1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
|
Independent Submission S. Hu
Request for Comments: 8772 China Mobile
Category: Informational D. Eastlake 3rd
ISSN: 2070-1721 Futurewei Technologies
F. Qin
China Mobile
T. Chua
Singapore Telecommunications
D. Huang
ZTE
May 2020
The China Mobile, Huawei, and ZTE Broadband Network Gateway (BNG) Simple
Control and User Plane Separation Protocol (S-CUSP)
Abstract
A Broadband Network Gateway (BNG) in a fixed wireline access network
is an Ethernet-centric IP edge router and the aggregation point for
subscriber traffic. Control and User Plane Separation (CUPS) for
such a BNG improves flexibility and scalability but requires various
communication between the User Plane (UP) and the Control Plane (CP).
China Mobile, Huawei Technologies, and ZTE have developed a simple
CUPS control channel protocol to support such communication: the
Simple Control and User Plane Separation Protocol (S-CUSP). S-CUSP
is defined in this document.
This document is not an IETF standard and does not have IETF
consensus. S-CUSP is presented here to make its specification
conveniently available to the Internet community to enable diagnosis
and interoperability.
Status of This Memo
This document is not an Internet Standards Track specification; it is
published for informational purposes.
This is a contribution to the RFC Series, independently of any other
RFC stream. The RFC Editor has chosen to publish this document at
its discretion and makes no statement about its value for
implementation or deployment. Documents approved for publication by
the RFC Editor are not candidates for any level of Internet Standard;
see Section 2 of RFC 7841.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
https://www.rfc-editor.org/info/rfc8772.
Copyright Notice
Copyright (c) 2020 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document.
Table of Contents
1. Introduction
2. Terminology
2.1. Implementation Requirement Keywords
2.2. Terms
3. BNG CUPS Overview
3.1. BNG CUPS Motivation
3.2. BNG CUPS Architecture Overview
3.3. BNG CUPS Interfaces
3.3.1. Service Interface (Si)
3.3.2. Control Interface (Ci)
3.3.3. Management Interface (Mi)
3.4. BNG CUPS Procedure Overview
4. S-CUSP Protocol Overview
4.1. Control Channel Procedures
4.1.1. S-CUSP Session Establishment
4.1.2. Keepalive Timer and DeadTimer
4.2. Node Procedures
4.2.1. UP Resource Report
4.2.2. Update BAS Function on Access Interface
4.2.3. Update Network Routing
4.2.4. CGN Public IP Address Allocation
4.2.5. Data Synchronization between the CP and UP
4.3. Subscriber Session Procedures
4.3.1. Create Subscriber Session
4.3.2. Update Subscriber Session
4.3.3. Delete Subscriber Session
4.3.4. Subscriber Session Events Report
5. S-CUSP Call Flows
5.1. IPoE
5.1.1. DHCPv4 Access
5.1.2. DHCPv6 Access
5.1.3. IPv6 Stateless Address Autoconfiguration (SLAAC) Access
5.1.4. DHCPv6 and SLAAC Access
5.1.5. DHCP Dual-Stack Access
5.1.6. L2 Static Subscriber Access
5.2. PPPoE
5.2.1. IPv4 PPPoE Access
5.2.2. IPv6 PPPoE Access
5.2.3. PPPoE Dual-Stack Access
5.3. WLAN Access
5.4. L2TP
5.4.1. L2TP LAC Access
5.4.2. L2TP LNS IPv4 Access
5.4.3. L2TP LNS IPv6 Access
5.5. CGN (Carrier Grade NAT)
5.6. L3 Leased Line Access
5.6.1. Web Authentication
5.6.2. User Traffic Trigger
5.7. Multicast Service Access
6. S-CUSP Message Formats
6.1. Common Message Header
6.2. Control Messages
6.2.1. Hello Message
6.2.2. Keepalive Message
6.2.3. Sync_Request Message
6.2.4. Sync_Begin Message
6.2.5. Sync_Data Message
6.2.6. Sync_End Message
6.2.7. Update_Request Message
6.2.8. Update_Response Message
6.3. Event Message
6.4. Report Message
6.5. CGN Messages
6.5.1. Addr_Allocation_Req Message
6.5.2. Addr_Allocation_Ack Message
6.5.3. Addr_Renew_Req Message
6.5.4. Addr_Renew_Ack Message
6.5.5. Addr_Release_Req Message
6.5.6. Addr_Release_Ack Message
6.6. Vendor Message
6.7. Error Message
7. S-CUSP TLVs and Sub-TLVs
7.1. Common TLV Header
7.2. Basic Data Fields
7.3. Sub-TLV Format and Sub-TLVs
7.3.1. Name Sub-TLVs
7.3.2. Ingress-CAR Sub-TLV
7.3.3. Egress-CAR Sub-TLV
7.3.4. If-Desc Sub-TLV
7.3.5. IPv6 Address List Sub-TLV
7.3.6. Vendor Sub-TLV
7.4. Hello TLV
7.5. Keepalive TLV
7.6. Error Information TLV
7.7. BAS Function TLV
7.8. Routing TLVs
7.8.1. IPv4 Routing TLV
7.8.2. IPv6 Routing TLV
7.9. Subscriber TLVs
7.9.1. Basic Subscriber TLV
7.9.2. PPP Subscriber TLV
7.9.3. IPv4 Subscriber TLV
7.9.4. IPv6 Subscriber TLV
7.9.5. IPv4 Static Subscriber Detect TLV
7.9.6. IPv6 Static Subscriber Detect TLV
7.9.7. L2TP-LAC Subscriber TLV
7.9.8. L2TP-LNS Subscriber TLV
7.9.9. L2TP-LAC Tunnel TLV
7.9.10. L2TP-LNS Tunnel TLV
7.9.11. Update Response TLV
7.9.12. Subscriber Policy TLV
7.9.13. Subscriber CGN Port Range TLV
7.10. Device Status TLVs
7.10.1. Interface Status TLV
7.10.2. Board Status TLV
7.11. CGN TLVs
7.11.1. Address Allocation Request TLV
7.11.2. Address Allocation Response TLV
7.11.3. Address Renewal Request TLV
7.11.4. Address Renewal Response TLV
7.11.5. Address Release Request TLV
7.11.6. Address Release Response TLV
7.12. Event TLVs
7.12.1. Subscriber Traffic Statistics TLV
7.12.2. Subscriber Detection Result TLV
7.13. Vendor TLV
8. Tables of S-CUSP Codepoints
8.1. Message Types
8.2. TLV Types
8.3. TLV Operation Codes
8.4. Sub-TLV Types
8.5. Error Codes
8.6. If-Type Values
8.7. Access-Mode Values
8.8. Access Method Bits
8.9. Route-Type Values
8.10. Access-Type Values
9. IANA Considerations
10. Security Considerations
11. References
11.1. Normative References
11.2. Informative References
Acknowledgements
Contributors
Authors' Addresses
1. Introduction
A Broadband Network Gateway (BNG) in a fixed wireline access network
is an Ethernet-centric IP edge router and the aggregation point for
subscriber traffic. To provide centralized session management,
flexible address allocation, high scalability for subscriber
management capacity, and cost-efficient redundancy, the CU-separated
(CP/UP-separated) BNG framework is described in a technical report
[TR-384] from the Broadband Forum (BBF). The CU-separated service
CP, which is responsible for user access authentication and setting
forwarding entries in UPs, can be virtualized and centralized. The
routing control and forwarding plane, i.e., the BNG UP (local), can
be distributed across the infrastructure. Other structures can also
be supported, such as the CP and UP being virtual or both being
physical.
Note: In this document, the terms "user" and "subscriber" are used
interchangeably.
This document specifies the Simple CU Separation Protocol (S-CUSP)
for communications over the BNG control channel between a BNG CP and
a set of UPs. S-CUSP is designed to be flexible and extensible so as
to allow for easy addition of messages and data items, should further
requirements be expressed in the future.
This document is not an IETF standard and does not have IETF
consensus. S-CUSP was designed by China Mobile, Huawei Technologies,
and ZTE. It is presented here to make the S-CUSP specification
conveniently available to the Internet community to enable diagnosis
and interoperability.
At the time of writing this document, the BBF is working to produce
[WT-459], which will describe an architecture and requirements for a
CP and UP separation of a disaggregated BNG. Future work may attempt
to show how the protocol described in this document addresses those
requirements and may modify this specification to handle unaddressed
requirements.
2. Terminology
This section specifies implementation requirement keywords and terms
used in this document. S-CUSP messages are described in this
document using Routing Backus-Naur Form (RBNF) as defined in
[RFC5511].
2.1. Implementation Requirement Keywords
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in
BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
capitals, as shown here.
2.2. Terms
This section specifies terms used in this document.
AAA: Authentication Authorization Accounting.
ACK: Acknowledgement message.
BAS: Broadband Access Server, also known as a BBRAS, BNG, or
BRAS.
BNG: Broadband Network Gateway. A BNG (or Broadband Remote
Access Server (BRAS)) routes traffic to and from
broadband remote access devices such as digital
subscriber line access multiplexers (DSLAM) on an
Internet Service Provider's (ISP) network. BNG / BRAS
can also be referred to as a BAS or BBRAS.
BRAS: Broadband Remote Access Server, also known as a BAS,
BBRAS, or BNG.
CAR: Committed Access Rate.
CBS: Committed Burst Size.
CGN: Carrier Grade NAT.
Ci: Control Interface.
CIR: Committed Information Rate.
CoA: Change of Authorization.
CP: Control Plane. CP is a user control management
component that supports the management of the UP's
resources such as the user entry and forwarding policy.
CU: Control Plane / User Plane.
CUSP: Control and User Plane Separation Protocol.
DEI: Drop Eligibility Indicator as defined in [802.1Q]. A
bit in a VLAN tag after the priority and before the VLAN
ID. (This bit was formerly the CFI (Canonical Format
Indicator).)
DHCP: Dynamic Host Configuration Protocol [RFC2131].
dial-up: This refers to the initial connection messages when a
new subscriber appears. The name is left over from when
subscribers literally dialed up on a modem-equipped
phone line but herein is applied to other initial
connection techniques. Initial connection is frequently
indicated by the receipt of packets over PPPoE [RFC2516]
or IPoE.
EMS: Element Management System.
IPoE: IP over Ethernet.
L2TP: Layer 2 Tunneling Protocol [RFC2661].
LAC: L2TP Access Concentrator.
LNS: L2TP Network Server.
MAC: 48-bit Media Access Control address [RFC7042].
MANO: Management and Orchestration.
Mi: Management Interface.
MSS: Maximum Segment Size.
MRU: Maximum Receive Unit.
NAT: Network Address Translation [RFC3022].
ND: Neighbor Discovery.
NFV: Network Function Virtualization.
NFVI: NFV Infrastructure.
PBS: Peak Burst Size.
PD: Prefix Delegation.
PIR: Peak Information Rate.
PPP: Point-to-Point Protocol [RFC1661].
PPPoE: PPP over Ethernet [RFC2516].
RBNF: Routing Backus-Naur Form [RFC5511].
RG: Residential Gateway.
S-CUSP: Simple Control and User Plane Separation Protocol.
Subscriber: The remote user gaining network accesses via a BNG.
Si: Service Interface.
TLV: Type-Length-Value. See Sections 7.1 and 7.3.
UP: User Plane. UP is a network edge and user policy
implementation component. The traditional router's
control plane and forwarding plane are both preserved on
BNG devices in the form of a user plane.
URPF: Unicast Reverse Path Forwarding.
User: Equivalent to "customer" or "subscriber".
VRF: Virtual Routing and Forwarding.
3. BNG CUPS Overview
3.1. BNG CUPS Motivation
The rapid development of new services, such as 4K TV, Internet of
Things (IoT), etc., and increasing numbers of home broadband service
users present some new challenges for BNGs such as:
Low resource utilization: The traditional BNG acts as both a gateway
for user access authentication and accounting and also an IP
network's Layer 3 edge. The mutually affecting nature of the
tightly coupled control plane and forwarding plane makes it
difficult to achieve the maximum performance of either plane.
Complex management and maintenance: Due to the large numbers of
traditional BNGs, configuring each device in a network is very
tedious when deploying global service policies. As the network
expands and new services are introduced, this deployment mode will
cease to be feasible as it is unable to manage services
effectively and to rectify faults rapidly.
Slow service provisioning: The coupling of the CP and the forwarding
plane, in addition to being a distributed network control
mechanism, means that any new technology has to rely heavily on
the existing network devices.
The framework for a cloud-based BNG with CU separation to address
these challenges for fixed networks is described in [TR-384]. The
main idea of CU separation is to extract and centralize the user
management functions of multiple BNG devices, forming a unified and
centralized CP. The traditional router's CP and forwarding plane are
both preserved on BNG devices in the form of a UP.
3.2. BNG CUPS Architecture Overview
The functions in a traditional BNG can be divided into two parts: (1)
the user access management function and (2) the routing function.
The user access management function can be deployed as a centralized
module or device, called the BNG Control Plane (BNG-CP). The routing
function, which includes routing control and the forwarding engine,
can be deployed in the form of the BNG User Plane (BNG-UP).
Figure 1 shows the architecture of a CU-separated BNG:
+------------------------------------------------------------------+
| Neighboring policy and resource management systems |
| |
| +-------------+ +-----------+ +---------+ +----------+ |
| | AAA Server | |DHCP Server| | EMS | | MANO | |
| +-------------+ +-----------+ +---------+ +----------+ |
+------------------------------------------------------------------+
+------------------------------------------------------------------+
| CU-separated BNG system |
| +--------------------------------------------------------------+ |
| | +----------+ +----------+ +------++------++-----------+ | |
| | | Address | |Subscriber| | AAA ||Access|| UP | | |
| | |management| |management| | || mgt ||management | | |
| | +----------+ +----------+ +------++------++-----------+ | |
| | CP | |
| +--------------------------------------------------------------+ |
| |
| |
| |
| +---------------------------+ +--------------------------+ |
| | +------------------+ | | +------------------+ | |
| | | Routing control | | | | Routing control | | |
| | +------------------+ | ... | +------------------+ | |
| | +------------------+ | | +------------------+ | |
| | |Forwarding engine | | | |Forwarding engine | | |
| | +------------------+ UP | | +------------------+ UP| |
| +---------------------------+ +--------------------------+ |
+------------------------------------------------------------------+
Figure 1: Architecture of a CU-Separated BNG
As shown in Figure 1, the BNG-CP could be virtualized and
centralized, which provides benefits such as centralized session
management, flexible address allocation, high scalability for
subscriber management capacity, cost-efficient redundancy, etc. The
functional components inside the BNG-CP can be implemented as Virtual
Network Functions (VNFs) and hosted in an NFVI.
The UP management module in the BNG-CP centrally manages the
distributed BNG-UPs (e.g., load balancing), as well as the setup,
deletion, and maintenance of channels between CPs and UPs. Other
modules in the BNG-CP, such as address management, AAA, etc., are
responsible for the connection with external subsystems in order to
fulfill those services. Note that the UP SHOULD support both
physical and virtual network functions. For example, network
functions related to BNG-UP L3 forwarding can be disaggregated and
distributed across the physical infrastructure, and the other CP
management functions in the CU-separated BNG can be moved into the
NFVI for virtualization [TR-384].
The details of the CU-separated BNG's function components are as
follows:
The CP is responsible for the following:
* Address management: Unified address pool management and CGN
subscriber address traceability management.
* AAA: This component performs Authentication, Authorization, and
Accounting, together with RADIUS/Diameter. The BNG communicates
with the AAA server to check whether the subscriber who sent an
access request has network access authority. Once the subscriber
goes online, this component (together with the Service Control
component) implements accounting, data capacity limitation, and
QoS enforcement policies.
* Subscriber management: User entry management and forwarding policy
management.
* Access management: Process user dial-up packets, such as PPPoE,
DHCP, L2TP, etc.
* UP management: Management of UP interface status and the setup,
deletion, and maintenance of channels between CP and UP.
The UP is responsible for the following:
* Routing control functions: Responsible for instantiating routing
forwarding plane (e.g., routing, multicast, MPLS, etc.).
* Routing and service forwarding plane functions: Responsibilities
include traffic forwarding, QoS, and traffic statistics
collection.
* Subscriber detection: Responsible for detecting whether a
subscriber is still online.
3.3. BNG CUPS Interfaces
The three interfaces defined below support the communication between
the CP and UP. These are referred to as the Service Interface (Si),
Control Interface (Ci), and Management Interface (Mi) as shown in
Figure 2.
+-----------------------------------+
| |
| BNG-CP |
| |
+--+--------------+--------------+--+
| | |
1. Service | 2. Control | 3. Management|
Interface | Interface | Interface |
(Si) | (Ci) | (Mi) |
| | |
| ___|___ |
| ___( )___ |
_|______( )______|_
( )
( Network/Internet )
(________ ________)
| (___ ___) |
| (_______) |
| | |
| | |
+--+--------------+--------------+--+
| |
| BNG-UP |
| |
+-----------------------------------+
Figure 2: Interfaces between the CP and UP of the BNG
3.3.1. Service Interface (Si)
For a traditional BNG (without CU separation), the user dial-up
signals are terminated and processed by the CP of a BNG. When the CP
and UP of a BNG are separated, there needs to be a way to relay these
signals between the CP and the UP.
The Si is used to establish tunnels between the CP and UP. The
tunnels are responsible for relaying the PPPoE-, IPoE-, and L2TP-
related control packets that are received from a Residential Gateway
(RG) over those tunnels. An appropriate tunnel type is Virtual
eXtensible Local Area Network (VXLAN) [RFC7348].
The detailed definition of Si is out of scope for this document.
3.3.2. Control Interface (Ci)
The CP uses the Ci to deliver subscriber session states, network
routing entries, etc., to the UP (see Section 6.2.7). The UP uses
this interface to report subscriber service statistics, subscriber
detection results, etc., to the CP (see Sections 6.3 and 6.4). A
carrying protocol for this interface is specified in this document.
3.3.3. Management Interface (Mi)
The Network Configuration Protocol (NETCONF) [RFC6241] is the
protocol used on the Mi between a CP and UP. It is used to configure
the parameters of the Ci, Si, access interfaces, and QoS/ACL
Templates. It is expected that implementations will make use of
existing YANG models where possible but that new YANG models specific
to S-CUSP will need to be defined. The definitions of the parameters
that can be configured are out of scope for this document.
3.4. BNG CUPS Procedure Overview
The following numbered sequences (Figure 3) give a high-level view of
the main BNG CUPS procedures.
RG UP CP AAA
| |Establish S-CUSP Channel| |
| 1|<---------------------->| |
| | | |
| | Report board interface | |
| | information | |
| 2|------to CP via Ci----->| |
| | | |
| | Update BAS function | |
| 3| request/response | |
| |<-----on UP via Ci----->| |
| | | |
| | Update network routing | |
| | request/response | |
| 4|<------- via Ci-------->| |
| Online Req | | |
5.1|-------------->| | |
| | Relay the Online Req | |
| 5.2|-----to CP via Si------>| Authentication|
| | | Req/Rep |
| | 5.3|<------------->|
| | Send the Online Rep | |
| 5.4|<----to UP via Si-------| |
| | | |
| | Create subscriber | |
| | session on UP | |
| 5.5|<--------via Ci-------->| |
| Online Rep | | |
5.6|<--------------| | |
| | | CoA Request |
| | 6.1|<--------------|
| | Update session on UP | |
| 6.2|<--------via Ci-------->| |
| | | CoA Response |
| Offline Req | 6.3|-------------->|
7.1|-------------->| | |
| | Relay the Offline Req | |
| 7.2|------to CP via Si----->| |
| | | |
| | Send the Offline Rep | |
| 7.3|<-----to UP via Si------| |
| Offline Rep | | |
7.4|<--------------| | |
| | Delete session on UP | |
| 7.5|<--------via Ci-------->| |
| | | |
| | Event report | |
| 8|---------via Ci-------->| |
| | | |
| | Data synchronization | |
| 9|<--------via Ci-------->| |
| | | |
| | CGN address allocation | |
| 10|<--------via Ci-------->| |
| | | |
Figure 3: BNG CUPS Procedures Overview
(1) S-CUSP session establishment: This is the first step of the BNG
CUPS procedures. Once the Ci parameters are configured on a
UP, it will start to set up S-CUSP sessions with the specified
CPs. The detailed definition of S-CUSP session establishment
can be found in Section 4.1.1.
