summaryrefslogtreecommitdiff
path: root/doc/rfc/rfc888.txt
blob: 22d776657ec4e0d41142b1560a296e1da7642ad9 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
                                  RFC 888


                     "STUB" EXTERIOR GATEWAY PROTOCOL


                            Linda J. Seamonson

                               Eric C. Rosen


                            BBN Communications


                               January 1984










This note describes the Exterior Gateway Protocol used to connect Stub
Gateways to an Autonomous System of core Gateways.  This document specifies
the working protocol, and defines an ARPA official protocol.  All
implementers of Gateways should carefully review this document.










^L





     RFC 888                                              JANUARY 1984



                             Table of Contents





     1   INTRODUCTION.......................................... 1

     2   DEFINITIONS AND OVERVIEW.............................. 4

     3   NEIGHBOR ACQUISITION.................................. 7

     4   NEIGHBOR REACHABILITY PROTOCOL....................... 10

     5   NETWORK REACHABILITY (NR) MESSAGE.................... 15

     6   POLLING FOR NR MESSAGES.............................. 22

     7   SENDING NR MESSAGES.................................. 24

     8   INDIRECT NEIGHBORS................................... 26

     9   LIMITATIONS.......................................... 27

     A   APPENDIX A - EGP MESSAGE FORMATS..................... 28
     A.1   NEIGHBOR ACQUISITION MESSAGE....................... 28
     A.2   NEIGHBOR HELLO/I HEARD YOU MESSAGE................. 30
     A.3   NR POLL MESSAGE.................................... 32
     A.4   NETWORK REACHABILITY MESSAGE....................... 34
     A.5   EGP ERROR MESSAGE.................................. 37

















                                   - i -








     RFC 888                                              JANUARY 1984



     1  INTRODUCTION


          The DARPA Catenet is expected to be a continuously expanding

     system,  with  more  and  more  hosts  on  more and more networks

     participating in it.  Of course, this will require more and  more

     gateways.   In  the  past,  such  expansion  has taken place in a

     relatively unstructured manner.  New gateways,  often  containing

     radically different software than the existing gateways, would be

     added and would immediately begin  participating  in  the  common

     routing algorithm via the GGP protocol.  However, as the internet

     grows larger and larger, this simple method of expansion  becomes

     less and less feasible.  There are a number of reasons for this:



          - the overhead of the routing algorithm becomes  excessively

            large;


          - the  proliferation   of   radically   different   gateways

            participating  in  a single common routing algorithm makes

            maintenance and fault isolation nearly  impossible,  since

            it  becomes  impossible to regard       the internet as an

            integrated communications system;


          - the  gateway  software  and  algorithms,  especially   the

            routing  algorithm, become too rigid and inflexible, since



                                   - 1 -

^L





     RFC 888                                              JANUARY 1984



            any proposed change  must be made in  too  many  different

            places   and   by   too   many   different        people.




          In the future, the internet is expected to evolve into a set

     of  separate  sections or  "autonomous  systems",  each  of which

     consists of a set of one or more relatively homogeneous gateways.

     The  protocols,  and  in  particular  the routing algorithm which

     these gateways use among themselves, will be  a  private  matter,

     and  need never be implemented in gateways outside the particular

     sections or system.


          In the simplest case, an autonomous system might consist  of

     just a single gateway connecting, for example, a local network to

     the ARPANET.  Such a gateway might be called  a  "stub  gateway",

     since  its  only purpose is to interface the local network to the

     rest of the internet, and it is  not  intended  to  be  used  for

     handling  any traffic which neither originated in nor is destined

     for that particular local network.  In the near-term  future,  we

     will  begin  to  think  of  the  internet  as a set of autonomous

     systems, one of which consists of the DARPA gateways  on  ARPANET

     and  SATNET,  and  the others of which are stub gateways to local

     networks.   The former system, which we  shall  call  the  "core"




                                   - 2 -

^L





     RFC 888                                              JANUARY 1984



     system,  will be used as a transport or "long-haul" system by the

     latter systems.


          Ultimately, the internet may consist of a number of co-equal

     autonomous  systems,  any  of  which  may  be used as a transport

     medium for traffic originating in any system and destined for any

     system.  This more general case is still the subject of research.

     This paper describes only how stub gateways connect to  the  core

     system using the Exterior Gateway Protocol (EGP).































                                   - 3 -

^L





     RFC 888                                              JANUARY 1984



     2  DEFINITIONS AND OVERVIEW


          For the purposes of this paper, a "stub gateway" is  defined

     as follows:


          - it is not a core gateway

          - it shares a network with at least one core gateway (has an

            interface on the same network as some core gateway)

          - it has interfaces to one or more networks  which  have  no

            core gateways

          - all other nets which are reachable from  the  core  system

            via  the stub have no other path to the core system except

            via the stub



          The stub gateway is expected to fully execute  the  Internet

     Control Message Protocol (ICMP), as well as the EGP protocol.  In

     particular, it must respond to ICMP echo requests, and must  send

     ICMP  destination  dead  messages  as  appropriate.   It  is also

     required to send ICMP Redirect messages as appropriate.



