| | IP address |
| | and port |
| +-----------------+
| |
|<----------------------------- MX System Info ------|
| |
|------------------------------ MX Capability REQ -->|
|<----- MX Capability RSP ---------------------------|
|------------------------------ MX Capability ACK -->|
| |
+ +
Figure 5: MAMS Control Procedure for Discovery and Capability
Exchange
This procedure consists of the following key steps:
Step 1 (discovery): The CCM periodically sends an MX Discover message
to a predefined (NCM) IP address/port until an MX System Info message
is received in acknowledgment.
* The MX Discover message includes the following information:
- MAMS Version.
- Mobile Country Code (MCC) / Mobile Network Code (MNC) Tuple:
Optional parameter to identify the operator network to which
the client is subscribed, in conformance with the format
specified in [ITU-E212].
* The MX System Info message includes the following information:
- Number of Anchor Connections.
For each anchor connection, the following parameters are
included:
o Connection ID: Unique identifier for the anchor connection.
o Connection Type (e.g., Wi-Fi, 5G NR, MulteFire, LTE).
o NCM Endpoint Address (for control-plane messages over this
connection):
+ IP Address or FQDN
+ Port Number
Step 2 (capability exchange): The CCM learns the IP address and port
from the MX System Info message. It then sends the MX Capability REQ
message, which includes the following parameters:
* MX Feature Activation List: Indicates whether the corresponding
feature is supported or not, e.g., lossless switching,
fragmentation, concatenation, uplink aggregation, downlink
aggregation, measurement, probing.
* Number of Anchor Connections (core networks).
For each anchor connection, the following parameters are included:
- Connection ID
- Connection Type (e.g., Wi-Fi, 5G NR, MulteFire, LTE)
* Number of Delivery Connections (access links).
For each delivery connection, the following parameters are
included:
- Connection ID
- Connection Type (e.g., Wi-Fi, 5G NR, MulteFire, LTE)
* MX Convergence Method Support List:
- GMA
- MPTCP Proxy
- GRE Aggregation Proxy
- MPQUIC
* MX Adaptation Method Support List:
- UDP without DTLS
- UDP with DTLS
- IPsec [RFC3948]
- Client NAT
In response, the NCM creates a unique identity for the CCM session
and sends the MX Capability Response, including the following
information:
* MX Feature Activation List: Indicates whether the corresponding
feature is enabled or not, e.g., lossless switching,
fragmentation, concatenation, uplink aggregation, downlink
aggregation, measurement, probing.
* Number of Anchor Connections (core networks):
For each anchor connection, the following parameters are included:
- Connection ID
- Connection Type (e.g., Wi-Fi, 5G NR, MulteFire, LTE)
* Number of Delivery Connections (access links):
For each delivery connection, the following parameters are
included:
- Connection ID
- Connection Type (e.g., Wi-Fi, 5G NR, MulteFire, LTE)
* MX Convergence Method Support List:
- GMA
- MPTCP Proxy
- GRE Aggregation Proxy
- MPQUIC
* MX Adaptation Method Support List:
- UDP without DTLS
- UDP with DTLS
- IPsec [RFC3948]
- Client NAT
* Unique Session ID: Unique session identifier for the CCM that set
up the connection. If the session already exists, then the
existing unique session identifier is returned.
- NCM ID: Unique identity of the NCM in the operator network.
- Session ID: Unique identity assigned to the CCM instance by
this NCM instance.
In response to the MX Capability Response, the CCM sends a
confirmation (or rejection) in the MX Capability Acknowledge. The MX
Capability Acknowledge includes the following parameters:
* Unique Session ID: Same identifier as the identifier provided in
the MX Capability Response.
* Acknowledgment: An indication of whether the client has accepted
or rejected the capability exchange phase.
- MX ACCEPT: The CCM accepts the capability set proposed by the
NCM.
- MX REJECT: The CCM rejects the capability set proposed by the
NCM.
If the NCM receives an MX_REJECT, the current MAMS session will be
terminated.
If the CCM can no longer continue with the current capabilities, it
SHOULD send an MX Session Termination Request to terminate the MAMS
session. In response, the NCM SHOULD send an MX Session Termination
Response to confirm the termination.
8.5. User-Plane Configuration
Figure 6 shows the user-plane (UP) configuration procedure.
CCM NCM
| |
|---- MX Reconfiguration REQ (setup) ----------->|
|<-------------------- MX Reconfiguration RSP ---|
| +-------------------------+
| | NCM prepares N-MADP for |
| | User-Plane Setup |
| +-------------------------+
|<-------------------- MX UP Setup Config -------|
|---- MX UP Setup Confirmation ----------------->|
+-------------------+ |
|Link "X" is up/down| |
+-------------------+ |
|---- MX Reconfiguration REQ (update/release) -->|
|<-------------------- MX Reconfiguration RSP ---|
Figure 6: MAMS Control Procedure for User-Plane Configuration
This procedure consists of the following two key steps:
* Reconfiguration: The CCM informs the NCM about the changes to the
client's connections - setup of a new connection, teardown of an
existing connection, or update of parameters related to an
existing connection. It consists of the client triggering the
procedure by requesting an update to the connection configuration,
and a response from the NCM.
* UP Setup: The NCM configures the user-plane protocols at the
client and the network. The NCM initiates the UP setup by sending
the MX UP Setup Configuration Request to the client, which
confirms the set of mutually acceptable parameters by using the
User Plane Setup Confirmation (CNF) message.
These steps are elaborated as follows.
Reconfiguration: When the client detects that the link is up/down or
the IP address changes (e.g., via APIs provided by the client OS),
the CCM sends an MX Reconfiguration Request to set up, update, or
release the connection. The message SHOULD include the following
information:
* Unique Session ID: Identity of the CCM at the NCM, created by the
NCM during the capability exchange phase.
* Reconfiguration Action: Indicates the reconfiguration action
(release, setup, or update).
* Connection ID: Identifies the connection for reconfiguration.
If the Reconfiguration Action is set to "setup" or "update", then the
message includes the following parameters:
* IP address of the connection.
* SSID (Service Set Identifier of the Wi-Fi connection).
* MTU of the connection: The MTU of the delivery path that is
calculated at the client for use by the NCM to configure
fragmentation and concatenation procedures [INTAREA-MAMS] at the
N-MADP.
* Delivery Node ID: Identity of the node to which the client is
attached. In the case of LTE, this is an ECGI. In the case of
Wi-Fi, this is an AP ID or a MAC address.
At the beginning of a connection setup, the CCM informs the NCM of
the connection status using the MX Reconfiguration Request with the
Reconfiguration Action set to "setup". The NCM acknowledges the
connection setup status and exchanges parameters with the CCM for
user-plane setup, as described below.
Setup of User-Plane Protocols: Based on the negotiated capabilities,
the NCM sets up the user-plane (Adaptation Layer and Convergence
Layer) protocols at the N-MADP and informs the CCM of the user-plane
protocols to be set up at the client (C-MADP) and the parameters for
the C-MADP to connect to the N-MADP.
The MX UP Setup Configuration Request is used to create one or more
MADP instances, with each anchor connection having one or more
configurations, namely MX Configurations. The MX UP Setup
Configuration Request consists of the following parameters:
* Number of Anchor Connections (core networks).
For each anchor connection, the following parameters are included:
- Anchor Connection ID
- Connection Type (e.g., Wi-Fi, 5G NR, MulteFire, LTE)
- Number of Active MX Configurations (included only if more than
one MX configuration is active for the anchor connection).
For each active MX configuration, the following parameters are
included:
o MX Configuration ID (included if more than one MX
configuration is present)
o MX Convergence Method. One of the following:
+ GMA
+ MPTCP Proxy
+ GRE Aggregation Proxy
+ MPQUIC
o MX Convergence Method Parameters:
+ Convergence Proxy IP Address
+ Convergence Proxy Port
+ Client Key
o MX Convergence Control Parameters (included if any MX
Control PDU types (e.g., Probe-REQ/ACK) are supported):
+ UDP port number for sending and receiving MX Control PDUs
(e.g., Probe-REQ/ACK, Keep-Alive)
+ Convergence Proxy Port
o Number of Delivery Connections.
For each delivery connection, include the following:
+ Delivery Connection ID
+ Connection Type (e.g., Wi-Fi, 5G NR, MulteFire, LTE)
+ MX Adaptation Method. One of the following:
* UDP without DTLS
* UDP with DTLS
* IPsec
* Client NAT
+ MX Adaptation Method Parameters:
* Tunnel Endpoint IP Address
* Tunnel Endpoint Port
* Shared Secret
* Header Optimization (included only if the MX
Convergence Method is GMA)
For example, when LTE and Wi-Fi are the two user-plane accesses, the
NCM conveys to the CCM that IPsec needs to be set up as the MX
Adaptation Layer over the Wi-Fi access, using the following
parameters: IPsec endpoint IP address, and Pre-Shared Key. No
Adaptation Layer is needed if it is considered secure with no NAT, or
a Client NAT may be used over the LTE access.
Similarly, as an example of the MX Convergence Method, the
configuration indicates the convergence method as the MPTCP proxy,
along with parameters for a connection to the MPTCP proxy: namely the
IP address and port of the MPTCP proxy for TCP applications.
Once the user-plane protocols are configured, the CCM informs the NCM
of the status via the MX UP Setup Confirmation. The MX UP Setup
Confirmation consists of the following parameters:
* Unique Session ID: Session identifier provided to the client in an
MX Capability Response.
* MX Convergence Control Parameters (included if any MX Control PDU
types (e.g., Probe-REQ/ACK, Keep-Alive) are supported):
- UDP port number for sending and receiving MX Control PDUs
(e.g., Probe-REQ/ACK, Keep-Alive)
- MX Configuration ID (if an MX Configuration ID is specified in
an MX UP Setup Configuration Request) to indicate the MX
Configuration that will be used for probing)
* Client Adaptation-Layer Parameters:
- Number of Delivery Connections.
For each delivery connection, include the following:
o Delivery Connection ID
o UDP port number: If UDP-based adaptation is in use, the UDP
port on the C-MADP side
8.6. MAMS Path Quality Estimation
Path quality estimations can be done either passively or actively.
Traffic measurements in the network can be performed passively by
comparing the real-time data throughput of the client with the
capacity available in the network. In special deployments where the
NCM has interfaces with access nodes, direct interfaces can be used
to gather information regarding path quality. For example, the
utilization of the LTE access node (also known as Evolved Node B), to
which the client is attached, could be used as data for the
estimation of path quality without creating any extra traffic
overhead. Active measurements by the client provide an alternative
way to estimate path quality.
CCM NCM
| |
|<-------------- MX Path Estimation Request ---------|
|------ MX Path Estimation Results ----------------->|
| |
Figure 7: MAMS Control-Plane Procedure for Path Quality Estimation
The NCM sends the following configuration parameters in the MX Path
Estimation Request to the CCM:
* Connection ID (of the delivery connection whose path quality needs
to be estimated)
* Init Probe Test Duration (ms)
* Init Probe Test Rate (Mbps)
* Init Probe Size (bytes)
* Init Probe-ACK Required (0 -> No / 1 -> Yes)
* Active Probe Frequency (ms)
* Active Probe Size (bytes)
* Active Probe Test Duration (ms)
* Active Probe-ACK Required (0 -> No / 1 -> Yes)
The CCM configures the C-MADP for probe receipt based on these
parameters and for collection of the statistics according to the
following configuration.
* Unique Session ID: Session identifier provided to the client in an
MX Capability Response.
* Init Probe Results Configuration:
- Lost Probes (percent)
- Probe Receiving Rate (packets per second)
* Active Probe Results Configuration:
- Average Throughput in the last Probe Duration
The user-plane probing is divided into two phases: the Initialization
phase and the Active phase.
* Initialization Phase: A network path that is not included by the
N-MADP for transmission of user data is deemed to be in the
Initialization phase. The user data may be transmitted over other
available network paths.
* Active Phase: A network path that is included by the N-MADP for
transmission of user data is deemed to be in the Active phase.
During the Initialization phase, the NCM configures the N-MADP to
send an Init Probe-REQ message. The CCM collects the Init Probe
statistics from the C-MADP and sends the MX Path Estimation Results
message to the NCM per the Initialization Probe Results
configuration.
During the Active phase, the NCM configures the N-MADP to send an
Active Probe-REQ message. The C-MADP calculates the metrics as
specified by the Active Probe Results configuration. The CCM
collects the Active Probe statistics from the C-MADP and sends the MX
Path Estimation Results message to the NCM per the Active Probe
Results configuration.
The following subsections define the control PDU encoding for Keep-
Alive and Probe-REQ/ACK messages to support path quality estimation.
8.6.1. MX Control PDU Definition
Control PDUs are sent as UDP messages between the C-MADP and the
N-MADP to exchange control messages for keep-alive or path quality
estimation. MX probe parameters are negotiated during the user-plane
setup phase (MX UP Setup Configuration Request and MX UP Setup
Confirmation). Figure 8 shows the MX Control PDU format with the
following fields:
* Type (1 byte): The type of the MX Control message.
- 0: Keep-Alive
- 1: Probe-REQ/ACK
- Others: Reserved
* CID (1 byte): The connection ID of the delivery connection for
sending the MX Control message.
* MX Control Message (variable): The payload of the MX Control
message.
The MX Control PDU is sent as a normal user-plane packet over the
desired delivery connection whose quality and reachability need to be
determined.
| |
|<--------- MX Control PDU Payload ------->|
| |
+-----------+-------------------+-----+-----------------------------+
| IP Header | UDP Header | Type | CID | MX Control Message |
+-----------+-------------------+-----+-----------------------------+
Figure 8: MX Control PDU Format
8.6.2. Keep-Alive Message
The "Type" field is set to "0" for Keep-Alive messages. The C-MADP
may periodically send a Keep-Alive message over one or multiple
delivery connections, especially if UDP tunneling is used as the
adaptation method for the delivery connection with a NAT function on
the path.
A Keep-Alive message is 2 bytes long and consists of the following
field:
* Keep-Alive Sequence Number (2 bytes): The sequence number of the
Keep-Alive message.
8.6.3. Probe-REQ/ACK Message
The "Type" field is set to "1" for Probe-REQ/ACK messages. The
N-MADP may send the Probe-REQ message for path quality estimation.
In response, the C-MADP may return the Probe-ACK message.
A Probe-REQ message consists of the following fields:
* Probing Sequence Number (2 bytes): The sequence number of the
Probe REQ message.
* Probing Flag (1 byte):
- Bit 0: A Probe-ACK flag to indicate whether the Probe-ACK
message is expected (1) or not (0).
- Bit 1: A Probe Type flag to indicate whether the Probe-REQ/ACK
message was sent during the Initialization phase (0) when the
network path is not included for transmission of user data, or
during the Active phase (1) when the network path is included
for transmission of user data.
- Bit 2: A bit flag to indicate the presence of the Reverse
Connection ID (R-CID) field.
- Bits 3-7: Reserved.
* Reverse Connection ID (R-CID) (1 byte): The connection ID of the
delivery connection for sending the Probe-ACK message on the
reverse path.
* Padding (variable).
The "R-CID" field is only present if both Bit 0 and Bit 2 of the
"Probing Flag" field are set to "1". Moreover, Bit 2 of the "Probing
Flag" field SHOULD be set to "0" if Bit 0 is "0", indicating that the
Probe-ACK message is not expected.
If the "R-CID" field is not present, but Bit 0 of the "Probing Flag"
field is set to "1", the Probe-ACK message SHOULD be sent over the
same delivery connection as the Probe-REQ message.
The "Padding" field is used to control the length of the Probe-REQ
message.
The C-MADP SHOULD send the Probe-ACK message in response to a Probe-
REQ message with the Probe-ACK flag set to "1".
A Probe-ACK message is 3 bytes long and consists of the following
field:
* Probing Acknowledgment Number (2 bytes): The sequence number of
the corresponding Probe-REQ message.
8.7. MAMS Traffic Steering
CCM NCM
| |
| +------------------------------+
| |Steer user traffic to Path "X"|
| +------------------------------+
|<----------------- MX Traffic Steering REQ ------|
|----- MX Traffic Steering RSP ------------------>|
Figure 9: MAMS Traffic-Steering Procedure
The NCM sends an MX Traffic Steering Request to steer data traffic.
It is also possible to send data traffic over multiple connections
simultaneously, i.e., aggregation. The message includes the
following information:
* Anchor Connection ID: Connection ID of the anchor connection.
* MX Configuration ID (if an MX Configuration ID is specified in an
MX UP Setup Configuration Request).
* DL Connection ID List: List of DL delivery connections, provided
as Connection IDs.
* UL Connection ID: Connection ID of the default UL delivery
connection.
* For the number of specific UL traffic templates, the message
includes the following:
- Traffic Flow Template for identifying the UL traffic.
- UL Connection ID List: List of UL delivery connections,
provided as Connection IDs, to be used for sending the UL
traffic.
* MX Feature Activation List. Each parameter indicates whether the
corresponding feature is enabled or not: lossless switching,
fragmentation, concatenation, uplink aggregation, downlink
aggregation, measurement, probing.
In response, the CCM sends an MX Traffic Steering Response, including
the following information:
* Unique Session ID: Session identifier provided to the client in an
MX Capability Response.
* MX Feature Activation List. Each parameter indicates whether the
corresponding feature is enabled or not: lossless switching,
fragmentation, concatenation, uplink aggregation, downlink
aggregation, measurement, probing.
8.8. MAMS Application MADP Association
CCM NCM
| |
| +-------------------------+
| | Associate MADP instance |
| | with application flow |
| +-------------------------+
|---------- MX App MADP ------------------->|
| Association REQ |
| |
|<----------------- MX App MADP ------------|
| Association RSP |
Figure 10: MAMS Application MADP Association Procedure
The CCM sends an MX Application MADP Association Request to request
the association of a specific application flow with a specific MADP
instance ID for the anchor connection with multiple active MX
configurations. The MADP Instance ID is a tuple (Anchor Connection
ID, MX Configuration ID). This provides the capability for the
client to indicate the user-plane processing that needs to be
associated with different application flows depending on the needs of
those flows. The application flow is identified by its associated
Traffic Flow Template.
The MX Application MADP Association Request includes the following
information:
* Number of Application Flows.
For each application flow, identified by the Traffic Flow
Templates:
- Anchor Connection ID
- MX Configuration ID (if more than one MX configuration is
associated with an anchor connection)
- Traffic Flow Template for identifying the UL traffic
- Traffic Flow Template for identifying the DL traffic
In response, the NCM sends an MX Application MADP Association
Response, including the following information:
* Number of Application Flows.
