1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
|
Internet Engineering Task Force (IETF) M. Niedermayer
Request for Comments: 9043
Category: Informational D. Rice
ISSN: 2070-1721
J. Martinez
August 2021
FFV1 Video Coding Format Versions 0, 1, and 3
Abstract
This document defines FFV1, a lossless, intra-frame video encoding
format. FFV1 is designed to efficiently compress video data in a
variety of pixel formats. Compared to uncompressed video, FFV1
offers storage compression, frame fixity, and self-description, which
makes FFV1 useful as a preservation or intermediate video format.
Status of This Memo
This document is not an Internet Standards Track specification; it is
published for informational purposes.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Not all documents
approved by the IESG are candidates for any level of Internet
Standard; see Section 2 of RFC 7841.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
https://www.rfc-editor.org/info/rfc9043.
Copyright Notice
Copyright (c) 2021 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
Table of Contents
1. Introduction
2. Notation and Conventions
2.1. Definitions
2.2. Conventions
2.2.1. Pseudocode
2.2.2. Arithmetic Operators
2.2.3. Assignment Operators
2.2.4. Comparison Operators
2.2.5. Mathematical Functions
2.2.6. Order of Operation Precedence
2.2.7. Range
2.2.8. NumBytes
2.2.9. Bitstream Functions
3. Sample Coding
3.1. Border
3.2. Samples
3.3. Median Predictor
3.3.1. Exception
3.4. Quantization Table Sets
3.5. Context
3.6. Quantization Table Set Indexes
3.7. Color Spaces
3.7.1. YCbCr
3.7.2. RGB
3.8. Coding of the Sample Difference
3.8.1. Range Coding Mode
3.8.2. Golomb Rice Mode
4. Bitstream
4.1. Quantization Table Set
4.1.1. "quant_tables"
4.1.2. "context_count"
4.2. Parameters
4.2.1. "version"
4.2.2. "micro_version"
4.2.3. "coder_type"
4.2.4. "state_transition_delta"
4.2.5. "colorspace_type"
4.2.6. "chroma_planes"
4.2.7. "bits_per_raw_sample"
4.2.8. "log2_h_chroma_subsample"
4.2.9. "log2_v_chroma_subsample"
4.2.10. "extra_plane"
4.2.11. "num_h_slices"
4.2.12. "num_v_slices"
4.2.13. "quant_table_set_count"
4.2.14. "states_coded"
4.2.15. "initial_state_delta"
4.2.16. "ec"
4.2.17. "intra"
4.3. Configuration Record
4.3.1. "reserved_for_future_use"
4.3.2. "configuration_record_crc_parity"
4.3.3. Mapping FFV1 into Containers
4.4. Frame
4.5. Slice
4.6. Slice Header
4.6.1. "slice_x"
4.6.2. "slice_y"
4.6.3. "slice_width"
4.6.4. "slice_height"
4.6.5. "quant_table_set_index_count"
4.6.6. "quant_table_set_index"
4.6.7. "picture_structure"
4.6.8. "sar_num"
4.6.9. "sar_den"
4.7. Slice Content
4.7.1. "primary_color_count"
4.7.2. "plane_pixel_height"
4.7.3. "slice_pixel_height"
4.7.4. "slice_pixel_y"
4.8. Line
4.8.1. "plane_pixel_width"
4.8.2. "slice_pixel_width"
4.8.3. "slice_pixel_x"
4.8.4. "sample_difference"
4.9. Slice Footer
4.9.1. "slice_size"
4.9.2. "error_status"
4.9.3. "slice_crc_parity"
5. Restrictions
6. Security Considerations
7. IANA Considerations
7.1. Media Type Definition
8. References
8.1. Normative References
8.2. Informative References
Appendix A. Multithreaded Decoder Implementation Suggestions
Appendix B. Future Handling of Some Streams Created by
Nonconforming Encoders
Appendix C. FFV1 Implementations
C.1. FFmpeg FFV1 Codec
C.2. FFV1 Decoder in Go
C.3. MediaConch
Authors' Addresses
1. Introduction
This document describes FFV1, a lossless video encoding format. The
design of FFV1 considers the storage of image characteristics, data
fixity, and the optimized use of encoding time and storage
requirements. FFV1 is designed to support a wide range of lossless
video applications such as long-term audiovisual preservation,
scientific imaging, screen recording, and other video encoding
scenarios that seek to avoid the generational loss of lossy video
encodings.
This document defines versions 0, 1, and 3 of FFV1. The distinctions
of the versions are provided throughout the document, but in summary:
* Version 0 of FFV1 was the original implementation of FFV1 and was
flagged as stable on April 14, 2006 [FFV1_V0].