          Autonomous systems will be  assigned  16-bit  identification

     numbers  (in  much  the same ways as network and protocol numbers

     are now assigned), and every EGP message header contains a  field




                                   - 4 -

^L





     RFC 888                                              JANUARY 1984



     for  this  number.   Zero  will not be assigned to any autonomous

     system; the use  of  zero  as  an  autonomous  system  number  is

     reserved for future use.


          We call two gateways "neighbors" if there is  a  network  to

     which  each  has  an interface.  If two neighbors are part of the

     same autonomous system, we  call  them  INTERIOR  NEIGHBORS;  for

     example,  any  two core gateways on the same network are interior

     neighbors of each other.  If two neighbors are not  part  of  the

     same  autonomous  system,  we  call  them EXTERIOR NEIGHBORS; for

     example, a stub gateway and any core gateway that share a network

     are exterior neighbors of each other.  In order for one system to

     use another as a transport medium, gateways  which  are  exterior

     neighbors  of  each other must be able to find out which networks

     can be reached through the other.  The Exterior Gateway  Protocol

     enables this information to be passed between exterior neighbors.

     Since it is a polling protocol, it also enables each  gateway  to

     control   the  rate  at  which  it  sends  and  receives  network

     reachability information, allowing each system to control its own

     overhead.   It  also  enables  each system to have an independent

     routing algorithm whose operation cannot be disrupted by failures

     of other systems.





                                   - 5 -

^L





     RFC 888                                              JANUARY 1984



          The Exterior Gateway Protocol has three parts: (a)  Neighbor

     Acquisition Protocol, (b) Neighbor Reachability Protocol, and (c)

     Network  Reachability  determination.   Note  that  all  messages

     defined  by EGP are intended to travel only a single "hop".  That

     is, they originate at one gateway and are sent to  a  neighboring

     gateway   without  the  mediation  of  any  intervening  gateway.

     Therefore, the time-to-live field should be set to a  very  small

     value.   Gateways  which  encounter EGP messages in their message

     streams which are not addressed to them may discard them.


          Each EGP message contains a sequence  number.   The  gateway

     should maintain one sequence number per neighbor.

























                                   - 6 -

^L





     RFC 888                                              JANUARY 1984



     3  NEIGHBOR ACQUISITION


          Before it is possible to obtain routing information from  an

     exterior  gateway,  it  is necessary to acquire that gateway as a

     direct neighbor.  (The distinction between  direct  and  indirect

     neighbors  will  be  made  in a later section.)  In order for two

     gateways to become direct neighbors, they must be  neighbors,  in

     the  sense  defined  above,  and  they  must execute the NEIGHBOR

     ACQUISITION  PROTOCOL,  which  is  simply  a   standard   two-way

     handshake.


          A gateway that wishes to initiate neighbor acquisition  with

     another  sends  it  a Neighbor Acquisition Request.  This message

     should be repeatedly transmitted (at a reasonable  rate,  perhaps

     once  every  30 seconds or so) until a Neighbor Acquisition Reply

     or a Neighbor Acquisition Refusal is received.  The Request  will

     contain  an  identification number which is copied into the reply

     so that request and reply can be matched up.


          A gateway receiving  a  Neighbor  Acquisition  Request  must

     determine  whether  it  wishes to become a direct neighbor of the

     source of the Request.  If not, it may, at  its  option,  respond

     with   a   Neighbor   Acquisition   Refusal  message,  optionally

     specifying the reason for refusal.  Otherwise, it should  send  a



                                   - 7 -

^L





     RFC 888                                              JANUARY 1984



     Neighbor Acquisition Reply message.


          The gateway  that  sent  the  Request  should  consider  the

     Neighbor Acquisition complete when it has received the neighbor's

     Reply.  The gateway that  sent  the  Reply  should  consider  the

     acquisition complete when it has sent the Reply.


          Unmatched Replies or Refusals should be  discarded  after  a

     reasonable  period  of time.  However, information about any such

     unmatched messages may be useful for diagnostic purposes.


          A Neighbor Acquisition  Request  from  a  gateway  which  is

     already a direct neighbor should be responded to with a Reply.


          A Neighbor Acquisition Request or Reply from  gateway  G  to

     gateway  G'  carries the minimum interval in seconds with which G

     is willing to answer Neighbor Reachability Hello Messages from G'

     and the minimum interval in seconds with which G is willing to be

     polled for NR messages (see below).


          If  a  gateway  wishes  to  cease  being  a  neighbor  of  a

     particular  exterior  gateway, it sends a Neighbor Cease message.

     A gateway  receiving  a  Neighbor  Cease  message  should  always

     respond with a Neighbor Cease Acknowledgment.  It should cease to

     treat the sender of the message as a neighbor in any way.   Since



                                   - 8 -

^L





     RFC 888                                              JANUARY 1984



     there  is  a  significant  amount  of protocol run between direct

     neighbors (see below), if some gateway no longer needs  to  be  a

     direct  neighbor  of  some other, it is "polite" to indicate this

     fact with a Neighbor Cease Message.  The Neighbor  Cease  Message

     should  be  retransmitted  (up  to some number of times) until an

     acknowledgment for it is received.