For each application flow, identified by the Traffic Flow
Templates:
- Status (Success or Failure)
8.9. MAMS Network ID Indication
CCM NCM
| |
| +---------------------------------+
| |NCM determines preferred networks|
| +---------------------------------+
| |
|<----------------- MX SSID Indication -----------|
| |
Figure 11: MAMS Network ID Indication Procedure
The NCM indicates the preferred network list to the CCM to guide the
client regarding networks that it should connect to. To indicate
preferred Wi-Fi networks, the NCM sends the list of WLANs, each
represented by an SSID (Service Set Identifier)/BSSID (Basic Service
Set Identifier)/HESSID (Homogeneous Extended Service Set Identifier)
as defined in [IEEE-80211]), available in the MX SSID Indication.
8.10. MAMS Client Measurement Configuration and Reporting
CCM NCM
| |
|<--------------- MX Measurement Config ----------|
| |
+---------------------------------+ |
|Client ready to send measurements| |
+---------------------------------+ |
| |
|----- MX Measurement Report -------------------->|
| |
Figure 12: MAMS Client Measurement Configuration and Reporting
Procedure
The NCM configures the CCM with the different parameters (e.g., radio
link information), with the associated thresholds to be reported by
the client. The MX Measurement Configuration message contains the
following parameters for each delivery connection:
* Delivery Connection ID.
* Connection Type (e.g., Wi-Fi, 5G NR, MulteFire, LTE).
* If the connection type is Wi-Fi:
- High and low thresholds for the sending of average Received
Signal Strength Indicator (RSSI) of the Wi-Fi link.
- Periodicity, in ms, for sending the average RSSI of the Wi-Fi
link.
- High and low thresholds for sending the loading of the WLAN
system.
- Periodicity, in ms, for sending the loading of the WLAN system.
- High and low thresholds for sending the reverse link throughput
on the Wi-Fi link.
- Periodicity, in ms, for sending the reverse link throughput on
the Wi-Fi link.
- High and low thresholds for sending the forward link throughput
on the Wi-Fi link.
- Periodicity, in ms, for sending the forward link throughput on
the Wi-Fi link.
- High and low thresholds for sending the reverse link throughput
(EstimatedThroughputOutbound as defined in [IEEE-80211]) on the
Wi-Fi link.
- Periodicity, in ms, for sending the reverse link throughput
(EstimatedThroughputOutbound as defined in [IEEE-80211]) on the
Wi-Fi link.
- High and low thresholds for sending the forward link throughput
(EstimatedThroughputInbound, as defined in [IEEE-80211]) on the
Wi-Fi link.
- Periodicity, in ms, for sending the forward link throughput
(EstimatedThroughputInbound, as defined in [IEEE-80211]) on the
Wi-Fi link.
* If the connection type is LTE:
- High and low thresholds for sending the Reference Signal
Received Power (RSRP) of the serving LTE link.
- Periodicity, in ms, for sending the RSRP of the serving LTE
link.
- High and low thresholds for sending the RSRQ (Reference Signal
Received Quality) of the serving LTE link.
- Periodicity, in ms, for sending the RSRP of the serving LTE
link.
- High and low thresholds for sending the reverse link throughput
on the serving LTE link.
- Periodicity, in ms, for sending the reverse link throughput on
the serving LTE link.
- High and low thresholds, for sending the forward link
throughput on the serving LTE link.
- Periodicity, in ms, for sending the forward link throughput on
the serving LTE link.
* If the connection type is 5G NR:
- High and low thresholds for sending the RSRP of the serving NR
link.
- Periodicity, in ms, for sending the RSRP of the serving NR
link.
- High and low thresholds for sending the RSRQ of the serving NR
link.
- Periodicity, in ms, for sending the RSRP of the serving NR
link.
- High and low thresholds for sending the reverse link throughput
on the serving NR link.
- Periodicity, in ms, for sending the reverse link throughput on
the serving NR link.
- High and low thresholds for sending the forward link throughput
on the serving NR link.
- Periodicity, in ms, for sending the forward link throughput on
the serving NR link.
The MX Measurement Report contains the following parameters:
* Unique Session ID: Session identifier provided to the client in an
MX Capability Response.
* For each delivery connection, include the following:
- Delivery Connection ID
- Connection Type (e.g., Wi-Fi, 5G NR, MulteFire, LTE)
- Delivery Node ID (ECGI in the case of LTE. In the case of Wi-
Fi, this is an AP ID or a MAC address.)
- If the connection type is Wi-Fi:
o Average RSSI of the Wi-Fi link.
o Loading of the WLAN system.
o Reverse link throughput on the Wi-Fi link.
o Forward link throughput on the Wi-Fi link.
o Estimated reverse link throughput on the Wi-Fi link
(EstimatedThroughputOutbound as defined in [IEEE-80211]).
o Estimated forward link throughput on the Wi-Fi link
(EstimatedThroughputInbound, as defined in [IEEE-80211]).
- If the connection type is LTE:
o RSRP of the serving LTE link.
o RSRQ of the serving LTE link.
o Reverse link throughput on the serving LTE link.
o Forward link throughput on the serving LTE link.
- If the connection type is 5G NR:
o RSRP of the serving NR link.
o RSRQ of the serving NR link.
o Reverse link throughput on the serving NR link.
o Forward link throughput on the serving NR link.
8.11. MAMS Session Termination Procedure
CCM NCM
| |
|---- MX Session Termination REQ --->|
| |
| |
|<--- MX Session Termination RSP ----|
| |
| +------------------+
| | Remove Resources |
| +------------------+
| |
Figure 13: MAMS Session Termination Procedure - Initiated by Client
CCM NCM
| |
|<--- MX Session Termination REQ ----|
| |
| |
|---- MX Session Termination RSP --->|
| |
+------------------+ |
| Remove Resources | |
+------------------+ |
| |
Figure 14: MAMS Session Termination Procedure - Initiated by Network
At any point in MAMS processing, if the CCM or NCM is no longer able
to support the MAMS functions, then either of them can initiate a
termination procedure by sending an MX Session Termination Request to
the peer. The peer SHALL acknowledge the termination by sending an
MX Session Termination Response message. After the session is
disconnected, the CCM SHALL start a new procedure with an MX Discover
message. An MX Session Termination Request shall contain a Unique
Session ID and the reason for the termination. Possible reasons for
termination are:
* Normal Release
* No Response from Peer
* Internal Error
8.12. MAMS Network Analytics Request Procedure
CCM NCM
| |
|----- MX Network Analytics REQ --->|
| |
| |
|<--- MX Network Analytics RSP -----|
| |
Figure 15: MAMS Network Analytics Request Procedure
The CCM sends the MX Network Analytics Request to the NCM to request
information related to such network parameters as bandwidth, latency,
jitter, and signal quality, based on the application of analytics at
the network (utilizing the received path measurements and client
measurement reporting).
The MX Network Analytics Request consists of the following
parameters:
* Link Quality Indicators. One or more of the following:
- Bandwidth
- Jitter
- Latency
- Signal Quality
The NCM sends the MX Network Analytics Response to convey analytics
information that might be of interest to the CCM. This message will
include network parameters with their predicted likelihoods.
The MX Network Analytics Response consists of the following
parameters:
* Number of Delivery Connections.
For each delivery connection, include the following:
- Access Link Identifier:
o Connection Type
o Connection ID
- Link Quality Indicator:
o Bandwidth:
+ Predicted Value (Mbps)
+ Likelihood (percent)
+ Prediction Validity (Validity Time, in seconds)
o Jitter:
+ Predicted Value (in seconds)
+ Likelihood (percent)
+ Prediction Validity (Validity Time, in seconds)
o Latency:
+ Predicted Value (in seconds)
+ Likelihood (percent)
+ Prediction Validity (Validity Time, in seconds)
o Signal Quality:
+ If delivery connection type is LTE, LTE_RSRP Predicted
Value in decibel-milliwatts (dBm)
+ If delivery connection type is LTE, LTE_RSRQ Predicted
Value (dBm)
+ If delivery connection type is 5G NR, NR_RSRP Predicted
Value (dBm)
+ If delivery connection type is 5G NR, NR_RSRQ Predicted
Value (dBm)
+ If delivery connection type is Wi-Fi, WLAN_RSSI Predicted
Value (dBm)
+ Likelihood (percent)
+ Prediction Validity (Validity Time, in seconds)
9. Generic MAMS Signaling Flow
Figure 16 illustrates the MAMS signaling mechanism for negotiation of
network paths and flow protocols between the client and the network.
In this example scenario, the client is connected to two networks
(LTE and Wi-Fi).
+--------------------------------------------+
| MAMS-enabled Network of Networks |
| +-------+ +-------+ +-----+ +------+ |
+------------------+ | | | | | | | | | |
| Client | | |Network| |Network| | | | | |
| +------+ +-----+ | | | 1 | | 2 | | NCM | |N-MADP| |
| |C-MADP| | CCM | | | | (LTE) | |(Wi-Fi)| | | | | |
| +------+ +-----+ | | +-------+ +-------+ +-----+ +------+ |
| | | | | | | | | |
++---+--------+----+ +-----+-----------+----------+----------+----+
| | | | | | |
| | | | | | |
| | 1. Setup Connection | | | |
|<-----------+------------->| | | |
| | | | | | |
| | | 2. MAMS Capabilities Exchange | |
| | |<-------------+-----------+--------->| |
| | | | | | |
| | 3. Setup Connection | | | |
|<--+---------------------------------->| | |
| | | | | | |
| 4c. Config | 4a. Negotiate network paths, |4b. Config|
| | C-MADP | Flow protocol, and parameters | N-MADP|
| |<------>|<-------------+-----------+--------->|<-------->|
| | | | | | |
| | | 5. Establish user-plane path according |
| | | to selected flow protocol | |
| |<----------------------+-----------+-------------------->|
| | | | | | |
+ + + + + + +
Figure 16: MAMS Call Flow
1. The client connects to Network 1 and gets an IP address assigned
by Network 1.
2. The CCM communicates with the NCM functional element via the
Network 1 connection and exchanges capabilities and parameters
for MAMS operation. Note: The NCM credentials (e.g., the NCM's
IP address) can be made known to the client by provisioning.
3. The client sets up the connection with Network 2 and gets an IP
address assigned by Network 2.
4. The CCM and NCM negotiate capabilities and parameters for
establishing network paths. The negotiated capabilities and
parameters are then used to configure user-plane functions, i.e.,
the N-MADP at the network and the C-MADP at the client.
4a. The CCM and NCM negotiate network paths, flow routing and
aggregation protocols, and related parameters.
4b. The NCM communicates with the N-MADP to exchange and
configure flow aggregation protocols, policies, and
parameters in alignment with those negotiated with the CCM.
4c. The CCM communicates with the C-MADP to exchange and
configure flow aggregation protocols, policies, and
parameters in alignment with those negotiated with the NCM.
5. The C-MADP and N-MADP establish the user-plane paths, e.g., using
Internet Key Exchange Protocol (IKE) [RFC7296] signaling, based
on the negotiated flow aggregation protocols and parameters
specified by the NCM.
The CCM and NCM can further exchange messages containing access link
measurements for link maintenance by the NCM. The NCM evaluates the
link conditions in the UL and DL across LTE and Wi-Fi, based on link
measurements reported by the CCM and/or link-probing techniques, and
determines the policy for UL and DL user data distribution. The NCM
and CCM also negotiate application-level policies for categorizing
applications, e.g., based on the Differentiated Services Code Point
(DSCP), destination IP address, and determination of which available
network path needs to be used for transporting data of that category
of applications. The NCM configures the N-MADP, and the CCM
configures the C-MADP, based on the negotiated application policies.
The CCM may apply local application policies, in addition to the
application policy conveyed by the NCM.
10. Relationship to IETF Technologies
The MAMS framework leverages technologies developed in the IETF (such
as MPTCP and GRE) and enables a control-plane framework to negotiate
the use of these protocols between the client and the network. It
also addresses the limitations in scope of other multihoming
protocols. For example, the IKEv2 Mobility and Multihoming Protocol
(MOBIKE [RFC4555]) scope indicates that it is limited to multihoming
between IPsec clients (tunnel mode IPsec Security Associations) and
does not support load balancing. To address this limitation
regarding how the multihoming scenario is handled, the MAMS framework
supports load balancing with the simultaneous use of multiple access
paths by negotiating the use of protocols like MPTCP. Unlike MOBIKE,
which only applies to endpoints connected with an IPsec tunnel mode
Security Association, the MAMS framework allows the flexibility to
use a wide range of tunneling protocols in the Adaptation Layer.
11. Applying MAMS Control Procedures with MPTCP Proxy as User Plane
If the NCM determines that the N-MADP is to be instantiated with
MPTCP as the MX Convergence Protocol, it exchanges the MPTCP
capability support in the discovery and capability exchange
procedures. An MPTCP proxy (e.g., see [TCPM-CONVERTERS]) is
configured to be the N-MADP instance. The NCM then provides the
credentials of the MPTCP Proxy instance, along with related
parameters, to the CCM. The CCM configures the C-MADP with these
parameters to connect to this MPTCP proxy instance.
Figure 17 illustrates the user-plane protocol layering when MPTCP is
configured to be the "MX Convergence Layer" protocol. MPTCP manages
traffic distribution and aggregation over multiple delivery
connections.
+-----------------------------------------------------+
| MPTCP |
+-----------------+-----------------+-----------------+
| TCP | TCP | TCP |
+-----------------------------------------------------+
| MX Adaptation | MX Adaptation | MX Adaptation |
| Layer | Layer | Layer |
| (optional) | (optional) | (optional) |
+-----------------------------------------------------+
| Access #1 IP | Access #2 IP | Access #3 IP |
+-----------------+-----------------+-----------------+
Figure 17: MAMS User-Plane Protocol Stack with MPTCP as MX
Convergence Layer
The client (C-MADP) sets up an MPTCP connection with the N-MADP to
begin with. The MAMS control procedures are then applied to do the
following:
* Connect to the appropriate MPTCP network endpoint, e.g., the MPTCP
proxy (illustrated in Figure 18).
* Control the addition of a second TCP subflow after the Wi-Fi
connection is established and is deemed good (illustrated in
Figure 19).
* Control the behavior of the MPTCP scheduler, e.g., by using only
the LTE subflow in the UL and both the LTE and Wi-Fi subflows in
the DL (illustrated in Figure 20).
* Provide faster response to Wi-Fi link degradation by proactively
deleting a TCP subflow over Wi-Fi when poor link conditions are
reported, maintaining optimum performance (illustrated in
Figure 21).
Figure 18 shows the call flow describing MAMS control procedures
applied to configure the user plane and dynamic optimal path
selection in a scenario with the MPTCP proxy as the convergence
protocol in the user plane.
+------+ +--------+ +--------+ +-------+ +-------+ +------+
| | | | | | | | | | | |
| CCM | | C-MADP | | Wi-Fi | | LTE | | NCM | |N-MADP|
| | | | | N/W | | N/W | | | | |
+------+ +--------+ +--------+ +-------+ +-------+ +------+
+------------------------------------------------------------------+
| 1. LTE Session Setup and IP Address Allocation |
+-----------------------------------------+-----------+------------+
| | | |
|2. MX Discover (MAMS Version, MCC/MNC) | | |
+----------------------------------------+---------->| |
|3. MX System Info (Serving NCM IP/Port Address) | |
|<------------+-------------+-------------+----------+ |
| | | | | |
|4. MX Capability REQ (Supported Anchor/Delivery | |
| | Links (Wi-Fi, LTE)) | |
+--------------------------------------------------->| |
|5. MX Capability RSP (Convergence/Adaptation Parameters) |
|<----------------------------------------+----------+ |
|6. MX Capability ACK (ACCEPT) | | |
+-------------+-------------+----------------------->| |
| | | | | |
|7. MX Meas Config (Wi-Fi/LTE Measurement Thresholds/Period) |
|<---------------------------------------------------+ |
|8. MX Meas Report (LTE RSRP, UL/DL TPUT) | | |
+-----------------------------------------+--------->| |
|9. MX SSID Indication (List of SSIDs) | | |
|<------------+-------------+------------------------+ |
| | | | | |
|10. MX Reconfiguration REQ (LTE IP) | | |
+--------------------------------------------------->| |
|11. MX Reconfiguration RSP | | |
|<----------------------------------------+----------+ |
|12. MX UP Setup REQ (MPTCP proxy IP/Port, Aggregation) |
|<--------------------------+-------------+----------+ |
|13. MX UP Setup RSP | | | |
+-------------+-------------+-------------+--------->| |
| | 14. MPTCP connection with designated | |
| | MPTCP proxy over LTE | |
| +-------------+-------------+----------+------->|
| | | | | |
+ + + + + +
Figure 18: MAMS-Assisted MPTCP Proxy as User Plane - Initial
Setup with LTE Leg
The salient steps described in the call flow are as follows. The
client connects to the LTE network and obtains an IP address (assume
that LTE is the first connection). It then initiates the NCM
discovery procedures and exchanges capabilities, including the
support for MPTCP as the convergence protocol at both the network and
the client.
The CCM provides the LTE connection parameters to the NCM. The NCM
provides the parameters like MPTCP proxy IP address/port, and MPTCP
Client Key for configuring the Convergence Layer. This is useful if
the N-MADP is reachable, via a different IP address or/and port, from
different access networks. The current MPTCP signaling can't
identify or differentiate the MPTCP proxy IP address and port from
multiple access networks. The client uses the MPTCP Client Key
during the subflow creation, and this enables the N-MADP to uniquely
identify the client, even if a NAT is present. The N-MADP can then
inform the NCM of the subflow creation and parameters related to
creating additional subflows. Since LTE is the only connection, the
user-plane traffic flows over the single TCP subflow over the LTE
connection. Optionally, the NCM provides assistance information to
the client on the neighboring/preferred Wi-Fi networks that it can
associate with.
Figure 19 describes the steps where the client establishes a Wi-Fi
connection. The CCM informs the NCM of the Wi-Fi connection, along
with such parameters as the Wi-Fi IP address or the SSID. The NCM
determines that the Wi-Fi connection needs to be secured, configures
the Adaptation Layer to use IPsec, and provides the required
parameters to the CCM. In addition, the NCM provides the information
for configuring the Convergence Layer (e.g., MPTCP proxy IP address)
and provides the MX Traffic Steering Request to indicate that the
client SHOULD use only the LTE access. The NCM may do this, for
example, on determining from the measurements that the Wi-Fi link is
not consistently good enough. As the Wi-Fi link conditions improve,
the NCM sends an MX Traffic Steering Request to use Wi-Fi access as
well. This triggers the client to establish the TCP subflow over the
Wi-Fi link with the MPTCP proxy.