(2) Board and interface report: Once the S-CUSP session is
established between the UP and a CP, the UP will report status
information on the boards and subscriber-facing interfaces of
this UP to the CP. A board can also be called a Line/Service
Process Unit (LPU/SPU) card. The subscriber-facing interfaces
refer to the interfaces that connect the access network nodes
(e.g., Optical Line Terminal (OLT), DSLAM, etc.). The CP can
use this information to enable the Broadband Access Server
(BAS) function (e.g., IPoE, PPPoE, etc.) on the specified
interfaces. See Sections 4.2.1 and 7.10 for more details on
resource reporting.
(3) BAS function enable: To enable the BAS function on the
specified interfaces of a UP.
(4) Subscriber network route advertisement: The CP will allocate
one or more IP address blocks to a UP. Each address block
contains a series of IP addresses. Those IP addresses will be
allocated to subscribers who are dialing up from the UP. To
enable other nodes in the network to learn how to reach the
subscribers, the CP needs to notify the UP to advertise to the
network the routes that can reach those IP addresses.
(5) 5.1-5.6 is a complete call flow of a subscriber dial-up (as
defined in Section 4.3.1) process. When a UP receives a dial-
up request, it will relay the request packet to a CP through
the Si. The CP will parse the request. If everything is OK,
it will send an authentication request to the AAA server to
authenticate the subscriber. Once the subscriber passes the
authentication, the AAA server will return a positive response
to the CP. Then the CP will send the dial-up response packet
to the UP, and the UP will forward the response packet to the
subscriber (RG). At the same time, the CP will create a
subscriber session on the UP, enabling the subscriber to access
the network. For different access types, the process may be a
bit different, but the high-level process is similar. For each
access type, the detailed process can be found in Section 5.
(6) 6.1-6.3 is the sequence when updating an existing subscriber
session. The AAA server initiates a Change of Authorization
(CoA) and sends the CoA to the CP. The CP will then update the
session according to the CoA. See Section 4.3.2 for more
detail on CP messages updating UP tables.
(7) 7.1-7.5 is the sequence for deleting an existing subscriber
session. When a UP receives an Offline Request, it will relay
the request to a CP through the Si. The CP will send back a
response to the UP through the Si. The UP will then forward
the Offline Response to the subscriber. Then the CP will
delete the session on the UP through the Ci.
(8) Event reports include the following two parts (more detail can
be found in Section 4.3.4). Both are reported using the Event
message:
8.1. Subscriber Traffic Statistics Report
8.2. Subscriber Detection Result Report
(9) Data synchronization: See Section 4.2.5 for more detail on CP
and UP synchronization.
(10) CGN address allocation: See Section 4.2.4 for more detail on
CGN address allocation.
4. S-CUSP Protocol Overview
4.1. Control Channel Procedures
4.1.1. S-CUSP Session Establishment
A UP is associated with a CP and is controlled by that CP. In the
case of a hot-standby or cold-standby, a UP is associated with two
CPs: the master CP and standby CP. The association between a UP and
its CPs is implemented by dynamic configuration.
Once a UP knows its CPs, the UP starts to establish S-CUSP sessions
with those CPs, as shown in Figure 4.
UP CP
| TCP Session Establishment |
|<------------------------------->|
| |
| Hello (version, capability) |
|-------------------------------->|
| |
| Hello (version, capability) |
|<--------------------------------|
| |
Figure 4: S-CUSP Session Establishment
The S-CUSP session establishment consists of two successive steps:
(1) Establishment of a TCP connection (3-way handshake) [RFC793]
between the CP and the UP using a configured port from the
dynamic port range (49152-65535).
(2) Establishment of an S-CUSP session over the TCP connection.
Once the TCP connection is established, the CP and the UP initialize
the S-CUSP session, during which the version and Keepalive timers are
negotiated.
The version information (Hello TLV, see Section 7.4) is carried
within Hello messages (see Section 6.2.1). A CP can support multiple
versions, but a UP can only support one version; thus the version
negotiation is based on whether a version can be supported by both
the CP and the UP. If a CP or UP receives a Hello message that does
not indicate a version supported by both, it responds with a Hello
message containing an Error Information TLV to notify the peer of the
Version-Mismatch error, and the session establishment phase fails.
Keepalive negotiation is performed by carrying a Keepalive TLV in the
Hello message. The Keepalive TLV includes a Keepalive timer and
DeadTimer field. The CP and UP have to agree on the Keepalive Timer
and DeadTimer. Otherwise, a subsequent Hello message with an Error
Information TLV will be sent to its peer, and the session
establishment phase fails.
The S-CUSP session establishment phase fails if the CP or UP disagree
on the version and keepalive parameters or if one of the CP or UP
does not answer after the expiration of the Establishment timer.
When the S-CUSP session establishment fails, the TCP connection is
promptly closed. Successive retries are permitted, but an
implementation SHOULD make use of an exponential backoff session
establishment retry procedure.
The S-CUSP session timer values that need to be configured are
summarized in Table 1.
+---------------------+------------------+---------------+
| Timer Name | Range in Seconds | Default Value |
+=====================+==================+===============+
| Establishment Timer | 1-32767 | 45 |
+---------------------+------------------+---------------+
| Keepalive Timer | 0-255 | 30 |
+---------------------+------------------+---------------+
| DeadTimer | 1-32767 | 4 * Keepalive |
+---------------------+------------------+---------------+
Table 1: S-CUSP Session Timers
4.1.2. Keepalive Timer and DeadTimer
Once an S-CUSP session has been established, a UP or CP may want to
know that its S-CUSP peer is still connected.
Each end of an S-CUSP session runs a Keepalive timer. It restarts
the timer every time it sends a message on the session. When the
timer expires, it sends a Keepalive message. Thus, a message is
transmitted at least as often as the value to which the Keepalive
timer is reset, unless, as explained below, that value is the special
value zero.
Each end of an S-CUSP session also runs a DeadTimer and restarts that
DeadTimer whenever a message is received on the session. If the
DeadTimer expires at an end of the session, that end declares the
session dead and the session will be closed, unless their DeadTimer
is set to the special value zero, in which case the session will not
time out.
The minimum value of the Keepalive timer is 1 second, and it is
specified in units of 1 second. The RECOMMENDED default value is 30
seconds. The recommended default for the DeadTimer is four times the
value of the Keepalive timer used by the remote peer. As above, the
timers may be disabled by setting them to zero.
The Keepalive timer and DeadTimer are negotiated through the
Keepalive TLV carried in the Hello message.
4.2. Node Procedures
4.2.1. UP Resource Report
Once an S-CUSP session has been established between a CP and a UP,
the UP reports the state information of the boards and access-facing
interfaces on the UP to the CP, as shown in Figure 5. Report
messages are unacknowledged and are assumed to be delivered because
the session runs over TCP.
The CP can use that information to activate/enable the BAS functions
(e.g., IPoE, PPPoE, etc.) on the specified interfaces.
In addition, the UP resource report may trigger a UP warm-standby
process. In the case of warm-standby, a failure on a UP may trigger
the CP to start a warm-standby process, by moving the online
subscriber sessions to a standby UP and then directing the affected
subscribers to access the Internet through the standby UP.
UP CP
| Report Board Status |
|------to CP via Ci----->|
| |
| Report Interface Status|
|------to CP via Ci----->|
| |
Figure 5: UP Board and Interface Report
Board status information is carried in the Board Status TLV
(Section 7.10.2), and interface status information is carried in the
Interface Status TLV (Section 7.10.1). Both Board Status and
Interface Status TLVs are carried in the Report message
(Section 6.4).
4.2.2. Update BAS Function on Access Interface
Once the CP collects the interface status of a UP, it will
activate/deactivate/modify the BAS functions on specified interfaces
through the Update_Request and Update_Response message exchanges
(Section 6.2), carrying the BAS Function TLV (Section 7.7).
UP CP
| Update BAS Function |
| Request |
|<-----on UP via Ci-------|
| |
| Update BAS Function |
| Response |
|------on UP via Ci------>|
| |
Figure 6: Update BAS Function
4.2.3. Update Network Routing
The CP will allocate one or more address blocks to a UP. Each
address block contains a series of IP addresses. Those IP addresses
will be assigned to subscribers who are dialing up to the UP. To
enable the other nodes in the network to learn how to reach the
subscribers, the CP needs to install the routes on the UP and notify
the UP to advertise the routes to the network.
UP CP
| Subscriber network route|
| update request |
|<------- via Ci----------|
| |
| Subscriber network route|
| update response |
|-------- via Ci--------->|
| |
Figure 7: Update Network Routing
The Update_Request and Update_Response message exchanges, carrying
the IPv4/IPv6 Routing TLVs (Section 7.8), update the subscriber's
network routing information.
4.2.4. CGN Public IP Address Allocation
The following sequences (Figure 8) describe the procedures related to
CGN address management. Three independent procedures are defined:
one each for CGN address allocation request/response, CGN address
renewal request/response, and CGN address release request/response.
CGN address allocation/renew/release procedures are designed for the
case where the CGN function is running on the UP. The UP has to map
the subscriber private IP addresses to public IP addresses, and such
mapping is performed by the UP locally when a subscriber dials up.
That means the UP has to ask for public IPv4 address blocks for CGN
subscribers from the CP.
In addition, when a public IP address is allocated to a UP, there
will be a lease time (e.g., one day). Before the lease time expires,
the UP can ask for renewal of the IP address lease from the CP. It
is achieved by the exchange of the Addr_Renew_Req and Addr_Renew_Ack
messages.
If the public IP address will not be used anymore, the UP SHOULD
release the address by sending an Addr_Release_Req message to the CP.
If the CP wishes to withdraw addresses that it has previously leased
to a UP, it uses the same procedures as above. The Oper code (see
Section 7.1) in the IPv4/IPv6 Routing TLV (see Section 7.8)
determines whether the request is an update or withdraw.
The relevant messages are defined in Section 6.5.
UP CP
| CGN Address Allocation |
| Request |
1.1|-------- via Ci--------->|
| CGN Address Allocation |
| Response |
1.2|<------- via Ci----------|
| |
| CGN Address Renew |
| Request |
2.1|-------- via Ci--------->|
| CGN Address Renew |
| Response |
2.2|<------- via Ci----------|
| |
| CGN Address Release |
| Request |
3.1|-------- via Ci--------->|
| CGN Address Release |
| Response |
3.3|<------- via Ci----------|
| |
Figure 8: CGN Public IP Address Allocation
4.2.5. Data Synchronization between the CP and UP
For a CU-separated BNG, the UP will continue to function using the
state that has been installed in it even if the CP fails or the
session between the UP and CP fails.
Under some circumstances, it is necessary to synchronize state
between the CP and UP, for example, if a CP fails and the UP is
switched to a different CP.
Synchronization includes two directions. One direction is from UP to
CP; in that case, the synchronization information is mainly about the
board/interface status of the UP. The other direction is from CP to
UP; in that case, the subscriber sessions, subscriber network routes,
L2TP tunnels, etc., will be synchronized to the UP.
The synchronization is triggered by a Sync_Request message, to which
the receiver will (1) reply with a Sync_Begin message to notify the
requester that synchronization will begin and (2) then start the
synchronization using the Sync_Data message. When synchronization
finishes, a Sync_End message will be sent.
Figure 9 shows the process of data synchronization between a UP and a
CP.
UP CP
| Synchronization Request |
|<------- via Ci----------|
| |
| Synchronization Begin |
|-------- via Ci--------->|
| |
| Board/Interface Report |
|-------- via Ci--------->|
| |
| Synchronization End |
|-------- via Ci--------->|
| |
1) Synchronization from UP to CP
UP CP
| Synchronization Request |
|-------- via Ci--------->|
| |
| Synchronization Begin |
|<-------- via Ci---------|
| |
| Synchronizes |
|Subscriber Session States|
| Network Route Entries |
|<------- via Ci----------|
| |
| Synchronization End |
|<-------- via Ci---------|
| |
2) Synchronization from CP to UP
Figure 9: Data Synchronization
4.3. Subscriber Session Procedures
A subscriber session consists of a set of forwarding states,
policies, and security rules that are applied to the subscriber. It
is used for forwarding subscriber traffic in a UP. To initialize a
session on a UP, a collection of hardware resources (e.g., NP, TCAM,
etc.) has to be allocated to a session on a UP as part of its
initiation.
Procedures related to subscriber sessions include subscriber session
creation, update, deletion, and statistics reporting. The following
subsections give a high-level view of the procedures.
4.3.1. Create Subscriber Session
The sequence below (Figure 10) describes the DHCP IPv4 dial-up
process. It is an example that shows how a subscriber session is
created. (An example for IPv6 appears in Section 5.1.2.)
RG UP CP AAA
| Online Request| | |
1|-------------->| | |
| |Relay the Online Request| |
| 2|-----to CP via Si------>| Authentication|
| | | Req/Rep |
| | 3|<------------->|
| | Create Subscriber | |
| | Session Request | |
| 4|<--------via Ci---------| |
| | | |
| | Create Subscriber | |
| | Session Response | |
| 5|---------via Ci-------->| |
| | | Accounting |
| | 6|<------------->|
| | Send Online Response | |
| 7|<----to UP via Si-------| |
| | | |
|Online Response| | |
8|<--------------| | |
| | | |
Figure 10: Creating a Subscriber Session
The request starts from an Online Request message (step 1) from the
RG (for example, a DHCP Discovery packet). When the UP receives the
Online Request from the RG, it will tunnel the Online Request to the
CP through the Si (step 2). A tunneling technology implements the
Si.
When the CP receives the Online Request from the UP, it will send an
authentication request to the AAA server to authenticate and
authorize the subscriber (step 3). When a positive reply is received
from the AAA server, the CP starts to create a subscriber session for
the request. Relevant resources (e.g., IP address, bandwidth, etc.)
will be allocated to the subscriber. Policies and security rules
will be generated for the subscriber. Then the CP sends a request to
create a session to the UP through the Ci (step 4), and a response is
expected from the UP to confirm the creation (step 5).
Finally, the CP will notify the AAA server to start accounting (step
6). At the same time, an Online Response message (for example, a
DHCP Ack packet) will be sent to the UP through the Si (step 7). The
UP will then forward the Online Response to the RG (step 8).
That completes the subscriber activation process.
4.3.2. Update Subscriber Session
The following numbered sequence (Figure 11) shows the process of
updating the subscriber session.
UP CP AAA
| | CoA Request |
| 1|<--------------|
| Session Update Request | |
2|<--------via Ci---------| |
| | |
| Session Update Response| |
3|---------via Ci-------->| |
| | CoA Response |
| 4|-------------->|
| | |
Figure 11: Updating a Subscriber Session
When a subscriber session has been created on a UP, there may be
requirements to update the session with new parameters (e.g.,
bandwidth, QoS, policies, etc.).
This procedure is triggered by a Change of Authorization (CoA)
request message sent by the AAA server. The CP will update the
session on the UP according to the new parameters through the Ci.
4.3.3. Delete Subscriber Session
The call flow below shows how S-CUSP deals with a subscriber Offline
Request.
RG UP CP
|Offline Request | |
1|--------------->| |
| | Relay the Offline |
| | Request |
| 2|------to CP via Si----->|
| | |
| | Send the Offline |
| | Response |
| 3|<-----to UP via Si------|
|Offline Response| |
4|<---------------| |
| | Session Delete |
| | Request |
| |<--------via Ci---------|
| | Session Delete |
| | Response |
| |---------via Ci-------->|
| | |
Figure 12: Deleting a Subscriber Session
Similar to the session creation process, when a UP receives an
Offline Request from an RG, it will tunnel the request to a CP
through the Si.
When the CP receives the Offline Request, it will withdraw/release
the resources (e.g., IP address, bandwidth) that have been allocated
to the subscriber. It then sends a reply to the UP through the Si,
and the UP will forward the reply to the RG. At the same time, it
will delete all the status of the session on the UP through the Ci.
4.3.4. Subscriber Session Events Report
UP CP
| Statistic/Detect Report|
|---------via Ci-------->|
| |
Figure 13: Events Report
When a session is created on a UP, the UP will periodically report
statistics information and subscriber detection results of the
session to the CP.
5. S-CUSP Call Flows
The subsections below give an overview of various "dial-up"
interactions over the Si followed by an overview of the setting of
information in the UP by the CP using S-CUSP over the Ci.
S-CUSP messages are described in this document using Routing Backus
Naur Form (RBNF) as defined in [RFC5511].
5.1. IPoE
5.1.1. DHCPv4 Access
The following sequence (Figure 14) shows detailed procedures for
DHCPv4 access.
RG UP CP AAA
| DHCP Discovery| | |
1|-------------->| | |
| |Relay the DHCP Discovery| |
| 2|-----to CP via Si------>| AAA |
| | | Req/Rep |
| | 3|<------------->|
| | Send the DHCP Offer | |
| 4|<----to UP via Si-------| |
| DHCP Offer | | |
5|<--------------| | |
| DHCP Request | | |
6|-------------->| | |
| | Relay the DHCP Request | |
| 7|-----to CP via Si------>| |
| | | |
| | Create Subscriber | |
| | Session Request | |
| 8|<--------via Ci---------| |
| | Create Subscriber | |
| | Session Response | |
| 9|---------via Ci-------->| |
| | | Accounting |
| | 10|<------------->|
| | Send DHCP ACK | |
| 11|<----to UP via Si-------| |
| | | |
| DHCP ACK | | |
12|<--------------| | |
| | | |
Figure 14: DHCPv4 Access
S-CUSP implements steps 8 and 9.
After a subscriber is authenticated and authorized by the AAA server,
the CP creates a new subscriber session on the UP. This is achieved
by sending an Update_Request message to the UP.
The format of the Update_Request message is shown as follows using
RBNF:
<Update_Request Message> ::= <Common Header>
<Basic Subscriber TLV>
<IPv4 Subscriber TLV>
<IPv4 Routing TLV>
[<Subscriber Policy TLV>]
The UP will reply with an Update_Response message. The format of the
Update_Response message is as follows:
<Update_Response Message> ::= <Common Header>
<Update Response TLV>
[<Subscriber CGN Port Range TLV>]
5.1.2. DHCPv6 Access
The following sequence (Figure 15) shows detailed procedures for
DHCPv6 access.
RG UP CP AAA
| Solicit | | |
1|-------------->| | |
| | Relay the Solicit | |
| 2|-----to CP via Si------>| AAA |
| | | Req/Rep |
| | 3|<------------->|
| | Send the Advertise | |
| 4|<----to UP via Si-------| |
| Advertise | | |
5|<--------------| | |
| | | |
| Request | | |
6|-------------->| | |
| | Relay the Request | |
| 7|-----to CP via Si------>| |
| | | |
| | Create Subscriber | |
| | Session Request | |
| 8|<--------via Ci-------->| |
| | | |
| | Create Subscriber | |
| | Session Response | |
| 9|---------via Ci-------->| |
| | | Accounting |
| | 10|<------------->|
| | Send Reply | |
| 11|<----to UP via Si-------| |
| Reply | | |
12|<--------------| | |
| | | |
Figure 15: DHCPv6 Access
Steps 1-7 are a standard DHCP IPv6 access process. The subscriber
creation is triggered by a DHCP IPv6 request message. When this
message is received, it means that the subscriber has passed the AAA
authentication and authorization. Then the CP will create a
subscriber session on the UP. This is achieved by sending an
Update_Request message to the UP (step 8).
The format of the Update_Request message is as follows:
<Update_Request Message> ::= <Common Header>
<Basic Subscriber TLV>
<IPv6 Subscriber TLV>
<IPv6 Routing TLV>
[<Subscriber Policy TLV>]
The UP will reply with an Update_Response message (step 9). The
format of the Update_Response message is as follows:
<Update_Response Message> ::= <Common Header>
<Update Response TLV>
5.1.3. IPv6 Stateless Address Autoconfiguration (SLAAC) Access
The following flow (Figure 16) shows the IPv6 SLAAC access process.
RG UP CP AAA
| RS | | |
1|-------------->| | |
| | Relay the Router | |
| | Solicit (RS) | |
| 2|-----to CP via Si------>| AAA |
| | | Req/Rep |
| | 3|<------------->|
| | Create Subscriber | |
| | Session Request | |
| 4|<--------via Ci---------| |
| | | |
| | Create Subscriber | |
| | Session Response | |
| 5|---------via Ci-------->| |
| | | |
| | Send Router Advertise | |
| | (RA) | |
| 6|<----to UP via Si-------| |
| RA | | |
7|<--------------| | |
| | | |
| NS | | |
8|-------------->| | |
| | Relay the Neighbor | |
| | Solicit (NS) | |
| 9|-----to CP via Si------>| |
| | | Accounting |
| | 10|<------------->|
| | Send a Neighbor | |
| | Advertise (NA) | |
| 11|<----to UP via Si-------| |
| NA | | |
12|<--------------| | |
| | | |
Figure 16: IPv6 SLAAC Access
It starts with a Router Solicit (RS) request from an RG that is
tunneled to the CP by the UP. After the AAA authentication and
authorization, the CP will create a subscriber session on the UP.