          Once  a  Neighbor  Cease  message  has  been  received,  the

     Neighbor   Reachability  Protocol  (below)  should  cease  to  be

     executed.


          A stub should have tables configured in with  the  addresses

     of  a  small  number  of  the  core gateways (no more than two or

     three) with which it has  a  common  network.   It  will  be  the

     responsibility  of the stub to initiate neighbor acquisition with

     these gateways.  If the direct neighbors of  a  stub  should  all

     fail,  it  will  be  the responsibility of the stub to acquire at

     least one new direct neighbor.  It can do so by choosing  one  of

     the  core  gateways which it has had as an indirect neighbor (see

     below), and executing the neighbor acquisition protocol with  it.

     (It  is  possible  that  no  more than one core gateway will ever

     agree to become a direct neighbor with any given stub gateway  at

     any one time.)




                                   - 9 -

^L





     RFC 888                                              JANUARY 1984



     4  NEIGHBOR REACHABILITY PROTOCOL


          It is important for a gateway to keep real-time  information

     as  to the reachability of its neighbors.  If a gateway concludes

     that a particular neighbor cannot be  reached,  it  should  cease

     forwarding  traffic to that gateway.  To make that determination,

     a NEIGHBOR REACHABILITY protocol is  needed.   The  EGP  protocol

     provides two messages types for this purpose -- a "Hello" message

     and an "I Heard You" message.


          When a "Hello" message is received from a  direct  neighbor,

     an "I Heard You" must be returned to that neighbor "immediately".

     The delay between receiving a "Hello" and returning an  "I  Heard

     You" should never be more than a few seconds.


          Core  gateways  will  use  the   following   algorithm   for

     determining reachablility of an exterior neighbor:


          A reachable  neighbor  shall  be  declared  unreachable  if,

     during  the  time  in  which  the  core  gateway  sent its last n

     "Hello"s, it received fewer than k "I Heard You"s in return.   An

     unreachable  neighbor  shall be declared reachable if, during the

     time in which the core gateway  sent  its  last  m  "Hello"s,  it

     received at least j "I Heard You"s in return.




                                  - 10 -

^L





     RFC 888                                              JANUARY 1984



          Stub  gateways  may  also  send  "Hello"s  to  their  direct

     neighbors  and  receive  "I Heard You"s in return.  The algorithm

     for determining reachability may  be  similar  to  the  algorithm

     described  above.  However, it is not necessary for stubs to send

     "Hello"s.  The "Hello" and "I Heard You" messages have  a  status

     field  which  the  sending  gateway  uses  to indicate whether it

     thinks  the  receiving  gateway  is  reachable  or   not.    This

     information  can  be  useful  for  diagnostic  purposes.  It also

     allows a stub gateway  to  make  its  reachability  determination

     parasitic  on  its  core neighbor: only the core gateway actually

     needs to send "Hello" messages, and the stub can declare it up or

     down based on the status field in the "Hello".  That is, the stub

     gateway (which sends only  "I  Heard  You"s)  declares  the  core

     gateway  (which  sends  only  "Hello"s)  to be reachable when the

     "Hello"s from the core indicate that it has declared the stub  to

     be reachable.


          The frequency with which the  "Hello"s  are  sent,  and  the

     values of the parameters k, n, j, and m cannot be specified here.

     For best results, this will depend on the characteristics of  the

     neighbor  and  of the network which the neighbors have in common.

     THIS IMPLIES THAT THE PROPER PARAMETERS MAY NEED TO BE DETERMINED

     JOINTLY  BY THE DESIGNERS AND IMPLEMENTERS OF THE TWO NEIGHBORING



                                  - 11 -

^L





     RFC 888                                              JANUARY 1984



     GATEWAYS;  choosing  algorithms  and  parameters  in   isolation,

     without  considering  the characteristics of the neighbor and the

     connecting network, would not be expected to  result  in  optimum

     reachability determinations.


          However, the Neighbor Acquisition Request and Reply messages

     provide  neighbors with a way to inform each other of the minimum

     frequency at which they  are  willing  to  answer  Hellos.   When

     gateway  G sends a Neighbor Acquisition Request to gateway G', it

     states that it does not  wish  to  answer  Hellos  from  G'  more

     frequently  than  once  every  X  seconds.   G'  in  its Neighbor

     Acquisition Reply states that it does not wish to  answer  Hellos

     from  G  more  frequently  than  once  every  Y seconds.  The two

     frequencies do not have to be the same, but  each  neighbor  must

     conform  to  the  interval requested by the other.  A gateway may

     send Hellos less frequently than requested, but not more.


          A  direct  neighbor  gateway   should   also   be   declared

     unreachable  if  the  network  connecting it supplies lower level

     protocol information from which this can be deduced.   Thus,  for

     example,  if  a gateway receives an 1822 Destination Dead message

     from the ARPANET which indicates that a direct neighbor is  dead,

     it should declare that neighbor unreachable.  The neighbor should




                                  - 12 -

^L





     RFC 888                                              JANUARY 1984



     not be declared reachable again until  the  requisite  number  of

     Hello/I-Heard-You packets have been exchanged.