+------+ +--------+ +--------+ +-------+ +-------+ +------+
| | | | | | | | | | | |
| CCM | | C-MADP | | Wi-Fi | | LTE | | NCM | |N-MADP|
| | | | | N/W | | N/W | | | | |
+------+ +--------+ +--------+ +-------+ +-------+ +------+
+-------------------------------------------------------------------+
| Traffic over LTE in UL and DL over MPTCP Connection |
+-------------------------------------------------------------------+
+-------------------------------------------------------------------+
| Wi-Fi Connection Establishment and IP Address Allocation |
+----------------------------------------------------------------+--+
| | | | | |
|15. MX Reconfiguration REQ (Wi-Fi IP) | | |
+--------------------------------------------------->| |
|16. MX Reconfiguration RSP | | |
|<----------------------------------------+----------+ |
|17. MX UP Setup REQ (MPTCP proxy IP/Port, Aggregation) |
|<--------------------------+-------------+----------+ |
|18. MX UP Setup RSP | | | |
+-------------+-------------+-------------+--------->| |
| |19. IPsec Tunnel Establishment over Wi-Fi Path |
| |<-------------------------------------+-------->|
| | | | | |
|20. MX Meas Report (Wi-Fi RSSI, | | |
| LTE RSRP, UL/DL TPUT) | |+------------+
+-------------+-------------+-------------+--------->||Wait for |
| | | | ||good reports|
| | | | |+------------+
|21. MX Traffic Steering REQ (UL/DL access, | |
| Traffic Flow Templates (TFTs)) | +----------+
|<----------------------------------------+----------+ |Allow use |
| | | | of |
|22. MX Traffic Steering RSP (...) | | |Wi-Fi link|
+-------------+-------------+----------------------->| +----------+
| | | | | |
| | 23. Add TCP subflow to the MPTCP connection |
| | over Wi-Fi link (IPsec Tunnel) |
| |<---------------------------------------------->|
| | | | | |
+----------------------------------------------------------------+
|| Aggregated Wi-Fi and LTE capacity for UL and DL ||
+----------------------------------------------------------------+
| |
| |
Figure 19: MAMS-Assisted MPTCP Proxy as User Plane - Add Wi-Fi Leg
Figure 20 describes the steps where the client reports that Wi-Fi
link conditions degrade in UL. The MAMS control plane is used to
continuously monitor the access link conditions on Wi-Fi and LTE
connections. The NCM may at some point determine an increase in UL
traffic on the Wi-Fi network, and trigger the client to use only LTE
in the UL via a MX Traffic Steering Request to improve UL
performance.
+------+ +--------+ +--------+ +-------+ +-------+ +------+
| | | | | | | | | | | |
| CCM | | C-MADP | | Wi-Fi | | LTE | | NCM | |N-MADP|
| | | | | N/W | | N/W | | | | |
+------+ +--------+ +--------+ +-------+ +-------+ +------+
+-------------------------------------------------------------------+
| Traffic over LTE and Wi-Fi in UL And DL over MPTCP |
++------------+-------------+-------------+------------+--------+---+
| | | | | |
|24. MX Meas Report (Wi-Fi RSSI, LTE RSRP, UL/DL TPUT)| +------+---+
+------------+-------------+-------------+----------->| |Reports of|
| | | | | |bad Wi-Fi |
| | | | | |UL tput |
| | | | | +----------+
|25. MX Traffic Steering REQ (UL/DL Access, TFTs) | +----------+
|<---------------------------------------+------------+ |Disallow |
| | | | | |use of |
|26. MX Traffic Steering RSP (...) | | |Wi-Fi UL |
|------------+-------------+------------------------->| +------+---+
| | | | | |
++------------+-------------+-------------+------------+--------+---+
| UL data to use TCP subflow over LTE link only, |
| aggregated Wi-Fi+LTE capacity for DL |
++------------+-------------+-------------+------------+--------+---+
| | | | | |
+ + + + + +
Figure 20: MAMS-Assisted MPTCP Proxy as User Plane - Wi-Fi UL
Degrades
Figure 21 describes the steps where the client reports that Wi-Fi
link conditions have degraded in both the UL and DL. As the Wi-Fi
link conditions deteriorate further, the NCM may decide to send a MX
Traffic Steering Request that instructs the client to stop using Wi-
Fi and to use only the LTE access in both the UL and DL. This
condition may be maintained until the NCM determines, based on
reported measurements, that the Wi-Fi link has again become usable.
+------+ +--------+ +--------+ +-------+ +-------+ +------+
| | | | | | | | | | | |
| CCM | | C-MADP | | Wi-Fi | | LTE | | NCM | |N-MADP|
| | | | | N/W | | N/W | | | | |
+------+ +--------+ +--------+ +-------+ +-------+ +------+
+------------------------------------------------------------------+
| UL data to use TCP subflow over LTE link only, |
| aggregated Wi-Fi+LTE capacity for DL |
++------------+-------------+-------------+----------+---------+---+
| | | | | |
| | | | | |
|27. MX Meas Report (Wi-Fi RSSI, | | |
| LTE RSRP, UL/DL TPUT) | | +-------+----+
+------------+-------------+-------------+--------->| | Reports of |
| | | | | | bad Wi-Fi |
| | | | | | UL/DL tput |
| | | | | +------------+
|28. MX Traffic Steering REQ (UL/DL Access, TFTs) | +------------+
|<---------------------------------------+----------+ | Disallow |
| | | | | | use of |
|29. MX Traffic Steering RSP (...) | | | Wi-Fi |
+----------------------------------------+--------->| +------------+
| |30. Delete TCP subflow from MPTCP | |
| | connection over Wi-Fi link | |
| |<---------------------------------------------->|
| | | | | |
+--------------------------------------------------------------+
|| Traffic over LTE link only for DL and UL |
|| (until client reports better Wi-Fi link conditions) |
+--------------------------------------------------------------+
| | | | | |
+ + + + + +
Figure 21: MAMS-Assisted MPTCP Proxy as User Plane - Part 4
12. Applying MAMS Control Procedures for Network-Assisted Traffic
Steering When There Is No Convergence Layer
Figure 22 shows the call flow describing MAMS control procedures
applied for dynamic optimal path selection in a scenario where
Convergence and Adaptation Layer protocols are omitted. This
scenario indicates the applicability of a solution for only the MAMS
control plane.
In the capability exchange messages, the NCM and CCM negotiate that
Convergence-Layer and Adaptation-Layer protocols are not needed (or
supported). The CCM informs the NCM of the availability of the LTE
and Wi-Fi links. The NCM dynamically determines the access links
(Wi-Fi or LTE) to be used based on the reported measurements of link
quality.
+------+ +--------+ +--------+ +-------+ +-------+ +------+
| | | | | | | | | | | |
| CCM | | C-MADP | | Wi-Fi | | LTE | | NCM | |N-MADP|
| | | | | N/W | | N/W | | | | |
+------+ +--------+ +--------+ +-------+ +-------+ +------+
+------------------------------------------------------------------+
| 1. LTE Session Setup and IP Address Allocation |
+---------------------------------------+-------------+----------+-+
|2. MX Discover (MAMS Version, MCC/MNC ) | |
+--------------------------------------+------------>| |
|3. MX System Info (Serving NCM IP/Port address) | |
|<------------+-------------+----------+-------------| |
| | | | | |
|4. MX Capability REQ (Supported | | |
| Anchor/Delivery Links (Wi-Fi, LTE))| | |
+--------------------------------------------------->| |
|5. MX Capability RSP (No Convergence/Adaptation parameters) |
|<-------------------------------------+-------------+ |
|6. MX Capability ACK (ACCEPT) | | |
+-------------+-------------+----------------------->| |
| | | | | |
|7. MX Meas Config (Wi-Fi/LTE Measurement Thresholds/Period) |
|<---------------------------------------------------| |
|8. MX Meas Report (LTE RSRP, UL/DL TPUT) | |
|--------------------------------------+------------>| |
|9. MX SSID Ind (List of SSIDs) | | |
|<---------------------------------------------------| |
+-----------------------------------------------------------------++
| 10. Wi-Fi Connection Setup and IP Address Allocation |
+-+-------------+-------------+----------+-------------+----------++
| | | | | |
|11. MX Reconfiguration REQ (LTE IP, Wi-Fi IP) | |
|--------------------------------------+------------>| |
|12. MX Reconfiguration RSP | | |
|<---------------------------------------------------| |
+-----------------------------------------------------------------++
| Initial Condition, Data over LTE link only, Wi-Fi link is poor |
+------------------------------------------------------+----------++
| | | | | |
|13. MX Meas Report (Wi-Fi RSSI, | | |
| LTE RSRP, UL/DL TPUT)| | |+----------+
|--------------------------------------------------->||Wi-Fi link|
| | | | ||conditions|
| | | | ||reported |
| | | | ||good |
| | | | |+----------+
| | | | | |
|14. MX Traffic Steering REQ (UL/DL Access, TFTs) |+----------+
|<------------+-------------+----------+-------------||Steer |
| | | | ||traffic to|
|15. MX Traffic Steering RSP (...) | ||use Wi-Fi |
|<------------+-------------+----------+-------------||link |
| | | | |+----------+
| | | | | |
+-----------------------------------------------------------------++
| Use Wi-Fi link for Data |
+------------------------------------------------------+----------++
| | | | | |
+ + + + + +
Figure 22: MAMS with No Convergence Layer
13. Coexistence of MX Adaptation and MX Convergence Layers
The MAMS user plane supports multiple instances and combinations of
protocols to be used at the MX Adaptation and the Convergence Layer.
For example, one instance of the MX Convergence Layer can be MPTCP
Proxy and another instance can be GMA. The MX Adaptation for each
can be either a UDP tunnel or IPsec. IPsec may be set up when the
network path needs to be secured, e.g., to protect the TCP subflow
traversing the network path between the client and the MPTCP proxy.
Each instance of the MAMS user plane, i.e., the combination of MX
Convergence-Layer and MX Adaptation-Layer protocols, can coexist
simultaneously and independently handle different traffic types.
14. Security Considerations
14.1. MAMS Control-Plane Security
The NCM functional element is hosted on a network node that is
assumed to be within a secure network, e.g., within the operator's
network, and is assumed to be protected against hijack attacks.
For deployment scenarios where the client is configured (e.g., by the
network operator) to use a specific network path for exchanging
control-plane messages, and if the network path is assumed to be
secure, MAMS control messages will rely on security provided by the
underlying network.
For deployment scenarios where the security of the network path
cannot be assumed, NCM and CCM implementations MUST support the "wss"
URI scheme [RFC6455] and Transport Layer Security (TLS) [RFC8446] to
secure the exchange of control-plane messages between the NCM and the
CCM.
For deployment scenarios where client authentication is desired, the
WebSocket server can use any client authentication mechanisms
available to a generic HTTP server, such as cookies, HTTP
authentication, or TLS authentication.
14.2. MAMS User-Plane Security
User data in the MAMS framework relies on the security of the
underlying network transport paths. When this security cannot be
assumed, the NCM configures the use of protocols (e.g., IPsec
[RFC4301] [RFC3948]) in the MX Adaptation Layer, for security.
15. Implementation Considerations
The MAMS architecture builds on commonly available functions in
clients that can be used to deliver software updates over popular
client operating systems, thereby enabling rapid deployment and
addressing the large base of deployed clients.
16. Applicability to Multi-Access Edge Computing
Multi-access Edge Computing (MEC), previously known as Mobile Edge
Computing, is an access-edge cloud platform being considered at the
European Telecommunications Standards Institute (ETSI) [ETSIMEC],
whose initial focus was to improve the QoE by leveraging intelligence
at the cellular (e.g., 3GPP technologies like LTE) access edge, and
the scope is now being extended to support access technologies beyond
3GPP. The applicability of the framework described in this document
to the MEC platform has been evaluated and tested in different
network configurations by the authors.
The NCM can be hosted on a MEC cloud server that is located in the
user-plane path at the edge of the multi-technology access network.
The NCM and CCM can negotiate the network path combinations based on
an application's needs and the necessary user-plane protocols to be
used across the multiple paths. The network conditions reported by
the CCM to the NCM can be complemented by a Radio Analytics
application [ETSIRNIS] residing at the MEC cloud server to configure
the uplink and downlink access paths according to changing radio and
congestion conditions.
The user-plane functional element, N-MADP, can either be collocated
with the NCM at the MEC cloud server (e.g., MEC-hosted applications)
or placed at a separate network element like a common user-plane
gateway across the multiple networks.
Also, even in scenarios where an N-MADP is not deployed, the NCM can
be used to augment the traffic-steering decisions at the client.
The aim of these enhancements is to improve the end user's QoE by
leveraging the best network path based on an application's needs and
network conditions, and building on the advantages of significantly
reduced latency and the dynamic and real-time exposure of radio
network information available at the MEC.
17. Related Work in Other Industry and Standards Forums
The MAMS framework described in this document has been incorporated
or is proposed for incorporation as a solution to address multi-
access integration in multiple industry forums and standards. This
section describes the related work in other industry forums and the
standards organizations.
Wireless Broadband Alliance industry partners have published a white
paper that describes the applicability of different technologies for
multi-access integration to different deployments as part of their
"Unlicensed Integration with 5G Networks" project [WBAUnl5G]. The
white paper includes the MAMS framework described in this document as
a technology for integrating unlicensed (Wi-Fi) networks with 5G
networks above the 5G core network.
The 3GPP is developing a technical report as part of its work item
Study on Access Traffic Steering, Switching, and Splitting (ATSSS).
That report, TR 23.793 [ATSSS], contains a number of potential
solutions; Solution 1 in [ATSSS] utilizes a separate control plane
for the flexible negotiation of user-plane protocols and path
measurements in a way that is similar to the MAMS architecture
described in this document.
The Small Cell Forum (SCF) [SCFTECH5G] plans to develop a white paper
as part of its work item on LTE/5G and Wi-Fi. There is a proposal to
include MAMS in this white paper.
The ETSI Multi-access Edge Computing Phase 2 technical work is
examining many aspects of this work, including use cases for
optimizing QoE and resource utilization. The MAMS architecture and
procedures outlined in this document are included in the ETSI's use
cases and requirements document [ETSIMAMS].
18. IANA Considerations
This document has no IANA actions.
19. References
19.1. Normative References
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,
<https://www.rfc-editor.org/info/rfc2119>.
[RFC4301] Kent, S. and K. Seo, "Security Architecture for the
Internet Protocol", RFC 4301, DOI 10.17487/RFC4301,
December 2005, <https://www.rfc-editor.org/info/rfc4301>.
[RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
May 2017, <https://www.rfc-editor.org/info/rfc8174>.
19.2. Informative References
[ANDSF] 3rd Generation Partnership Project, "Access Network
Discovery and Selection Function (ANDSF) Management Object
(MO)", 3GPP TS 24.312 version 15.0.0, Technical
Specification Group Core Network and Terminals, June 2018,
<https://www.3gpp.org/ftp//Specs/
archive/24_series/24.312/24312-f00.zip>.
[ATSSS] 3rd Generation Partnership Project, "Study on access
traffic steering, switch and splitting support in the 5G
System (5GS) architecture", Work in Progress, 3GPP TR
23.793 v16.0.0, December 2018,
<https://www.3gpp.org/ftp/Specs/
archive/23_series/23.793/>.
[ETSIMAMS] European Telecommunications Standards Institute, "Multi-
access Edge Computing (MEC); Phase 2: Use Cases and
Requirements", ETSI GS MEC 002 v2.1.1, October 2018,
<https://www.etsi.org/deliver/etsi_gs/
MEC/001_099/002/02.01.01_60/gs_MEC002v020101p.pdf>.
[ETSIMEC] European Telecommunications Standards Institute, "Multi-
access Edge Computing (MEC)",
<https://www.etsi.org/technologies/multi-access-edge-
computing>.
[ETSIRNIS] European Telecommunications Standards Institute, "Mobile
Edge Computing (MEC) Radio Network Information API", ETSI
GS MEC 012 v1.1.1, July 2017,
<https://www.etsi.org/deliver/etsi_gs/
MEC/001_099/012/01.01.01_60/gs_MEC012v010101p.pdf>.
[IEEE-80211]
IEEE, "IEEE Standard for Information technology-
Telecommunications and information exchange between
systems - Local and metropolitan area networks-Specific
requirements - Part 11: Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) Specifications",
IEEE 802.11-2016,
<https://ieeexplore.ieee.org/document/7786995>.
[INTAREA-GMA]
Zhu, J. and S. Kanugovi, "Generic Multi-Access (GMA)
Convergence Encapsulation Protocols", Work in Progress,
Internet-Draft, draft-zhu-intarea-gma-05, 16 December
2019,
<https://tools.ietf.org/html/draft-zhu-intarea-gma-05>.
[INTAREA-MAMS]
Zhu, J., Seo, S., Kanugovi, S., and S. Peng, "User-Plane
Protocols for Multiple Access Management Service", Work in
Progress, Internet-Draft, draft-zhu-intarea-mams-user-
protocol-09, 4 March 2020, <https://tools.ietf.org/html/
draft-zhu-intarea-mams-user-protocol-09>.
[ITU-E212] International Telecommunication Union, "The international
identification plan for public networks and
subscriptions", ITU-T Recommendation E.212, September
2016, <https://www.itu.int/rec/T-REC-E.212-201609-I/en>.
[QUIC-MULTIPATH]
Coninck, Q. and O. Bonaventure, "Multipath Extensions for
QUIC (MP-QUIC)", Work in Progress, Internet-Draft, draft-
deconinck-quic-multipath-04, 5 March 2020,
<https://tools.ietf.org/html/draft-deconinck-quic-
multipath-04>.
[RFC2784] Farinacci, D., Li, T., Hanks, S., Meyer, D., and P.
Traina, "Generic Routing Encapsulation (GRE)", RFC 2784,
DOI 10.17487/RFC2784, March 2000,
<https://www.rfc-editor.org/info/rfc2784>.
[RFC2890] Dommety, G., "Key and Sequence Number Extensions to GRE",
RFC 2890, DOI 10.17487/RFC2890, September 2000,
<https://www.rfc-editor.org/info/rfc2890>.
[RFC3948] Huttunen, A., Swander, B., Volpe, V., DiBurro, L., and M.
Stenberg, "UDP Encapsulation of IPsec ESP Packets",
RFC 3948, DOI 10.17487/RFC3948, January 2005,
<https://www.rfc-editor.org/info/rfc3948>.
[RFC4555] Eronen, P., "IKEv2 Mobility and Multihoming Protocol
(MOBIKE)", RFC 4555, DOI 10.17487/RFC4555, June 2006,
<https://www.rfc-editor.org/info/rfc4555>.
[RFC4960] Stewart, R., Ed., "Stream Control Transmission Protocol",
RFC 4960, DOI 10.17487/RFC4960, September 2007,
<https://www.rfc-editor.org/info/rfc4960>.
[RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
January 2012, <https://www.rfc-editor.org/info/rfc6347>.
[RFC6455] Fette, I. and A. Melnikov, "The WebSocket Protocol",
RFC 6455, DOI 10.17487/RFC6455, December 2011,
<https://www.rfc-editor.org/info/rfc6455>.