* Version 1 of FFV1 adds support of more video bit depths and was
flagged as stable on April 24, 2009 [FFV1_V1].
* Version 2 of FFV1 only existed in experimental form and is not
described by this document, but it is available as a LyX file at
<https://github.com/FFmpeg/FFV1/
blob/8ad772b6d61c3dd8b0171979a2cd9f11924d5532/ffv1.lyx>.
* Version 3 of FFV1 adds several features such as increased
description of the characteristics of the encoding images and
embedded Cyclic Redundancy Check (CRC) data to support fixity
verification of the encoding. Version 3 was flagged as stable on
August 17, 2013 [FFV1_V3].
This document assumes familiarity with mathematical and coding
concepts such as Range encoding [Range-Encoding] and YCbCr color
spaces [YCbCr].
This specification describes the valid bitstream and how to decode
it. Nonconformant bitstreams and the nonconformant handling of
bitstreams are outside this specification. A decoder can perform any
action that it deems appropriate for an invalid bitstream: reject the
bitstream, attempt to perform error concealment, or re-download or
use a redundant copy of the invalid part.
2. Notation and Conventions
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in
BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
capitals, as shown here.
2.1. Definitions
FFV1: The chosen name of this video encoding format, which is the
short version of "FF Video 1". The letters "FF" come from
"FFmpeg", which is the name of the reference decoder whose first
letters originally meant "Fast Forward".
Container: A format that encapsulates Frames (see Section 4.4) and
(when required) a "Configuration Record" into a bitstream.
Sample: The smallest addressable representation of a color component
or a luma component in a Frame. Examples of Sample are Luma (Y),
Blue-difference Chroma (Cb), Red-difference Chroma (Cr),
Transparency, Red, Green, and Blue.
Symbol: A value stored in the bitstream, which is defined and
decoded through one of the methods described in Table 4.
Line: A discrete component of a static image composed of Samples
that represent a specific quantification of Samples of that image.
Plane: A discrete component of a static image composed of Lines that
represent a specific quantification of Lines of that image.
Pixel: The smallest addressable representation of a color in a
Frame. It is composed of one or more Samples.
MSB: Most Significant Bit, the bit that can cause the largest change
in magnitude of the symbol.
VLC: Variable Length Code, a code that maps source symbols to a
variable number of bits.
RGB: A reference to the method of storing the value of a pixel by
using three numeric values that represent Red, Green, and Blue.
YCbCr: A reference to the method of storing the value of a pixel by
using three numeric values that represent the luma of the pixel
(Y) and the chroma of the pixel (Cb and Cr). The term YCbCr is
used for historical reasons and currently references any color
space relying on one luma Sample and two chroma Samples, e.g.,
YCbCr (luma, blue-difference chroma, red-difference chroma),
YCgCo, or ICtCp (intensity, blue-yellow, red-green).
2.2. Conventions
2.2.1. Pseudocode
The FFV1 bitstream is described in this document using pseudocode.
Note that the pseudocode is used to illustrate the structure of FFV1
and is not intended to specify any particular implementation. The
pseudocode used is based upon the C programming language
[ISO.9899.2018] and uses its "if/else", "while", and "for" keywords
as well as functions defined within this document.
In some instances, pseudocode is presented in a two-column format
such as shown in Figure 1. In this form, the "type" column provides
a symbol as defined in Table 4 that defines the storage of the data
referenced in that same line of pseudocode.
pseudocode | type
--------------------------------------------------------------|-----
ExamplePseudoCode( ) { |
value | ur
} |
Figure 1: A depiction of type-labeled pseudocode used within this
document.
2.2.2. Arithmetic Operators
Note: the operators and the order of precedence are the same as used
in the C programming language [ISO.9899.2018], with the exception of
">>" (removal of implementation-defined behavior) and "^" (power
instead of XOR) operators, which are redefined within this section.
"a + b" means a plus b.
"a - b" means a minus b.
"-a" means negation of a.
"a * b" means a multiplied by b.
"a / b" means a divided by b.
"a ^ b" means a raised to the b-th power.
"a & b" means bitwise "and" of a and b.
"a | b" means bitwise "or" of a and b.
"a >> b" means arithmetic right shift of the two's complement integer
representation of a by b binary digits. This is equivalent to
dividing a by 2, b times, with rounding toward negative infinity.
"a << b" means arithmetic left shift of the two's complement integer
representation of a by b binary digits.
2.2.3. Assignment Operators
"a = b" means a is assigned b.
"a++" is equivalent to a is assigned a + 1.
"a--" is equivalent to a is assigned a - 1.