          A direct neighbor which  has  become  unreachable  does  not

     thereby  cease  to  be  a  direct  neighbor.  The neighbor can be

     declared reachable again without  any  need  to  go  through  the

     neighbor  acquisition  protocol  again.  However, if the neighbor

     remains unreachable for an extremely long period of time, such as

     an  hour,  the  gateway  should  cease to treat it as a neighbor,

     i.e., should cease sending Hello messages to  it.   The  neighbor

     acquisition  protocol  would  then  need to be repeated before it

     could become a direct neighbor again.


          "Hello" messages from sources other  than  direct  neighbors

     should  simply  be ignored.  However, logging the presence of any

     such messages might provide useful diagnostic information.


          A gateway which is going down, or  whose  interface  to  the

     network which connects it to a particular neighbor is going down,

     should send a Neighbor Cease  message  to  all  direct  neighbors

     which  will  no  longer  be  able to reach it.  The Cease message

     should use the info field to specify the reason as "going  down".

     It  should  retransmit  that message (up to some number of times)

     until it receives a Neighbor Cease Acknowledgment.  This provides



                                  - 13 -

^L





     RFC 888                                              JANUARY 1984



     the  neighbors  with an advance warning of an outage, and enables

     them to prepare for it in a way which will minimize disruption to

     existing traffic.










































                                  - 14 -

^L





     RFC 888                                              JANUARY 1984



     5  NETWORK REACHABILITY (NR) MESSAGE


          Terminology: Let gateway G have an interface to  network  N.

     We  say  that G is AN APPROPRIATE FIRST HOP to network M relative

     to network N (where M and N are distinct networks) if and only if

     the following condition holds:


          Traffic which is destined for network M, and  which  arrives

          at gateway G over its network N interface, will be forwarded

          to M by G over a path  which  does  not  include  any  other

          gateway with an interface to network N.


          In short, G is  an  appropriate  first  hop  for  network  M

     relative  to network N just in case there is no better gateway on

     network N through which to route traffic which  is  destined  for

     network  M.   For  optimal routing, traffic in network N which is

     destined for network M ought always to be forwarded to a  gateway

     which is an appropriate first hop.


          In  order  for  exterior  neighbors  G  and  G'  (which  are

     neighbors  over network N) to be able to use each other as packet

     switches for forwarding traffic to remote networks, each needs to

     know  the  list of networks for which the other is an appropriate

     first hop.  The Exterior  Gateway  Protocol  defines  a  message,




                                  - 15 -

^L





     RFC 888                                              JANUARY 1984



     called  the  Network  Reachability  Message  (or NR message), for

     transferring this information.


          Let G be a gateway on network N.  Then the NR message  which

     G sends about network N must contain the following information:


          A list of all the networks for which  G  is  an  appropriate

          first hop relative to network N.


     If G' can obtain this information from exterior neighbor G,  then

     it  knows  that no traffic destined for networks which are NOT in

     that list should be forwarded to G.  (It cannot simply  conclude,

     however,  that all traffic for any networks in that list ought to

     be forwarded via G, since G' may also have other neighbors  which

     are also appropriate first hops to network N.  For example, G and

     G'' might each be neighbors of G',  but  might  be  "equidistant"

     from  some  network  M.   Then each could be an appropriate first

     hop.)


          For each network in the list, the NR message also  specifies

     the "distance" (according to some metric whose definition is left

     to the designers of the autonomous system of which gateway G is a

     member)  from  G  to  that  network.   Core  gateways will report

     distances less than 128 for networks that can be reached  without




                                  - 16 -

^L





     RFC 888                                              JANUARY 1984



     leaving  the  core  system,  and  greater  than  or  equal to 128

     otherwise.  A stub gateway should report distances less than  128

     for all networks listed in its NR messages.


          The maximum value of distance (255.) shall be taken to  mean

     that  the network is UNREACHABLE.  ALL OTHER VALUES WILL BE TAKEN

     TO MEAN THAT THE NETWORK IS REACHABLE.


          If an NR message from some gateway G fails to  mention  some

     network  N which was mentioned in the previous NR message from G,

     it is possible that N has become unreachable from G.  If  several

     successive  NR  messages  from  G omit mention of N, it should be

     taken to mean that  N  is  no  longer  reachable  from  G.   This

     procedure  is  necessary  to  ensure  that  networks which can no

     longer be  reached,  but  which  are  never  explicitly  declared

     unreachable, are timed out and removed from the list of reachable

     networks.


          It will often be the case that where a core gateway G and  a

     stub  gateway  G'  are  direct neighbors on network N, G knows of

     many more gateway neighbors on network N,  and  knows  for  which

     networks  those  gateway neighbors are the appropriate first hop.