This is achieved by sending an Update_Request message to the UP (step
4).
The format of the Update_Request message is as follows:
<Update_Request Message> ::= <Common Header>
<Basic Subscriber TLV>
<IPv6 Subscriber TLV>
<IPv6 Routing TLV>
[<Subscriber Policy TLV>]
The UP will reply with an Update_Response message (step 5). The
format of the Update_Response message is as follows:
<Update_Response Message> ::= <Common Header>
<Update Response TLV>
5.1.4. DHCPv6 and SLAAC Access
The following call flow (Figure 17) shows the DHCP IPv6 and SLAAC
access process.
RG UP CP AAA
| RS | | |
1|-------------->| | |
| | Relay the RS | |
| 2|-----to CP via Si------>| AAA |
| | | Req/Rep |
| | 3|<------------->|
| | Create Subscriber | |
| | Session Request | |
| 4|<--------via Ci---------| |
| | | |
| | Create Subscriber | |
| | Session Response | |
| 5|---------via Ci-------->| |
| | | |
| | Send RA | |
| 6|<----to UP via Si-------| |
| RA | | |
7|<--------------| | |
| | | |
|DHCPv6 Solicit | | |
8|-------------->| | |
| | Relay DHCPv6 Solicit | |
| 9|-----to CP via Si------>| |
| | | |
| | Update Subscriber | |
| | Session Request | |
| 10|<--------via Ci---------| |
| | | |
| | Update Subscriber | |
| | Session Response | |
| 11|---------via Ci-------->| |
| | | Accounting |
| | 12|<------------->|
| | Send DHCPv6 Reply | |
| 13|<----to UP via Si-------| |
| | | |
| DHCPv6 Reply | | |
14|<--------------| | |
| | | |
Figure 17: DHCPv6 and SLAAC Access
When a subscriber passes AAA authentication, the CP will create a
subscriber session on the UP. This is achieved by sending an
Update_Request message to the UP (step 4).
<Update_Request Message> ::= <Common Header>
<Basic Subscriber TLV>
<IPv6 Subscriber TLV>
<IPv6 Routing TLV>
[<Subscriber Policy TLV>]
The UP will reply with an Update_Response message (step 5). The
format of the Update_Response is as follows:
<Update_Response Message> ::= <Common Header>
<Update Response TLV>
After receiving a DHCPv6 Solicit, the CP will update the subscriber
session by sending an Update_Request message with new parameters to
the UP (step 10).
The format of the Update_Request message is as follows:
<Update_Request Message> ::= <Common Header>
<Basic Subscriber TLV>
<IPv6 Subscriber TLV>
<IPv6 Routing TLV>
[<Subscriber Policy TLV>]
The UP will reply with an Update_Response message (step 11). The
format of the Update_Response is as follows:
<Update_Response Message> ::= <Common Header>
<Update Response TLV>
5.1.5. DHCP Dual-Stack Access
The following sequence (Figure 18) is a combination of DHCP IPv4 and
DHCP IPv6 access processes.
RG UP CP AAA
| DHCP Discovery| | |
1|-------------->| | |
| |Relay the DHCP Discovery| |
| 2|-----to CP via Si------>| AAA |
| | | Req/Resp |
| | 3|<------------->|
| | Send the DHCP Offer | |
| 4|<----to UP via Si-------| |
| DHCP Offer | | |
5|<--------------| | |
| DHCP Request | | |
6|-------------->| | |
| | Relay the DHCP Request| |
| 7|-----to CP via Si------>| |
| | | |
| | Create Subscriber | |
| | Session Request | |
| 8|<--------via Ci-------->| |
| | Create Subscriber | |
| | Session Response | |
| 9|---------via Ci-------->| |
| | | Accounting |
| | 10|<------------->|
| | Send DHCP ACK | |
| 11|<----to UP via Si-------| |
| DHCP ACK | | |
12|<--------------| | |
| RS | | |
13|-------------->| | |
| | Relay the RS | |
| 14|-----to CP via Si------>| AAA |
| | | Req/Rep |
| | 15|<------------->|
| | Create Subscriber | |
| | Session Request | |
| 16|<--------via Ci---------| |
| | Create Subscriber | |
| | Session Response | |
| 17|---------via Ci-------->| |
| | | |
| | Send the RA | |
| 18|<----to UP via Si-------| |
| RA | | |
19|<--------------| | |
|DHCPv6 Solicit | | |
20|-------------->| | |
| | Relay DHCPv6 Solicit | |
| 21|-----to CP via Si------>| |
| | | |
| | Update Subscriber | |
| | Session Request | |
| 22|<--------via Ci---------| |
| | Update Subscriber | |
| | Session Response | |
| 23|---------via Ci-------->| |
| | | Accounting |
| | 24|<------------->|
| | Send DHCPv6 Reply | |
| 25|<----to UP via Si-------| |
| DHCPv6 Reply | | |
26|<--------------| | |
| | | |
Figure 18: DHCP Dual-Stack Access
The DHCP dual-stack access includes three sets of Update_Request/
Update_Response exchanges to create/update a DHCPv4/v6 subscriber
session.
(1) Create a DHCPv4 session (steps 8 and 9):
<Update_Request Message> ::= <Common Header>
<Basic Subscriber TLV>
<IPv4 Subscriber TLV>
<IPv4 Routing TLV>
[<Subscriber Policy TLV>]
<Update_Response Message> ::= <Common Header>
<Update Response TLV>
[<Subscriber CGN Port Range TLV>]
(2) Create a DHCPv6 session (steps 16 and 17):
<Update_Request Message> ::= <Common Header>
<Basic Subscriber TLV>
<IPv6 Subscriber TLV>
<IPv6 Routing TLV>
[<Subscriber Policy TLV>]
<Update_Response Message> ::= <Common Header>
<Update Response TLV>
(3) Update DHCPv6 session (steps 22 and 23):
<Update_Request Message> ::= <Common Header>
<Basic Subscriber TLV>
<IPv6 Subscriber TLV>
<IPv6 Routing TLV>
[<Subscriber Policy TLV>]
<Update_Response Message> ::= <Common Header>
<Update Response TLV>
5.1.6. L2 Static Subscriber Access
L2 static subscriber access processes are as follows:
RG UP CP AAA
| | Static Subscriber | |
| | Detection Req. | |
| 1|<-----to UP via Ci------| |
| | Static Subscriber | |
| | Detection Rep. | |
| 2|------to UP via Ci----->| |
| ARP/ND(REQ) | | |
3.1|<--------------| | |
| ARP/ND(ACK) | | |
3.2|-------------->| | |
| | Relay the ARP/ND | |
| 3.3|-----to CP via Si------>| AAA |
| | | Req/Rep |
| | 3.4|<------------->|
| | Create Subscriber | |
| | Session Request | |
| 3.5|<--------via Ci---------| |
| | Create Subscriber | |
| | Session Response | |
| 3.6|---------via Ci-------->| |
| ARP/ND(REQ) | | |
4.1|-------------->| | |
| | Relay the ARP/ND | |
| 4.2|-----to CP via Si------>| AAA |
| | | Req/Rep |
| | 4.3|<------------->|
| | Create Subscriber | |
| | Session Request | |
| 4.4|<--------via Ci---------| |
| | Create Subscriber | |
| | Session Response | |
| 4.5|---------via Ci-------->| |
| ARP/ND(ACK) | | |
4.6|<--------------| | |
| IP Traffic | | |
5.1|-------------->| | |
| | Relay the IP Traffic | |
| 5.2|-----to CP via Si------>| AAA |
| | | Req/Rep |
| | 5.3|<------------->|
| | Create Subscriber | |
| | Session Request | |
| 5.4|<--------via Ci-------->| |
| | Create Subscriber | |
| | Session Response | |
| 5.5|---------via Ci-------->| |
| ARP/ND(REQ) | | |
5.6|<--------------| | |
| ARP/ND(ACK) | | |
5.7|-------------->| | |
| | | |
Figure 19: L2 Static Subscriber Access
For L2 static subscriber access, the process starts with a CP
installing a static subscriber detection list on a UP. The list
determines which subscribers will be detected. That is implemented
by exchanging Update_Request and Update_Response messages between CP
and UP. The formats of the messages are as follows:
<Update_Request Message> ::= <Common Header>
<IPv4 Static Subscriber Detect TLVs>
<IPv6 Static Subscriber Detect TLVs>
<Update_Response Message> ::= <Common Header>
<Update Response TLV>
For L2 static subscriber access, there are three ways to trigger the
access process:
(1) Triggered by UP (steps 3.1-3.6): This assumes that the UP knows
the IP address, the access interface, and the VLAN of the RG.
The UP will actively trigger the access flow by sending an ARP/
ND packet to the RG. If the RG is online, it will reply with an
ARP/ND to the UP. The UP will tunnel the ARP/ND to the CP
through the Si. The CP then triggers the authentication
process. If the authentication result is positive, the CP will
create a corresponding subscriber session on the UP.
(2) Triggered by RG ARP/ND (steps 4.1-4.6): Most of the process is
the same as option 1 (triggered by UP). The difference is that
the RG will actively send the ARP/ND to trigger the process.
(3) Triggered by RG IP traffic (steps 5.1-5.7): This is for the case
where the RG has the ARP/ND information, but the subscriber
session on the UP is lost (e.g., due to failure on the UP or the
UP restarting). That means the RG may keep sending IP packets
to the UP. The packets will trigger the UP to start a new
access process.
From a subscriber session point of view, the procedures and the
message formats for the three cases above are the same, as follows.
IPv4 Case:
<Update_Request Message> ::= <Common Header>
<Basic Subscriber TLV>
<IPv4 Subscriber TLV>
<IPv4 Routing TLV>
[<Subscriber Policy TLV>]
<Update_Response Message> ::= <Common Header>
<Update Response TLV>
[<Subscriber CGN Port Range TLV>]
IPv6 Case:
<Update_Request Message> ::= <Common Header>
<Basic Subscriber TLV>
<IPv6 Subscriber TLV>
<IPv6 Routing TLV>
[<Subscriber Policy TLV>]
<Update_Response Message> ::= <Common Header>
<Update Response TLV>
5.2. PPPoE
5.2.1. IPv4 PPPoE Access
Figure 20 shows the IPv4 PPPoE access call flow.
RG UP CP AAA
| PPPoE Disc | PPPoE Disc | |
1|<------------->|<---------via Si------->| |
| | | |
| PPP LCP | PPP LCP | |
2|<------------->|<---------via Si------->| |
| | | AAA |
| PPP PAP/CHAP | PPP PAP/CHAP | Req/Rep |
3|<------------->|<---------via Si------->|<------------->|
| | | |
| PPP IPCP | PPP IPCP | |
4|<------------->|<---------via Si------->| |
| | | |
| | Create Subscriber | |
| | Session Request | |
| 5|<--------via Ci---------| |
| | Create Subscriber | |
| | Session Response | |
| 6|---------via Ci-------->| |
| | | Accounting |
| | 7|<------------->|
| | | |
Figure 20: IPv4 PPPoE Access
In the above sequence, steps 1-4 are the standard PPPoE call flow.
The UP is responsible for redirecting the PPPoE control packets to
the CP or RG. The PPPoE control packets are transmitted between the
CP and UP through the Si.
After the PPPoE call flow, if the subscriber passed the AAA
authentication and authorization, the CP will create a corresponding
session on the UP through the Ci. The formats of the messages are as
follows:
<Update_Request Message> ::= <Common Header>
<Basic Subscriber TLV>
<PPP Subscriber TLV>
<IPv4 Subscriber TLV>
<IPv4 Routing TLV>
[<Subscriber Policy TLV>]
<Update_Response Message> ::= <Common Header>
<Update Response TLV>
[<Subscriber CGN Port Range TLV>]
5.2.2. IPv6 PPPoE Access
Figure 21 describes the IPv6 PPPoE access call flow.
RG UP CP AAA
| PPPoE Disc | PPPoE Disc | |
1|<------------->|<--------via Si-------->| |
| | | |
| PPP LCP | PPP LCP | |
2|<------------->|<---------via Si------->| |
| | | AAA |
| PPP PAP/CHAP | PPP PAP/CHAP | Req/Rep |
3|<------------->|<---------via Si------->|<------------->|
| | | |
| PPP IP6CP | PPP IP6CP | |
4|<------------->|<---------via Si------->| |
| | | |
| | Create Subscriber | |
| | Session Request | |
| 5|<--------via Ci---------| |
| | Create Subscriber | |
| | Session Response | |
| 6|---------via Ci-------->| |
| | | |
| ND Negotiation| ND Negotiation | |
7|<------------->|<---------via Si------->| |
| | | |
| | Update Subscriber | |
| | Session Request | |
| 8|<--------via Ci---------| |
| | Update Subscriber | |
| | Session Response | |
| 9|---------via Ci-------->| |
| | | Accounting |
| | 10|<------------->|
| DHCPv6 | DHCPv6 | |
| Negotiation | Negotiation | |
7'|<------------->|<---------via Si------->| |
| | | |
| | Update Subscriber | |
| | Session Request | |
| 8'|<---------via Ci--------| |
| | Update Subscriber | |
| | Session Response | |
| 9'|---------via Ci-------->| |
| | | Accounting |
| | 10'|<------------->|
| | | |
Figure 21: IPv6 PPPoE Access
From the above sequence, steps 1-4 are the standard PPPoE call flow.
The UP is responsible for redirecting the PPPoE control packets to
the CP or RG. The PPPoE control packets are transmitted between the
CP and UP through the Si.
After the PPPoE call flow, if the subscriber passed the AAA
authentication and authorization, the CP will create a corresponding
session on the UP through the Ci. The formats of the messages are as
follows:
<Update_Request Message> ::= <Common Header>
<Basic Subscriber TLV>
<PPP Subscriber TLV>
<IPv6 Subscriber TLV>
<IPv6 Routing TLV>
[<Subscriber Policy TLV>]
<Update_Response Message> ::= <Common Header>
<Update Response TLV>
Then, the RG will initialize an ND/DHCPv6 negotiation process with
the CP (see steps 7 and 7'); after that, it will trigger an update
(steps 8-9 and 8'-9') to the subscriber session. The formats of the
update messages are as follows:
<Update_Request Message> ::= <Common Header>
<Basic Subscriber TLV>
<PPP Subscriber TLV>
<IPv6 Subscriber TLV>
<IPv6 Routing TLV>
[<Subscriber Policy TLV>]
<Update_Response Message> ::= <Common Header>
<Update Response TLV>
5.2.3. PPPoE Dual-Stack Access
Figure 22 shows a combination of IPv4 and IPv6 PPPoE access call
flows.
RG UP CP AAA
|PPPoE Discovery| PPPoE Discovery | |
1|<------------->|<---------via Si------->| |
| | | |
| PPP LCP | PPP LCP | |
2|<------------->|<---------via Si------->| |
| | | AAA |
| PPP PAP/CHAP | PPP PAP/CHAP | Req/Rep |
3|<------------->|<---------via Si------->|<------------->|
| | | |
| PPP IPCP | PPP IPCP | |
4|<------------->|<---------via Si------->| |
| | | |
| | Create v4 Subscriber | |
| | Session Request | |
| 5|<--------via Ci---------| |
| | Create v4 Subscriber | |
| | Session Response | |
| 6|---------via Ci-------->| |
| | | Accounting |
| | 7|<------------->|
| PPP IP6CP | PPP IP6CP | |
4'|<------------->|<---------via Si------->| |
| | | |
| | Create V6 Subscriber | |
| | Session Request | |
| 5'|<--------via Ci---------| |
| | Create v6 Subscriber | |
| | Session Response | |
| 6'|---------via Ci-------->| |
| | | |
| ND Negotiation| ND Negotiation | |
8|<------------->|<---------via Si------->| |
| | | |
| | Update v6 Subscriber | |
| | Session Request | |
| 9|<---------via Ci--------| |
| | Update v6 Subscriber | |
| | Session Response | |
| 10|---------via Ci-------->| |
| | | Accounting |
| | 7'|<------------->|
| DHCPv6 | DHCPv6 | |
| Negotiation | Negotiation | |
8'|<------------->|<---------via Si------->| |
| | | |
| | Update v6 Subscriber | |
| | Session Request | |
| 9'|<--------via Ci---------| |
| | Update v6 Subscriber | |
| | Session Response | |
| 10'|---------via Ci-------->| |
| | | Accounting |
| | 7"|<------------->|
| | | |
Figure 22: PPPoE Dual-Stack Access
PPPoE dual stack is a combination of IPv4 PPPoE and IPv6 PPPoE
access. The process is as above. The formats of the messages are as
follows:
(1) Create an IPv4 PPPoE subscriber session (steps 5-6):
<Update_Request Message> ::= <Common Header>
<Basic Subscriber TLV>
<PPP Subscriber TLV>
<IPv4 Subscriber TLV>
<IPv4 Routing TLV>
[<Subscriber Policy TLV>]
<Update_Response Message> ::= <Common Header>
<Update Response TLV>
[<Subscriber CGN Port Range TLV>]
(2) Create an IPv6 PPPoE subscriber session (steps 5'-6'):
<Update_Request Message> ::= <Common Header>
<Basic Subscriber TLV>
<PPP Subscriber TLV>
<IPv6 Subscriber TLV>
<IPv6 Routing TLV>
[<Subscriber Policy TLV>]
<Update_Response Message> ::= <Common Header>
<Update Response TLV>
(3) Update the IPv6 PPPoE subscriber session (steps 9-10 and 9'-
10'):
<Update_Request Message> ::= <Common Header>
<Basic Subscriber TLV>
<PPP Subscriber TLV>
<IPv6 Subscriber TLV>
<IPv6 Routing TLV>
[<Subscriber Policy TLV>]
<Update_Response Message> ::= <Common Header>
<Update Response TLV>
5.3. WLAN Access
Figure 23 shows the WLAN access call flow.
RG UP CP AAA Web Server
| DHCP | | | |
| Discovery | | | |
1|------------>| | | |
| | DHCP Discovery | | |
| 2|-----via Si---->| AAA | |
| | DHCP Offer |<-------->| |
| 3|<----via Si-----| | |
| DHCP Offer | | | |
4|<------------| | | |
| DHCP Request| | | |
5|------------>| | | |
| | DHCP Request | | |
| 6|-----via Si---->| | |
| | | | |
| | Create Session | | |
| | Request | | |
| 7|<----via Ci-----| | |
| | Create Session | | |
| | Response | | |
| 8|----via Ci----->| | |
| | | | |
| | DHCP ACK | | |
| 9|<----via Si-----| | |
| DHCP ACK | | | |
10|<------------| | | |
| | | | |
| Subscriber | | | |
| HTTP Traffic| | | |
11|------------>|--> | | |
| | | Web URL | | |
| Traffic | | Redirect | | |
| Redirection | | | | |
12|<------------|<-+ | | |
| |
13|-----------------Redirect to Web Server------------->|
| |
14|<----------------Push HTTP Log-in Page---------------|
| |
15|-----------------User Authentication---------------->|
| |
| | | Portal Interchange |
| | 16|<-------------------->|
| | | |
| | | AAA | |
| | | Req/Rep | |
| | 17|<-------->| |
| | | | |
| | Update Session | | |
| | Request | | |
| 18|<----via Ci-----| | |
| | Update Session | | |
| | Response | | |
| 19|-----via Ci---->| | |
| | | | |
Figure 23: WLAN Access
WLAN access starts with the DHCP dial-up process (steps 1-6). After
that, the CP will create a subscriber session on the UP (steps 7-8).