"a += b" is equivalent to a is assigned a + b.
"a -= b" is equivalent to a is assigned a - b.
"a *= b" is equivalent to a is assigned a * b.
2.2.4. Comparison Operators
"a > b" is true when a is greater than b.
"a >= b" is true when a is greater than or equal to b.
"a < b" is true when a is less than b.
"a <= b" is true when a is less than or equal b.
"a == b" is true when a is equal to b.
"a != b" is true when a is not equal to b.
"a && b" is true when both a is true and b is true.
"a || b" is true when either a is true or b is true.
"!a" is true when a is not true.
"a ? b : c" if a is true, then b, otherwise c.
2.2.5. Mathematical Functions
"floor(a)" means the largest integer less than or equal to a.
"ceil(a)" means the smallest integer greater than or equal to a.
"sign(a)" extracts the sign of a number, i.e., if a < 0 then -1, else
if a > 0 then 1, else 0.
"abs(a)" means the absolute value of a, i.e., "abs(a)" = "sign(a) *
a".
"log2(a)" means the base-two logarithm of a.
"min(a,b)" means the smaller of two values a and b.
"max(a,b)" means the larger of two values a and b.
"median(a,b,c)" means the numerical middle value in a data set of a,
b, and c, i.e., "a+b+c-min(a,b,c)-max(a,b,c)".
"a ==> b" means a implies b.
"a <==> b" means a ==> b, b ==> a.
"a_b" means the b-th value of a sequence of a.
"a_(b,c)" means the 'b,c'-th value of a sequence of a.
2.2.6. Order of Operation Precedence
When order of precedence is not indicated explicitly by use of
parentheses, operations are evaluated in the following order (from
top to bottom, operations of same precedence being evaluated from
left to right). This order of operations is based on the order of
operations used in Standard C.
a++, a--
!a, -a
a ^ b
a * b, a / b
a + b, a - b
a << b, a >> b
a < b, a <= b, a > b, a >= b
a == b, a != b
a & b
a | b
a && b
a || b
a ? b : c
a = b, a += b, a -= b, a *= b
2.2.7. Range
"a...b" means any value from a to b, inclusive.
2.2.8. NumBytes
"NumBytes" is a nonnegative integer that expresses the size in 8-bit
octets of a particular FFV1 "Configuration Record" or "Frame". FFV1
relies on its container to store the "NumBytes" values; see
Section 4.3.3.
2.2.9. Bitstream Functions
2.2.9.1. remaining_bits_in_bitstream
"remaining_bits_in_bitstream( NumBytes )" means the count of
remaining bits after the pointer in that "Configuration Record" or
"Frame". It is computed from the "NumBytes" value multiplied by 8
minus the count of bits of that "Configuration Record" or "Frame"
already read by the bitstream parser.
2.2.9.2. remaining_symbols_in_syntax
"remaining_symbols_in_syntax( )" is true as long as the range coder
has not consumed all the given input bytes.
2.2.9.3. byte_aligned
"byte_aligned( )" is true if "remaining_bits_in_bitstream( NumBytes
)" is a multiple of 8, otherwise false.
2.2.9.4. get_bits
"get_bits( i )" is the action to read the next "i" bits in the
bitstream, from most significant bit to least significant bit, and to
return the corresponding value. The pointer is increased by "i".
3. Sample Coding
For each "Slice" (as described in Section 4.5) of a Frame, the
Planes, Lines, and Samples are coded in an order determined by the
color space (see Section 3.7). Each Sample is predicted by the
median predictor as described in Section 3.3 from other Samples
within the same Plane, and the difference is stored using the method
described in Section 3.8.
3.1. Border
A border is assumed for each coded "Slice" for the purpose of the
median predictor and context according to the following rules:
* One column of Samples to the left of the coded Slice is assumed as
identical to the Samples of the leftmost column of the coded Slice
shifted down by one row. The value of the topmost Sample of the
column of Samples to the left of the coded Slice is assumed to be
"0".
* One column of Samples to the right of the coded Slice is assumed
as identical to the Samples of the rightmost column of the coded
Slice.
* An additional column of Samples to the left of the coded Slice and
two rows of Samples above the coded Slice are assumed to be "0".
Figure 2 depicts a Slice of nine Samples "a,b,c,d,e,f,g,h,i" in a
three-by-three arrangement along with its assumed border.