     Since the stub G' may not know about all these  other  neighbors,

     it  is  convenient  and often more efficient for it to be able to



                                  - 17 -

^L





     RFC 888                                              JANUARY 1984



     obtain this information from G.  Therefore, the  EGP  NR  message

     also  contains  fields  which allow the core gateway G to specify

     the following information:


          a) A list of all neighbors (both interior and exterior) of G

             (on  network  N)  which  G  has reliably determined to be

             reachable.  G may also include indirect neighbors in this

             list (see below.)


          b) For each of those neighbors, the  list  of  networks  for

             which that neighbor is an appropriate first hop (relative

             to network N).


          c) For each such <neighbor, network>  pair,  the  "distance"

             from that neighbor to that network.


          Thus the NR message provides a means of allowing  a  gateway

     to  "discover" new neighbors by seeing whether a neighbor that it

     already knows  of  has  any  additional  neighbors  on  the  same

     network.  This information also makes possible the implementation

     of the INDIRECT NEIGHBOR strategy defined below.


          A  more  precise  description  of  the  NR  message  is  the

     following.





                                  - 18 -

^L





     RFC 888                                              JANUARY 1984



          The data portion of the  message  will  consist  largely  of

     blocks  of data.  Each block will be headed by a gateway address,

     which will be the address  either  of  the  gateway  sending  the

     message  or  of  one  of  that gateway's neighbors.  Each gateway

     address will be followed by a list of the networks for which that

     gateway  is  an  appropriate first hop.  All networks at the same

     distance from the gateway will be grouped together in this  list,

     preceded  by  the  distance  itself and the number of networks at

     that distance.  The whole list is preceded  by  a  count  of  the

     distance-groups in the list.


          Preceding the list of data blocks is:

          a) The count (one byte) of the number of interior  neighbors

             of  G  for  which  this message contains data blocks.  By

             convention, this count will include the data block for  G

             itself, which should be the first one to appear.


          b) The count (one byte) of the number of exterior  neighbors

                of  G  for  which  this  message contains data blocks.




          c) The address of the network which this message  is  about.

             If  G  and  G' are neighbors on network N, then in the NR

             message going from G  to  G',  this  is  the  address  of



                                  - 19 -

^L





     RFC 888                                              JANUARY 1984



             network   N.   For  convenience,  four  bytes  have  been

             allocated for this address -- the trailing one,  two,  or

             three bytes should be zero.


          Then follow the data blocks themselves, first the block  for

     G itself, then the blocks for all the interior neighbors of G (if

     any), then the blocks for  the  exterior  neighbors.   Since  all

     gateways  mentioned  are  on  the same network, whose address has

     already been given, the gateway  addresses  are  given  with  the

     network  address part (one, two, or three bytes) omitted, to save

     space.


          In the list of networks, each network address is either one,

     two,  or three bytes, depending on whether it is a class A, class

     B, or class C network.  No trailing bytes are used.


          The NR message  sent  by  a  stub  should  be  the  simplest

     allowable.   That  is,  it  should have only a single data block,

     headed by its own address (on the network it has in  common  with

     the neighboring core gateway), listing just the networks to which

     it is an appropriate first hop.  These will be just the  networks

     that can be reached no other way, in general.







                                  - 20 -

^L





     RFC 888                                              JANUARY 1984



          The core gateways will send complete NR messages, containing

     information  about all other gateways on the common network, both

     core gateways (which shall be listed as interior  neighbors)  and

     other  gateways (which shall be listed as exterior neighbors, and

     may include the stub itself).  This information will  enable  the

     stub  to  become  an  indirect  neighbor (see below) of all these

     other gateways.  That is, the stub shall forward traffic directly

     to  these  other  gateways  as  appropriate, but shall not become

     direct neighbors with them.


          The  stub  should  NEVER  forward  to   any   (directly   or

     indirectly)  neighboring  core gateway any traffic for which that

     gateway is not an appropriate first hop, as indicated  in  an  NR

     message.   Of  course, this does not apply to datagrams which are

     using the source route option; any such datagrams  should  always

     be  forwarded as indicated in the source route option field, even

     if that  requires  forwarding  to  a  gateway  which  is  not  an

     appropriate first hop.













                                  - 21 -

^L





     RFC 888                                              JANUARY 1984



     6  POLLING FOR NR MESSAGES


          No gateway is required to send  NR  messages  to  any  other

     gateway,  except  as  a  response  to  an  NR  Poll from a direct

     neighbor.  However, a gateway is required to  respond  to  an  NR

     Poll  from  a  direct neighbor within several seconds (subject to

     the qualification two paragraphs  hence),  even  if  the  gateway

     believes that neighbor to be down.


          The EGP NR Poll message is defined  for  this  purpose.   No

     gateway  may  poll another for an NR message more often than once

     per minute.  A gateway receiving more than one  poll  per  minute

     may  simply  ignore  the  excess  polls,  or  may return an error

     message.