The formats of the session creation messages are as follows:
IPv4 Case:
<Update_Request Message> ::= <Common Header>
<Basic Subscriber TLV>
<IPv4 Subscriber TLV>
<IPv4 Routing TLV>
[<Subscriber Policy TLV>]
<Update_Response Message> ::= <Common Header>
<Update Response TLV>
[<Subscriber CGN Port Range TLV>]
IPv6 Case:
<Update_Request Message> ::= <Common Header>
<Basic Subscriber TLV>
<IPv6 Subscriber TLV>
<IPv6 Routing TLV>
[<Subscriber Policy TLV>]
<Update_Response Message> ::= <Common Header>
<Update Response TLV>
After step 10, the RG will be allocated an IP address, and its first
HTTP packet will be redirected to a web server for subscriber
authentication (steps 11-17). After the web authentication, if the
result is positive, the CP will update the subscriber session by
using the following message exchanges:
IPv4 Case:
<Update_Request Message> ::= <Common Header>
<Basic Subscriber TLV>
<IPv4 Subscriber TLV>
<IPv4 Routing TLV>
[<Subscriber Policy TLV>]
<Update_Response Message> ::= <Common Header>
<Update Response TLV>
[<Subscriber CGN Port Range TLV>]
IPv6 Case:
<Update_Request Message> ::= <Common Header>
<Basic Subscriber TLV>
<IPv6 Subscriber TLV>
<IPv6 Routing TLV>
[<Subscriber Policy TLV>]
<Update_Response Message> ::= <Common Header>
<Update Response TLV>
5.4. L2TP
5.4.1. L2TP LAC Access
RG UP(LAC) CP(LAC) AAA LNS
| PPPoE | PPPoE | | |
| Discovery | Discovery | | |
1|<---------->|<---via Si--->| | |
| | | | |
| PPP LCP | PPP LCP | | |
2|<---------->|<---via Si--->| | |
| | | AAA | |
|PPP PAP/CHAP| PPP PAP/CHAP | Req/Rep| |
3|<---------->|<---via Si--->|<------>| |
| | | | |
| PPP IPCP | PPP IPCP | | |
4|<---------->|<---via Si--->| | |
| | | | |
| | L2TP Tunnel | | |
| | Negotiation | | |
| | SCCRQ/ | | |
| | SCCRP/ | | |
| | SCCCN | | |
| 5|<---via Si--->| | |
| | /\ |
| | || Forward |
| | \/ |
| |<-----------via Routing---------->|
| | |
| | L2TP Session | | |
| | Negotiation | | |
| | ICRQ/ | | |
| | ICRP/ | | |
| | ICCN | | |
| 6|<---via Si--->| | |
| | /\ |
| | || Forward |
| | \/ |
| |<-----------via Routing---------->|
| | |
| | Create | | |
| | Subscriber | | |
| | Session Req | | |
| 7|<---via Ci----| | |
| | Create | | |
| | Subscriber | | |
| | Session Rep | | |
| 8|----via Ci--->| | |
| | | | |
| |
| PAP/CHAP (Triggered by LNS) |
9|<-----------------via Routing----------------->|
| |
Figure 24: L2TP LAC Access
Steps 1-4 are a standard PPPoE access process. After that, the LAC-
CP starts to negotiate an L2TP session and tunnel with the LNS.
After the negotiation, the CP will create an L2TP LAC subscriber
session on the UP through the following messages:
<Update_Request Message> ::= <Common Header>
<Basic Subscriber TLV>
<L2TP-LAC Subscriber TLV>
<L2TP-LAC Tunnel TLV>
<Update_Response Message> ::= <Common Header>
<Update Response TLV>
5.4.2. L2TP LNS IPv4 Access
RG LAC UP(LNS) AAA CP(LNS)
| PPPoE | | | |
| Discovery | | | |
1|<---------->| | | |
| | | | |
| PPP LCP | | | |
2|<---------->| | |
| | AAA | |
|PPP PAP/CHAP| Req/Rep | |
3|<---------->|<--------------------->| |
| | |
| | L2TP Tunnel | L2TP Tunnel |
| | Negotiation | Negotiation |
| | SCCRQ/ | SCCRQ/ |
| | SCCRP/ | SCCRP/ |
| | SCCCN | SCCCN |
| 4|<------------>|<------via Si----->|
| | | |
| | L2TP Session | L2TP Session |
| | Negotiation | Negotiation |
| | ICRQ/ | ICRQ/ |
| | ICRP/ | ICRP/ |
| | ICCN | ICCN |
| 5|<------------>|<------via Si----->|
| | | |
| | | Create Subscriber |
| | | Session Request |
| | 6|<-----via Ci-------|
| | | Create Subscriber |
| | | Session Response |
| | 7|------via Ci------>|
| |
| PAP/CHAP (Triggered by LNS) |
8|<--------------------------------------------->|
| |
| | | | AAA |
| | | | Req/Rep |
| | | 9|<-------->|
| | | |
| |
| PPP IPCP |
10|<--------------------------------------------->|
| |
| | | Update Subscriber |
| | | Session Request |
| | 11|<-----via Ci-------|
| | | Update Subscriber |
| | | Session Response |
| | 12|------via Ci------>|
| | | |
Figure 25: L2TP LNS IPv4 Access
In this case, the BNG is running as an LNS and separated into LNS-CP
and LNS-UP. Steps 1-5 finish the normal L2TP dial-up process. When
the L2TP session and tunnel negotiations are finished, the LNS-CP
will create an L2TP LNS subscriber session on the LNS-UP. The format
of the messages is as follows:
<Update_Request Message> ::= <Common Header>
<L2TP-LNS Subscriber TLV>
<Basic Subscriber TLV>
<PPP Subscriber TLV>
<IPv4 Subscriber TLV>
<IPv4 Routing TLV>
<L2TP-LNS Tunnel TLV>
[<Subscriber Policy TLV>]
<Update_Response Message> ::= <Common Header>
<Update Response TLV>
[<Subscriber CGN Port Range TLV>]
After that, the LNS-CP will trigger a AAA authentication. If the
authentication result is positive, a PPP IP Control Protocol (IPCP)
process will follow, and then the CP will update the session with the
following message exchanges:
<Update_Request Message> ::= <Common Header>
<L2TP-LNS Subscriber TLV>
<Basic Subscriber TLV>
<PPP Subscriber TLV>
<IPv4 Subscriber TLV>
<IPv4 Routing TLV>
<L2TP-LNS Tunnel TLV>
[<Subscriber Policy TLV>]
<Update_Response Message> ::= <Common Header>
<Update Response TLV>
[<Subscriber CGN Port Range TLV>]
5.4.3. L2TP LNS IPv6 Access
RG LAC UP(LNS) AAA CP(LNS)
| PPPoE | | | |
| Discovery | | | |
1|<---------->| | | |
| | | | |
| PPP LCP | | | |
2|<---------->| | |
| | AAA | |
|PPP PAP/CHAP| Req/Rep | |
3|<---------->|<--------------------->| |
| | |
| | L2TP Tunnel | L2TP Tunnel |
| | Negotiation | Negotiation |
| | SCCRQ/ | SCCRQ/ |
| | SCCRP/ | SCCRP/ |
| | SCCCN | SCCCN |
| 4|<------------>|<------via Si----->|
| | | |
| | L2TP Session | L2TP Session |
| | Negotiation | Negotiation |
| | ICRQ/ | ICRQ/ |
| | ICRP/ | ICRP/ |
| | ICCN | ICCN |
| 5|<------------>|<------via Si----->|
| | | |
| | | Create Subscriber |
| | | Session Request |
| | 6|<-----via Ci-------|
| | | Create Subscriber |
| | | Session Response |
| | 7|------via Ci------>|
| |
| PAP/CHAP (Triggered by LNS) |
8|<--------------------------------------------->|
| |
| | | | AAA |
| | | | Req/Rep |
| | | 9|<-------->|
| | | | |
| |
| PPP IP6CP |
10|<--------------------------------------------->|
| |
| | | Update Subscriber |
| | | Session Request |
| | 11|<-----via Ci-------|
| | | Update Subscriber |
| | | Session Response |
| | 12|------via Ci------>|
| | |
| ND Negotiation | ND Negotiation |
13|<------------------------->|<-----via Si------>|
| | |
| | | Update Subscriber |
| | | Session Request |
| | 14|<-----via Ci-------|
| | | Update Subscriber |
| | | Session Response |
| | 15|------via Ci------>|
| | | |
Figure 26: L2TP LNS IPv6 Access
Steps 1-12 are the same as L2TP LNS IPv4 access. Steps 1-5 finish
the normal L2TP dial-up process. When the L2TP session and tunnel
negotiations are finished, the LNS-CP will create an L2TP LNS
subscriber session on the LNS-UP. The format of the messages is as
follows:
<Update_Request Message> ::= <Common Header>
<L2TP-LNS Subscriber TLV>
<Basic Subscriber TLV>
<PPP Subscriber TLV>
<IPv6 Subscriber TLV>
<IPv6 Routing TLV>
<L2TP-LNS Tunnel TLV>
[<Subscriber Policy TLV>]
<Update_Response Message> ::= <Common Header>
<Update Response TLV>
After that, the LNS-CP will trigger a AAA authentication. If the
authentication result is positive, a PPP IP6CP process will follow,
and then the CP will update the session with the following message
exchanges:
<Update_Request Message> ::= <Common Header>
<L2TP-LNS Subscriber TLV>
<Basic Subscriber TLV>
<PPP Subscriber TLV>
<IPv6 Subscriber TLV>
<IPv6 Routing TLV>
<L2TP-LNS Tunnel TLV>
[<Subscriber Policy TLV>]
<Update_Response Message> ::= <Common Header>
<Update Response TLV>
Then, an ND negotiation will be triggered by the RG. After the ND
negotiation, the CP will update the session with the following
message exchanges:
<Update_Request Message> ::= <Common Header>
<L2TP-LAC Subscriber TLV>
<Basic Subscriber TLV>
<PPP Subscriber TLV>
<IPv6 Subscriber TLV>
<IPv6 Routing TLV>
<L2TP-LNS Tunnel TLV>
[<Subscriber Policy TLV>]
<Update_Response Message> ::= <Common Header>
<Update Response TLV>
5.5. CGN (Carrier Grade NAT)
RG UP CP AAA
| | Public Address Block | |
| | Allocation Request | |
| 1|<--------via Ci-------->| |
| | Public Address Block | |
| | Allocation Reply | |
| 2|---------via Ci-------->| |
| Subscriber | | |
| Access Request| Subscriber | |
3|-------------->| Access Request | |
| 4|----------via Si------->| |
| | | AAA |
| | Subscriber | Req/Rep |
| Subscriber | Access Reply 5|<------------->|
| Access Reply 6|<---------via Si--------| |
7|<--------------| | |
| | Create Subscriber | |
| | Session Request | |
| 8|<--------via Ci---------| |
| | | |
| | Create Subscriber | |
| | Session Response | |
| | (with NAT information) | |
| 9|---------via Ci-------->| |
| | | Accounting |
| | | with source |
| | | information |
| | 10|<------------->|
| | | Public IP + |
| | | Port Range |
| | | to Private IP|
| | | Mapping |
| | | |
Figure 27: CGN Access
The first steps allocate one or more CGN address blocks to the UP
(steps 1-2). This is achieved by the following message exchanges
between CP and UP:
<Addr_Allocation_Req Message> ::= <Common Header>
<Address Allocation Request TLV>
<Addr_Allocation_Ack Message> ::= <Common Header>
<Address Allocation Response TLV>
Steps 3-9 show the general dial-up process in the case of CGN mode.
The specific processes (e.g., IPoE, PPPoE, L2TP, etc.) are defined in
above sections.
If a subscriber is a CGN subscriber, once the subscriber session is
created/updated, the UP will report the NAT information to the CP.
This is achieved by carrying the Subscriber CGN Port Range TLV in the
Update_Response message.
5.6. L3 Leased Line Access
5.6.1. Web Authentication
RG UP CP AAA Web Server
| User traffic| | | |
1|------------>| | | |
| | User traffic | | |
| 2|-----via Si---->| AAA | |
| | | Req/Rep | |
| | 3|<-------->| |
| | Create Session | | |
| | Request | | |
| 4|<----via Ci-----| | |
| | Create Session | | |
| | Response | | |
| 5|----via Ci----->| | |
| | | | |
| HTTP traffic| | | |
6|------------>| | | |
| | | | |
| Redirect to | | | |
| Web URL | | | |
7|<------------| | | |
| | | | |
| |
8|-----------------Redirected to Web Server----------->|
| |
9|<----------------Push HTTP Log-in Page---------------|
| |
10|-----------------User Authentication---------------->|
| |
| | | Portal Interchange |
| | 11|<-------------------->|
| | | |
| | | AAA | |
| | | Req/Rep | |
| | 12|<-------->| |
| | | | |
| | Update Session | | |
| | Request | | |
| 13|<----via Ci-----| | |
| | Update Session | | |
| | Response | | |
| 14|----via Ci----->| | |
| | | | |
Figure 28: Web Authentication-Based L3 Leased Line Access
In this case, IP traffic from the RG will trigger the CP to
authenticate the RG by checking the source IP and the exchanges with
the AAA server. Once the RG has passed the authentication, the CP
will create a corresponding subscriber session on the UP through the
following message exchanges:
IPv4 Case:
<Update_Request Message> ::= <Common Header>
<Basic Subscriber TLV>
<IPv4 Subscriber TLV>
<IPv4 Routing TLV>
[<Subscriber Policy TLV>]
<Update_Response Message> ::= <Common Header>
<Update Response TLV>
[<Subscriber CGN Port Range TLV>]
IPv6 Case:
<Update_Request Message> ::= <Common Header>
<Basic Subscriber TLV>
<IPv6 Subscriber TLV>
<IPv6 Routing TLV>
[<Subscriber Policy TLV>]
<Update_Response Message> ::= <Common Header>
<Update Response TLV>
Then, the HTTP traffic from the RG will be redirected to a web server
to finish the web authentication. Once the web authentication is
passed, the CP will trigger another AAA authentication. After the
AAA authentication, the CP will update the session with the following
message exchanges:
IPv4 Case:
<Update_Request Message> ::= <Common Header>
<Basic Subscriber TLV>
<IPv4 Subscriber TLV>
<IPv4 Routing TLV>
[<Subscriber Policy TLV>]
<Update_Response Message> ::= <Common Header>
<Update Response TLV>
[<Subscriber CGN Port Range TLV>]
IPv6 Case:
<Update_Request Message> ::= <Common Header>
<Basic Subscriber TLV>
<IPv6 Subscriber TLV>
<IPv6 Routing TLV>
[<Subscriber Policy TLV>]
<Update_Response Message> ::= <Common Header>
<Update Response TLV>
5.6.2. User Traffic Trigger
RG UP CP AAA
| | L3 access | |
| | control list | |
| 1|<----via Ci-----| |
| User | | |
| traffic | | |
2|------------>| | |
| | User traffic | |
| 3|-----via Si---->| |
| | | AAA |
| | | Req/Rep |
| | 4|<-------->|
| | | |
| | Create Session | |
| | Request | |
| 5|<----via Ci-----| |
| | Create Session | |
| | Response | |
| 6|----via Ci----->| |
| | | |
Figure 29: User Traffic Triggered L3 Leased Line Access
In this case, the CP must install on the UP an access control list,
which is used by the UP to determine whether or not an RG is legal.
If the traffic is from a legal RG, it will be redirected to the CP
though the Si. The CP will trigger a AAA interchange with the AAA
server. After that, the CP will create a corresponding subscriber
session on the UP with the following message exchanges:
IPv4 Case:
<Update_Request Message> ::= <Common Header>
<Basic Subscriber TLV>
<IPv4 Subscriber TLV>
<IPv4 Routing TLV>
[<Subscriber Policy TLV>]
<Update_Response Message> ::= <Common Header>
<Update Response TLV>
[<Subscriber CGN Port Range TLV>]
IPv6 Case:
<Update_Request Message> ::= <Common Header>
<Basic Subscriber TLV>
<IPv6 Subscriber TLV>
<IPv6 Routing TLV>
[<Subscriber Policy TLV>]
<Update_Response Message> ::= <Common Header>
<Update Response TLV>
5.7. Multicast Service Access
RG UP CP AAA
| User Access | User Access | AAA |
| Request | Request | Req/Rep |
1|<----------->|<----via Si---->|<-------->|
| | | |
| | Create Session | |
| | Request | |
| 2|<----via Ci---->| |
| | | |
| | Create Session | |
| | Response | |
| 3|----via Ci----->| |
| | | |
| Multicast | | |
| negotiation | | |
4|<----------->| | |
| | | |
Figure 30: Multicast Access
Multicast access starts with a user access request from the RG. The
request will be redirected to the CP by the Si. A follow-up AAA
interchange between the CP and the AAA server will be triggered.
After the authentication, the CP will create a multicast subscriber
session on the UP through the following messages:
IPv4 Case, there will be a Multicast-ProfileV4 sub-TLV present in the
Subscriber Policy TLV:
<Update_Request Message> ::= <Common Header>
<Basic Subscriber TLV>
<IPv4 Subscriber TLV>
<IPv4 Routing TLV>
<Subscriber Policy TLV>
<Update_Response Message> ::= <Common Header>
<Update Response TLV>
[<Subscriber CGN Port Range TLV>]
IPv6 Case, there will be a Multicast-ProfileV6 sub-TLV present in the
Subscriber Policy TLV:
<Update_Request Message> ::= <Common Header>
<Basic Subscriber TLV>
<IPv6 Subscriber TLV>
<IPv6 Routing TLV>
<Subscriber Policy TLV>
<Update_Response Message> ::= <Common Header>
<Update Response TLV>
6. S-CUSP Message Formats
An S-CUSP message consists of a common header followed by a variable-
length body consisting entirely of TLVs. Receiving an S-CUSP message
with an unknown message type or missing mandatory TLV MUST trigger an
Error message (see Section 6.7) or a Response message with an Error
Information TLV (see Section 7.6).
Conversely, if a TLV is optional, the TLV may or may not be present.
Optional TLVs are indicated in the message formats shown in this
document by being enclosed in square brackets.
This section specifies the format of the common S-CUSP message header
and lists the defined messages.
Network byte order is used for all multi-byte fields.
6.1. Common Message Header
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Ver | Resv | Message-Type | Message-Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Reserved | Transaction-ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 31: S-CUSP Message Common Header
Ver (4 bits): The major version of the protocol. This document
specifies version 1. Different major versions of the protocol may
have significantly different message structures and formats except
that the Ver field will always be in the same place at the
beginning of each message. A successful S-CUSP session depends on
the CP and the UP both using the same major version of the
protocol.
Resv (4 bits): Reserved. MUST be sent as zero and ignored on
receipt.
Message-Type (8 bits): The set of message types specified in this
document is listed in Section 8.1.
Message-Length (16 bits): Total length of the S-CUSP message
including the common header, expressed in number of bytes as an
unsigned integer.
Transaction-ID (16 bits): This field is used to identify requests.
It is echoed back in any corresponding ACK/Response/Error message.
It is RECOMMENDED that a monotonically increasing value be used in
successive messages and that the value wraps back to zero after
0xFFFF. The content of this field is an opaque value that the
receiver MUST NOT use for any purpose except to echo back in a
corresponding response and, optionally, for logging.
6.2. Control Messages
This document defines the following control messages:
+------+-----------------+------------------------------------+
| Type | Name | Notes and TLVs that can be carried |
+======+=================+====================================+
| 1 | Hello | Hello TLV, Keepalive TLV |
+------+-----------------+------------------------------------+
| 2 | Keepalive | A common header with the Keepalive |
| | | message type |
+------+-----------------+------------------------------------+
| 3 | Sync_Request | Synchronization request |
+------+-----------------+------------------------------------+
| 4 | Sync_Begin | Synchronization starts |
+------+-----------------+------------------------------------+
| 5 | Sync_Data | Synchronization data: TLVs |
| | | specified in Section 7 |
+------+-----------------+------------------------------------+
| 6 | Sync_End | End synchronization |
+------+-----------------+------------------------------------+
| 7 | Update_Request | TLVs specified in Sections 7.6-7.9 |
+------+-----------------+------------------------------------+
| 8 | Update_Response | TLVs specified in Sections 7.6-7.9 |
+------+-----------------+------------------------------------+
Table 2: Control Messages
6.2.1. Hello Message
The Hello message is used for S-CUSP session establishment and
version negotiation. The details of S-CUSP session establishment and
version negotiation can be found in Section 4.1.1.
The format of the Hello message is as follows:
<Hello Message> ::= <Common Header>
<Hello TLV>
<Keepalive TLV>
[<Error Information TLV>]
The return code and negotiation result will be carried in the Error
Information TLV. They are listed as follows:
0: Success. Version negotiation success.
1: Failure. Malformed message received.
2: TLV-Unknown. One or more of the TLVs was not understood.
1001: Version-Mismatch. The version negotiation fails. The S-CUSP
session establishment phase fails.