[RFC6824] Ford, A., Raiciu, C., Handley, M., and O. Bonaventure,
"TCP Extensions for Multipath Operation with Multiple
Addresses", RFC 6824, DOI 10.17487/RFC6824, January 2013,
<https://www.rfc-editor.org/info/rfc6824>.
[RFC7231] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
Protocol (HTTP/1.1): Semantics and Content", RFC 7231,
DOI 10.17487/RFC7231, June 2014,
<https://www.rfc-editor.org/info/rfc7231>.
[RFC7296] Kaufman, C., Hoffman, P., Nir, Y., Eronen, P., and T.
Kivinen, "Internet Key Exchange Protocol Version 2
(IKEv2)", STD 79, RFC 7296, DOI 10.17487/RFC7296, October
2014, <https://www.rfc-editor.org/info/rfc7296>.
[RFC8259] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
Interchange Format", STD 90, RFC 8259,
DOI 10.17487/RFC8259, December 2017,
<https://www.rfc-editor.org/info/rfc8259>.
[RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
<https://www.rfc-editor.org/info/rfc8446>.
[SCFTECH5G]
Small Cell Forum, "Small Cell Forum", <https://scf.io/>.
[ServDesc3GPP]
3rd Generation Partnership Project, "General Packet Radio
Service (GPRS); Service description; Stage 2", 3GPP TS
23.060 version 16.0.0, Technical Specification Group
Services and System Aspects, March 2019,
<https://www.3gpp.org/ftp/Specs/
archive/23_series/23.060/23060-g00.zip>.
[TCPM-CONVERTERS]
Bonaventure, O., Boucadair, M., Gundavelli, S., Seo, S.,
and B. Hesmans, "0-RTT TCP Convert Protocol", Work in
Progress, Internet-Draft, draft-ietf-tcpm-converters-19,
22 March 2020, <https://tools.ietf.org/html/draft-ietf-
tcpm-converters-19>.
[WBAUnl5G] Wireless Broadband Alliance, "Unlicensed Integration with
5G Networks", <https://wballiance.com/resource/unlicensed-
integration-with-5g-networks/>.
Appendix A. MAMS Control-Plane Optimization over Secure Connections
This appendix is informative, and provides indicative information
about how MAMS operates.
If the connection between the CCM and the NCM over which the MAMS
control-plane messages are transported is assumed to be secure, UDP
is used as the transport for management and control messages between
the NCM and the CCM (see Figure 23).
+-------------------------------------------------+
| Multi-Access (MX) Control Message |
|-------------------------------------------------|
| UDP |
|-------------------------------------------------|
Figure 23: UDP-Based MAMS Control-Plane Protocol Stack
Appendix B. MAMS Application Interface
This appendix describes the MAMS Application Interface. It does not
provide normative text for the definition of the MAMS framework or
protocols, but offers additional information that may be used to
construct a system based on the MAMS framework.
B.1. Overall Design
The CCM hosts an HTTPS server for applications to communicate and
request services. This document assumes, from a security point of
view, that all CCMs and the communicating application instances are
hosted in a single administrative domain.
The content of messages is described in JavaScript Object Notation
(JSON) format. They offer RESTful APIs for communication.
The exact mechanism regarding how the application knows about the
endpoint of the CCM is out of scope for this document. This
mechanism may instead be provided as part of the application
settings.
B.2. Notation
The documentation of APIs is provided in the OpenAPI format, using
Swagger v2.0. See Appendix D.
B.3. Error Indication
For every API, there could be an error response if the objective of
the API could not be met; see [RFC7231].
B.4. CCM APIs
The following subsections describe the APIs exposed by the CCM to the
applications.
B.4.1. GET Capabilities
The CCM provides an HTTPS GET interface as "/ccm/v1.0/capabilities"
for the application to query the capabilities supported by the CCM
instance.
+---------+ +-----------+
| | | |
| App |--------- HTTPS GET / Capabilities -------->| CCM |
| | | |
+---------+ +-----------+
Figure 24: CCM API - GET Procedures
The CCM shall provide information regarding its capabilities as
follows:
* Supported Features: One or more of the "Feature Name" values, as
defined in the MX Feature Activation List parameter of the MX
Capability Request (Appendix C.2.5).
* Supported Connections: Supported connection types and connection
IDs.
* Supported MX Adaptation Layers: List of MX Adaptation Layer
protocols supported by the N-MADP instance, along with the
connection types where these are supported and their respective
parameters.
* Supported MX Convergence Layers: List of supported MX Convergence
Layer protocols, along with the parameters associated with the
respective convergence technique.
B.4.2. Posting Application Requirements
The CCM provides an HTTPS POST interface as "/ccm/v1.0/
app_requirements" for the application to post the needs of the
application data streams to the CCM instance.
+---------+ +-----------+
| | | |
| App |-------- HTTPS POST / App Requirements ---->| CCM |
| | | |
+---------+ +-----------+
Figure 25: CCM API - POST Procedures
The CCM shall provide for the application to post the following
requirements for its different data streams:
* Number of Data Stream Types.
* For each data stream type, specify the following parameters for
the link, which are preferred by the application:
- Protocol Type: Transport-layer protocol associated with the
application data stream packets.
- Port Range: Supported connection types and connection IDs.
- Traffic QoS: Quality of service parameters, as follows:
o Bandwidth
o Latency
o Jitter
B.4.3. Getting Predictive Link Parameters
The CCM provides an HTTPS GET interface as "/ccm/v1.0/
predictive_link_params" for the application to get the predicted link
parameters from the CCM instance.
+---------+ +-----------+
| | | |
| App |----- HTTPS GET / Predictive Link Params --->| CCM |
| | | |
+---------+ +-----------+
Figure 26: CCM API - Getting Predictive Link Parameters
The CCM asks the NCM for link parameters via the MAMS Network
Analytics Request Procedure (Section 8.12) and includes the
information in response to the API invocation.
* Number of Delivery Connections.
For each delivery connection, include the following:
- Access Link Identifier:
o Connection Type
o Connection ID
- Link Quality Indicator
o Bandwidth:
+ Predicted Value (Mbps)
+ Likelihood (percent)
+ Prediction Validity (Validity Time, in seconds)
o Jitter:
+ Predicted Value (in seconds)
+ Likelihood (percent)
+ Prediction Validity (Validity Time, in seconds)
o Latency:
+ Predicted Value (in seconds)
+ Likelihood (percent)
+ Prediction Validity (Validity Time, in seconds)
o Signal Quality
+ If delivery connection type is LTE, LTE_RSRP Predicted
Value (dBm)
+ If delivery connection type is LTE, LTE_RSRQ Predicted
Value (dBm)
+ If delivery connection type is 5G NR, NR_RSRP Predicted
Value (dBm)
+ If delivery connection type is 5G NR, NR_RSRQ Predicted
Value (dBm)
+ If delivery connection type is Wi-Fi, WLAN_RSSI Predicted
Value (dBm)
+ Likelihood (percent)
+ Prediction Validity (Validity Time, in seconds)
Appendix C. MAMS Control-Plane Messages Described Using JSON
MAMS control-plane messages are exchanged between the CCM and the
NCM. This non-normative appendix describes the format and content of
messages using JSON [RFC8259].
C.1. Protocol Specification: General Processing
C.1.1. Notation
This document uses JSONString, JSONNumber, and JSONBool to indicate
the JSON string, number, and boolean types, respectively.
This document uses an adaptation of the C-style struct notation to
describe JSON objects. A JSON object consists of name/value pairs.
This document refers to each pair as a field. In some contexts, this
document also refers to a field as an attribute. The name of a
field/attribute may be referred to as the key. An optional field is
enclosed by "[ ]". In the definitions, the JSON names of the fields
are case sensitive. An array is indicated by two numbers in angle
brackets, <m..n>, where m indicates the minimal number of values and
n is the maximum. When this document uses * for n, it means no upper
bound.
For example, the text below describes a new type Type4, with three
fields: "name1", "name2", and "name3", respectively. The "name3"
field is optional, and the "name2" field is an array of at least one
value.
object { Type1 name1; Type2 name2 <1..*>; [Type3 name3;] } Type4;
This document uses subtyping to denote that one type is derived from
another type. The example below denotes that TypeDerived is derived
from TypeBase. TypeDerived includes all fields defined in TypeBase.
If TypeBase does not have a "name1" field, TypeDerived will have a
new field called "name1". If TypeBase already has a field called
"name1" but with a different type, TypeDerived will have a field
called "name1" with the type defined in TypeDerived (i.e., Type1 in
the example).
object { Type1 name1; } TypeDerived : TypeBase;
Note that, despite the notation, no standard, machine-readable
interface definition or schema is provided in this document.
Extension documents may describe these as necessary.
For compatibility with publishing requirements, line breaks have been
inserted inside long JSON strings, with the following continuation
lines indented. To form the valid JSON example, any line breaks
inside a string must be replaced with a space and any other white
space after the line break removed.
C.1.2. Discovery Procedure
C.1.2.1. MX Discover Message
This message is the first message sent by the CCM to discover the
presence of NCM in the network. It contains only the base
information as described in Appendix C.2.1 with message_type set as
mx_discover.
The representation of the message is as follows:
object {
[JSONString MCC_MNC_Tuple;]
} MXDiscover : MXBase;
C.1.3. System Information Procedure
C.1.3.1. MX System Info Message
This message is sent by the NCM to the CCM to inform the endpoints
that the NCM supports MAMS functionality. In addition to the base
information (Appendix C.2.1), it contains the following information:
(a) NCM Connections (Appendix C.2.3).
The representation of the message is as follows:
object {
NCMConnections ncm_connections;
} MXSystemInfo : MXBase;
C.1.4. Capability Exchange Procedure
C.1.4.1. MX Capability Request
This message is sent by the CCM to the NCM to indicate the
capabilities of the CCM instance available to the NCM indicated in
the System Info message earlier. In addition to the base information
(Appendix C.2.1), it contains the following information:
(a) Features and their activation status: See Appendix C.2.5.
(b) Number of Anchor Connections: The number of anchor connections
(toward the core) supported by the NCM.
(c) Anchor connections: See Appendix C.2.6.
(d) Number of Delivery Connections: The number of delivery
connections (toward the access) supported by the NCM.
(e) Delivery connections: See Appendix C.2.7.
(f) Convergence methods: See Appendix C.2.9.
(g) Adaptation methods: See Appendix C.2.10.
The representation of the message is as follows:
object {
FeaturesActive feature_active;
JSONNumber num_anchor_connections;
AnchorConnections anchor_connections;
JSONNumber num_delivery_connections;
DeliveryConnections delivery_connections;
ConvergenceMethods convergence_methods;
AdaptationMethods adaptation_methods
} MXCapabilityReq : MXBase;
C.1.4.2. MX Capability Response
This message is sent by the NCM to the CCM to indicate the
capabilities of the NCM instance and unique session identifier for
the CCM. In addition to the base information (Appendix C.2.1), it
contains the following information:
(a) Features and their activation status: See Appendix C.2.5.
(b) Number of Anchor Connections: The number of anchor connections
(toward the core) supported by the NCM.
(c) Anchor connections: See Appendix C.2.6.
(d) Number of Delivery Connections: The number of delivery
connections (toward the access) supported by the NCM.
(e) Delivery connections: See Appendix C.2.7.
(f) Convergence methods: See Appendix C.2.9.
(g) Adaptation methods: See Appendix C.2.10.
(h) Unique Session ID: This uniquely identifies the session between
the CCM and the NCM in a network. See Appendix C.2.2.
The representation of the message is as follows:
object {
FeaturesActive feature_active;
JSONNumber num_anchor_connections;
AnchorConnections anchor_connections;
JSONNumber num_delivery_connections;
DeliveryConnections delivery_connections;
ConvergenceMethods convergence_methods;
AdaptationMethods adaptation_methods
UniqueSessionId unique_session_id;
} MXCapabilityRsp : MXBase;
C.1.4.3. MX Capability Acknowledge
This message is sent by the CCM to the NCM to indicate acceptance of
capabilities advertised by the NCM in an earlier MX Capability
Response message. In addition to the base information
(Appendix C.2.1), it contains the following information:
(a) Unique Session ID: Same identifier as the identifier provided in
the MX Capability Response. See Appendix C.2.2.
(b) Capability Acknowledgment: Indicates either acceptance or
rejection of the capabilities sent by the CCM. Can use either
"MX_ACCEPT" or "MX_REJECT" as acceptable values.
The representation of the message is as follows:
object {
UniqueSessionId unique_session_id;
JSONString capability_ack;
} MXCapabilityAck : MXBase;
C.1.5. User-Plane Configuration Procedure
C.1.5.1. MX User-Plane Configuration Request
This message is sent by the NCM to the CCM to configure the user
plane for MAMS. In addition to the base information
(Appendix C.2.1), it contains the following information:
(a) Number of Anchor Connections: The number of anchor connections
supported by the NCM.
(b) Setup of anchor connections: See Appendix C.2.11.
The representation of the message is as follows:
object {
JSONNumber num_anchor_connections;
SetupAnchorConns anchor_connections;
} MXUPSetupConfigReq : MXBase;
C.1.5.2. MX User-Plane Configuration Confirmation
This message is the confirmation of the user-plane setup message sent
from the CCM after successfully configuring the user plane on the
client. This message contains the following information:
(a) Unique Session ID: Same identifier as the identifier provided in
the MX Capability Response. See Appendix C.2.2.
(b) MX probe parameters (included if probing is supported).
(1) Probe Port: UDP port for accepting probe message.
(2) Anchor connection ID: Identifier of the anchor connection
to be used for probe function. Provided in the MX UP Setup
Configuration Request.
(3) MX Configuration ID: This parameter is included only if the
MX Configuration ID parameter is available from the user-
plane setup configuration. It indicates the MX
configuration ID of the anchor connection to be used for
probe function.
(c) The following information is required for each delivery
connection:
(1) Connection ID: Delivery connection ID supported by the
client.
(2) Client Adaptation-Layer Parameters: If the UDP Adaptation
Layer is in use, then the UDP port to be used on the C-MADP
side.
The representation of the message is as follows:
object {
UniqueSessionId unique_session_id;
[ProbeParam probe_param;]
JSONNumber num_delivery_conn;
ClientParam client_params <1...*>;
} MXUPSetupConfigCnf : MXBase;
Where ProbeParam is defined as follows:
object {
JSONNumber probe_port;
JSONNumber anchor_conn_id;
[JSONNumber mx_configuration_id;]
} ProbeParam;
Where ClientParam is defined as follows:
object {
JSONNumber connection_id;
[AdaptationParam adapt_param;]
} ClientParam;
Where AdaptationParam is defined as follows:
object {
JSONNumber udp_adapt_port;
} AdaptationParam;
C.1.6. Reconfiguration Procedure
C.1.6.1. MX Reconfiguration Request
This message is sent by the CCM to the NCM in the case of
reconfiguration of any of the connections from the client's side. In
addition to the base information (Appendix C.2.1), it contains the
following information:
(a) Unique Session ID: Identifier for the CCM-NCM association
Appendix C.2.2.
(b) Reconfiguration Action: The reconfiguration action type can be
one of "setup", "release", or "update".
(c) Connection ID: Connection ID for which the reconfiguration is
taking place.
(d) IP address: Included if Reconfiguration Action is either "setup"
or "update".
(e) SSID: If the connection type is Wi-Fi, then this parameter
contains the SSID to which the client has attached.
(f) MTU of the connection: The MTU of the delivery path that is
calculated at the client for use by the NCM to configure
fragmentation and concatenation procedures at the N-MADP.
(g) Connection Status: This parameter indicates whether the
connection is currently "disabled", "enabled", or "connected".
Default: "connected".
(h) Delivery Node ID: Identity of the node to which the client is
attached. In the case of LTE, this is an ECGI. In the case of
Wi-Fi, this is an AP ID or a MAC address.
The representation of the message is as follows:
object {
UniqueSessionId unique_session_id;
JSONString reconf_action;
JSONNumber connection_id;
JSONString ip_address;
JSONString ssid;
JSONNumber mtu_size;
JSONString connection_status;
[JSONString delivery_node_id;]
} MXReconfReq : MXBase;
C.1.6.2. MX Reconfiguration Response
This message is sent by the NCM to the CCM as a confirmation of the
received MX Reconfiguration Request and contains only the base
information (as defined in Appendix C.2.1).
The representation of the message is as follows:
object {
} MXReconfRsp : MXBase;
C.1.7. Path Estimation Procedure
C.1.7.1. MX Path Estimation Request
This message is sent by the NCM toward the CCM to configure the CCM
to send MX Path Estimation Results. In addition to the base
information (Appendix C.2.1), it contains the following information:
(a) Connection ID: ID of the connection for which the path
estimation report is required.
(b) Init Probe Test Duration: Duration of initial probe test, in
milliseconds.
(c) Init Probe Test Rate: Initial testing rate, in megabits per
second.
(d) Init Probe Size: Size of each packet for initial probe, in
bytes.
(e) Init Probe-ACK: If an acknowledgment for probe is required.
(Possible values: "yes", "no")
(f) Active Probe Frequency: Frequency, in milliseconds, at which the
active probes shall be sent.
(g) Active Probe Size: Size of the active probe, in bytes.
(h) Active Probe Duration: Duration, in seconds, for which the
active probe shall be performed.
(i) Active Probe-ACK: If an acknowledgment for probe is required.
(Possible values: "yes", "no")
The representation of the message is as follows:
object {
JSONNumber connection_id;
JSONNumber init_probe_test_duration_ms;
JSONNumber init_probe_test_rate_Mbps;
JSONNumber init_probe_size_bytes;
JSONString init_probe_ack_req;
JSONNumber active_probe_freq_ms;
JSONNumber active_probe_size_bytes;
JSONNumber active_probe_duration_sec;
JSONString active_probe_ack_req;
} MXPathEstReq : MXBase;
C.1.7.2. MX Path Estimation Results
This message is sent by the CCM to the NCM to report on the probe
estimation configured by the NCM. In addition to the base
information (Appendix C.2.1), it contains the following information:
(a) Unique Session ID: Same identifier as the identifier provided in
the MX Capability Response. See Appendix C.2.2.
(b) Connection ID: ID of the connection for which the MX Path
Estimation Results message is required.
(c) Init Probe Results: See Appendix C.2.12.
(d) Active Probe Results: See Appendix C.2.13.
The representation of the message is as follows:
object {
JSONNumber connection_id;
UniqueSessionId unique_session_id;
[InitProbeResults init_probe_results;]
[ActiveProbeResults active_probe_results;]
} MXPathEstResults : MXBase;
C.1.8. Traffic-Steering Procedure
C.1.8.1. MX Traffic Steering Request
This message is sent by the NCM to the CCM to enable traffic steering
on the delivery side in uplink and downlink configurations. In
addition to the base information (Appendix C.2.1), it contains the
following information:
(a) Connection ID: Anchor connection number for which the traffic
steering is being defined.