          The minimum interval which gateway  G  will  accept  as  the

     polling  interval  from gateway G' and the minimum interval which

     G' will accept as the polling interval from G  are  specified  at

     the  time  that  G  and  G'  become  direct  neighbors.  Both the

     Neighbor Acquisition Request and the Neighbor  Acquisition  Reply

     allow  the  sender  to  specify,  in seconds, its desired minimum

     polling interval.  If G specifies to G' that its minimum  polling

     interval  is  X,  G'  should not poll G more frequently than once

     every X seconds.  G will not guarantee to  answer  more  frequent



                                  - 22 -

^L





     RFC 888                                              JANUARY 1984



     polls.


          Polls must only  be  sent  to  direct  neighbors  which  are

     declared reachable by the neighbor reachability protocol.


          An NR Poll message contains a sequence number chosen by  the

     polling  gateway.   The polled gateway will return this number in

     the NR message it sends in response to the poll,  to  enable  the

     polling gateway to match up received NR messages with polls.


          In general, a poll should be retransmitted  some  number  of

     times  (with a reasonable interval between retransmissions) until

     an NR message is received.  IF NO NR MESSAGE  IS  RECEIVED  AFTER

     THE MAXIMUM NUMBER OF RETRANSMISSIONS, THE POLLING GATEWAY SHOULD

     ASSUME THAT THE POLLED GATEWAY IS NOT AN  APPROPRIATE  FIRST  HOP

     FOR  ANY  NETWORK  WHATSOEVER.   The  optimum  parameters for the

     polling/retransmission  algorithm  will  be  dependent   on   the

     characteristics   of   the  two  neighbors  and  of  the  network

     connecting them.


          Received NR messages whose  identification  numbers  do  not

     match  the  identification  number of the most recently sent poll

     shall be ignored.  There is no provision for multiple outstanding

     polls to the same neighbor.




                                  - 23 -

^L





     RFC 888                                              JANUARY 1984



     7  SENDING NR MESSAGES


          In general, NR messages are to be sent only in response to a

     poll.   However,  between  two  successive polls from an exterior

     neighbor, a gateway may send one  and  only  one  unsolicited  NR

     message  to  that  neighbor.   This  gives  it limited ability to

     quickly announce  network  reachability  changes  that  may  have

     occurred in the interval since the last poll.  Excess unsolicited

     NR messages may be ignored, or an error message may be returned.


          An NR message should be sent within  several  seconds  after

     receipt  of  a poll.  Failure to respond in a timely manner to an

     NR poll may result in the polling  gateway's  deciding  that  the

     polled gateway is not an appropriate first hop to any network.


          NR messages sent in response to  polls  carry  the  sequence

     number  of  the  poll  message in their "sequence number" fields.

     Unsolicited NR messages carry the identification  number  of  the

     last  poll  received,  and have the "unsolicited" bit set.  (Note

     that this allows for only a single  unsolicited  NR  message  per

     polling period.)


          Polls from  non-neighbors,  from  neighbors  which  are  not

     declared  reachable, or with bad IP source network fields, should




                                  - 24 -

^L





     RFC 888                                              JANUARY 1984



     be responded to with an EGP error message  with  the  appropriate

     "reason"  field.   If  G  sends  an  NR poll to G' with IP source

     network N, and G' is not a neighbor of  G  on  its  interface  to

     network  N  (or G' does not have an interface to network N), then

     the source network field is considered "bad".


          A gateway is normally not required to send more than one  NR

     message  within the minimum interval specified at the time of the

     neighbor acquisition.  An exception to  this  must  be  made  for

     duplicate polls (successive polls with the same sequence number),

     which occur when an NR message is lost  in  transit.   A  gateway

     should  send an NR message containing its most recent information

     in response to a duplicate poll.























                                  - 25 -

^L





     RFC 888                                              JANUARY 1984



     8  INDIRECT NEIGHBORS


          Becoming a "direct neighbor" of an exterior gateway requires

     three  steps:  (a)  neighbor  acquisition, (b) running a neighbor

     reachability protocol, and (c) polling the neighbor  periodically

     for NR messages.  Suppose, however, that gateway G receives an NR

     message from G', in which G'  indicates  the  presence  of  other

     neighbors  G1, ..., Gn, each of which is an appropriate first hop

     for some set of networks to which G' itself is not an appropriate

     first hop.  Then G should be allowed to forward traffic for those

     networks directly to the appropriate one of G1, ..., Gn,  without

     having to send it to G' first.  In this case, G may be considered

     an INDIRECT NEIGHBOR of G1, ..., Gn, since it is  a  neighbor  of

     these  other  gateways for the purpose of forwarding traffic, but

     does not perform neighbor acquisition, neighbor reachability,  or

     exchange   of  NR  messages  with  them.   Neighbor  and  network

     reachability information is obtained indirectly via G', hence the

     designation  "indirect  neighbor".   We say that G is an indirect

     neighbor of G1, ..., Gn VIA G'.


          If G is an indirect neighbor of  G'  via  G'',  and  then  G

     receives  an  NR  message  from  G'' which does not mention G', G

     should treat G' as having become unreachable.