1002: Keepalive Error. The keepalive negotiation fails. The S-CUSP
session establishment phase fails.
1003: Timer Expires. The establishment timer expired. Session
establishment phase fails.
6.2.2. Keepalive Message
Each end of an S-CUSP session periodically sends a Keepalive message.
It is used to detect whether the peer end is still alive. The
Keepalive procedures are defined in Section 4.1.2.
The format of the Keepalive message is as follows:
<Keepalive Message> ::= <Common Header>
6.2.3. Sync_Request Message
The Sync_Request message is used to request synchronization from an
S-CUSP peer. Both CP and UP can request their peer to synchronize
data.
The format of the Sync_Request message is as follows:
<Sync_Request Message> ::= <Common Header>
A Sync_Request message may result in a Sync_Begin message from its
peer. The Sync_Begin message is defined in Section 6.2.4.
6.2.4. Sync_Begin Message
The Sync_Begin message is a reply to a Sync_Request message. It is
used to notify the synchronization requester whether the
synchronization can be started.
The format of the Sync_Begin message is as follows:
<Sync_Begin Message> ::= <Common Header>
<Error Information TLV>
The return codes are carried in the Error Information TLV. The codes
are listed below:
0: Success. Be ready to synchronize.
1: Failure. Malformed message received.
2: TLV-Unknown. One or more of the TLVs was not understood.
2001: Synch-NoReady. The data to be synchronized is not ready.
2002: Synch-Unsupport. The data synchronization is not supported.
6.2.5. Sync_Data Message
The Sync_Data message is used to send data being synchronized between
the CP and UP. The Sync_Data message has the same function and
format as the Update_Request message. The difference is that there
is no ACK for a Sync_Data message. An error caused by the Sync_Data
message will result in a Sync_End message.
There are two scenarios:
* Synchronization from UP to CP: Synchronize the resource data to
CP.
<Sync_Data Message> ::= <Common Header>
[<Interface Status TLV>]
[<Board Status TLV>]
* Synchronization from CP to UP: Synchronize all subscriber sessions
to the UP. The Subscriber TLVs carried are those appearing in
Section 7.9. As for which TLVs should be carried, it depends on
the specific session data to be synchronized. The process is
equivalent to the creation of a particular session. Refer to
Section 5 to see more details.
<Sync_Data Message> ::= <Common Header>
[<IPv4 Routing TLV>]
[<IPv6 Routing TLV>]
[<Subscriber TLVs>]
6.2.6. Sync_End Message
The Sync_End message is used to indicate the end of a synchronization
process. The format of a Sync_End message is as follows:
<Sync_End Message> ::= <Common Header>
<Error Information TLV>
The return/error codes are listed as follows:
0: Success. Synchronization finished.
1: Failure. Malformed message received.
2: TLV-Unknown. One or more of the TLVs was not understood.
6.2.7. Update_Request Message
The Update_Request message is a multipurpose message; it can be used
to create, update, and delete subscriber sessions on a UP.
For session operations, the specific operation is controlled by the
Oper field of the carried TLVs. As defined in Section 7.1, the Oper
field can be set to either Update or Delete when a TLV is carried in
an Update_Request message.
When the Oper field is set to Update, it means to create or update a
subscriber session. If the Oper field is set to Delete, it is a
request to delete a corresponding session.
The format of the Update_Request message is as follows:
<Update_Request Message> ::= <Common Header>
[<IPv4 Routing TLV>]
[<IPv6 Routing TLV>]
[<Subscriber TLVs>]
Where the Subscriber TLVs are those appearing in Section 7.9. Each
Update_Request message will result in an Update_Response message,
which is defined in Section 6.2.8.
6.2.8. Update_Response Message
The Update_Response message is a response to an Update_Request
message. It is used to confirm the update request (or reject it in
the case of an error). The format of an Update_Response message is
as follows:
<Update_Response Message> ::= <Common Header>
[<Subscriber CGN Port Range TLV>]
<Error Information TLV>
The return/error codes are carried in the Error Information TLV.
They are listed as follows:
0: Success.
1: Failure. Malformed message received.
2: TLV-Unknown. One or more of the TLVs was not understood.
3001: Pool-Mismatch. The corresponding address pool cannot be
found.
3002: Pool-Full. The address pool is fully allocated, and no
address segment is available.
3003: Subnet-Mismatch. The address pool subnet cannot be found.
3004: Subnet-Conflict. Subnets in the address pool have been
classified into other clients.
4001: Update-Fail-No-Res. The forwarding table fails to be delivered
because the forwarding resources are insufficient.
4002: QoS-Update-Success. The QoS policy takes effect.
4003: QoS-Update-Sq-Fail. Failed to process the queue in the QoS
policy.
4004: QoS-Update-CAR-Fail. Processing of the CAR in the QoS policy
fails.
4005: Statistic-Fail-No-Res. Statistics processing failed due to
insufficient statistics resources.
6.3. Event Message
The Event message is used to report subscriber session traffic
statistics and detection information. The format of the Event
message is as follows:
<Event Message> ::= <Common Header>
[<Subscriber Traffic Statistics Report TLV>]
[<Subscriber Detection Result Report TLV>]
6.4. Report Message
The Report message is used to report board and interface status on a
UP. The format of the Report message is as follows:
<Report Message> ::= <Common Header>
[<Board Status TLVs>]
[<Interface Status TLVs>]
6.5. CGN Messages
This document defines the following resource allocation messages:
+------+---------------------+-----------------------------+
| Type | Message Name | TLV that is carried |
+======+=====================+=============================+
| 200 | Addr_Allocation_Req | Address Allocation Request |
+------+---------------------+-----------------------------+
| 201 | Addr_Allocation_Ack | Address Allocation Response |
+------+---------------------+-----------------------------+
| 202 | Addr_Renew_Req | Address Renewal Request |
+------+---------------------+-----------------------------+
| 203 | Addr_Renew_Ack | Address Renewal Response |
+------+---------------------+-----------------------------+
| 204 | Addr_Release_Req | Address Release Request |
+------+---------------------+-----------------------------+
| 205 | Addr_Release_Ack | Address Release Response |
+------+---------------------+-----------------------------+
Table 3: Resource Allocation Messages
6.5.1. Addr_Allocation_Req Message
The Addr_Allocation_Req message is used to request CGN address
allocation. The format of the Addr_Allocation_Req message is as
follows:
<Addr_Allocation_Req Message> ::= <Common Header>
<Address Allocation Request TLV>
6.5.2. Addr_Allocation_Ack Message
The Addr_Allocation_Ack message is a response to an
Addr_Allocation_Req message. The format of the Addr_Allocation_Ack
message is as follows:
<Addr_Allocation_Ack Message> ::= <Common Header>
<Address Allocation Response TLV>
6.5.3. Addr_Renew_Req Message
The Addr_Renew_Req message is used to request address renewal. The
format of the Addr_Renew_Req message is as follows:
<Addr_Renew_Req Message> ::= <Common Header>
<Address Renewal Request TLV>
6.5.4. Addr_Renew_Ack Message
The Addr_Renew_Ack message is a response to an Addr_Renew_Req
message. The format of the Addr_Renew_Req message is as follows:
<Addr_Renew_Ack Message> ::= <Common Header>
<Address Renewal Response TLV>
6.5.5. Addr_Release_Req Message
The Addr_Release_Req message is used to request address release. The
format of the Addr_Release_Req message is as follows:
<Addr_Release_Req Message> ::= <Common Header>
<Address Release Request TLV>
6.5.6. Addr_Release_Ack Message
The Addr_Release_Ack message is a response to an Addr_Release_Req
message. The format of the Addr_Release_Ack message is as follows:
<Addr_Release_Ack Message> ::= <Common Header>
<Address Release Response TLV>
6.6. Vendor Message
The Vendor message, in conjunction with the Vendor TLV and Vendor
sub-TLV, can be used by vendors to extend S-CUSP. The Message-Type
is 11. If the receiver does not recognize the message, an Error
message will be returned to the sender.
The format of the Vendor message is as follows:
<Vendor Message> ::= <Common Header>
<Vendor TLV>
[<any other TLVs as specified by the vendor>]
6.7. Error Message
The Error message is defined to return some critical error
information to the sender. If a receiver does not support the type
of the received message, it MUST return an Error message to the
sender.
The format of the Error message is as below:
<Error Message> ::= <Common Header>
<Error Information TLV>
7. S-CUSP TLVs and Sub-TLVs
This section specifies the following:
* The format of the TLVs that appear in S-CUSP messages,
* The format of the sub-TLVs that appear within the values of some
TLVs, and
* The format of some basic data fields that appear within TLVs or
sub-TLVs.
See Section 8 for a list of all defined TLVs and sub-TLVs.
7.1. Common TLV Header
S-CUSP messages consist of the common header specified in Section 6.1
followed by TLVs formatted as specified in this section.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Oper | TLV-Type | TLV-Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ Value ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 32: Common TLV Header
Oper (4 bits): For Message-Types that specify an operation on a data
set, the Oper field is interpreted as Update, Delete, or Reserved
as specified in Section 8.3. For all other Message-Types, the
Oper field MUST be sent as zero and ignored on receipt.
TLV-Type (12 bits): The type of a TLV. TLV-Type specifies the
interpretation and format of the Value field of the TLV. See
Section 8.2.
TLV-Length (2 bytes): The length of the Value portion of the TLV in
bytes as an unsigned integer.
Value (variable length): This is the portion of the TLV whose size
is given by TLV-Length. It consists of fields, frequently using
one of the basic data field types (see Section 7.2) and sub-TLVs
(see Section 7.3).
7.2. Basic Data Fields
This section specifies the binary format of several standard basic
data fields that are used within other data structures in this
specification.
STRING: 0 to 255 octets. Will be encoded as a sub-TLV (see
Section 7.3) to provide the length. The use of this data type in
S-CUSP is to provide convenient labels for use by network
operators in configuring and debugging their networks and
interpreting S-CUSP messages. Subscribers will not normally see
these labels. They are normally interpreted as ASCII [RFC20].
MAC-Addr: 6 octets. Ethernet MAC address [RFC7042].
IPv4-Address: 8 octets. 4 octets of the IPv4 address value followed
by a 4-octet address mask in the format XXX.XXX.XXX.XXX.
IPv6-Address: 20 octets. 16 octets of the IPv6 address followed by a
4-octet integer n in the range of 0 to 128, which gives the
address mask as the one's complement of 2**(128-n) - 1.
VLAN ID: 2 octets. As follows [802.1Q]:
0 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| PRI |D| VLAN-ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
PRI: Priority. Default value 7.
D: Drop Eligibility Indicator (DEI). Default value 0.
VLAN-ID: Unsigned integer in the range 1-4094. (0 and 4095 are
not valid VLAN IDs [802.1Q].)
7.3. Sub-TLV Format and Sub-TLVs
In some cases, the Value portion of a TLV, as specified in
Section 7.1, can contain one or more sub-TLVs formatted as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Value |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-...
Figure 33: Sub-TLV Header
Type (2 bytes): The type of a sub-TLV. The Type field specifies the
interpretation and format of the Value field of the TLV. Sub-TLV
type values have the same meaning regardless of the TLV type of
the TLV within which the sub-TLV occurs. See Section 8.4.
Length (2 bytes): The length of the Value portion of the sub-TLV in
bytes as an unsigned integer.
Value (variable length): This is the Value portion of the sub-TLV
whose size is given by Length.
The sub-TLVs currently specified are defined in the following
subsections.
7.3.1. Name Sub-TLVs
This document defines the following name sub-TLVs that are used to
carry the name of the corresponding object. The length of each of
these sub-TLVs is variable from 1 to 255 octets. The value is of
type STRING padded with zero octets to a length in octets that is an
integer multiple of 4.
+------+---------------------+------------------------------------+
| Type | Sub-TLV Name | Meaning |
+======+=====================+====================================+
| 1 | VRF-Name | The name of a VRF |
+------+---------------------+------------------------------------+
| 2 | Ingress-QoS-Profile | The name of an ingress QoS profile |
+------+---------------------+------------------------------------+
| 3 | Egress-QoS-Profile | The name of an egress QoS profile |
+------+---------------------+------------------------------------+
| 4 | User-ACL-Policy | The name of an ACL policy |
+------+---------------------+------------------------------------+
| 5 | Multicast-ProfileV4 | The name of an IPv4 multicast |
| | | profile |
+------+---------------------+------------------------------------+
| 6 | Multicast-ProfileV6 | The name of an IPv6 multicast |
| | | profile |
+------+---------------------+------------------------------------+
| 9 | NAT-Instance | The name of a NAT instance |
+------+---------------------+------------------------------------+
| 10 | Pool-Name | The name of an address pool |
+------+---------------------+------------------------------------+
Table 4: Name Sub-TLVs
7.3.2. Ingress-CAR Sub-TLV
The Ingress-CAR sub-TLV indicates the authorized upstream Committed
Access Rate (CAR) parameters. The sub-TLV type of the Ingress-CAR
sub-TLV is 7. The sub-TLV length is 16. The format is as shown in
Figure 34.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| CIR (Committed Information Rate) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| PIR (Peak Information Rate) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| CBS (Committed Burst Size) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| PBS (Peak Burst Size) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 34: Ingress-CAR Sub-TLV
Where:
CIR (4 bytes): Guaranteed rate in bits/second.
PIR (4 bytes): Burst rate in bits/second.
CBS (4 bytes): The token bucket in bytes.
PBS (4 bytes): Burst token bucket in bytes.
These fields are unsigned integers. More details about CIR, PIR,
CBS, and PBS can be found in [RFC2698].
7.3.3. Egress-CAR Sub-TLV
The Egress-CAR sub-TLV indicates the authorized downstream Committed
Access Rate (CAR) parameters. The sub-TLV type of the Egress-CAR
sub-TLV is 8. Its sub-TLV length is 16 octets. The format of the
value part is as defined below.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| CIR (Committed Information Rate) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| PIR (Peak Information Rate) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| CBS (Committed Burst Size) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| PBS (Peak Burst Size) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 35: Egress-CAR Sub-TLV
Where:
CIR (4 bytes): Guaranteed rate in bits/second.
PIR (4 bytes): Burst rate in bits/second.
CBS (4 bytes): The token bucket in bytes.
PBS (4 bytes): Burst token bucket in bytes.
These fields are unsigned integers. More details about CIR, PIR,
CBS, and PBS can be found in [RFC2698].
7.3.4. If-Desc Sub-TLV
The If-Desc sub-TLV is defined to designate an interface. It is an
optional sub-TLV that may be carried in those TLVs that have an If-
Index or Out-If-Index field. The If-Desc sub-TLV is used as a
locally unique identifier within a BNG.
The sub-TLV type is 11. The sub-TLV length is 12 octets. The format
depends on the If-Type (Section 8.6). The format of the value part
is as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| If-Type (1-5)| Chassis | Slot |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Sub-Slot | Port Number |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Sub-Port Number |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
If-Desc Sub-TLV (Physical Port)
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| If-Type (6-7) | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Logic-ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Sub-Port Number |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
If-Desc Sub-TLV (Virtual Port)
Figure 36: If-Desc Sub-TLV Formats
Where:
If-Type: 8 bits in length. The value of this field indicates the
type of an interface. The If-Type values defined in this
document are listed in Section 8.6.
Chassis (8 bits): Identifies the chassis that the interface
belongs to.
Slot (16 bits): Identifies the slot that the interface belongs
to.
Sub-Slot (16 bits): Identifies the sub-slot the interface belongs
to.
Port Number (16 bits): An identifier of a physical port/interface
(e.g., If-Type: 1-5). It is locally significant within the
slot/sub-slot.
Sub-Port Number (32 bits): An identifier of the sub-port.
Locally significant within its "parent" port (physical or
virtual).
Logic-ID (32 bits): An identifier of a virtual interface (e.g.,
If-Type: 6-7).
7.3.5. IPv6 Address List Sub-TLV
The IPv6 Address List sub-TLV is used to convey one or more IPv6
addresses. It is carried in the IPv6 Subscriber TLV. The sub-TLV
type is 12. The sub-TLV length is variable.
The format of the value part of the IPv6 Address List sub-TLV is as
follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ IPv6 Address ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ IPv6 Address ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ ... ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ IPv6 Address ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 37: IPv6 Address List Sub-TLV
Where:
IPv6 Address (IPv6-Address): Each IP Address is of type IP-
Address and carries an IPv6 address and length.
7.3.6. Vendor Sub-TLV
The Vendor sub-TLV is intended to be used inside the Value portion of
the Vendor TLV (Section 7.13). It provides a Sub-Type that
effectively extends the sub-TLV type in the sub-TLV header and
provides for versioning of Vendor sub-TLVs.
The value part of the Vendor sub-TLV is formatted as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Vendor-ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Sub-Type | Sub-Type-Version |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ Value (other as specified by vendor) ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 38: Vendor Sub-TLV
Where:
Sub-TLV type: 13.
Sub-TLV length: Variable.
Vendor-ID (4 bytes): Vendor ID as defined in RADIUS [RFC2865].
Sub-Type (2 bytes): Used by the vendor to distinguish multiple
different sub-TLVs.
Sub-Type-Version (2 bytes): Used by the vendor to distinguish
different versions of a vendor-defined sub-TLV Sub-Type.
Value: As specified by the vendor.
Since vendor code will be handling the sub-TLV after the Vendor-ID
field is recognized, the remainder of the sub-TLV can be organized
however the vendor wants. But it desirable for a vendor to be able
to define multiple different Vendor sub-TLVs and to keep track of
different versions of its vendor-defined sub-TLVs. Thus, it is
RECOMMENDED that the vendor assign a Sub-Type value for each of that
vendor's sub-TLVs that is different from other Sub-Type values that
vendor has used. Also, when modifying a vendor-defined sub-TLV in a
way potentially incompatible with a previous definition, the vendor
SHOULD increase the value it is using in the Sub-Type-Version field.
7.4. Hello TLV
The Hello TLV is defined to be carried in the Hello message for
version and capabilities negotiation. It indicates the S-CUSP sub-
version and capabilities supported. The format of the value part of
the Hello TLV is as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| VerSupported |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Vendor-ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Capabilities |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 39: Hello TLV
Where:
TLV type: 100.
TLV length: 12 octets.
VerSupported: 32 bits in length. It is a bit map of the Sub-
Versions of S-CUSP that the sender supports. This document
specifies Sub-Version zero of Major Version 1, that is, Version
1.0. The VerSupported field MUST be nonzero. The VerSupported
bits are numbered from 0 as the most significant bit. Bit 0
indicates support of Sub-Version zero, bit 1 indicates support
of Sub-Version one, etc.
Vendor-ID: 4 bytes in length. Vendor ID, as defined in RADIUS
[RFC2865].
Capabilities: 32 bits in length. Flags that indicate the support
of particular capabilities by the sender of the Hello. No
capabilities are defined in this document, so implementations
of the version specified herein will set this field to zero.
The Capabilities field of the Hello TLV MUST be checked before
any other TLVs in the Hello because capabilities defined in the
future might extend existing TLVs or permit new TLVs.
After the exchange of Hello messages, the CP and UP each perform a
logical AND of the Sub-Version supported by the CP and the UP and
separately perform a logical AND of the Capabilities field for the CP
and the UP.
If the result of the AND of the Sub-Versions supported is zero, then
no session can be established, and the connection is torn down. If
the result of the AND of the Sub-Versions supported is nonzero, then
the session uses the highest Sub-Version supported by both the CP and
UP.
For example, if one side supports Sub-Versions 1, 3, 4, and 5
(VerSupported = 0x5C000000) and the other side supports 2, 3, and 4
(VerSupported = 0x38000000), then 3 and 4 are the Sub-Versions in
common, and 4 is the highest Sub-Version supported by both sides. So
Sub-Version 4 is used for the session that has been negotiated.
The result of the logical AND of the Capabilities bits will show what
additional capabilities both sides support. If this result is zero,
there are no such capabilities, so none can be used during the
session. If this result is nonzero, it shows the additional
capabilities that can be used during the session. The CP and the UP
MUST NOT use a capability unless both advertise support.
7.5. Keepalive TLV
The Keepalive TLV is carried in the Hello message. It provides
timing information for this feature. The format of the value part of
the Keepalive TLV is as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Keepalive | DeadTimer | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 40: Keepalive TLV
Where:
TLV type: 102.
TLV length: 4 octets.
Keepalive (8 bits): Indicates the maximum interval (in seconds)
between two consecutive S-CUSP messages sent by the sender of
the message containing this TLV as an unsigned integer. The
minimum value for the Keepalive field is 1 second. When set to
0, once the session is established, no further Keepalive
messages are sent to the remote peer. A RECOMMENDED value for
the Keepalive frequency is 30 seconds.