+---+---+---+---+---+---+---+---+
| 0 | 0 | | 0 | 0 | 0 | | 0 |
+---+---+---+---+---+---+---+---+
| 0 | 0 | | 0 | 0 | 0 | | 0 |
+---+---+---+---+---+---+---+---+
| | | | | | | | |
+---+---+---+---+---+---+---+---+
| 0 | 0 | | a | b | c | | c |
+---+---+---+---+---+---+---+---+
| 0 | a | | d | e | f | | f |
+---+---+---+---+---+---+---+---+
| 0 | d | | g | h | i | | i |
+---+---+---+---+---+---+---+---+
Figure 2: A depiction of FFV1's assumed border for a set of
example Samples.
3.2. Samples
Relative to any Sample "X", six other relatively positioned Samples
from the coded Samples and presumed border are identified according
to the labels used in Figure 3. The labels for these relatively
positioned Samples are used within the median predictor and context.
+---+---+---+---+
| | | T | |
+---+---+---+---+
| |tl | t |tr |
+---+---+---+---+
| L | l | X | |
+---+---+---+---+
Figure 3: A depiction of how relatively positioned Samples are
referenced within this document.
The labels for these relative Samples are made of the first letters
of the words Top, Left, and Right.
3.3. Median Predictor
The prediction for any Sample value at position "X" may be computed
based upon the relative neighboring values of "l", "t", and "tl" via
this equation:
median(l, t, l + t - tl)
Note that this prediction template is also used in [ISO.14495-1.1999]
and [HuffYUV].
3.3.1. Exception
If "colorspace_type == 0 && bits_per_raw_sample == 16 && ( coder_type
== 1 || coder_type == 2 )" (see Sections 4.2.5, 4.2.7, and 4.2.3),
the following median predictor MUST be used:
median(left16s, top16s, left16s + top16s - diag16s)
where:
left16s = l >= 32768 ? ( l - 65536 ) : l
top16s = t >= 32768 ? ( t - 65536 ) : t
diag16s = tl >= 32768 ? ( tl - 65536 ) : tl
Background: a two's complement 16-bit signed integer was used for
storing Sample values in all known implementations of FFV1 bitstream
(see Appendix C). So in some circumstances, the most significant bit
was wrongly interpreted (used as a sign bit instead of the 16th bit
of an unsigned integer). Note that when the issue was discovered,
the only impacted configuration of all known implementations was the
16-bit YCbCr with no pixel transformation and with the range coder
coder type, as the other potentially impacted configurations (e.g.,
the 15/16-bit JPEG 2000 Reversible Color Transform (RCT)
[ISO.15444-1.2019] with range coder or the 16-bit content with the
Golomb Rice coder type) were not implemented. Meanwhile, the 16-bit
JPEG 2000 RCT with range coder was deployed without this issue in one
implementation and validated by one conformance checker. It is
expected (to be confirmed) that this exception for the median
predictor will be removed in the next version of the FFV1 bitstream.
3.4. Quantization Table Sets
Quantization Tables are used on Sample Differences (see Section 3.8),
so Quantized Sample Differences are stored in the bitstream.
The FFV1 bitstream contains one or more Quantization Table Sets.
Each Quantization Table Set contains exactly five Quantization Tables
with each Quantization Table corresponding to one of the five
Quantized Sample Differences. For each Quantization Table, both the
number of quantization steps and their distribution are stored in the
FFV1 bitstream; each Quantization Table has exactly 256 entries, and
the eight least significant bits of the Quantized Sample Difference
are used as an index:
Q_j[k] = quant_tables[i][j][k&255]
Figure 4: Description of the mapping from sample differences to the
corresponding Quantized Sample Differences.
In this formula, "i" is the Quantization Table Set index, "j" is the
Quantized Table index, and "k" is the Quantized Sample Difference
(see Section 4.1.1).
3.5. Context
Relative to any Sample "X", the Quantized Sample Differences "L-l",
"l-tl", "tl-t", "T-t", and "t-tr" are used as context:
context = Q_0[l - tl] +
Q_1[tl - t] +
Q_2[t - tr] +
Q_3[L - l] +
Q_4[T - t]
Figure 5: Description of the computing of the Context.
If "context >= 0" then "context" is used, and the difference between
the Sample and its predicted value is encoded as is; else "-context"
is used, and the difference between the Sample and its predicted
value is encoded with a flipped sign.
3.6. Quantization Table Set Indexes
For each Plane of each Slice, a Quantization Table Set is selected
from an index:
* For Y Plane, "quant_table_set_index[ 0 ]" index is used.
* For Cb and Cr Planes, "quant_table_set_index[ 1 ]" index is used.
* For extra Plane, "quant_table_set_index[ (version <= 3 ||
chroma_planes) ? 2 : 1 ]" index is used.
Background: in the first implementations of the FFV1 bitstream, the
index for Cb and Cr Planes was stored even if it was not used
("chroma_planes" set to 0), this index is kept for "version <= 3" in
order to keep compatibility with FFV1 bitstreams in the wild.