                                  - 26 -

^L





     RFC 888                                              JANUARY 1984



     9  LIMITATIONS


          It must be clearly  understood  that  the  Exterior  Gateway

     Protocol   does  not  in  itself  constitute  a  network  routing

     algorithm.  In addition, it does not provide all the  information

     needed  to  implement  a  general area routing algorithm.  If the

     topology does not obey the  rules  given  for  stubs  above,  the

     Exterior  Gateway  Protocol  does  not provide enough topological

     information to prevent loops.


          If any gateway sends an NR message with  false  information,

     claiming  to be an appropriate first hop to a network which it in

     fact cannot even reach, traffic  destined  to  that  network  may

     never be delivered.  Implementers must bear this in mind.






















                                  - 27 -

^L





     RFC 888                                              JANUARY 1984



     A  APPENDIX A - EGP MESSAGE FORMATS

          The Exterior Gateway Protocol runs under Internet Protocol as
     protocol number 8 (decimal).




     A.1  NEIGHBOR ACQUISITION MESSAGE

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     ! EGP Version # !     Type      !     Code      !    Info       !
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     !        Checksum               !       Autonomous System #     !
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     !        Sequence #             !       NR Hello interval       !
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     !        NR poll interval       !
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Description:

          The Neighbor Acquisition messages are used by interior and
          exterior gateways to become neighbors of each other.

     EGP Version #

         2

     Type

         3

     Code

          Code = 0      Neighbor Acquisition Request
          Code = 1      Neighbor Acquisition Reply
          Code = 2      Neighbor Acquisition Refusal (see Info field)
          Code = 3      Neighbor Cease Message (see Info field)
          Code = 4      Neighbor Cease Acknowledgment

     Checksum



                                  - 28 -

^L





     RFC 888                                              JANUARY 1984



         The  EGP checksum is the 16-bit one's complement of the one's
         complement sum of the  EGP  message  starting  with  the  EGP
         version  number  field.   For  computing  the  checksum,  the
         checksum field should be zero.

     Autonomous System #

         This   16-bit   number   identifies   the  autonomous  system
         containing the gateway which is the source of this message.

     Info

         For Refusal message, gives reason for refusal:

             0  Unspecified
             1  Out of table space
             2  Administrative prohibition

         For Cease message, gives reason for ceasing to be neighbor:

             0 Unspecified
             1 Going down
             2 No longer needed

         Otherwise, this field MUST be zero.

     Sequence Number

         A sequence number to aid in matching requests and
         replies.

     NR Hello Interval

         Minimum Hello polling interval(seconds).

     NR Poll Interval

         Minumum NR polling interval(seconds).









                                  - 29 -

^L





     RFC 888                                              JANUARY 1984



     A.2  NEIGHBOR HELLO/I HEARD YOU MESSAGE

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     ! EGP Version # !    Type       !     Code      !    Status     !
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     !    Checksum                   !    Autonomous System #        !
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     !      Sequence #               !
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Description:

         Exterior  neighbors  use  EGP  Neighbor Hello and I Heard You
         Messages to determine neighbor connectivity.  When a  gateway
         receives  an  EGP  Neighbor  Hello message from a neighbor it
         should respond with an EGP I Heard You message.

     EGP Version #

         2

     Type

         5

     Code

          Code = 0 for Hello
          Code = 1 for I Heard you

     Checksum

         The  EGP checksum is the 16-bit one's complement of the one's
         complement sum of the  EGP  message  starting  with  the  EGP
         version  number  field.   For  computing  the  checksum,  the
         checksum field should be zero.

     Autonomous System #

         This   16-bit   number   identifies   the  autonomous  system
         containing the gateway which is the source of this message.




                                  - 30 -

^L





     RFC 888                                              JANUARY 1984



     Sequence Number

         A sequence number to aid in matching requests and replies.

     Status

             0  No status given
             1  You appear reachable to me
             2  You appear unreachable to me due to neighbor
                reachability protocol
             3  You appear unreachable to me due to network
                reachability information (such as 1822 "destination
                dead" messages from ARPANET)
             4  You appear unreachable to me due to problems
                with my network interface
































                                  - 31 -

^L





     RFC 888                                              JANUARY 1984



     A.3  NR POLL MESSAGE

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     ! EGP Version # !    Type       !     Code      !    Unused     !
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     !         Checksum              !       Autonomous System #     !
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     !         Sequence #            !       Unused                  !
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     !             IP Source Network                                 !
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


     Description:

          A  gateway  that  wants  to  receive  an  NR message from an
          Exterior Gateway will send an NR Poll message.  Each gateway
          mentioned in the NR message will have an  interface  on  the
          network that is in the IP source network field.

     EGP Version #

         2

     Type

         2

     Code

         0

     Checksum

          The EGP checksum is the 16-bit one's complement of the one's
          complement  sum  of  the  EGP  message starting with the EGP
          version number  field.   For  computing  the  checksum,  the
          checksum field should be zero.

     Autonomous System #

         This   16-bit   number   identifies   the  autonomous  system



                                  - 32 -

^L





     RFC 888                                              JANUARY 1984



         containing the gateway which is the source of this message.

     Sequence Number

          A sequence  number  to  aid in matching requests and
          replies.