DeadTimer (8 bits in length): Specifies the amount of time as an
unsigned integer number of seconds, after the expiration of
which, the S-CUSP peer can declare the session with the sender
of the Hello message to be down if no S-CUSP message has been
received. The DeadTimer SHOULD be set to 0 and MUST be ignored
if the Keepalive is set to 0. A RECOMMENDED value for the
DeadTimer is 4 times the value of the Keepalive.
Reserved: The Reserved bits MUST be sent as zero and ignored on
receipt.
7.6. Error Information TLV
The Error Information TLV is a common TLV that can be used in many
responses (e.g., Update_Response message) and ACK messages (e.g.,
Addr_Allocation_Ack message). It is used to convey the information
about an error in the received S-CUSP message. The format of the
value part of the Error Information TLV is as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Message-Type | Reserved | TLV-Type |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Error Code |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 41: Error Information TLV
Where:
TLV type: 101.
TLV length: 8 octets.
Message-Type (1 byte): This parameter is the message type of the
message containing an error.
Reserved (1 byte): MUST be sent as zero and ignored on receipt.
TLV-Type (2 bytes): Indicates which TLV caused the error.
Error Code: 4 bytes in length. Indicate the specific Error Code
(see Section 8.5).
7.7. BAS Function TLV
The BAS Function TLV is used by a CP to control the access mode,
authentication methods, and other related functions of an interface
on a UP.
The format of the BAS Function TLV value part is as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| If-Index |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Access-Mode | Auth-Method4 | Auth-Method6 | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Flags |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Sub-TLVs (optional) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 42: BAS Function TLV
Where:
TLV type: 1.
TLV length: Variable.
If-Index: 4 bytes in length, a unique identifier of an interface
of a BNG.
Access-Mode: 1 byte in length. It indicates the access mode of
the interface. The defined values are listed in Section 8.7.
Auth-Method4: 1 byte in length. It indicates the authentication
on this interface for the IPv4 scenario. This field is defined
as a bitmap. The bits defined in this document are listed in
Section 8.8. Other bits are reserved and MUST be sent as zero
and ignored on receipt.
Auth-Method6: 1 byte in length. It indicates the authentication
on this interface for the IPv6 scenario. This field is defined
as a bitmap. The bits defined in this document are listed in
Section 8.8. Other bits are reserved and MUST be sent as zero
and ignored on receipt.
Sub-TLVs: The IF-Desc sub-TLV can be carried.
If-Desc sub-TLV: Carries the interface information.
Flags: The Flags field is defined as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MBZ |Y|X|P|I|N|A|S|F|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 43: Interface Flags
Where:
F (IPv4 Trigger) bit: Indicates whether IPv4 packets can trigger
a subscriber to go online.
1: Enabled.
0: Disabled.
S (IPv6 Trigger) bit: Indicates whether IPv6 packets can trigger
a subscriber to go online.
1: Enabled.
0: Disabled.
A (ARP Trigger) bit: Indicates whether ARP packets can trigger a
subscriber to go online.
1: Enabled.
0: Disabled.
N (ND Trigger) bit: Indicates whether ND packets can trigger a
subscriber to go online.
1: Enabled.
0: Disabled.
I (IPoE-Flow-Check): Used for UP detection.
1: Enable traffic detection.
0: Disable traffic detection.
P (PPP-Flow-Check) bit: Used for UP detection.
1: Enable traffic detection.
0: Disable traffic detection.
X (ARP-Proxy) bit: Indicates whether ARP proxy is enabled on the
interface.
1: The interface is enabled with ARP proxy and can process ARP
requests across different network ports and VLANs.
0: The ARP proxy is not enabled on the interface and only the
ARP requests of the same network port and VLAN are
processed.
Y (ND-Proxy) bit: Indicates whether ND proxy is enabled on the
interface.
1: The interface is enabled with ND proxy and can process ND
requests across different network ports and VLANs.
0: The ND proxy is not enabled on the interface and only the
ND requests of the same network port and VLAN are processed.
MBZ: Reserved bits that MUST be sent as zero and ignored on
receipt.
7.8. Routing TLVs
Typically, after an S-CUSP session is established between a UP and a
CP, the CP will allocate one or more blocks of IP addresses to the
UP. Those IP addresses will be allocated to subscribers who will
dial-up (as defined in Section 4.3.1) to the UP. To make sure that
other nodes within the network learn how to reach those IP addresses,
the CP needs to install one or more routes that can reach those IP
addresses on the UP and notify the UP to advertise the routes to the
network.
The Routing TLVs are used by a CP to notify a UP of the updates to
network routing information. They can be carried in the
Update_Request message and Sync_Data message.
7.8.1. IPv4 Routing TLV
The IPv4 Routing TLV is used to carry information related to IPv4
network routing.
The format of the TLV value part is as below:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| User-ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Dest-Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Next-Hop |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Out-If-Index |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Cost |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Tag |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Route-Type | Reserved |A|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ Sub-TLVs (optional) ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 44: IPv4 Routing TLV
Where:
TLV type: 7.
TLV length: Variable.
User-ID: 4 bytes in length. This field carries the user
identifier. It is filled with all Fs when a non-user route is
delivered to the UP.
Dest-Address (IPv4-Address type): Identifies the destination
address.
Next-Hop (IPv4-Address type): Identifies the next-hop address.
Out-If-Index (4 bytes): Indicates the interface index.
Cost (4 bytes): The cost value of the route.
Tag (4 bytes): The tag value of the route.
Route-Type (2 bytes): The value of this field indicates the route
type. The values defined in this document are listed in
Section 8.9.
Advertise-Flag: 1 bit shown as "A" in the figure above
(Figure 44). Indicates whether the UP should advertise the
route. The following flag values are defined:
0: Not advertised.
1: Advertised.
Sub-TLVs: The VRF-Name and/or If-Desc sub-TLVs can be carried.
VRF-Name sub-TLV: Indicates which VRF the route belongs to.
If-Desc sub-TLV: Carries the interface information.
Reserved: The Reserved field MUST be sent as zero and ignored on
receipt.
7.8.2. IPv6 Routing TLV
The IPv6 Routing TLV is used to carry IPv6 network routing
information.
The format of the value part of this TLV is as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| User-ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ IPv6 Dest-Address ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ IPv6 Next-Hop ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Out-If-Index |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Cost |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Tag |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Route-Type | Reserved |A|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ Sub-TLVs (optional) ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 45: IPv6 Routing TLV
Where:
TLV type: 8.
TLV length: Variable.
User-ID: 4 bytes in length. This field carries the user
identifier. This field is filled with all Fs when a non-user
route is delivered to the UP.
IPv6 Dest-Address (IPv6-Address type): Identifies the destination
address.
IPv6 Next-Hop (IPv6-Address type): Identifies the next-hop
address.
Out-If-Index (4 bytes): Indicates the interface index.
Cost (4 bytes): This is the cost value of the route.
Tag (4 bytes): The tag value of the route.
Route-Type (2 bytes): The value of this field indicates the route
type. The values defined in this document are listed in
Section 8.9.
Advertise-Flag: 1 bit shown as "A" in the figure above
(Figure 45). Indicates whether the UP should advertise the
route. The following flags are defined:
0: Not advertised.
1: Advertised.
Sub-TLVs: The If-Desc and VRF-Name sub-TLVs can be carried.
VRF-Name sub-TLV: Indicates the VRF to which the subscriber
belongs.
If-Desc sub-TLV: Carries the interface information.
Reserved: The Reserved field MUST be sent as zero and ignored on
receipt.
7.9. Subscriber TLVs
The Subscriber TLVs are defined for a CP to send the basic
information about a user to a UP.
7.9.1. Basic Subscriber TLV
The Basic Subscriber TLV is used to carry the common information for
all kinds of access subscribers. It is carried in an Update_Request
message.
The format of the Basic Subscriber TLV value part is as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| User-ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Session-ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| User-MAC |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| User-MAC (cont.) | Oper-ID | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Access-Type |Sub-Access-Type| Account-Type | Address Family|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| C-VID | P-VID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Detect-Times | Detect-Interval |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| If-Index |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ Sub-TLVs (optional) ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 46: Basic Subscriber TLV
Where:
TLV type: 2.
TLV length: Variable.
User-ID (4 bytes): The identifier of a subscriber.
Session-ID (4 bytes): Session ID of a PPPoE subscriber. The
value zero identifies a non-PPPoE subscriber.
User-MAC (MAC-Addr type): The MAC address of a subscriber.
Oper-ID (1 byte): Indicates the ID of an operation performed by a
user. This field is carried in the response from the UP.
Reserved (1 byte): MUST be sent as zero and ignored on receipt.
Access-Type (1 byte): Indicates the type of subscriber access.
Values defined in this document are listed in Section 8.10.
Sub-Access-Type (1 byte): Indicates whether PPP termination or
PPP relay is used.
0: Reserved.
1: PPP Relay (for LAC).
2: PPP termination (for LNS).
Account-Type (1 byte): Indicates whether traffic statistics are
collected independently.
0: Collects statistics on IPv4 and IPv6 traffic of terminals
independently.
1: Collects statistics on IPv4 and IPv6 traffic of terminals.
Address Family (1 byte): The type of IP address.
1: IPv4.
2: IPv6.
3: Dual stack.
C-VID (VLAN-ID): Indicates the inner VLAN ID. The value 0
indicates that the VLAN ID is invalid. The default value of
PRI is 7, the value of DEI is 0, and the value of VID is
1-4094. The PRI value can also be obtained by parsing terminal
packets.
P-VID (VLAN-ID): Indicates the outer VLAN ID. The value 0
indicates that the VLAN ID is invalid. The format is the same
as that for C-VID.
Detect-Times (2 bytes): Number of detection timeout times. The
value 0 indicates that no detection is performed.
Detect-Interval (2 bytes): Detection interval in seconds.
If-Index (4 bytes): Interface index.
Sub-TLVs: The VRF-Name sub-TLV and If-Desc sub-TLV can be
carried.
VRF-Name sub-TLV: Indicates the VRF to which the subscriber
belongs.
If-Desc sub-TLV: Carries the interface information.
Reserved: The Reserved field MUST be sent as zero and ignored on
receipt.
7.9.2. PPP Subscriber TLV
The PPP Subscriber TLV is defined to carry PPP information of a user
from a CP to a UP. It will be carried in an Update_Request message
when PPPoE or L2TP access is used.
The format of the TLV value part is as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| User-ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MSS-Value | Reserved |M|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MRU | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Magic-Number |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Peer-Magic-Number |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 47: PPP Subscriber TLV
Where:
TLV type: 3.
TLV length: 12 octets.
User-ID (4 bytes): The identifier of a subscriber.
MSS-Value (2 bytes): Indicates the MSS value (in bytes).
MSS-Enable (M) (1 bit): Indicates whether the MSS is enabled.
0: Disabled.
1: Enabled.
MRU (2 bytes): PPPoE local MRU (in bytes).
Magic-Number (4 bytes): Local magic number in PPP negotiation
packets.
Peer-Magic-Number (4 bytes): Remote peer magic number.
Reserved: The Reserved fields MUST be sent as zero and ignored on
receipt.
7.9.3. IPv4 Subscriber TLV
The IPv4 Subscriber TLV is defined to carry IPv4-related information
for a BNG user. It will be carried in an Update_Request message when
IPv4 IPoE or PPPoE access is used.
The format of the TLV value part is as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| User-ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| User-IPv4 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Gateway-IPv4 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MTU | Reserved |U|E|W|P|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ VRF-Name Sub-TLV ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 48: IPv4 Subscriber TLV
Where:
TLV type: 4.
TLV length: Variable.
User-ID (4 bytes): The identifier of a subscriber.
User-IPv4 (IPv4-Address): The IPv4 address of the subscriber.
Gateway-IPv4 (IPv4-Address): The gateway address of the
subscriber.
Portal-Force (P) (1 bit): Push advertisement.
0: Off.
1: On.
Web-Force (W) (1 bit): Push IPv4 Web.
0: Off.
1: On.
Echo-Enable (E) (1 bit): UP returns ARP Req or PPP Echo.
0: Off.
1: On.
IPv4-URPF (U) (1 bit): User Unicast Reverse Path Forwarding
(URPF) flag.
0: Off.
1: On.
MTU (2 bytes): MTU value. The default value is 1500.
VRF-Name Sub-TLV: Indicates the subscriber belongs to which VRF.
Reserved: The Reserved field MUST be sent as zero and ignored on
receipt.
7.9.4. IPv6 Subscriber TLV
The IPv6 Subscriber TLV is defined to carry IPv6-related information
for a BNG user. It will be carried in an Update_Request message when
IPv6 IPoE or PPPoE access is used.
The format of the TLV value part is as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| User-ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ User PD-Address (IPv6 Address List Sub-TLV) ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ Gateway ND-Address (IPv6 Address List Sub-TLV) ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| User Link-Local-Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| IPv6 Interface ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| IPv6 Interface ID (cont.) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MTU | Reserved |U|E|W|P|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ VRF Name Sub-TLV (optional) ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 49: IPv6 Subscriber TLV
Where:
TLV type: 5.
TLV length: Variable.
User-ID (4 bytes): The identifier of a subscriber.
User PD-Addresses (IPv6 Address List): Carries a list of Prefix
Delegation (PD) addresses of the subscriber.
User ND-Addresses (IPv6 Address List): Carries a list of Neighbor
Discovery (ND) addresses of the subscriber.
User Link-Local-Address (IPv6-Address): The link-local address of
the subscriber.
IPv6 Interface ID (8 bytes): The identifier of an IPv6 interface.
Portal-Force 1 bit (P): Push advertisement.
0: Off.
1: On.
Web-Force 1 bit (W): Push IPv6 Web.
0: Off.
1: On.
Echo-Enable 1 bit (E): The UP returns ARP Req or PPP Echo.
0: Off.
1: On.
IPv6-URPF 1 bit (U): User Reverse Path Forwarding (URPF) flag.
0: Off.
1: On.
MTU (2 bytes): The MTU value. The default value is 1500.
VRF-Name Sub-TLV: Indicates the VRF to which the subscriber
belongs.
Reserved: The Reserved field MUST be sent as zero and ignored on
receipt.
7.9.5. IPv4 Static Subscriber Detect TLV
The IPv4 Static Subscriber Detect TLV is defined to carry
IPv4-related information for a static access subscriber. It will be
carried in an Update_Request message when IPv4 static access on a UP
needs to be enabled.
The format of the TLV value part is as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| If-Index |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| C-VID | P-VID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| User Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Gateway Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| User-MAC |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| User-MAC (cont.) | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ Sub-TLVs (optional) ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 50: IPv4 Static Subscriber TLV
Where:
TLV type: 9.
TLV length: Variable.
If-Index (4 bytes): The interface index of the interface from
which the subscriber will dial-up.
C-VID (VLAN-ID): Indicates the inner VLAN ID. The value 0
indicates that the VLAN ID is invalid. A valid value is
1-4094.
P-VID (VLAN-ID): Indicates the outer VLAN ID. The value 0
indicates that the VLAN ID is invalid. The format is the same
as that of the C-VID. A valid value is 1-4094.
User Address (IPv4-Addr): The user's IPv4 address.
Gateway Address (IPv4-Addr): The gateway's IPv4 address.
User-MAC (MAC-Addr type): The MAC address of the subscriber.
Sub-TLVs: The VRF-Name and If-Desc sub-TLVs may be carried.
VRF-Name sub-TLV: Indicates the VRF to which the subscriber
belongs.
If-Desc sub-TLV: Carries the interface information.
Reserved: The Reserved field MUST be sent as zero and ignored on
receipt.
7.9.6. IPv6 Static Subscriber Detect TLV
The IPv6 Static Subscriber Detect TLV is defined to carry
IPv6-related information for a static access subscriber. It will be
carried in an Update_Request message when needed to enable IPv6
static subscriber detection on a UP.
The format of the TLV value part is as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| If-Index |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| C-VID | P-VID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ User Address ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ Gateway Address ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| User-MAC |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| User-MAC (cont.) | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ Sub-TLVs (optional) ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 51: IPv6 Static Subscriber Detect TLV
Where:
TLV type: 10.
TLV length: Variable.
If-Index (4 bytes): The interface index of the interface from
which the subscriber will dial-up.
C-VID (VLAN-ID): Indicates the inner VLAN ID. The value 0
indicates that the VLAN ID is invalid. A valid value is
1-4094.
P-VID (VLAN-ID): Indicates the outer VLAN ID. The value 0
indicates that the VLAN ID is invalid. The format is the same
as that the of C-VID. A valid value is 1-4094.
User Address (IPv6-Address type): The subscriber's IPv6 address.
Gateway Address (IPv6-Address type): The gateway's IPv6 Address.
User-MAC (MAC-Addr type): The MAC address of the subscriber.
Sub-TLVs: VRF-Name and If-Desc sub-TLVs may be carried
VRF-Name sub-TLV: Indicates the VRF to which the subscriber
belongs.
If-Desc sub-TLV: Carries the interface information.
Reserved: The Reserved field MUST be sent as zero and ignored on
receipt.
7.9.7. L2TP-LAC Subscriber TLV
The L2TP-LAC Subscriber TLV is defined to carry the related
information for an L2TP LAC access subscriber. It will be carried in
an Update_Request message when L2TP LAC access is used.
The format of the TLV value part is as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| User-ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Local-Tunnel-ID | Local-Session-ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Remote-Tunnel-ID | Remote-Session-ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 52: L2TP-LAC Subscriber TLV
Where:
TLV type: 11.
TLV length: 12 octets.
User-ID (4 bytes): The identifier of a user/subscriber.
Local-Tunnel-ID (2 bytes): The local ID of the L2TP tunnel.
Local-Session-ID (2 bytes): The local session ID with the L2TP
tunnel.
Remote-Tunnel-ID (2 bytes): The identifier of the L2TP tunnel at
the remote endpoint.
Remote-Session-ID (2 bytes): The session ID of the L2TP tunnel at
the remote endpoint.
7.9.8. L2TP-LNS Subscriber TLV
The L2TP-LNS Subscriber TLV is defined to carry the related
information for a L2TP LNS access subscriber. It will be carried in
an Update_Request message when L2TP LNS access is used.
The format of the TLV value part is as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| User-ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Local-Tunnel-ID | Local-Session-ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Remote-Tunnel-ID | Remote-Session-ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 53: L2TP-LNS Subscriber TLV
Where:
TLV type: 12.
TLV length: 12 octets.
User-ID (4 bytes): The identifier of a user/subscriber.
Local-Tunnel-ID (2 bytes): The local ID of the L2TP tunnel.
Local-Session-ID (2 bytes): The local session ID with the L2TP
tunnel.
Remote-Tunnel-ID (2 bytes): The identifier of the L2TP tunnel at
the remote endpoint.
Remote-Session-ID (2 bytes): The session ID of the L2TP tunnel at
the remote endpoint.
7.9.9. L2TP-LAC Tunnel TLV
The L2TP-LAC Tunnel TLV is defined to carry information related to
the L2TP LAC tunnel. It will be carried in the Update_Request
message when L2TP LAC access is used.
The format of the TLV value part is as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Local-Tunnel-ID | Remote-Tunnel-ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Source-Port | Dest-Port |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ Source-IP ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ Dest-IP ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ VRF-Name Sub-TLV ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 54: L2TP-LAC Tunnel TLV
Where:
TLV type: 13.
TLV length: Variable.
Local-Tunnel-ID (2 bytes): The local ID of the L2TP tunnel.
Remote-Tunnel-ID (2 bytes): The remote ID of the L2TP tunnel.
Source-Port (2 bytes): The source UDP port number of an L2TP
subscriber.
Dest-Port (2 bytes): The destination UDP port number of an L2TP
subscriber.
Source-IP (IPv4/v6): The source IP address of the tunnel.
Dest-IP (IPv4/v6): The destination IP address of the tunnel.
VRF-Name Sub-TLV: The VRF name to which the L2TP subscriber
tunnel belongs.
7.9.10. L2TP-LNS Tunnel TLV
The L2TP-LNS Tunnel TLV is defined to carry information related to
the L2TP LNS tunnel. It will be carried in the Update_Request
message when L2TP LNS access is used.
The format of the TLV value part is as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Local-Tunnel-ID | Remote-Tunnel-ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Source-Port | Dest-Port |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ Source-IP ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ Dest-IP ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ VRF-Name Sub-TLV ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 55: L2TP-LNS Tunnel TLV
Where:
TLV type: 14.