(b) MX Configuration ID: MX configuration for which the traffic
steering is being defined.
(c) Downlink Delivery: See Appendix C.2.14.
(d) Default UL Delivery: The default delivery connection for the
uplink. All traffic should be delivered on this connection in
the uplink direction, and the Traffic Flow Template (TFT) filter
should be applied only for the traffic mentioned in Uplink
Delivery.
(e) Uplink Delivery: See Appendix C.2.15.
(f) Features and their activation status: See Appendix C.2.5.
The representation of the message is as follows:
object {
JSONNumber connection_id;
[JSONNumber mx_configuration_id;]
DLDelivery downlink_delivery;
JSONNumber default_uplink_delivery;
ULDelivery uplink_delivery;
FeaturesActive feature_active;
} MXTrafficSteeringReq : MXBase;
C.1.8.2. MX Traffic Steering Response
This message is a response to an MX Traffic Steering Request from the
CCM to the NCM. In addition to the base information
(Appendix C.2.1), it contains the following information:
(a) Unique Session ID: Same identifier as the identifier provided in
the MX Capability Response. See Appendix C.2.2.
(b) Features and their activation status: See Appendix C.2.5.
The representation of the message is as follows:
object {
UniqueSessionId unique_session_id;
FeaturesActive feature_active;
} MXTrafficSteeringResp : MXBase;
C.1.9. MAMS Application MADP Association
C.1.9.1. MX Application MADP Association Request
This message is sent by the CCM to the NCM to select MADP instances
provided earlier in the MX UP Setup Configuration Request, based on
requirements for the applications.
In addition to the base information (Appendix C.2.1), it contains the
following:
(a) Unique Session ID: This uniquely identifies the session between
the CCM and the NCM in a network. See Appendix C.2.2.
(b) A list of MX Application MADP Associations, with each entry as
follows:
(1) Connection ID: Represents the anchor connection number of
the MADP instance.
(2) MX Configuration ID: Identifies the MX configuration of the
MADP instance.
(3) Traffic Flow Template Uplink: Traffic Flow Template, as
defined in Appendix C.2.16, to be used in the uplink
direction.
(4) Traffic Flow Template Downlink: Traffic Flow Template, as
defined in Appendix C.2.16, to be used in the downlink
direction.
The representation of the message is as follows:
object {
UniqueSessionId unique_session_id;
MXAppMADPAssoc app_madp_assoc_list <1..*>;
} MXAppMADPAssocReq : MXBase;
Where each measurement MXAppMADPAssoc is represented by the
following:
object {
JSONNumber connection_id;
JSONNumber mx_configuration_id
TrafficFlowTemplate tft_ul_list <1..*>;
TrafficFlowTemplate tft_dl_list <1..*>;
} MXAppMADPAssoc;
C.1.9.2. MX Application MADP Association Response
This message is sent by the NCM to the CCM to confirm the selected
MADP instances provided in the MX Application MADP Association
Request by the CCM.
In addition to the base information (Appendix C.2.1), it contains
information if the request has been successful.
The representation of the message is as follows:
object {
JSONBool is_success;
} MXAppMADPAssocResp : MXBase;
C.1.10. MX SSID Indication
This message is sent by the NCM to the CCM to indicate the list of
allowed SSIDs that are supported by the MAMS entity on the network
side. It contains the list of SSIDs.
Each SSID consists of the type of SSID (which can be one of the
following: SSID, BSSID, or HESSID) and the SSID itself.
The representation of the message is as follows:
object {
SSID ssid_list <1..*>;
} MXSSIDIndication : MXBase;
Where each SSID is defined as follows:
object {
JSONString ssid_type;
JSONString ssid;
} SSID;
C.1.11. Measurements
C.1.11.1. MX Measurement Configuration
This message is sent from the NCM to the CCM to configure the period
measurement reporting at the CCM. The message contains a list of
measurement configurations, with each element containing the
following information:
(a) Connection ID: Connection ID of the delivery connection for
which the reporting is being configured.
(b) Connection Type: Connection type for which the reporting is
being configured. Can be "LTE", "Wi-Fi", "5G_NR".
(c) Measurement Report Configuration: Actual report configuration
based on the Connection Type, as defined in Appendix C.2.17.
The representation of the message is as follows:
object {
MeasReportConf measurement_configuration <1..*>;
} MXMeasReportConf : MXBase;
Where each measurement MeasReportConf is represented by the
following:
object {
JSONNumber connection_id;
JSONString connection_type;
MeasReportConfs meas_rep_conf <1..*>;
} MeasReportConf;
C.1.11.2. MX Measurement Report
This message is periodically sent by the CCM to the NCM after
measurement configuration. In addition to the base information, it
contains the following information:
(a) Unique Session ID: Same identifier as the identifier provided in
the MX Capability Response. Described in Appendix C.2.2.
(b) Measurement report for each delivery connection is measured by
the client as defined in Appendix C.2.18.
The representation of the message is as follows:
object {
UniqueSessionId unique_session_id;
MXMeasRep measurement_reports <1..*>;
} MXMeasurementReport : MXBase;
C.1.12. Keep-Alive
C.1.12.1. MX Keep-Alive Request
An MX Keep-Alive Request can be sent from either the NCM or the CCM
on expiry of the Keep-Alive timer or a handover event. The peer
shall respond to this request with an MX Keep-Alive Response. In the
case of no response from the peer, the MAMS connection shall be
assumed to be broken, and the CCM shall establish a new connection by
sending MX Discover messages.
In addition to the base information, it contains the following
information:
(a) Keep-Alive Reason: Reason for sending this message, can be
"Timeout" or "Handover".
(b) Unique Session ID: Identifier for the CCM-NCM association
Appendix C.2.2.
(c) Connection ID: Connection ID for which handover is detected, if
the reason is "Handover".
(d) Delivery Node ID: The target delivery node ID (ECGI or Wi-Fi AP
ID/MAC address) to which the handover is executed.
The representation of the message is as follows:
object {
JSONString keep_alive_reason;
UniqueSessionId unique_session_id;
JSONNumber connection_id;
JSONString delivery_node_id;
} MXKeepAliveReq : MXBase;
C.1.12.2. MX Keep-Alive Response
On receiving an MX Keep-Alive Request from a peer, the NCM/CCM shall
immediately respond with an MX Keep-Alive Response on the same
delivery path from where the request arrived. In addition to the
base information, it contains the unique session identifier for the
CCM-NCM association (defined in Appendix C.2.2)
The representation of the message is as follows:
object {
UniqueSessionId unique_session_id;
} MXKeepAliveResp : MXBase;
C.1.13. Session Termination Procedure
C.1.13.1. MX Session Termination Request
In the event where the NCM or CCM can no longer handle MAMS for any
reason, it can send an MX Session Termination Request to the peer.
In addition to the base information, it contains a Unique Session ID
and the reason for the termination; this can be "MX_NORMAL_RELEASE",
"MX_NO_RESPONSE", or "INTERNAL_ERROR".
The representation of the message is as follows:
object {
UniqueSessionId unique_session_id;
JSONString reason;
} MXSessionTerminationReq : MXBase;
C.1.13.2. MX Session Termination Response
On receipt of an MX Session Termination Request from a peer, the NCM/
CCM shall respond with MX Session Termination Response on the same
delivery path where the request arrived and clean up the MAMS-related
resources and settings. The CCM shall reinitiate a new session with
MX Discover messages.
The representation of the message is as follows:
object {
UniqueSessionId unique_session_id;
} MXSessionTerminationResp : MXBase;
C.1.14. Network Analytics
C.1.14.1. MX Network Analytics Request
This message is sent by the CCM to the NCM to request parameters like
bandwidth, jitter, latency, and signal quality predicted by the
network analytics function. In addition to the base information, it
contains the following parameter:
(a) Unique Session ID: Same identifier as the identifier provided in
the MX Capability Response. Described in Appendix C.2.2.
(b) Parameter List: List of parameters in which the CCM is
interested: one or more of "bandwidth", "jitter", "latency", and
"signal_quality".
The representation of the message is as follows:
object {
UniqueSessionId unique_session_id;
JSONString params <1..*>;
} MXNetAnalyticsReq : MXBase;
Where the params object can take one or more of the following values:
"bandwidth"
"jitter"
"latency"
"signal_quality"
C.1.14.2. MX Network Analytics Response
This message is sent by the NCM to the CCM in response to the MX
Network Analytics Request. For each delivery connection that the
client has, the NCM reports the requested parameter predictions and
their respective likelihoods (between 1 and 100 percent).
In addition to the base information, it contains the following
parameters:
(a) Number of Delivery Connections: The number of delivery
connections that are currently configured for the client.
(b) The following information is provided for each delivery
connection:
(1) Connection ID: Connection ID of the delivery connection for
which the parameters are being predicted.
(2) Connection Type: Type of connection. Can be "Wi-Fi",
"5G_NR", "MulteFire", or "LTE".
(3) List of Parameters for which Prediction is requested, where
each of the predicted parameters consists of the following:
(a) Parameter Name: Name of the parameter being predicted.
Can be one of "bandwidth", "jitter", "latency", or
"signal_quality".
(b) Additional Parameter: If Parameter name is
"signal_quality", then this qualifies the quality
parameter like "lte_rsrp", "lte_rsrq", "nr_rsrp",
"nr_rsrq", or "wifi_rssi".
(c) Predicted Value: Provides the predicted value of the
parameter and, if applicable, the additional
parameter.
(d) Likelihood: Provides a stochastic likelihood of the
predicted value.
(e) Validity Time: The time duration for which the
predictions are valid.
The representation of the message is as follows:
object {
MXAnalyticsList param_list <1..*>;
} MXNetAnalyticsResp : MXBase;
Where MXAnalyticsList is defined as follows:
object {
JSONNumber connection_id;
JSONString connection_type;
ParamPredictions predictions <1..*>;
} MXAnalyticsList;
Where each ParamPredictions item is defined as:
object {
JSONString param_name;
[JSONString additional_param;]
JSONNumber prediction;
JSONNumber likelihood;
JSONNumber validity_time;
} ParamPredictions;
C.2. Protocol Specification: Data Types
C.2.1. MXBase
This is the base information that every message between the CCM and
NCM exchanges shall have as mandatory information. It contains the
following information:
(a) Version: Version of MAMS used.
(b) Message Type: Message type being sent, where the following are
considered valid values:
"mx_discover"
"mx_system_info"
"mx_capability_req"
"mx_capability_rsp"
"mx_capability_ack"
"mx_up_setup_conf_req"
"mx_up_setup_cnf"
"mx_reconf_req"
"mx_reconf_rsp"
"mx_path_est_req"
"mx_path_est_results"
"mx_traffic_steering_req"
"mx_traffic_steering_rsp"
"mx_ssid_indication"
"mx_keep_alive_req"
"mx_keep_alive_rsp"
"mx_measurement_conf"
"mx_measurement_report"
"mx_session_termination_req"
"mx_session_termination_rsp"
"mx_app_madp_assoc_req"
"mx_app_madp_assoc_rsp"
"mx_network_analytics_req"
"mx_network_analytics_rsp"
(c) Sequence Number: Sequence number to uniquely identify a
particular message exchange, e.g., MX Capability
Request/Response/Acknowledge.
The representation of this data type is as follows:
object {
JSONString version;
JSONString message_type;
JSONNumber sequence_num;
} MXBase;
C.2.2. Unique Session ID
This data type represents the unique session ID between a CCM and NCM
entity. It contains an NCM ID that is unique in the network and a
session ID that is allocated by the NCM for that session. On receipt
of the MX Discover message, if the session exists, then the old
session ID is returned in the MX System Info message; otherwise, the
NCM allocates a new session ID for the CCM and sends the new ID in
the MX System Info message.
The representation of this data type is as follows:
object {
JSONNumber ncm_id;
JSONNumber session_id;
} UniqueSessionId;
C.2.3. NCM Connections
This data type represents the connection available at the NCM for
MAMS connectivity toward the client. It contains a list of NCM
connections available, where each connection has the following
information:
(a) Connection Information: See Appendix C.2.4.
(b) NCM Endpoint Information: Contains the IP address and port
exposed by the NCM endpoint for the CCM.
The representation of this data type is as follows:
object {
NCMConnection items <1..*>;
} NCMConnections;
where NCMConnection is defined as:
object {
NCMEndPoint ncm_end_point;
} NCMConnection : ConnectionInfo;
where NCMEndPoint is defined as:
object {
JSONString ip_address;
JSONNumber port;
} NCMEndPoint;
C.2.4. Connection Information
This data type provides the mapping of connection ID and connection
type. It contains the following information:
(a) Connection ID: Unique number identifying the connection.
(b) Connection Type: Type of connection can be "Wi-Fi", "5G_NR",
"MulteFire", or "LTE".
The representation of this data type is as follows:
object {
JSONNumber connection_id;
JSONString connection_type;
} ConnectionInfo;
C.2.5. Features and Their Activation Status
This data type provides the list of all features with their
activation status. Each feature status contains the following:
(a) Feature Name: The name of the feature can be one of the
following:
"lossless_switching"
"fragmentation"
"concatenation"
"uplink_aggregation"
"downlink_aggregation"
"measurement"
(b) Active status: Activation status of the feature: "true" means
that the feature is active, and "false" means that the feature
is inactive.
The representation of this data type is as follows:
object {
FeatureInfo items <1..*>;
} FeaturesActive;
where FeatureInfo is defined as:
object {
JSONString feature_name;
JSONBool active;
} FeatureInfo;
C.2.6. Anchor Connections
This data type contains the list of Connection Information items
(Appendix C.2.4) that are supported on the anchor (core) side.
The representation of this data type is as follows:
object {
ConnectionInfo items <1..*>;
} AnchorConnections;
C.2.7. Delivery Connections
This data type contains the list of Connection Information
(Appendix C.2.4) that are supported on the delivery (access) side.
The representation of this data type is as follows:
object {
ConnectionInfo items <1..*>;
} DeliveryConnections;
C.2.8. Method Support
This data type provides the support for a particular convergence or
adaptation method. It consists of the following:
(a) Method: Name of the method.
(b) Supported: Whether the method listed above is supported or not.
Possible values are "true" and "false".
The representation of this data type is as follows:
object {
JSONString method;
JSONBool supported;
} MethodSupport;
C.2.9. Convergence Methods
This data type contains the list of all convergence methods and their
support status. The possible convergence methods are:
"GMA"
"MPTCP_Proxy"
"GRE_Aggregation_Proxy"
"MPQUIC"
The representation of this data type is as follows:
object {
MethodSupport items <1..*>;
} ConvergenceMethods;
C.2.10. Adaptation Methods
This data type contains the list of all adaptation methods and their
support status. The possible adaptation methods are:
"UDP_without_DTLS"
"UDP_with_DTLS"
"IPsec"
"Client_NAT"
The representation of this data type is as follows:
object {
MethodSupport items <1..*>;
} AdaptationMethods;
C.2.11. Setup of Anchor Connections
This data type represents the setup configuration for each anchor
connection that is required on the client's side. It contains the
following information, in addition to the connection ID and type of
the anchor connection:
(a) Number of Active MX Configurations: If more than one active
configuration is present for this anchor, then this identifies
the number of such connections.
(b) The following convergence parameters are provided for each
active configuration:
(1) MX Configuration ID: Present if there are multiple active
configurations. Identifies the configuration for this MADP
instance ID.
(2) Convergence Method: Convergence method selected. Has to be
one of the supported convergence methods listed in
Appendix C.2.9.
(3) Convergence Method Parameters: Described in
Appendix C.2.11.1
(4) Number of Delivery Connections: The number of delivery
connections (access side) that are supported for this
anchor connection.
(5) Setup of delivery connections: Described in
Appendix C.2.11.2.
The representation of this data type is as follows:
object {
SetupAnchorConn items <1..*>;
} SetupAnchorConns;
Where each anchor connection configuration is defined as follows:
object {
[JSONNumber num_active_mx_conf;]
ConvergenceConfig convergence_config
} SetupAnchorConn : ConnectionInfo;
where each Convergence configuration is defined as follows:
object {
[JSONNumber mx_configuration_id;]
JSONString convergence_method;
ConvergenceMethodParam convergence_method_params;
JSONNumber num_delivery_connections;
SetupDeliveryConns delivery_connections;
} ConvergenceConfig;
C.2.11.1. Convergence Method Parameters
This data type represents the parameters used for the convergence
method and contains the following:
(a) Proxy IP: IP address of the proxy that is provided by the
selected convergence method.
(b) Proxy Port: Port of the proxy that is provided by the selected
convergence method.
The representation of this data type is as follows:
object {
JSONString proxy_ip;
JSONString proxy_port;
JSONString client_key;
} ConvergenceMethodParam;
C.2.11.2. Setup Delivery Connections
This is the list of delivery connections and their parameters to be
configured on the client. Each delivery connection defined by its
connection information (Appendix C.2.4) optionally contains the
following:
(a) Adaptation Method: Selected adaptation method name. This shall
be one of the methods listed in Appendix C.2.10.
(b) Adaptation Method Parameters: Depending on the adaptation
method, one or more of the following parameters shall be
provided.
(1) Tunnel IP address
(2) Tunnel Port number
(3) Shared Secret
(4) MX header optimization: If the adaptation method is
UDP_without_DTLS or UDP_with_DTLS, and convergence is GMA,
then this flag represents whether or not the checksum field
and the length field in the IP header of an MX PDU should
be recalculated by the MX Convergence Layer. The possible
values are "true" and "false". If it is "true", both
fields remain unchanged; otherwise, both fields should be
recalculated. If this field is not present, then the
default of "false" should be considered.
The representation of this data type is as follows:
object {
SetupDeliveryConn items <1..*>;
} SetupDeliveryConns;
where each "SetupDeliveryConn" consists of the following:
object {
[JSONString adaptation_method;]
[AdaptationMethodParam adaptation_method_param;]
} SetupDeliveryConn : ConnectionInfo;
where AdaptationMethodParam is defined as:
object {
JSONString tunnel_ip_addr;
JSONString tunnel_end_port;
JSONString shared_secret;
[JSONBool mx_header_optimization;]
} AdaptationMethodParam;
C.2.12. Init Probe Results
This data type provides the results of the init probe request made by
the NCM. It consists of the following information:
(a) Lost Probes: Percentage of probes lost.
(b) Probe Delay: Average delay of probe message, in microseconds.
(c) Probe Rate: Probe rate achieved, in megabits per second.
The representation of this data type is as follows:
object {
JSONNumber lost_probes_percentage;
JSONNumber probe_rate_Mbps;
} InitProbeResults;
C.2.13. Active Probe Results
This data type provides the results of the active probe request made
by the NCM. It consists of the following information:
(a) Average Probe Throughput: Average active probe throughput
achieved, in megabits per second.
The representation of this data type is as follows:
object {
JSONNumber avg_tput_last_probe_duration_Mbps;
} ActiveProbeResults;
C.2.14. Downlink Delivery
This data type represents the list of connections that are enabled on
the delivery side to be used in the downlink direction.