     IP Source Network

          Each  gateway  mentioned  in  the  NR  message  will have an
          interface on the network that is in the  IP  source  network
          field.   The  IP  source  network  is  coded  as one byte of
          network number followed by two bytes of  zero  for  class  A
          networks,  two  bytes of network number followed by one byte
          of zero for class B networks, and  three  bytes  of  network
          number for class C networks.































                                  - 33 -

^L





     RFC 888                                              JANUARY 1984



     A.4  NETWORK REACHABILITY MESSAGE

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     ! EGP Version # !     Type      !   Code        !U! Zeroes      !
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     !    Checksum                   !       Autonomous System #     !
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     !    Sequence #                 ! # of Int Gwys ! # of Ext Gwys !
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     !                      IP Source Network                        !
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     ! Gateway 1 IP address (without network #)      ! ; 1, 2 or 3 bytes
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     !  # Distances  !
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     !  Distance 1   !   # Nets      !
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     !   net 1,1,1   !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ; 1, 2 or 3 bytes
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     !   net 1,1,2   !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ; 1, 2 or 3 bytes
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
            ...
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     !  Distance 2   !   # Nets      !
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     !   net 1,2,1   !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ; 1, 2 or 3 bytes
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     !   net 1,2,2   !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ; 1, 2 or 3 bytes
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
            ...
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     !             Gateway  n IP address (without network #)         !
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     !  # Distances  !
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     !  Distance 1   !  # Nets       !
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     !   net n,1,1   !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!  ; 1, 2 or 3 bytes
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     !   net n,1,2   !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!  ; 1, 2 or 3 bytes
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     !  Distance 2   !  # Nets       !



                                  - 34 -

^L





     RFC 888                                              JANUARY 1984



     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     !   net n,2,1   !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!  ; 1, 2 or 3 bytes
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     !   net n,2,2   !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!  ; 1, 2 or 3 bytes
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
           ...



     Description:

          The  Network  Reachability  message (NR) is used to discover
     which networks may be reached through Exterior Gateways.  The  NR
     message is sent in response to an NR Poll message.

     EGP Version #

         2

     Type

         1

     Code

         0

     Checksum

         The  EGP checksum is the 16-bit one's complement of the one's
         complement sum of the  EGP  message  starting  with  the  EGP
         version  number  field.   For  computing  the  checksum,  the
         checksum field should be zero.

     Autonomous System #

         This   16-bit   number   identifies   the  autonomous  system
         containing the gateway which is the source of this message.

     U (Unsolicited) bit

         This bit is set if the NR message is being sent unsolicited.





                                  - 35 -

^L





     RFC 888                                              JANUARY 1984



     Sequence Number

         The  sequence  number  of  the  last  NR  poll  message
         received from the neighbor to whom this NR message  is  being
         sent.   This  number  is  used  to  aid in matching polls and
         replies.

     IP Source Network

          Each  gateway  mentioned  in  the  NR  message  will have an
          interface on the network that is in the  IP  source  network
          field.

     # of Interior Gateways

          The  number  of interior gateways that are mentioned in this
          message.

     # of Exterior Gateways

          The  number  of exterior gateways that are mentioned in this
          message.

     Gateway IP address

          1, 2 or 3 bytes of Gateway IP address (without network #).

     # of Distances

          The number of distances in the gateway block.

     Distance

          The distance.

     # of Nets

          The number of nets at this distance.

     Network address

          1, 2,  or 3 bytes of network address of network which can be
          reached via the preceding gateway.




                                  - 36 -

^L





     RFC 888                                              JANUARY 1984



     A.5  EGP ERROR MESSAGE

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     ! EGP Version # !    Type       !     Code      !    Unused     !
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     !    Checksum                   !       Autonomous System #     !
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     !       Sequence #              !          Reason               !
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     !                                                               !
     !                     Error Message Header                      !
     !            (first three 32-bit words of EGP header)           !
     !                                                               !
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     Description:

         An  EGP  Error  Message is sent in response to an EGP Message
         that has a bad checksum or has an incorrect value in  one  of
         its fields.

     EGP Version #

         2

     Type

         8

     Code

         0

     Checksum

          The EGP checksum is the 16-bit one's complement of the one's
          complement  sum  of  the  EGP  message starting with the EGP
          version number  field.   For  computing  the  checksum,  the
          checksum field should be zero.

     Autonomous System #




                                  - 37 -

^L





     RFC 888                                              JANUARY 1984



         This   16-bit   number   identifies   the  autonomous  system
         containing the gateway which is the source of this message.

     Sequence Number

          A  sequence number assigned by the gateway sending the error
          message.

     Reason

          The reason that the EGP message was in error.  The following
          reasons are defined:

          0  -  unspecified
          1  -  Bad EGP checksum
          2  -  Bad IP Source address in NR Poll or Response
          3  -  Undefined EGP Type or Code
          4  -  Received poll from non-neighbor
          5  -  Received excess unsolicted NR message
          6  -  Received excess poll
          7  -  Erroneous counts in received NR message
          8  -  No response received to NR poll

























                                  - 38 -

^L