TLV length: Variable.
Local-Tunnel-ID (2 bytes): The local ID of the L2TP tunnel.
Remote-Tunnel-ID (2 bytes): The remote ID of the L2TP tunnel.
Source-Port (2 bytes): The source UDP port number of an L2TP
subscriber.
Dest-Port (2 bytes): The destination UDP port number of an L2TP
subscriber.
Source-IP (IPv4/v6): The source IP address of the tunnel.
Dest-IP (IPv4/v6): The destination IP address of the tunnel.
VRF-Name Sub-TLV: The VRF name to which the L2TP subscriber
tunnel belongs.
7.9.11. Update Response TLV
The Update Response TLV is used to return the operation result of an
update request. It is carried in the Update_Response message as a
response to the Update_Request message.
The format of the value part of the Update Response TLV is as
follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| User-ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| User-Trans-ID | Oper-Code | Oper-Result | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Error-Code |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 56: Update Response TLV
Where:
TLV type: 302.
TLV length: 12.
User-ID (4 bytes): A unique identifier of a user/subscriber.
User-Trans-ID (1 byte): In the case of dual-stack access or when
modifying a session, User-Trans-ID is used to identify a user
operation transaction. It is used by the CP to correlate a
response to a specific request.
Oper-Code (1 byte): Operation code.
1: Update.
2: Delete.
Oper-Result (1 byte): Operation Result.
0: Success.
Others: Failure.
Error-Code (4 bytes): Operation failure cause code. For details,
see Section 8.5.
Reserved: The Reserved field MUST be sent as zero and ignored on
receipt.
7.9.12. Subscriber Policy TLV
The Subscriber Policy TLV is used to carry the policies that will be
applied to a subscriber. It is carried in the Update_Request
message.
The format of the TLV value part is as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| User-ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| I-Priority | E-Priority | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ Sub-TLVs ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 57: Subscriber Policy TLV
Where:
TLV type: 6.
TLV length: Variable.
User-ID (4 bytes): The identifier of a user/subscriber.
Ingress-Priority (1 byte): Indicates the upstream priority. The
value range is 0~7.
Egress-Priority (1 byte): Indicates the downstream priority. The
value range is 0~7.
Sub-TLVs: The sub-TLVs that are present can occur in any order.
Ingress-CAR sub-TLV: Upstream CAR.
Egress-CAR sub-TLV: Downstream CAR.
Ingress-QoS-Profile sub-TLV: Indicates the name of the QoS-
Profile that is the profile in the upstream direction.
Egress-QoS-Profile sub-TLV: Indicates the name of the QoS-
Profile that is the profile in the downstream direction.
User-ACL-Policy sub-TLV: All ACL user policies, including
v4ACLIN, v4ACLOUT, v6ACLIN, v6ACLOUT, v4WEBACL, v6WEBACL,
v4SpecialACL, and v6SpecialACL.
Multicast-Profile4 sub-TLV: IPv4 multicast policy name.
Multicast-Profile6 sub-TLV: IPv6 multicast policy name.
NAT-Instance sub-TLV: Indicates the instance ID of a NAT user.
Reserved: The Reserved field MUST be sent as zero and ignored on
receipt.
7.9.13. Subscriber CGN Port Range TLV
The Subscriber CGN Port Range TLV is used to carry the NAT public
address and port range. It will be carried in the Update_Response
message when CGN is used.
The format of the value part of this TLV is as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| User-ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| NAT-Port-Start | NAT-Port-End |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| NAT-Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 58: Subscriber CGN Port Range TLV
Where:
TLV type: 15.
TLV length: 12 octets.
User-ID (4 bytes): The identifier of a user/subscriber.
NAT-Port-Start (2 bytes): The start port number.
NAT-Port-End (2 bytes): The end port number.
NAT-Address (4 bytes): The NAT public network address.
7.10. Device Status TLVs
The TLVs in this section are for reporting interface and board-level
information from the UP to the CP.
7.10.1. Interface Status TLV
The Interface Status TLV is used to carry the status information of
an interface on a UP. It is carried in a Report message.
The format of the value part of this TLV is as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| If-Index |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAC-Address (upper part) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MAC-Address (lower part) | Phy-State | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| MTU |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Sub-TLVs (optional) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 59: Interface Status TLV
Where:
TLV type: 200.
TLV length: Variable.
If-Index (4 bytes): Indicates the interface index.
MAC-Address (MAC-Addr type): Interface MAC address.
Phy-State (1 byte): Physical status of the interface.
0: Down.
1: Up.
MTU (4 bytes): Interface MTU value.
Sub-TLVs: The If-Desc and VRF-Name sub-TLVs can be carried.
Reserved: The Reserved field MUST be sent as zero and ignored on
receipt.
7.10.2. Board Status TLV
The Board Status TLV is used to carry the status information of a
board on an UP. It is carried in a Report message.
The format of the value part of the Board Status TLV is as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Board-Type | Board-State | Reserved | Chassis |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Slot | Sub-Slot |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 60: Board Status TLV
Where:
TLV type: 201.
TLV length: 8 octets.
Chassis (1 byte): The chassis number of the board.
Slot (16 bits): The slot number of the board.
Sub-Slot (16 bits): The sub-slot number of the board.
Board-Type (1 byte): The type of board used.
1: CGN Service Process Unit (SPU) board.
2: Line Process Unit (LPU) board.
Board-State (1 byte): Indicates whether there are issues with the
board.
0: Normal.
1: Abnormal.
Reserved: The Reserved field MUST be sent as zero and ignored on
receipt.
7.11. CGN TLVs
7.11.1. Address Allocation Request TLV
The Address Allocation Request TLV is used to request address
allocation from the CP. A Pool-Name sub-TLV is carried to indicate
from which address pool to allocate addresses. The Address
Allocation Request TLV is carried in the Addr_Allocation_Req message.
The format of the value part of this TLV is as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ Pool-Name Sub-TLV ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 61: Address Allocation Request TLV
Where:
TLV type: 400.
TLV length: Variable.
Pool-Name sub-TLV: Indicates from which address pool to allocate
address.
7.11.2. Address Allocation Response TLV
The Address Allocation Response TLV is used to return the address
allocation result; it is carried in the Addr_Allocation_Ack message.
The value part of the Address Allocation Response TLV is formatted as
follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Lease Time |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Client-IP |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Client-IP (cont.) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Error-Code |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ Pool-Name Sub-TLV ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 62: Address Allocation Response TLV
Where:
TLV type: 401.
TLV length: Variable.
Lease Time (4 bytes): Duration of address lease in seconds.
Client-IP (IPv4-Address type): The allocated IPv4 address and
mask.
Error-Code (4 bytes): Indicates success or an error.
0: Success.
1: Failure.
3001: Pool-Mismatch. The corresponding address pool cannot be
found.
3002: Pool-Full. The address pool is fully allocated, and no
address segment is available.
Pool-Name sub-TLV: Indicates from which address pool the address
is allocated.
7.11.3. Address Renewal Request TLV
The Address Renewal Request TLV is used to request address renewal
from the CP. It is carried in the Addr_Renew_Req message.
The format of this TLV value is as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Client-IP |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Client-IP (cont.) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ Pool-Name Sub-TLV ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 63: Address Renewal Request TLV
Where:
TLV type: 402.
TLV length: Variable.
Client-IP (IPv4-Address type): The IPv4 address and mask to be
renewed.
Pool-Name sub-TLV: Indicates from which address pool to renew the
address.
7.11.4. Address Renewal Response TLV
The Address Renewal Response TLV is used to return the address
renewal result. It is carried in the Addr_Renew_Ack message.
The format of this TLV value is as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Client-IP |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Client-IP (cont.) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Error-Code |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ Pool-Name Sub-TLV ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 64: Address Renewal Response TLV
Where:
TLV type: 403.
TLV length: Variable.
Client-IP (IPv4-Address type): The renewed IPv4 address and mask.
Error-Code (4 bytes): Indicates success or an error:
0: Success.
1: Failure.
3001: Pool-Mismatch. The corresponding address pool cannot be
found.
3002: Pool-Full. The address pool is fully allocated, and no
address segment is available.
3003: Subnet-Mismatch. The address pool subnet cannot be
found.
3004: Subnet-Conflict. Subnets in the address pool have been
assigned to other clients.
Pool-Name sub-TLV: Indicates from which address pool to renew the
address.
7.11.5. Address Release Request TLV
The Address Release Request TLV is used to release an IPv4 address.
It is carried in the Addr_Release_Req message.
The value part of this TLV is formatted as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Client-IP |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Client-IP (cont.) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ Pool-Name sub-TLV ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 65: Address Release Request TLV
Where:
TLV type: 404.
TLV length: Variable.
Client-IP (IPv4-Address type): The IPv4 address and mask to be
released.
Pool-Name sub-TLV: Indicates from which address pool to release
the address.
7.11.6. Address Release Response TLV
The Address Release Response TLV is used to return the address
release result. It is carried in the Addr_Release_Ack message.
The format of the value part of this TLV is as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Client-IP |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Client-IP (cont.) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Error-Code |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ Pool-Name sub-TLV ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 66: Address Release Response TLV
Where:
TLV type: 405.
TLV length: Variable.
Client-IP (IPv4-Address type): The released IPv4 address and
mask.
Error-Code (4 bytes): Indicates success or an error.
0: Success. Address release success.
1: Failure. Address release failed.
3001: Pool-Mismatch. The corresponding address pool cannot be
found.
3003: Subnet-Mismatch. The address cannot be found.
3004: Subnet-Conflict. The address has been allocated to
another subscriber.
Pool-Name sub-TLV: Indicates from which address pool to release
the address.
7.12. Event TLVs
7.12.1. Subscriber Traffic Statistics TLV
The Subscriber Traffic Statistics TLV is used to return the traffic
statistics of a user/subscriber. The format of the value part of
this TLV is as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| User-ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Statistics-Type |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Ingress Packets (upper part) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Ingress Packets (lower part) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Ingress Bytes (upper part) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Ingress Bytes (lower part) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Ingress Loss Packets (upper part) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Ingress Loss Packets (lower part) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Ingress Loss Bytes (upper part) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Ingress Loss Bytes (lower part) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Egress Packets (upper part) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Egress Packets (lower part) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Egress Bytes (upper part) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Egress Bytes (lower part) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Egress Loss Packets (upper part) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Egress Loss Packets (lower part) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Egress Loss Bytes (upper part) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Egress Loss Bytes (lower part) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 67: Subscriber Traffic Statistics TLV
Where:
TLV type: 300.
TLV length: 72 octets.
User-ID (4 bytes): The subscriber identifier.
Statistics-Type (4 bytes): Traffic type. It can be one of the
following options:
0: IPv4 traffic.
1: IPv6 traffic.
2: Dual-stack traffic.
Ingress Packets (8 bytes): The number of the packets in the
upstream direction.
Ingress Bytes (8 bytes): The bytes of the upstream traffic.
Ingress Loss Packets (8 bytes): The number of the lost packets in
the upstream direction.
Ingress Loss Bytes (8 bytes): The bytes of the lost upstream
packets.
Egress Packets (8 bytes): The number of the packets in the
downstream direction.
Egress Bytes (8 bytes): The bytes of the downstream traffic.
Egress Loss Packets (8 bytes): The number of the lost packets in
the downstream direction.
Egress Loss Bytes (8 bytes): The bytes of the lost downstream
packets.
7.12.2. Subscriber Detection Result TLV
The Subscriber Detection Result TLV is used to return the detection
result of a subscriber. Subscriber detection is a function to detect
whether or not a subscriber is online. The result can be used by the
CP to determine how to deal with the subscriber session (e.g., delete
the session if detection failed).
The format of this TLV value part is as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| User-ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Detect-Type | Detect-Result | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 68: Subscriber Detection Result TLV
Where:
TLV type: 301.
TLV length: 8 octets.
User-ID (4 bytes): The subscriber identifier.
Detect-Type (1 byte): Type of traffic detected.
0: IPv4 detection.
1: IPv6 detection.
2: PPP detection.
Detect-Result (1 byte): Indicates whether the detection was
successful.
0: Indicates that the detection is successful.
1: Detection failure. The UP needs to report only when the
detection fails.
Reserved: The Reserved field MUST be sent as zero and ignored on
receipt.
7.13. Vendor TLV
The Vendor TLV occurs as the first TLV in the Vendor message
(Section 6.6). It provides a Sub-Type that effectively extends the
message type in the message header, provides for versioning of vendor
TLVs, and can accommodate sub-TLVs.
The value part of the Vendor TLV is formatted as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Vendor-ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Sub-Type | Sub-Type-Version |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ Sub-TLVs (optional) ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 69: Vendor TLV
Where:
TLV type: 1024.
TLV length: Variable.
Vendor-ID (4 bytes): Vendor ID as defined in RADIUS [RFC2865].
Sub-Type (2 bytes): Used by the vendor to distinguish multiple
different vendor messages.
Sub-Type-Version (2 bytes): Used by the vendor to distinguish
different versions of a vendor-defined message Sub-Type.
Sub-TLVs (variable): Sub-TLVs as specified by the vendor.
Since vendor code will be handling the TLV after the Vendor-ID field
is recognized, the remainder of the TLV values can be organized
however the vendor wants. But it is desirable for a vendor to be
able to define multiple different vendor messages and to keep track
of different versions of its vendor-defined messages. Thus, it is
RECOMMENDED that the vendor assign a Sub-Type value for each vendor
message that it defines different from other Sub-Type values that
vendor has used. Also, when modifying a vendor-defined message in a
way potentially incompatible with a previous definition, the vendor
SHOULD increase the value it is using in the Sub-Type-Version field.
8. Tables of S-CUSP Codepoints
This section provides tables of the S-CUSP codepoints, particularly
message types, TLV types, TLV operation codes, sub-TLV types, and
error codes. In most cases, references are provided to relevant
sections elsewhere in this document.
8.1. Message Types
+---------+---------------------+--------------------------+
| Type | Name | Section of This Document |
+=========+=====================+==========================+
| 0 | Reserved | |
+---------+---------------------+--------------------------+
| 1 | Hello | 6.2.1 |
+---------+---------------------+--------------------------+
| 2 | Keepalive | 6.2.2 |
+---------+---------------------+--------------------------+
| 3 | Sync_Request | 6.2.3 |
+---------+---------------------+--------------------------+
| 4 | Sync_Begin | 6.2.4 |
+---------+---------------------+--------------------------+
| 5 | Sync_Data | 6.2.5 |
+---------+---------------------+--------------------------+
| 6 | Sync_End | 6.2.6 |
+---------+---------------------+--------------------------+
| 7 | Update_Request | 6.2.7 |
+---------+---------------------+--------------------------+
| 8 | Update_Response | 6.2.8 |
+---------+---------------------+--------------------------+
| 9 | Report | 6.4 |
+---------+---------------------+--------------------------+
| 10 | Event | 6.3 |
+---------+---------------------+--------------------------+
| 11 | Vendor | 6.6 |
+---------+---------------------+--------------------------+
| 12 | Error | 6.7 |
+---------+---------------------+--------------------------+
| 13-199 | Unassigned | |
+---------+---------------------+--------------------------+
| 200 | Addr_Allocation_Req | 6.5.1 |
+---------+---------------------+--------------------------+
| 201 | Addr_Allocation_Ack | 6.5.2 |
+---------+---------------------+--------------------------+
| 202 | Addr_Renew_Req | 6.5.3 |
+---------+---------------------+--------------------------+
| 203 | Addr_Renew_Ack | 6.5.4 |
+---------+---------------------+--------------------------+
| 204 | Addr_Release_Req | 6.5.5 |
+---------+---------------------+--------------------------+
| 205 | Addr_Release_Ack | 6.5.6 |
+---------+---------------------+--------------------------+
| 206-254 | Unassigned | |
+---------+---------------------+--------------------------+
| 255 | Reserved | |
+---------+---------------------+--------------------------+
Table 5: Message Types
8.2. TLV Types
+-----------+-------------+-----------------------------------+
| Type | Name | Usage Description |
+===========+=============+===================================+
| 0 | Reserved | - |
+-----------+-------------+-----------------------------------+
| 1 | BAS | Carries the BNG access functions |
| | Function | to be enabled or disabled on |
| | | specified interfaces. |
+-----------+-------------+-----------------------------------+
| 2 | Basic | Carries the basic information |
| | Subscriber | about a BNG subscriber. |
+-----------+-------------+-----------------------------------+
| 3 | PPP | Carries the PPP information about |
| | Subscriber | a BNG subscriber. |
+-----------+-------------+-----------------------------------+
| 4 | IPv4 | Carries the IPv4 address of a BNG |
| | Subscriber | subscriber. |
+-----------+-------------+-----------------------------------+
| 5 | IPv6 | Carries the IPv6 address of a BNG |
| | Subscriber | subscriber. |
+-----------+-------------+-----------------------------------+
| 6 | Subscriber | Carries the policy information |
| | Policy | applied to a BNG subscriber. |
+-----------+-------------+-----------------------------------+
| 7 | IPv4 | Carries the IPv4 network routing |
| | Routing | information. |
+-----------+-------------+-----------------------------------+
| 8 | IPv6 | Carries the IPv6 network routing |
| | Routing | information. |
+-----------+-------------+-----------------------------------+
| 9 | IPv4 Static | Carries the IPv4 static |
| | Subscriber | subscriber detect information. |
| | Detect | |
+-----------+-------------+-----------------------------------+
| 10 | IPv6 Static | Carries the IPv6 static |
| | Subscriber | subscriber detect information. |
| | Detect | |
+-----------+-------------+-----------------------------------+
| 11 | L2TP-LAC | Carries the L2TP LAC subscriber |
| | Subscriber | information. |
+-----------+-------------+-----------------------------------+
| 12 | L2TP-LNS | Carries the L2TP LNS subscriber |
| | Subscriber | information. |
+-----------+-------------+-----------------------------------+
| 13 | L2TP-LAC | Carries the L2TP LAC tunnel |
| | Tunnel | subscriber information. |
+-----------+-------------+-----------------------------------+
| 14 | L2TP-LNS | Carries the L2TP LNS tunnel |
| | Tunnel | subscriber information. |
+-----------+-------------+-----------------------------------+
| 15 | Subscriber | Carries the public IPv4 address |
| | CGN Port | and related port range of a BNG |
| | Range | subscriber. |
+-----------+-------------+-----------------------------------+
| 16-99 | Unassigned | - |
+-----------+-------------+-----------------------------------+
| 100 | Hello | Used for version and Keepalive |
| | | timers negotiation. |
+-----------+-------------+-----------------------------------+
| 101 | Error | Carried in the Ack of the control |
| | Information | message. Carries the processing |
| | | result, success, or error. |
+-----------+-------------+-----------------------------------+
| 102 | Keepalive | Carried in the Hello message for |
| | | Keepalive timers negotiation. |
+-----------+-------------+-----------------------------------+
| 103-199 | Unassigned | - |
+-----------+-------------+-----------------------------------+
| 200 | Interface | Interfaces status reported by the |
| | Status | UP including physical interfaces, |
| | | sub-interfaces, trunk interfaces, |
| | | and tunnel interfaces. |
+-----------+-------------+-----------------------------------+
| 201 | Board | Board information reported by the |
| | Status | UP including the board type and |
| | | in-position status. |
+-----------+-------------+-----------------------------------+
| 202-299 | Unassigned | - |
+-----------+-------------+-----------------------------------+
| 300 | Subscriber | User traffic statistics. |
| | Traffic | |
| | Statistics | |
+-----------+-------------+-----------------------------------+
| 301 | Subscriber | User detection information. |
| | Detection | |
| | Result | |
+-----------+-------------+-----------------------------------+
| 302 | Update | The processing result of a |
| | Response | subscriber session update. |
+-----------+-------------+-----------------------------------+
| 303-299 | Unassigned | - |
+-----------+-------------+-----------------------------------+
| 400 | Address | Request address allocation. |
| | Allocation | |
| | Request | |
+-----------+-------------+-----------------------------------+
| 401 | Address | Address allocation response. |
| | Allocation | |
| | Response | |
+-----------+-------------+-----------------------------------+
| 402 | Address | Request for address lease |
| | Renewal | renewal. |
| | Request | |
+-----------+-------------+-----------------------------------+
| 403 | Address | Response to a request for |
| | Renewal | extending an IP address lease. |
| | Response | |
+-----------+-------------+-----------------------------------+
| 404 | Address | Request to release the address. |
| | Release | |
| | Request | |
+-----------+-------------+-----------------------------------+
| 405 | Address | Ack of a message releasing an IP |
| | Release | address. |
| | Response | |
+-----------+-------------+-----------------------------------+
| 406-1023 | Unassigned | - |
+-----------+-------------+-----------------------------------+
| 1024 | Vendor | As implemented by the vendor. |
+-----------+-------------+-----------------------------------+
| 1039-4095 | Unassigned | - |
+-----------+-------------+-----------------------------------+
Table 6: TLV Types
8.3. TLV Operation Codes
TLV operation codes appear in the Oper field in the header of some
TLVs. See Section 7.1.