The representation of this data type is as follows:
object {
JSONNumber connection_id <1..*>;
} DLDelivery;
C.2.15. Uplink Delivery
This data type represents the list of connections and parameters
enabled for the delivery side to be used in the uplink direction.
The uplink delivery consists of multiple uplink delivery entities,
where each entity consists of a Traffic Flow Template (TFT)
(Appendix C.2.16) and a list of connection IDs in the uplink, where
traffic qualifying for such a Traffic Flow Template can be
redirected.
The representation of this data type is as follows:
object {
ULDeliveryEntity ul_del <1..*>;
} ULDelivery;
Where each uplink delivery entity consists of the following data
type:
object {
TrafficFlowTemplate ul_tft <1..*>;
JSONNumber connection_id <1..*>;
} ULDeliveryEntity;
C.2.16. Traffic Flow Template
The Traffic Flow Template generally follows the guidelines specified
in [ServDesc3GPP].
The Traffic Flow Template in MAMS consists of one or more of the
following:
(a) Remote Address and Mask: IP address and subnet for remote
addresses represented in Classless Inter-Domain Routing (CIDR)
notation. Default: "0.0.0.0/0".
(b) Local Address and Mask: IP address and subnet for local
addresses represented in CIDR notation. Default: "0.0.0.0/0"
(c) Protocol Type: IP protocol number of the payload being carried
by an IP packet (e.g., UDP, TCP). Default: 255.
(d) Local Port Range: Range of ports for local ports for which the
Traffic Flow Template is applicable. Default: Start=0,
End=65535.
(e) Remote Port Range: Range of ports for remote ports for which the
Traffic Flow Template is applicable. Default: Start=0,
End=65535.
(f) Traffic Class: Represented by Type of Service in IPv4 and
Traffic Class in IPv6. Default: 255
(g) Flow Label: Flow label for IPv6, applicable only for IPv6
protocol type. Default: 0.
The representation of this data type is as follows:
object {
JSONString remote_addr_mask;
JSONString local_addr_mask;
JSONNumber protocol_type;
PortRange local_port_range;
PortRange remote_port_range;
JSONNumber traffic_class;
JSONNumber flow_label;
} TrafficFlowTemplate;
Where the port range is defined as follows:
object {
JSONNumber start;
JSONNumber end;
} PortRange;
C.2.17. Measurement Report Configuration
This data type represents the configuration done by the NCM toward
the CCM for reporting measurement events.
(a) Measurement Report Parameter: Parameter that shall be measured
and reported. This is dependent on the connection type:
(1) For the connection type of "Wi-Fi", the allowed measurement
type parameters are "WLAN_RSSI", "WLAN_LOAD", "UL_TPUT",
"DL_TPUT", "EST_UL_TPUT", and "EST_DL_TPUT".
(2) For the connection type of "LTE", the allowed measurement
type parameters are "LTE_RSRP", "LTE_RSRQ", "UL_TPUT", and
"DL_TPUT".
(3) For the connection type of "5G_NR", the allowed measurement
type parameters are "NR_RSRP", "NR_RSRQ", "UL_TPUT", and
"DL_TPUT".
(b) Threshold: High and low threshold for reporting.
(c) Period: Period for reporting, in milliseconds.
The representation of this data type is as follows:
object {
JSONString meas_rep_param;
Threshold meas_threshold;
JSONNumber meas_period;
} MeasReportConfs;
Where "Threshold" is defined as follows:
object {
JSONNumber high;
JSONNumber low;
} Threshold;
C.2.18. Measurement Report
This data type represents the measurements reported by the CCM for
each access network measured. This type contains the connection
information, the Delivery Node ID that identifies either the cell
(ECGI) or the Wi-Fi Access Point ID or MAC address (or equivalent
identifier in other technologies), and the actual measurement
performed by the CCM in the last measurement period.
The representation of this data type is as follows:
object {
JSONNumber connection_id;
JSONString connection_type;
JSONString delivery_node_id;
Measurement measurements <1..*>;
} MXMeasRep;
Where Measurement is defined as the key-value pair of the measurement
type and value. The exact measurement type parameter reported for a
given connection depends on its Connection Type. The measurement
type parameters, for each Connection Type, are specified in
Appendix C.2.17.
object {
JSONString measurement_type;
JSONNumber measurement_value;
} Measurement;
C.3. Schemas in JSON
C.3.1. MX Base Schema
{
"$schema": "https://json-schema.org/draft-04/schema#",
"definitions": {
"message_type_def": {
"enum": [
"mx_discover",
"mx_system_info",
"mx_capability_req",
"mx_capability_rsp",
"mx_capability_ack",
"mx_up_setup_conf_req",
"mx_up_setup_cnf",
"mx_reconf_req",
"mx_reconf_rsp",
"mx_path_est_req",
"mx_path_est_results",
"mx_traffic_steering_req",
"mx_traffic_steering_rsp",
"mx_ssid_indication",
"mx_keep_alive_req",
"mx_keep_alive_rsp",
"mx_measurement_conf",
"mx_measurement_report",
"mx_session_termination_req",
"mx_session_termination_rsp",
"mx_app_madp_assoc_req",
"mx_app_madp_assoc_rsp",
"mx_network_analytics_req",
"mx_network_analytics_rsp"
],
"type": "string"
},
"sequence_num_def": {
"minimum": 1,
"type": "integer"
},
"version_def": {
"type": "string"
}
},
"id": "https://example.com/mams/mx_base_def.json"
}
C.3.2. MX Definitions
{
"$schema": "https://json-schema.org/draft-04/schema#",
"definitions": {
"adapt_method": {
"enum": [
"UDP_without_DTLS",
"UDP_with_DTLS",
"IPsec",
"Client_NAT"
],
"type": "string"
},
"conv_method": {
"enum": [
"GMA",
"MPTCP_Proxy",
"GRE_Aggregation_Proxy",
"MPQUIC"
],
"type": "string"
},
"supported": {
"type": "boolean"
},
"active": {
"type": "boolean"
},
"connection_id": {
"type": "integer"
},
"feature_name": {
"enum": [
"lossless_switching",
"fragmentation",
"concatenation",
"uplink_aggregation",
"downlink_aggregation",
"measurement"
"probing"
],
"type": "string"
},
"connection_type": {
"enum": [
"Wi-Fi",
"5G_NR",
"MulteFire",
"LTE"
],
"type": "string"
},
"ip_address": {
"type": "string"
},
"port": {
"maximum": 65535,
"minimum": 1,
"type": "integer"
},
"adaptation_method": {
"allOf" : [
{ "$ref": "#/definitions/adapt_method" },
{ "$ref": "#/definitions/supported" }
]
},
"connection": {
"allOf" : [
{ "$ref": "#/definitions/connection_id" },
{ "$ref": "#/definitions/connection_type" }
]
},
"convergence_method": {
"allOf": [
{ "$ref": "#/definitions/conv_method" },
{ "$ref": "#/definitions/supported" }
]
},
"feature_status": {
"allOf": [
{ "$ref": "#/definitions/feature_name" },
{ "$ref": "#/definitions/active" }
]
},
"ncm_end_point": {
"allOf" : [
{ "$ref" : "#/definitions/ip_address" },
{ "$ref" : "#/definitions/port" }
]
},
"capability_acknowledgment" : {
"enum" : [
"MX_ACCEPT",
"MX_REJECT"
],
"type" : "string"
},
"threshold" : {
"high" : {
"type" : "integer"
},
"low" : {
"type" : "integer"
},
"type" : "object"
},
"meas_report_param" : {
"enum" : [
"WLAN_RSSI",
"WLAN_LOAD",
"LTE_RSRP",
"LTE_RSRQ",
"UL_TPUT",
"DL_TPUT",
"EST_UL_TPUT",
"EST_DL_TPUT",
"NR_RSRP",
"NR_RSRQ"
],
"type" : "string"
},
"meas_report_conf" : {
"meas_rep_param" : {
"$ref" : "#definitions/meas_report_param"
},
"meas_threshold" : {
"$ref" : "#definitions/threshold"
},
"meas_period_ms" : {
"type" : "integer"
},
"type" : "object"
},
"ssid_types" : {
"enum" : [
"ssid",
"bssid",
"hessid"
],
"type" : "string"
},
"ip_addr_mask" : {
"type" : "string",
"default" : "0.0.0.0/0"
},
"port_range" : {
"start" : {
"type" : "integer",
"default" : 0
},
"end" : {
"type" : "integer",
"default" : 65535
}
},
"traffic_flow_template" : {
"remote_addr_mask" : {
"$ref" : "#definitions/ip_addr_mask" },
"local_addr_mask" : {
"$ref" : "#definitions/ip_addr_mask" },
"protocol_type" : {
"type" : "integer",
"minimum" : 0,
"maximum" : 255
},
"local_port_range" : {
"$ref" : "#definitions/port_range" },
"remote_port_range" : {
"$ref" : "#definitions/port_range" },
"traffic_class" : {
"type" : "integer",
"default" : 255
},
"flow_label" : {
"type" : "integer",
"default" : 0
}
},
"delivery_node_id" : {
"type" : "string"
},
"unique_session_id" : {
"type" : "object",
"ncm_id" : {
"type" : "integer"
},
"session_id" : {
"type" : "integer"
}
},
"keep_alive_reason" : {
"enum" : [
"Timeout",
"Handover"
],
"type" : "string"
},
"connection_status" : {
"enum" : [
"disabled",
"enabled",
"connected"
],
"type" : "string",
"default" : "connected"
},
"adaptation_param" : {
"udp_adapt_port" : {
"type" : "integer"
}
},
"probe_param" : {
"probe_port" : {
"type" : "integer"
},
"anchor_conn_id" : {
"type" : "integer"
},
"mx_configuration_id" : {
"type" : "integer"
}
},
"client_param" : {
"connection_id" : {
"type" : "integer"
},
"adapt_param" : {
"type" : {"$ref" : "#definitions/adaptation_param" }
}
}
},
"adapt_param": {
"tunnel_ip_addr": {
"type": "string"
},
"tunnel_end_port": {
"type": "integer"
},
"shared_secret": {
"type": "string"
},
"mx_header_optimization": {
"type": "boolean",
"default": false
}
},
"delivery_connection": {
"connection_id": {
"$ref": "#definitions/connection_id"
},
"connection_type": {
"$ref": "#definitions/connection_type"
},
"adaptation_method": {
"$ref": "#definitions/adapt_method"
},
"adaptation_method_param": {
"$ref": "#definitions/adapt_param"
}
},
"app_madp_assoc": {
"anchor_conn_id" : {
"type" : "integer"
},
"mx_configuration_id" : {
"type" : "integer"
}
"ul_tft_list": {
"items": {
"$ref": "#definitions/traffic_flow_template"
},
"type": "array"
},
"dl_tft_list": {
"items": {
"$ref": "#definitions/traffic_flow_template"
},
"type": "array"
}
},
"predict_param_name": {
"enum": [
"validity_time",
"bandwidth",
"jitter",
"latency",
"signal_quality"
],
"type": "string"
},
"predict_add_param_name": {
"enum": [
"WLAN_RSSI",
"WLAN_LOAD",
"LTE_RSRP",
"LTE_RSRQ",
"NR_RSRP",
"NR_RSRQ"
],
"type": "string"
},
"id": "https://example.com/mams/definitions.json"
}
C.3.3. MX Discover
{
"$schema": "https://json-schema.org/draft-04/schema#",
"additionalProperties": false,
"id": "https://example.com/mams/mx_discover.json",
"properties": {
"message_type": {"$ref": "mx_base_def.json#/message_type_def"},
"sequence_num": {"$ref": "mx_base_def.json#/sequence_num_def"},
"version": {"$ref": "mx_base_def.json#/version_def"}
},
"type": "object"
}
C.3.4. MX System Info
{
"$schema": "https://json-schema.org/draft-04/schema#",
"additionalProperties": false,
"id": "https://example.com/mams/mx_system_info.json",
"properties": {
"message_type": {"$ref": "mx_base_def.json#/message_type_def"},
"sequence_num": {"$ref": "mx_base_def.json#/sequence_num_def"},
"version": {"$ref": "mx_base_def.json#/version_def"},
"ncm_connections": {
"type": "array",
"items": [
{"$ref": "definitions.json#/connection"},
{"$ref": "definitions.json#/ncm_end_point"}
]
}
},
"type": "object"
}
C.3.5. MX Capability Request
{
"$schema": "https://json-schema.org/draft-04/schema#",
"additionalProperties": false,
"id": "https://example.com/mams/mx_capability_req.json",
"properties": {
"message_type": {"$ref": "mx_base_def.json#/message_type_def"},
"sequence_num": {"$ref": "mx_base_def.json#/sequence_num_def"},
"version": {"$ref": "mx_base_def.json#/version_def"},
"adaptation_methods": {
"items": {"$ref": "definitions.json#/adaptation_method"},
"type": "array"
},
"anchor_connections": {
"items": {"$ref": "definitions.json#/connection"},
"type": "array"
},
"convergence_methods": {
"items": {"$ref": "definitions.json#/convergence_method"},
"type": "array"
},
"delivery_connections": {
"items": {"$ref": "definitions.json#/connection"},
"type": "array"
},
"feature_active": {
"items": {"$ref": "definitions.json#/feature_status"},
"type": "array"
},
"num_anchor_connections": {
"type": "integer"
},
"num_delivery_connections": {
"type": "integer"
}
},
"type": "object"
}
C.3.6. MX Capability Response
{
"$schema": "https://json-schema.org/draft-04/schema#",
"additionalProperties": false,
"id": "https://example.com/mams/mx_capability_rsp.json",
"properties": {
"message_type": {"$ref": "mx_base_def.json#/message_type_def"},
"sequence_num": {"$ref": "mx_base_def.json#/sequence_num_def"},
"version": {"$ref": "mx_base_def.json#/version_def"},
"adaptation_methods": {
"items": {"$ref": "definitions.json#/adaptation_method"},
"type": "array"
},
"anchor_connections": {
"items": {"$ref": "definitions.json#/connection"},
"type": "array"
},
"convergence_methods": {
"items": {"$ref": "definitions.json#/convergence_method"},
"type": "array"
},
"delivery_connections": {
"items": {"$ref": "definitions.json#/connection"},
"type": "array"
},
"feature_active": {
"items": {"$ref": "definitions.json#/feature_status"},
"type": "array"
},
"num_anchor_connections": {
"type": "integer"
},
"num_delivery_connections": {
"type": "integer"
},
"unique_session_id": {
"$ref": "definitions.json#/unique_session_id"
}
},
"type": "object"
}
C.3.7. MX Capability Acknowledge
{
"$schema": "https://json-schema.org/draft-04/schema#",
"definitions": {},
"id": "https://example.com/mams/mx_capability_ack.json",
"properties": {
"message_type": {"$ref": "mx_base_def.json#/message_type_def"},
"sequence_num": {"$ref": "mx_base_def.json#/sequence_num_def"},
"version": {"$ref": "mx_base_def.json#/version_def"},
"unique_session_id": {
"$ref": "definitions.json#/unique_session_id"},
"capability_ack": {
"$ref": "definitions.json#/capability_acknowledgment"}
},
"type": "object"
}
C.3.8. MX Reconfiguration Request
{
"$schema": "https://json-schema.org/draft-04/schema#",
"definitions": {},
"id": "https://example.com/mams/mx_reconf_req.json",
"properties": {
"message_type": {"$ref": "mx_base_def.json#/message_type_def"},
"sequence_num": {"$ref": "mx_base_def.json#/sequence_num_def"},
"version": {"$ref": "mx_base_def.json#/version_def"},
"unique_session_id": {
"$ref": "definitions.json#/unique_session_id"
},
"connection_id": {"$ref": "definitions.json#/connection_id"},
"ip_address": {"$ref": "definitions.json#/ip_address"},
"mtu_size": {
"maximum": 65535,
"minimum": 1,
"type": "integer"
},
"ssid": {
"type": "string"
},
"reconf_action": {
"enum": [
"release",
"setup",
"update"
],
"id": "/properties/reconf_action",
"type": "string"
},
"connection_status": {
"$ref": "definitions.json#/connection_status"},
"delivery_node_id": {
"$ref": "definitions.json#/delivery_node_id"}
},
"type": "object"
}
C.3.9. MX Reconfiguration Response
{
"$schema": "https://json-schema.org/draft-04/schema#",
"definitions": {},
"id": "https://example.com/mams/mx_reconf_rsp.json",
"properties": {
"message_type": {"$ref": "mx_base_def.json#/message_type_def"},
"sequence_num": {"$ref": "mx_base_def.json#/sequence_num_def"},
"version": {"$ref": "mx_base_def.json#/version_def"}
},
"type": "object"
}
C.3.10. MX UP Setup Configuration Request
{
"$schema": "https://json-schema.org/draft-04/schema#",
"additionalProperties": false,
"definitions": {
"convergence_configuration": {
"mx_configuration_id": {"type": "integer"},
"convergence_method": {
"$ref": "definitions.json#/conv_method"},
"convergence_method_params": {
"properties": {
"proxy_ip": {"$ref": "definitions.json#/ip_address"},
"proxy_port": {"$ref": "definitions.json#/port"},
"client_key": {"$ref": "definitions.json#/client_key"}
},
"type": "object"
},
"num_delivery_connections": {
"type": "integer"
},
"delivery_connections": {
"items": {"$ref": "definitions.json#/delivery_connection"},
"type": "array"
}
}
},
"id": "https://example.com/mams/mx_up_setup_conf_req.json",
"properties": {
"message_type": {"$ref": "mx_base_def.json#/message_type_def"},
"sequence_num": {"$ref": "mx_base_def.json#/sequence_num_def"},
"version": {"$ref": "mx_base_def.json#/version_def"},
"num_anchor_connections": {
"type": "integer"
},
"anchor_connections": {
"items": {
"properties": {
"connection_id": {
"$ref": "definitions.json#/connection_id"},
"connection_type": {
"$ref": "definitions.json#/connection_type"},
"num_active_mx_conf": {"type": "integer"},
"convergence_config": {
"items": {
"$ref": "definitions/convergence_configuration"},
"type": "array"
}
},
"type": "object"
},
"type": "array"
}
},
"type": "object"
}
C.3.11. MX UP Setup Confirmation
{
"$schema": "https://json-schema.org/draft-04/schema#",
"definitions": {},
"id": "https://example.com/mams/mx_up_setup_cnf.json",
"properties": {
"message_type": {"$ref": "mx_base_def.json#/message_type_def"},
"sequence_num": {"$ref": "mx_base_def.json#/sequence_num_def"},
"version": {"$ref": "mx_base_def.json#/version_def"},
"unique_session_id": {
"$ref": "definitions.json#/unique_session_id"},
"probe_param": {"$ref": "definitions.json#/probe_param"},
"num_delivery_conn": {
"type": "integer"
},
"client_params": {
"type": "array",
"items": [
{"$ref": "definitions.json#/client_param"}
]
}
},
"type": "object"
}
C.3.12. MX Traffic Steering Request
{
"$schema": "https://json-schema.org/draft-04/schema#",
"definitions": {
"conn_list": {
"items": {"$ref": "definitions.json#/connection_id"},
"type": "array"
},
"ul_delivery": {
"ul_tft": {
"$ref": "definitions.json#/traffic_flow_template"},
"connection_list": {"$ref": "#definitions/conn_list"}
}
},
"id": "https://example.com/mams/mx_traffic_steering_req.json",
"properties": {
"message_type": {"$ref": "mx_base_def.json#/message_type_def"},
"sequence_num": {"$ref": "mx_base_def.json#/sequence_num_def"},
"version": {"$ref": "mx_base_def.json#/version_def"},
"connection_id": {"$ref": "definitions.json#/connection_id"},
"mx_configuration_id": {"type": "integer"},
"downlink_delivery": {
"items": {"$ref": "definitions.json#/connection_id"},
"type": "array"
},
"feature_active": {
"items": {"$ref": "definitions.json#/feature_status"},
"type": "array"
},
"default_uplink_delivery": {
"type": "integer"
},
"uplink_delivery": {
"items": {"$ref": "#definitions/ul_delivery"},
"type": "array"
}
},
"type": "object"
}
C.3.13. MX Traffic Steering Response
{
"$schema": "https://json-schema.org/draft-04/schema#",
"definitions": {},
"id": "https://example.com/example.json",
"properties": {
"message_type": {"$ref": "mx_base_def.json#/message_type_def"},
"sequence_num": {"$ref": "mx_base_def.json#/sequence_num_def"},
"version": {"$ref": "mx_base_def.json#/version_def"},
"unique_session_id": {
"$ref": "definitions.json#/unique_session_id"},
"feature_active": {
"items": {"$ref": "definitions.json#/feature_status"},
"type": "array"
}
},
"type": "object"
}
C.3.14. MX Application MADP Association Request
{
"$schema": "https://json-schema.org/draft-04/schema#",
"definitions": {},
"id": "https://example.com/example.json",
"properties": {
"message_type": {"$ref": "mx_base_def.json#/message_type_def"},
"sequence_num": {"$ref": "mx_base_def.json#/sequence_num_def"},
"version": {"$ref": "mx_base_def.json#/version_def"},
"unique_session_id": {
"$ref": "definitions.json#/unique_session_id"},
"app_madp_assoc_list": {
"items": {
"$ref": "definitions.json#/app_madp_assoc"
},
"type": "array"
}
},
"type": "object"
}
C.3.15. MX Application MADP Association Response
{
"$schema": "https://json-schema.org/draft-04/schema#",
"definitions": {},
"id": "https://example.com/example.json",
"properties": {
"message_type": {"$ref": "mx_base_def.json#/message_type_def"},
"sequence_num": {"$ref": "mx_base_def.json#/sequence_num_def"},
"version": {"$ref": "mx_base_def.json#/version_def"},
"unique_session_id": {
"$ref": "definitions.json#/unique_session_id"},
"is_success": {
"type": "boolean"
}
},
"type": "object"
}
C.3.16. MX Path Estimation Request
{
"$schema": "https://json-schema.org/draft-04/schema#",
"definitions": {},
"id": "https://example.com/mams/mx_path_est_req.json",
"properties": {
"message_type": {"$ref": "mx_base_def.json#/message_type_def"},
"sequence_num": {"$ref": "mx_base_def.json#/sequence_num_def"},
"version": {"$ref": "mx_base_def.json#/version_def"},
"active_probe_ack_req": {
"enum": [
"no",
"yes"
],
"type": "string"
},
"active_probe_freq_ms": {
"maximum": 10000,
"minimum": 100,
"type": "integer"
},
"active_probe_size_bytes": {
"maximum": 1500,
"minimum": 100,
"type": "integer"
},
"active_probe_duration_sec": {
"maximum": 100,
"minimum": 10,
"type": "integer"
},
"connection_id": {"$ref": "definitions#/connection_id"},
"init_probe_ack_req": {
"enum": [
"no",
"yes"
],
"type": "string"
},
"init_probe_size_bytes": {
"maximum": 1500,
"minimum": 100,
"type": "integer"
},
"init_probe_test_duration_ms": {
"maximum": 10000,
"minimum": 100,
"type": "integer"
},
"init_probe_test_rate_Mbps": {
"maximum": 100,
"minimum": 1,
"type": "integer"
}
},
"type": "object"
}
C.3.17. MX Path Estimation Results
{
"$schema": "https://json-schema.org/draft-04/schema#",
"definitions": {},
"id": "https://example.com/mams/mx_path_est_results.json",
"properties": {
"message_type": {"$ref": "mx_base_def.json#/message_type_def"},
"sequence_num": {"$ref": "mx_base_def.json#/sequence_num_def"},
"version": {"$ref": "mx_base_def.json#/version_def"},
"unique_session_id": {
"$ref": "definitions.json#/unique_session_id"},
"active_probe_results": {
"properties": {
"avg_tput_last_probe_duration_Mbps": {
"maximum":100,
"minimum": 1,
"type": "number"
}
},
"type": "object"
},
"connection_id": {"$ref": "definitions.json#/connection_id"},
"init_probe_results": {
"properties": {
"lost_probes_percentage": {
"maximum": 100,
"minimum": 1,
"type": "integer"
},
"probe_rate_Mbps": {
"maximum": 100,
"minimum": 1,
"type": "number"
}
},
"type": "object"
}
},
"type": "object"
}
C.3.18. MX SSID Indication
{
"$schema": "https://json-schema.org/draft-04/schema#",
"definitions": {},
"id": "https://example.com/mams/mx_ssid_indication.json",
"properties": {
"message_type": {"$ref": "mx_base_def.json#/message_type_def"},
"sequence_num": {"$ref": "mx_base_def.json#/sequence_num_def"},
"version": {"$ref": "mx_base_def.json#/version_def"},
"ssid_list": {
"items": {
"properties": {
"ssid_type": {
"$ref": "definitions.json#/ssid_types"},
"ssid_id": {
"type": "integer"
}
}
},
"type": "array"
}
},
"type": "object"
}
C.3.19. MX Measurement Configuration
{
"$schema": "https://json-schema.org/draft-04/schema#",
"additionalProperties": false,
"definitions": {
"meas_conf": {
"connection_id" : {
"$ref": "definitions.json#/connection_id"},
"connection_type": {
"$ref": "definitions.json#/connection_type"},
"meas_rep_conf": {
"items": {
"$ref": "definitions.json#/meas_report_conf"},
"type": "array"
}
}
},
"id": "https://example.com/mams/mx_measurement_conf.json",
"properties": {
"message_type": {"$ref": "mx_base_def.json#/message_type_def"},
"sequence_num": {"$ref": "mx_base_def.json#/sequence_num_def"},
"version": {"$ref": "mx_base_def.json#/version_def"},
"measurement_configuration": {
"items": {"$ref": "#definitions/meas_conf"},
"type": "array"
}
},
"type": "object"
}
C.3.20. MX Measurement Report
{
"$schema": "https://json-schema.org/draft-04/schema#",
"definitions": {},
"id": "https://example.com/mams/mx_measurement_report.json",
"properties": {
"message_type": {"$ref": "mx_base_def.json#/message_type_def"},
"sequence_num": {"$ref": "mx_base_def.json#/sequence_num_def"},
"version": {"$ref": "mx_base_def.json#/version_def"},
"unique_session_id": {
"$ref": "definitions.json#/unique_session_id"},
"measurement_reports": {
"items": {
"properties": {
"connection_id": {
"$ref": "definitions.json#/connection_id"},
"connection_type": {
"$ref": "definitions.json#/connection_type"},
"delivery_node_id": {
"$ref": "definitions.json#/delivery_node_id"},
"measurements": {
"items": {
"properties": {
"measurement_type": {
"$ref": "definitions.json#/meas_report_param"},
"measurement_value": {
"type": "integer"
}
},
"type": "object"
},
"type": "array"
}
},
"type": "object"
},
"type": "array"
}
},
"type": "object"
}
C.3.21. MX Keep-Alive Request
{
"$schema": "https://json-schema.org/draft-04/schema#",
"additionalProperties": false,
"id": "https://example.com/mams/mx_keep_alive_req.json",
"properties": {
"message_type": {"$ref": "mx_base_def.json#/message_type_def"},
"sequence_num": {"$ref": "mx_base_def.json#/sequence_num_def"},
"version": {"$ref": "mx_base_def.json#/version_def"},
"keep_alive_reason": {
"$ref": "definitions.json#/keep_alive_reason"},
"unique_session_id": {
"$ref": "definitions.json#/unique_session_id"},
"connection_id": {
"$ref": "definitions.json#/connection_id"},
"delivery_node_id": {
"$ref": "definitions.json#/connection_id"}
},
"type": "object"
}
C.3.22. MX Keep-Alive Response
{
"$schema": "https://json-schema.org/draft-04/schema#",
"additionalProperties": false,
"id": "https://example.com/mams/mx_keep_alive_rsp.json",
"properties": {
"message_type": {"$ref": "mx_base_def.json#/message_type_def"},
"sequence_num": {"$ref": "mx_base_def.json#/sequence_num_def"},
"version": {"$ref": "mx_base_def.json#/version_def"},
"unique_session_id": {
"$ref": "definitions.json#/unique_session_id"}
},
"type": "object"
}
C.3.23. MX Session Termination Request
{
"$schema": "https://json-schema.org/draft-04/schema#",
"additionalProperties": false,
"id": "https://example.com/mams/mx_keep_alive_req.json",
"properties": {
"message_type": {"$ref": "mx_base_def.json#/message_type_def"},
"sequence_num": {"$ref": "mx_base_def.json#/sequence_num_def"},
"version": {"$ref": "mx_base_def.json#/version_def"},
"unique_session_id": {
"$ref": "definitions.json#/unique_session_id"},
"reason": {
"enum": [
"MX_NORMAL_RELEASE",
"MX_NO_RESPONSE",
"INTERNAL_ERROR"
],
"type": "string"
}
},
"type": "object"
}
C.3.24. MX Session Termination Response
{
"$schema": "https://json-schema.org/draft-04/schema#",
"additionalProperties": false,
"id": "https://example.com/mams/mx_session_termination_rsp.json",
"properties": {
"message_type": {"$ref": "mx_base_def.json#/message_type_def"},
"sequence_num": {"$ref": "mx_base_def.json#/sequence_num_def"},
"version": {"$ref": "mx_base_def.json#/version_def"},
"unique_session_id": {
"$ref": "definitions.json#/unique_session_id"}
},
"type": "object"
}
C.3.25. MX Network Analytics Request
{
"$schema": "https://json-schema.org/draft-04/schema#",
"additionalProperties": false,
"id": "https://example.com/mams/mx_network_analytics_req.json",
"properties": {
"message_type": {"$ref": "mx_base_def.json#/message_type_def"},
"sequence_num": {"$ref": "mx_base_def.json#/sequence_num_def"},
"version": {"$ref": "mx_base_def.json#/version_def"},
"unique_session_id": {
"$ref": "definitions.json#/unique_session_id"},
"params": {
"items": {
"$ref": "definitions.json#/predict_param_name"},
"type": "array"
}
},
"type": "object"
}
C.3.26. MX Network Analytics Response
{
"$schema": "https://json-schema.org/draft-04/schema#",
"additionalProperties": false,
"definitions": {
"ParamPredictions": {
"param_name": {
"$ref": "definitions.json#/predict_param_name"},
"additional_param": {
"$ref": "definitions.json#/predict_add_param_name"},
"prediction": {"type": "integer"},
"likelihood": {"type": "integer"},
"validity_time": {"type": "integer"}
},
"MXAnalyticsList": {
"connection_id": {
"$ref": "definitions.json#/connection_id"},
"connection_type": {
"$ref": "definitions.json#/connection_type"},
"predictions": {
"items": {
"$ref": "#definitions/ParamPredictions"},
"type": "array"
}
}
},
"id": "https://example.com/mams/mx_network_analytics_rsp.json",
"properties": {
"message_type": {"$ref": "mx_base_def.json#/message_type_def"},
"sequence_num": {"$ref": "mx_base_def.json#/sequence_num_def"},
"version": {"$ref": "mx_base_def.json#/version_def"},
"param_list": {
"items": {
"$ref": "#definitions/MXAnalyticsList"},
"type": "array"}
},
"type": "object"
}
C.4. Examples in JSON
C.4.1. MX Discover
{
"version" : "1.0",
"message_type" : "mx_discover",
"sequence_num" : 1
}
C.4.2. MX System Info
{
"version" : "1.0",
"message_type" : "mx_system_info",
"sequence_num" : 2,
"ncm_connections" : [
{
"connection_id" : 0,
"connection_type" : "LTE",
"ncm_end_point" : {
"ip_address" : "192.168.1.10",
"port" : 1234
}
},
{
"connection_id" : 1,
"connection_type" : "Wi-Fi",
"ncm_end_point" : {
"ip_address" : "192.168.1.10",
"port" : 1234
}
}
]
}
C.4.3. MX Capability Request
{
"version" : "1.0",
"message_type" : "mx_capability_req",
"sequence_num" : 3,
"feature_active" : [
{
"feature_name" : "lossless_switching",
"active" : true
},
{
"feature_name" : "fragmentation",
"active" : false
}
],
"num_anchor_connections" : 2,
"anchor_connections" : [
{
"connection_id" : 0,
"connection_type" : "LTE"
},
{
"connection_id" : 1,
"connection_type" : "Wi-Fi"
}
],
"num_delivery_connections" : 2,
"delivery_connections" : [
{
"connection_id" : 0,
"connection_type" : "LTE"
},
{
"connection_id" : 1,
"connection_type" : "Wi-Fi"
}
],
"convergence_methods" : [
{
"method" : "GMA",
"supported" : true
},
{
"method" : "MPTCP_Proxy",
"supported" : false
}
],
"adaptation_methods" : [
{
"method" : "UDP_without_DTLS",
"supported" : false
},
{
"method" : "UDP_with_DTLS",
"supported" : false
},
{
"method" : "IPsec",
"supported" : true
},
{
"method" : "Client_NAT",
"supported" : false
}
]
}
C.4.4. MX Capability Response
{
"version" : "1.0",
"message_type" : "mx_capability_rsp",
"sequence_num" : 3,
"feature_active" : [
{
"feature_name" : "lossless_switching",
"active" : true
},
{
"feature_name" : "fragmentation",
"active" : false
}
],
"num_anchor_connections" : 2,
"anchor_connections" : [
{
"connection_id" : 0,
"connection_type" : "LTE"
},
{
"connection_id" : 1,
"connection_type" : "Wi-Fi"
}
],
"num_delivery_connections" : 2,
"delivery_connections" : [
{
"connection_id" : 0,
"connection_type" : "LTE"
},
{
"connection_id" : 1,
"connection_type" : "Wi-Fi"
}
],
"convergence_methods" : [
{
"method" : "GMA",
"supported" : true
},
{
"method" : "MPTCP_Proxy",
"supported" : false
}
],
"adaptation_methods" : [
{
"method" : "UDP_without_DTLS",
"supported" : false
},
{
"method" : "UDP_with_DTLS",
"supported" : false
},
{
"method" : "IPsec",
"supported" : true
},
{
"method" : "Client_NAT",
"supported" : false
}
],
"unique_session_id" : {
"ncm_id" : 110,
"session_id" : 1111
}
}
C.4.5. MX Capability Acknowledge
{
"version" : "1.0",
"message_type" : "mx_capability_ack",
"sequence_num" : 3,
"unique_session_id" : {
"ncm_id" : 110,
"session_id" : 1111
},
"capability_ack" : "MX_ACCEPT"
}
C.4.6. MX Reconfiguration Request
{
"version" : "1.0",
"message_type" : "mx_reconf_req",
"sequence_num" : 4,
"unique_session_id" : {
"ncm_id" : 110,
"session_id" : 1111
},
"reconf_action" : "setup",
"connection_id" : 0,
"ip_address" : "192.168.110.1",
"ssid" : "SSID_1",
"mtu_size" : 1300,
"connection_status" : "connected",
"delivery_node_id" : "2A12C"
}
C.4.7. MX Reconfiguration Response
{
"version" : "1.0",
"message_type" : "mx_reconf_rsp",
"sequence_num" : 4
}
C.4.8. MX UP Setup Configuration Request
{
"version": "1.0",
"message_type": "mx_up_setup_conf_req",
"sequence_num": 5,
"num_anchor_connections": 2,
"anchor_connections": [{
"connection_id": 1,
"connection_type": "Wi-Fi",
"num_active_mx_conf" : 2,
"convergence_config" : [
{
"mx_configuration_id" : 1,
"convergence_method": "GMA",
"convergence_method_params": {},
"num_delivery_connections": 2,
"delivery_connections": [{
"connection_id": 0,
"connection_type": "LTE",
"adaptation_method": "UDP_without_DTLS",
"adaptation_method_param": {
"tunnel_ip_addr": "6.6.6.6",
"tunnel_end_port": 9999,
"mx_header_optimization": true
}
},
{
"connection_id": 1,
"connection_type": "Wi-Fi"
}
]
},
{
"mx_configuration_id" : 2,
"convergence_method": "GMA",
"convergence_method_params": {},
"num_delivery_connections": 1,
"delivery_connections": [{
"connection_id": 0,
"connection_type": "LTE",
"adaptation_method": "UDP_without_DTLS",
"adaptation_method_param": {
"tunnel_ip_addr": "6.6.6.6",
"tunnel_end_port": 8877
}
}
]
}
]
},
{
"connection_id": 0,
"connection_type": "LTE",
"udp_port": 8888,
"num_delivery_connections": 2,
"delivery_connections": [{
"connection_id": 0,
"connection_type": "LTE"
},
{
"connection_id": 1,
"connection_type": "Wi-Fi",
"adaptation_method": "UDP_without_DTLS",
"adaptation_method_param": {
"tunnel_ip_addr": "192.168.3.3",
"tunnel_end_port": "6000"
}
}
]
}
]
}
C.4.9. MX UP Setup Confirmation
{
"version" : "1.0",
"message_type" : "mx_up_setup_cnf",
"sequence_num" : 5,
"unique_session_id" : {
"ncm_id" : 110,
"session_id" : 1111
},
"probe_param" : {
"probe_port" : 48700,
"anchor_conn_id" : 0,
"mx_configuration_id" : 1