+------+------------+
| Code | Operation |
+======+============+
| 0 | Reserved |
+------+------------+
| 1 | Update |
+------+------------+
| 2 | Delete |
+------+------------+
| 3-15 | Unassigned |
+------+------------+
Table 7: TLV Operation
Codes
8.4. Sub-TLV Types
See Section 7.3.
+----------+---------------------+--------------------------+
| Type | Name | Section of This Document |
+==========+=====================+==========================+
| 0 | Reserved | |
+----------+---------------------+--------------------------+
| 1 | VRF Name | 7.3.1 |
+----------+---------------------+--------------------------+
| 2 | Ingress-QoS-Profile | 7.3.1 |
+----------+---------------------+--------------------------+
| 3 | Egress-QoS-Profile | 7.3.1 |
+----------+---------------------+--------------------------+
| 4 | User-ACL-Policy | 7.3.1 |
+----------+---------------------+--------------------------+
| 5 | Multicast-ProfileV4 | 7.3.1 |
+----------+---------------------+--------------------------+
| 6 | Multicast-ProfileV6 | 7.3.1 |
+----------+---------------------+--------------------------+
| 7 | Ingress-CAR | 7.3.2 |
+----------+---------------------+--------------------------+
| 8 | Egress-CAR | 7.3.3 |
+----------+---------------------+--------------------------+
| 9 | NAT-Instance | 7.3.1 |
+----------+---------------------+--------------------------+
| 10 | Pool-Name | 7.3.1 |
+----------+---------------------+--------------------------+
| 11 | If-Desc | 7.3.4 |
+----------+---------------------+--------------------------+
| 12 | IPv6-Address List | 7.3.5 |
+----------+---------------------+--------------------------+
| 13 | Vendor | 7.3.6 |
+----------+---------------------+--------------------------+
| 12-64534 | Unassigned | |
+----------+---------------------+--------------------------+
| 65535 | Reserved | |
+----------+---------------------+--------------------------+
Table 8: Sub-TLV Types
8.5. Error Codes
+-----------------+-----------------------+-------------------------+
| Value | Name | Remarks |
+=================+=======================+=========================+
| 0 | Success | Success |
+-----------------+-----------------------+-------------------------+
| 1 | Failure | Malformed message |
| | | received. |
+-----------------+-----------------------+-------------------------+
| 2 | TLV-Unknown | One or more of the |
| | | TLVs was not |
| | | understood. |
+-----------------+-----------------------+-------------------------+
| 3 | TLV-Length | The TLV length is |
| | | abnormal. |
+-----------------+-----------------------+-------------------------+
| 4-999 | Unassigned | Unassigned basic |
| | | error codes. |
+-----------------+-----------------------+-------------------------+
| 1000 | Reserved | |
+-----------------+-----------------------+-------------------------+
| 1001 | Version-Mismatch | The version |
| | | negotiation fails. |
| | | Terminate. The |
| | | subsequent service |
| | | processes |
| | | corresponding to the |
| | | UP are suspended. |
+-----------------+-----------------------+-------------------------+
| 1002 | Keepalive Error | The keepalive |
| | | negotiation fails. |
+-----------------+-----------------------+-------------------------+
| 1003 | Timer Expires | The establishment |
| | | timer expired. |
+-----------------+-----------------------+-------------------------+
| 1004-1999 | Unassigned | Unassigned error |
| | | codes for version |
| | | negotiation. |
+-----------------+-----------------------+-------------------------+
| 2000 | Reserved | |
+-----------------+-----------------------+-------------------------+
| 2001 | Synch-NoReady | The data to be |
| | | smoothed is not |
| | | ready. |
+-----------------+-----------------------+-------------------------+
| 2002 | Synch-Unsupport | The request for |
| | | smooth data is not |
| | | supported. |
+-----------------+-----------------------+-------------------------+
| 2003-2999 | Unassigned | Unassigned data |
| | | synchronization |
| | | error codes. |
+-----------------+-----------------------+-------------------------+
| 3000 | Reserved | |
+-----------------+-----------------------+-------------------------+
| 3001 | Pool-Mismatch | The corresponding |
| | | address pool cannot |
| | | be found. |
+-----------------+-----------------------+-------------------------+
| 3002 | Pool-Full | The address pool is |
| | | fully allocated, and |
| | | no address segment |
| | | is available. |
+-----------------+-----------------------+-------------------------+
| 3003 | Subnet-Mismatch | The address pool |
| | | subnet cannot be |
| | | found. |
+-----------------+-----------------------+-------------------------+
| 3004 | Subnet-Conflict | Subnets in the |
| | | address pool have |
| | | been classified into |
| | | other clients. |
+-----------------+-----------------------+-------------------------+
| 3005-3999 | Unassigned | Unassigned error |
| | | codes for address |
| | | allocation. |
+-----------------+-----------------------+-------------------------+
| 4000 | Reserved | |
+-----------------+-----------------------+-------------------------+
| 4001 | Update-Fail-No-Res | The forwarding table |
| | | fails to be |
| | | delivered because |
| | | the forwarding |
| | | resources are |
| | | insufficient. |
+-----------------+-----------------------+-------------------------+
| 4002 | QoS-Update-Success | The QoS policy takes |
| | | effect. |
+-----------------+-----------------------+-------------------------+
| 4003 | QoS-Update-Sq-Fail | Failed to process |
| | | the queue in the QoS |
| | | policy. |
+-----------------+-----------------------+-------------------------+
| 4004 | QoS-Update-CAR-Fail | Processing of the |
| | | CAR in the QoS |
| | | policy fails. |
+-----------------+-----------------------+-------------------------+
| 4005 | Statistic-Fail-No-Res | Statistics |
| | | processing failed |
| | | due to insufficient |
| | | statistics |
| | | resources. |
+-----------------+-----------------------+-------------------------+
| 4006-4999 | Unassigned | Unassigned |
| | | forwarding table |
| | | delivery error |
| | | codes. |
+-----------------+-----------------------+-------------------------+
| 5000-4294967295 | Reserved | |
+-----------------+-----------------------+-------------------------+
Table 9: Error Codes
8.6. If-Type Values
Defined values of the If-Type field in the If-Desc sub-TLV (see
Section 7.3.4) are as follows:
+-------+--------------------+
| Value | Meaning |
+=======+====================+
| 0 | Reserved |
+-------+--------------------+
| 1 | Fast Ethernet (FE) |
+-------+--------------------+
| 2 | GE |
+-------+--------------------+
| 3 | 10GE |
+-------+--------------------+
| 4 | 100GE |
+-------+--------------------+
| 5 | Eth-Trunk |
+-------+--------------------+
| 6 | Tunnel |
+-------+--------------------+
| 7 | VE |
+-------+--------------------+
| 8-254 | Unassigned |
+-------+--------------------+
| 255 | Reserved |
+-------+--------------------+
Table 10: If-Type Values
8.7. Access-Mode Values
Defined values of the Access-Mode field in the BAS Function TLV (see
Section 7.7) are as follows:
+-------+---------------------+
| Value | Meaning |
+=======+=====================+
| 0 | Layer 2 subscriber |
+-------+---------------------+
| 1 | Layer 3 subscriber |
+-------+---------------------+
| 2 | Layer 2 leased line |
+-------+---------------------+
| 3 | Layer 3 leased line |
+-------+---------------------+
| 4-254 | Unassigned |
+-------+---------------------+
| 255 | Reserved |
+-------+---------------------+
Table 11: Access-Mode Values
8.8. Access Method Bits
Defined values of the Auth-Method4 and Auth-Method6 fields in the BAS
Function TLV (see Section 7.7) are defined as bit fields as follows:
+------+-------------------------+
| Bit | Meaning |
+======+=========================+
| 0x01 | PPPoE authentication |
+------+-------------------------+
| 0x02 | DOT1X authentication |
+------+-------------------------+
| 0x04 | Web authentication |
+------+-------------------------+
| 0x08 | Web fast authentication |
+------+-------------------------+
| 0x10 | Binding authentication |
+------+-------------------------+
| 0x20 | Reserved |
+------+-------------------------+
| 0x40 | Reserved |
+------+-------------------------+
| 0x80 | Reserved |
+------+-------------------------+
Table 12: Auth-Method4 Values
+------+-------------------------+
| Bit | Meaning |
+======+=========================+
| 0x01 | PPPoE authentication |
+------+-------------------------+
| 0x02 | DOT1X authentication |
+------+-------------------------+
| 0x04 | Web authentication |
+------+-------------------------+
| 0x08 | Web fast authentication |
+------+-------------------------+
| 0x10 | Binding authentication |
+------+-------------------------+
| 0x20 | Reserved |
+------+-------------------------+
| 0x40 | Reserved |
+------+-------------------------+
| 0x80 | Reserved |
+------+-------------------------+
Table 13: Auth-Method6 Values
8.9. Route-Type Values
Values of the Route-Type field in the IPv4 and IPv6 Routing TLVs (see
Sections 7.8.1 and 7.8.2) defined in this document are as follows:
+---------+---------------------------------+
| Value | Meaning |
+=========+=================================+
| 0 | User host route |
+---------+---------------------------------+
| 1 | Radius authorization FrameRoute |
+---------+---------------------------------+
| 2 | Network segment route |
+---------+---------------------------------+
| 3 | Gateway route |
+---------+---------------------------------+
| 4 | Radius authorized IP route |
+---------+---------------------------------+
| 5 | L2TP LNS side user route |
+---------+---------------------------------+
| 6-65534 | Unassigned |
+---------+---------------------------------+
| 65535 | Reserved |
+---------+---------------------------------+
Table 14: Route-Type Values
8.10. Access-Type Values
Values of the Access-Type field in the Basic Subscriber TLV (see
Section 7.9.1) defined in this document are as follows:
+--------+---------------------------------------------------------+
| Value | Meaning |
+========+=========================================================+
| 0 | Reserved |
+--------+---------------------------------------------------------+
| 1 | PPP access (PPP [RFC1661]) |
+--------+---------------------------------------------------------+
| 2 | PPP over Ethernet over ATM access (PPPoEoA) |
+--------+---------------------------------------------------------+
| 3 | PPP over ATM access (PPPoA [RFC3336]) |
+--------+---------------------------------------------------------+
| 4 | PPP over Ethernet access (PPPoE [RFC2516]) |
+--------+---------------------------------------------------------+
| 5 | PPPoE over VLAN access (PPPoEoVLAN [RFC2516]) |
+--------+---------------------------------------------------------+
| 6 | PPP over LNS access (PPPoLNS) |
+--------+---------------------------------------------------------+
| 7 | IP over Ethernet DHCP access (IPoE_DHCP) |
+--------+---------------------------------------------------------+
| 8 | IP over Ethernet EAP authentication access (IPoE_EAP) |
+--------+---------------------------------------------------------+
| 9 | IP over Ethernet Layer 3 access (IPoE_L3) |
+--------+---------------------------------------------------------+
| 10 | IP over Ethernet Layer 2 Static access (IPoE_L2_STATIC) |
+--------+---------------------------------------------------------+
| 11 | Layer 2 Leased Line access (L2_Leased_Line) |
+--------+---------------------------------------------------------+
| 12 | Layer 2 VPN Leased Line access (L2VPN_Leased_Line) |
+--------+---------------------------------------------------------+
| 13 | Layer 3 Leased Line access (L3_Leased_Line) |
+--------+---------------------------------------------------------+
| 14 | Layer 2 Leased line Sub-User access |
| | (L2_Leased_Line_SUB_USER) |
+--------+---------------------------------------------------------+
| 15 | L2TP LAC tunnel access (L2TP_LAC) |
+--------+---------------------------------------------------------+
| 16 | L2TP LNS tunnel access (L2TP_LNS) |
+--------+---------------------------------------------------------+
| 17-254 | Unassigned |
+--------+---------------------------------------------------------+
| 255 | Reserved |
+--------+---------------------------------------------------------+
Table 15: Access-Type Values
9. IANA Considerations
This document has no IANA actions.
10. Security Considerations
The Service, Control, and Management Interfaces between the CP and UP
might be across the general Internet or other hostile environment.
The ability of an adversary to block or corrupt messages or introduce
spurious messages on any one or more of these interfaces would give
the adversary the ability to stop subscribers from accessing network
services, disrupt existing subscriber sessions, divert traffic, mess
up accounting statistics, and generally cause havoc. Damage would
not necessarily be limited to one or a few subscribers but could
disrupt routing or deny service to one or more instances of the CP or
otherwise cause extensive interference. If the adversary knows the
details of the UP equipment and its forwarding rule capabilities, the
adversary may be able to cause a copy of most or all user data to be
sent to an address of the adversary's choosing, thus enabling
eavesdropping.
Thus, appropriate protections MUST be implemented to provide
integrity, authenticity, and secrecy of traffic over those
interfaces. Whether such protection is used is the decision of the
network operator. See [RFC6241] for Mi/NETCONF security. Security
on the Si is dependent on the tunneling protocol used, which is out
of scope for this document. Security for the Ci, over which S-CUSP
flows, is further discussed below.
S-CUSP messages do not provide security. Thus, if these messages are
exchanged in an environment where security is a concern, that
security MUST be provided by another protocol such as TLS 1.3
[RFC8446] or IPsec. TLS 1.3 is the mandatory-to-implement protocol
for interoperability. The use of a particular security protocol on
the Ci is determined by configuration. Such security protocols need
not always be used, and lesser security precautions might be
appropriate because, in some cases, the communication between the CP
and UP is in a benign environment.
11. References
11.1. Normative References
[RFC20] Cerf, V., "ASCII format for network interchange", STD 80,
RFC 20, DOI 10.17487/RFC0020, October 1969,
<https://www.rfc-editor.org/info/rfc20>.
[RFC793] Postel, J., "Transmission Control Protocol", STD 7,
RFC 793, DOI 10.17487/RFC0793, September 1981,
<https://www.rfc-editor.org/info/rfc793>.
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,
<https://www.rfc-editor.org/info/rfc2119>.
[RFC2661] Townsley, W., Valencia, A., Rubens, A., Pall, G., Zorn,
G., and B. Palter, "Layer Two Tunneling Protocol "L2TP"",
RFC 2661, DOI 10.17487/RFC2661, August 1999,
<https://www.rfc-editor.org/info/rfc2661>.
[RFC2865] Rigney, C., Willens, S., Rubens, A., and W. Simpson,
"Remote Authentication Dial In User Service (RADIUS)",
RFC 2865, DOI 10.17487/RFC2865, June 2000,
<https://www.rfc-editor.org/info/rfc2865>.
[RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
and A. Bierman, Ed., "Network Configuration Protocol
(NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
<https://www.rfc-editor.org/info/rfc6241>.
[RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
May 2017, <https://www.rfc-editor.org/info/rfc8174>.
11.2. Informative References
[802.1Q] IEEE, "IEEE Standard for Local and metropolitan area
networks--Bridges and Bridged Networks", IEEE 802.1Q-2018,
DOI 10.1109/IEEESTD.2018.8403927, July 2018,
<https://doi.org/10.1109/IEEESTD.2018.8403927>.
[RFC1661] Simpson, W., Ed., "The Point-to-Point Protocol (PPP)",
STD 51, RFC 1661, DOI 10.17487/RFC1661, July 1994,
<https://www.rfc-editor.org/info/rfc1661>.
[RFC2131] Droms, R., "Dynamic Host Configuration Protocol",
RFC 2131, DOI 10.17487/RFC2131, March 1997,
<https://www.rfc-editor.org/info/rfc2131>.
[RFC2516] Mamakos, L., Lidl, K., Evarts, J., Carrel, D., Simone, D.,
and R. Wheeler, "A Method for Transmitting PPP Over
Ethernet (PPPoE)", RFC 2516, DOI 10.17487/RFC2516,
February 1999, <https://www.rfc-editor.org/info/rfc2516>.
[RFC2698] Heinanen, J. and R. Guerin, "A Two Rate Three Color
Marker", RFC 2698, DOI 10.17487/RFC2698, September 1999,
<https://www.rfc-editor.org/info/rfc2698>.
[RFC3022] Srisuresh, P. and K. Egevang, "Traditional IP Network
Address Translator (Traditional NAT)", RFC 3022,
DOI 10.17487/RFC3022, January 2001,
<https://www.rfc-editor.org/info/rfc3022>.
[RFC3336] Thompson, B., Koren, T., and B. Buffam, "PPP Over
Asynchronous Transfer Mode Adaptation Layer 2 (AAL2)",
RFC 3336, DOI 10.17487/RFC3336, December 2002,
<https://www.rfc-editor.org/info/rfc3336>.
[RFC5511] Farrel, A., "Routing Backus-Naur Form (RBNF): A Syntax
Used to Form Encoding Rules in Various Routing Protocol
Specifications", RFC 5511, DOI 10.17487/RFC5511, April
2009, <https://www.rfc-editor.org/info/rfc5511>.
[RFC7042] Eastlake 3rd, D. and J. Abley, "IANA Considerations and
IETF Protocol and Documentation Usage for IEEE 802
Parameters", BCP 141, RFC 7042, DOI 10.17487/RFC7042,
October 2013, <https://www.rfc-editor.org/info/rfc7042>.
[RFC7348] Mahalingam, M., Dutt, D., Duda, K., Agarwal, P., Kreeger,
L., Sridhar, T., Bursell, M., and C. Wright, "Virtual
eXtensible Local Area Network (VXLAN): A Framework for
Overlaying Virtualized Layer 2 Networks over Layer 3
Networks", RFC 7348, DOI 10.17487/RFC7348, August 2014,
<https://www.rfc-editor.org/info/rfc7348>.
[RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
<https://www.rfc-editor.org/info/rfc8446>.
[TR-384] Broadband Forum, "Cloud Central Office Reference
Architectural Framework", BBF TR-384, January 2018.
[WT-459] Broadband Forum, "Control and User Plane Separation for a
Disaggregated BNG", BBF WT-459, 2019.
Acknowledgements
The helpful comments and suggestions from the following individuals
are hereby acknowledged:
* Loa Andersson
* Greg Mirsky
Contributors
Zhenqiang Li
China Mobile
32 Xuanwumen West Ave
Xicheng District
Beijing
100053
China
Email: lizhenqiang@chinamobile.com
Mach(Guoyi) Chen
Huawei Technologies
Huawei Bldg., No. 156 Beiqing Road
Beijing
100095
China
Email: mach.chen@huawei.com
Zhouyi Yu
Huawei Technologies
Email: yuzhouyi@huawei.com
Chengguang Niu
Huawei Technologies
Email: chengguang.niu@huawei.com
Zitao Wang
Huawei Technologies
Email: wangzitao@huawei.com
Jun Song
Huawei Technologies
Email: song.jun@huawei.com
Dan Meng
H3C Technologies
No. 1 Lixing Center
No. 8 Guangxun South Street
Chaoyang District
Beijing
100102
China
Email: mengdan@h3c.com
Hanlei Liu
H3C Technologies
No. 1 Lixing Center
No. 8 Guangxun South Street
Chaoyang District
Beijing
100102
China
Email: hanlei_liu@h3c.com
Victor Lopez
Telefonica
Spain
Email: victor.lopezalvarez@telefonica.com
Authors' Addresses
Shujun Hu
China Mobile
32 Xuanwumen West Ave
Xicheng District
Beijing
100053
China
Email: hushujun@chinamobile.com
Donald Eastlake 3rd
Futurewei Technologies
2386 Panoramic Circle
Apopka, FL 32703
United States of America
Phone: +1-508-333-2270
Email: d3e3e3@gmail.com
Fengwei Qin
China Mobile
32 Xuanwumen West Ave
Xicheng District
Beijing
100053
China
Email: qinfengwei@chinamobile.com
Tee Mong Chua
Singapore Telecommunications Limited
31 Exeter Road, #05-04 Comcentre Podium Block
SINGAPORE 239732
Singapore
Email: teemong@singtel.com
Daniel Huang
ZTE
Email: huang.guangping@zte.com.cn
|