},
"num_delivery_conn" : 2,
"client_params" : [
{
"connection_id" : 0,
"adapt_param" : {
"udp_adapt_port" : 51000
}
},
{
"connection_id" : 1,
"adapt_param" : {
"udp_adapt_port" : 52000
}
}
]
}
C.4.10. MX Traffic Steering Request
{
"version" : "1.0",
"message_type" : "mx_traffic_steering_req",
"sequence_num" : 6,
"connection_id" : 0,
"mx_configuration_id" : 1,
"downlink_delivery" : [
{
"connection_id" : 0
},
{
"connection_id" : 1
}
],
"default_uplink_delivery" : 0,
"uplink_delivery" : [
{
"ul_tft" : {
"remote_addr_mask" : "10.10.0.0/24",
"local_addr_mask" : "192.168.0.0/24",
"protocol_type" : 6,
"local_port_range" : {
"start" : 100,
"end" : 1000
},
"remote_port_range" : {
"start" : 100,
"end" : 1000
},
"traffic_class" : 20,
"flow_label" : 100
},
"conn_list" : [
{
"connection_id" : 1
}
]
},
{
"ul_tft" : {
"remote_addr_mask" : "10.10.0.0/24",
"local_addr_mask" : "192.168.0.0/24",
"protocol_type" : 6,
"local_port_range" : {
"start" : 2000,
"end" : 2000
},
"remote_port_range" : {
"start" : 100,
"end" : 1000
},
"traffic_class" : 20,
"flow_label" : 50
},
"conn_list" : [
{
"connection_id" : 1
}
]
}
],
"feature_active" : [
{
"feature_name" : "dl_aggregation",
"active" : true
},
{
"feature_name" : "ul_aggregation",
"active" : false
}
]
}
C.4.11. MX Traffic Steering Response
{
"version": "1.0",
"message_type": "mx_traffic_steering_rsp",
"sequence_num": 6,
"unique_session_id": {
"ncm_id": 110,
"session_id": 1111
},
"feature_active": [{
"feature_name": "lossless_switching",
"active": true
},
{
"feature_name": "fragmentation",
"active": false
}
]
}
C.4.12. MX Application MADP Association Request
{
"version": "1.0",
"message_type": "mx_app_madp_assoc_req",
"sequence_num": 6,
"unique_session_id": {
"ncm_id": 110,
"session_id": 1111
},
"app_madp_assoc_list": [{
"connection_id" : 0,
"mx_configuration_id" : 1,
"ul_tft_list": [{
"protocol_type": 17,
"local_port_range": {
"start": 8888,
"end": 8888
}
}],
"dl_tft_list": [{
"protocol_type": 17,
"remote_port_range": {
"start": 8888,
"end": 8888
}
}]
}
]
}
C.4.13. MX Application MADP Association Response
{
"version": "1.0",
"message_type": "mx_app_madp_assoc_rsp",
"sequence_num": 6,
"is_success": true
}
C.4.14. MX Path Estimation Request
{
"version" : "1.0",
"message_type" : "mx_path_est_req",
"sequence_num" : 7,
"connection_id" : 0,
"init_probe_test_duration_ms" : 100,
"init_probe_test_rate_Mbps" : 10,
"init_probe_size_bytes" : 1000,
"init_probe_ack_req" : "yes",
"active_probe_freq_ms" : 10000,
"active_probe_size_bytes" : 1000,
"active_probe_duration_sec" : 10,
"active_probe_ack_req" : "no"
}
C.4.15. MX Path Estimation Results
{
"version" : "1.0",
"message_type" : "mx_path_est_results",
"sequence_num" : 8,
"unique_session_id" : {
"ncm_id" : 110,
"session_id" : 1111
},
"connection_id" : 0,
"init_probe_results" : {
"lost_probes_percentage" : 1,
"probe_rate_Mbps" : 9.9
},
"active_probe_results" : {
"avg_tput_last_probe_duration_Mbps" : 9.8
}
}
C.4.16. MX SSID Indication
{
"version" : "1.0",
"message_type" : "mx_ssid_indication",
"sequence_num" : 9,
"ssid_list" : [
{
"ssid_type" : "ssid",
"ssid_id" : "SSID_1"
},
{
"ssid_type" : "bssid",
"ssid_id" : "xxx-yyy"
}
]
}
C.4.17. MX Measurement Configuration
{
"version" : "1.0",
"message_type" : "mx_measurement_conf",
"sequence_num" : 10,
"measurement_configuration" : [
{
"connection_id" : 0,
"connection_type" : "Wi-Fi",
"meas_rep_conf" : [
{
"meas_rep_param" : "WLAN_RSSI",
"meas_threshold" : {
"high" : -10,
"low" : -15
},
"meas_period_ms" : 500
},
{
"meas_rep_param" : "WLAN_LOAD",
"meas_threshold" : {
"high" : -10,
"low" : -15
},
"meas_period_ms" : 500
},
{
"meas_rep_param" : "EST_UL_TPUT",
"meas_threshold" : {
"high" : 100,
"low" : 30
},
"meas_period_ms" : 500
}
]
},
{
"connection_id" : 1,
"connection_type" : "LTE",
"meas_rep_conf" : [
{
"meas_rep_param" : "LTE_RSRP",
"meas_threshold" : {
"high" : -10,
"low" : -15
},
"meas_period_ms" : 500
},
{
"meas_rep_param" : "LTE_RSRQ",
"meas_threshold" : {
"high" : -10,
"low" : -15
},
"meas_period_ms" : 500
}
]
}
]
}
C.4.18. MX Measurement Report
{
"version" : "1.0",
"message_type" : "mx_measurement_report",
"sequence_num" : 11,
"unique_session_id" : {
"ncm_id" : 110,
"session_id" : 1111
},
"measurement_reports" : [
{
"connection_id" : 0,
"connection_type" : "Wi-Fi",
"delivery_node_id" : "2021A",
"measurements" : [
{
"measurement_type" : "WLAN_RSSI",
"measurement_value" : -12
},
{
"measurement_type" : "UL_TPUT",
"measurement_value" : 10
},
{
"measurement_type" : "EST_UL_TPUT",
"measurement_value" : 20
}
]
},
{
"connection_id" : 1,
"connection_type" : "LTE",
"delivery_node_id" : "12323",
"measurements" : [
{
"measurement_type" : "LTE_RSRP",
"measurement_value" : -12
},
{
"measurement_type" : "LTE_RSRQ",
"measurement_value" : -12
}
]
}
]
}
C.4.19. MX Keep-Alive Request
{
"version" : "1.0",
"message_type" : "mx_keep_alive_req",
"sequence_num" : 12,
"keep_alive_reason" : "Handover",
"unique_session_id" : {
"ncm_id" : 110,
"session_id" : 1111
},
"connection_id" : 0,
"delivery_node_id" : "2021A"
}
C.4.20. MX Keep-Alive Response
{
"version" : "1.0",
"message_type" : "mx_keep_alive_rsp",
"sequence_num" : 12,
"unique_session_id" : {
"ncm_id" : 110,
"session_id" : 1111
}
}
C.4.21. MX Session Termination Request
{
"version" : "1.0",
"message_type" : "mx_session_termination_req",
"sequence_num" : 13,
"unique_session_id" : {
"ncm_id" : 110,
"session_id" : 1111
},
"reason" : "MX_NORMAL_RELEASE"
}
C.4.22. MX Session Termination Response
{
"version" : "1.0",
"message_type" : "mx_session_termination_rsp",
"sequence_num" : 13,
"unique_session_id" : {
"ncm_id" : 110,
"session_id" : 1111
}
}
C.4.23. MX Network Analytics Request
{
"version" : "1.0",
"message_type" : "mx_network_analytics_req",
"sequence_num" : 20,
"unique_session_id" : {
"ncm_id" : 110,
"session_id" : 1111
},
"params" : [
"jitter",
"latency"
]
}
C.4.24. MX Network Analytics Response
{
"version": "1.0",
"message_type": "mx_network_analytics_rsp",
"sequence_num": 20,
"param_list": [{
"connection_id": 1,
"connection_type": "Wi-Fi",
"predictions": [{
"param_name": "jitter",
"prediction": 100,
"likelihood": 50,
"validity_time": 10
},
{
"param_name": "latency",
"prediction": 19,
"likelihood": 40,
"validity_time": 10
}
]
},
{
"connection_id": 2,
"connection_type": "LTE",
"predictions": [{
"param_name": "jitter",
"prediction": 10,
"likelihood": 80,
"validity_time": 10
},
{
"param_name": "latency",
"prediction": 4,
"likelihood": 60,
"validity_time": 10
}
]
}
]
}
Appendix D. Definition of APIs Provided by the CCM to the Applications
at the Client
This section provides an example implementation of the APIs exposed
by the CCM to the applications on the client, documented with OpenAPI
using Swagger 2.0.
{
"swagger": "2.0",
"info": {
"version": "1.0.0",
"title": "Client Connection Manager (CCM)",
"description": "API provided by the CCM towards the application
on a MAMS client."
},
"host": "MAMS.ietf.org",
"basePath": "/ccm/v1.0",
"schemes": [
"https"
],
"consumes": [
"application/json"
],
"produces": [
"application/json"
],
"paths": {
"/capabilities": {
"get": {
"description": "This API can be used by an application to
request the capabilities of the CCM.",
"produces": [
"application/json",
"text/html"
],
"responses": {
"200": {
"description": "OK",
"schema": {
"$ref": "#/definitions/capability"
}
},
"default": {
"description": "unexpected error",
"schema": {
"$ref": "#/definitions/errorModel"
}
}
}
}
},
"/app_requirements": {
"post": {
"description": "This API is used by the N-MADP to report
any types of MAMS user-specific errors to
the NCM.",
"produces": [
"application/json",
"text/html"
],
"parameters": [
{
"name": "app-requirements",
"in": "body",
"required": true,
"schema": {
"$ref": "#/definitions/app-requirements"
}
}
],
"responses": {
"200": {
"description": "OK"
},
"default": {
"description": "unexpected error",
"schema": {
"$ref": "#/definitions/errorModel"
}
}
}
}
},
"/predictive_link_params": {
"get": {
"description": "This API is used by applications to get the
information about predicted parameters for
each delivery connection.",
"produces": [
"application/json",
"text/html"
],
"responses": {
"200": {
"description": "OK",
"schema": {
"$ref": "#/definitions/link-params"
}
},
"default": {
"description": "unexpected error",
"schema": {
"$ref": "#/definitions/errorModel"
}
}
}
}
}
},
"definitions": {
"connection-id": {
"type": "integer",
"format": "uint8"
},
"connection-type": {
"enum": [
"Wi-Fi",
"5G_NR",
"MulteFire",
"LTE"
],
"type": "string"
},
"features": {
"enum": [
"lossless_switching",
"fragmentation",
"concatenation",
"uplink_aggregation",
"downlink_aggregation",
"measurement"
"probing"
],
"type": "string"
},
"adaptation-methods": {
"enum": [
"UDP_without_DTLS",
"UDP_with_DTLS",
"IPsec",
"Client_NAT"
],
"type": "string"
},
"convergence-methods": {
"enum": [
"GMA",
"MPTCP_Proxy",
"GRE_Aggregation_Proxy",
"MPQUIC"
],
"type": "string"
},
"connection": {
"type": "object",
"properties": {
"conn-id": {
"$ref": "#/definitions/connection-id"
},
"conn-type": {
"$ref": "#/definitions/connection-type"
}
}
},
"convergence-parameters": {
"type": "object",
"properties": {
"conv-param-name": {
"type": "string"
},
"conv-param-value": {
"type": "string"
}
}
},
"convergence-details": {
"type": "object",
"properties": {
"conv-method": {
"$ref": "#/definitions/convergence-methods"
},
"conv-params": {
"type": "array",
"items": {
"$ref": "#/definitions/convergence-parameters"
}
}
}
},
"capability": {
"type": "object",
"properties": {
"connections": {
"type": "array",
"items": {
"$ref": "#/definitions/connection"
}
},
"features": {
"type": "array",
"items": {
"$ref": "#/definitions/features"
}
},
"adapt-methods": {
"type": "array",
"items": {
"$ref": "#/definitions/adaptation-methods"
}
},
"conv-methods": {
"type": "array",
"items": {
"$ref": "#/definitions/convergence-details"
}
}
}
},
"qos-param-name": {
"enum": [
"jitter",
"latency",
"bandwidth"
],
"type": "string"
},
"qos-param": {
"type": "object",
"properties": {
"qos-param-name": {
"$ref": "#/definitions/qos-param-name"
},
"qos-param-value": {
"type": "integer"
}
}
},
"port-range": {
"type": "object",
"properties": {
"start": {
"type": "integer"
},
"end": {
"type": "integer"
}
}
},
"protocol-type": {
"type": "integer"
},
"stream-features": {
"type": "object",
"properties": {
"proto": {
"$ref": "#/definitions/protocol-type"
},
"port-range": {
"$ref": "#/definitions/port-range"
},
"traffic-qos": {
"$ref": "#/definitions/qos-param"
}
}
},
"app-requirements": {
"type": "object",
"properties": {
"num-streams": {
"type": "integer"
},
"stream-feature": {
"type": "array",
"items": {
"$ref": "#/definitions/stream-features"
}
}
}
},
"param-name": {
"enum": [
"bandwidth",
"jitter",
"latency",
"signal_quality"
],
"type": "string"
},
"additional-param-name": {
"enum": [
"lte-rsrp",
"lte-rsrq",
"nr-rsrp",
"nr-rsrq",
"wifi-rssi"
],
"type": "string"
},
"link-parameter": {
"type": "object",
"properties": {
"connection": {
"$ref": "#/definitions/connection"
},
"param": {
"$ref": "#/definitions/param-name"
},
"additional-param": {
"$ref": "#/definitions/additional-param-name"
},
"prediction": {
"type": "integer"
},
"likelihood": {
"type": "integer"
},
"validity_time": {
"type": "integer"
}
}
},
"link-params": {
"type": "array",
"items": {
"$ref": "#/definitions/link-parameter"
}
},
"errorModel": {
"type": "object",
"description": "Error indication containing the error code and
message.",
"required": [
"code",
"message"
],
"properties": {
"code": {
"type": "integer",
"format": "int32"
},
"message": {
"type": "string"
}
}
}
}
}
Appendix E. Implementation Example Using Python for MAMS Client and
Server
E.1. Client-Side Implementation
A simple client-side implementation using Python can be as follows:
#!/usr/bin/env python
import asyncio
import websockets
import json
import ssl
import time
import sys
context = ssl.SSLContext(ssl.PROTOCOL_TLS)
context.verify_mode = ssl.CERT_REQUIRED
context.set_ciphers("RSA")
context.check_hostname = False
context.load_verify_locations("/home/mecadmin/certs/rootca.pem")
discoverMsg = {'version':'1.0',
'message_type':'mx_discover'}
MXCapabilityRes = {'version':'1.0',
'message_type':'mx_capability_res',
'FeatureActive':[{'feature_name':'fragmentation', 'active':'yes'},
{'feature_name':'lossless_switching', 'active':'yes'}],
'num_anchor_connections':1,
'anchor_connections':[{'connection_id':0, 'connection_type':'LTE'}],
'num_delivery_connections':1,
'delivery_connections':[{'connection_id':1,
'connection_type':"Wi-Fi"}],
'convergence_methods':[{'method':'GMA', 'supported':'true'}],
'adaptation_methods':[{'method':'client_nat', 'supported':'false'}]
}
async def hello():
async with websockets.connect('wss://localhost:8765',
ssl=context) as websocket:
try:
loopFlag=False
while True:
await websocket.send(json.dumps(discoverMsg))
json_message = await websocket.recv()
message = json.loads(json_message)
if "message_type" in message.keys():
print("Received message:{}".format(
message["message_type"]),
"version:{}".format(message["version"]))
if message["message_type"] == "mx_capability_req" :
await websocket.send(json.dumps(MXCapabilityRes))
loopFlag=True
while(loopFlag==True):
pass
except:
print("Client stopped")
asyncio.get_event_loop().run_until_complete(hello())
E.2. Server-Side Implementation
A server-side implementation using Python can be as follows:
#!/usr/bin/env python
import asyncio
import websockets
import json
import ssl
ctx = ssl.SSLContext(ssl.PROTOCOL_TLS)
#ctx.set_ciphers("RSA-AES256-SHA")
ctx.load_verify_locations("/home/mecadmin/certs/rootca.pem")
certfile = "/home/mecadmin/certs/server.pem"
keyfile = "/home/mecadmin/certs/serverkey.pem"
ctx.load_cert_chain(certfile, keyfile, password=None)
MXCapabilityReq = {'version':'1.0',
'message_type':'mx_capability_req',
'FeatureActive':[{'feature_name':'fragmentation', 'active':'yes'},
{'feature_name':'lossless_switching', 'active':'yes'}],
'num_anchor_connections':1,
'anchor_connections':[{'connection_id':0, 'connection_type':'LTE'}],
'num_delivery_connections':1,
'delivery_connections':[{'connection_id':1,
'connection_type':"Wi-Fi"}],
'convergence_methods':[{'method':'GMA', 'supported':'true'}],
'adaptation_methods':[{'method':'client_nat', 'supported':'false'}]
}
async def hello(websocket, path):
try:
while True:
name = await websocket.recv()
msg = json.loads(name)
if "message_type" in msg.keys():
print("Received message:{}".format(msg["message_type"]),
"version:{}".format(msg["version"]))
if msg['message_type'] == 'mx_discover':
await websocket.send(json.dumps(MXCapabilityReq))
except:
print("Client disconnected")
try:
start_server = websockets.serve(hello, 'localhost', 8765,ssl=ctx)
asyncio.get_event_loop().run_until_complete(start_server)
asyncio.get_event_loop().run_forever()
except:
print("Server stopped")
Acknowledgments
This protocol is the outcome of work by many engineers, not just the
authors of this document. The people who contributed to this
project, listed in alphabetical order by first name, are Barbara
Orlandi, Bongho Kim, David Lopez-Perez, Doru Calin, Jonathan Ling,
Lohith Nayak, and Michael Scharf.
Contributors
The authors gratefully acknowledge the following additional
contributors, in alphabetical order by first name: A Krishna Pramod/
Nokia Bell Labs, Hannu Flinck/Nokia Bell Labs, Hema Pentakota/Nokia,
Julius Mueller/AT&T, Nurit Sprecher/Nokia, Salil Agarwal/Nokia,
Shuping Peng/Huawei, and Subramanian Vasudevan/Nokia Bell Labs.
Subramanian Vasudevan has been instrumental in conceptualization and
development of solution principles for the MAMS framework. Shuping
Peng has been a key contributor in refining the framework and
control-plane protocol aspects.
Authors' Addresses
Satish Kanugovi
Nokia Bell Labs
Email: satish.k@nokia-bell-labs.com
Florin Baboescu
Broadcom
Email: florin.baboescu@broadcom.com
Jing Zhu
Intel
Email: jing.z.zhu@intel.com
SungHoon Seo
Korea Telecom
Email: sh.seo@kt.com
|