3.7. Color Spaces
FFV1 supports several color spaces. The count of allowed coded
Planes and the meaning of the extra Plane are determined by the
selected color space.
The FFV1 bitstream interleaves data in an order determined by the
color space. In YCbCr for each Plane, each Line is coded from top to
bottom, and for each Line, each Sample is coded from left to right.
In JPEG 2000 RCT for each Line from top to bottom, each Plane is
coded, and for each Plane, each Sample is encoded from left to right.
3.7.1. YCbCr
This color space allows one to four Planes.
The Cb and Cr Planes are optional, but if they are used, then they
MUST be used together. Omitting the Cb and Cr Planes codes the
frames in gray scale without color data.
An optional transparency Plane can be used to code transparency data.
An FFV1 Frame using YCbCr MUST use one of the following arrangements:
* Y
* Y, Transparency
* Y, Cb, Cr
* Y, Cb, Cr, Transparency
The Y Plane MUST be coded first. If the Cb and Cr Planes are used,
then they MUST be coded after the Y Plane. If a transparency Plane
is used, then it MUST be coded last.
3.7.2. RGB
This color space allows three or four Planes.
An optional transparency Plane can be used to code transparency data.
JPEG 2000 RCT is a Reversible Color Transform that codes RGB (Red,
Green, Blue) Planes losslessly in a modified YCbCr color space
[ISO.15444-1.2019]. Reversible pixel transformations between YCbCr
and RGB use the following formulae:
Cb = b - g
Cr = r - g
Y = g + (Cb + Cr) >> 2
Figure 6: Description of the transformation of pixels from RGB
color space to coded, modified YCbCr color space.
g = Y - (Cb + Cr) >> 2
r = Cr + g
b = Cb + g
Figure 7: Description of the transformation of pixels from coded,
modified YCbCr color space to RGB color space.
Cb and Cr are positively offset by "1 << bits_per_raw_sample" after
the conversion from RGB to the modified YCbCr, and they are
negatively offset by the same value before the conversion from the
modified YCbCr to RGB in order to have only nonnegative values after
the conversion.
When FFV1 uses the JPEG 2000 RCT, the horizontal Lines are
interleaved to improve caching efficiency since it is most likely
that the JPEG 2000 RCT will immediately be converted to RGB during
decoding. The interleaved coding order is also Y, then Cb, then Cr,
and then, if used, transparency.
As an example, a Frame that is two pixels wide and two pixels high
could comprise the following structure:
+------------------------+------------------------+
| Pixel(1,1) | Pixel(2,1) |
| Y(1,1) Cb(1,1) Cr(1,1) | Y(2,1) Cb(2,1) Cr(2,1) |
+------------------------+------------------------+
| Pixel(1,2) | Pixel(2,2) |
| Y(1,2) Cb(1,2) Cr(1,2) | Y(2,2) Cb(2,2) Cr(2,2) |
+------------------------+------------------------+
In JPEG 2000 RCT, the coding order is left to right and then top to
bottom, with values interleaved by Lines and stored in this order:
Y(1,1) Y(2,1) Cb(1,1) Cb(2,1) Cr(1,1) Cr(2,1) Y(1,2) Y(2,2) Cb(1,2)
Cb(2,2) Cr(1,2) Cr(2,2)
3.7.2.1. RGB Exception
If "bits_per_raw_sample" is between 9 and 15 inclusive and
"extra_plane" is 0, the following formulae for reversible conversions
between YCbCr and RGB MUST be used instead of the ones above:
Cb = g - b
Cr = r - b
Y = b + (Cb + Cr) >> 2
Figure 8: Description of the transformation of pixels from RGB
color space to coded, modified YCbCr color space (in case of
exception).
b = Y - (Cb + Cr) >> 2
r = Cr + b
g = Cb + b
Figure 9: Description of the transformation of pixels from coded,
modified YCbCr color space to RGB color space (in case of
exception).
Background: At the time of this writing, in all known implementations
of the FFV1 bitstream, when "bits_per_raw_sample" was between 9 and
15 inclusive and "extra_plane" was 0, Green Blue Red (GBR) Planes
were used as Blue Green Red (BGR) Planes during both encoding and
decoding. Meanwhile, 16-bit JPEG 2000 RCT was implemented without
this issue in one implementation and validated by one conformance
checker. Methods to address this exception for the transform are
under consideration for the next version of the FFV1 bitstream.
3.8. Coding of the Sample Difference
Instead of coding the n+1 bits of the Sample Difference with Huffman
or Range coding (or n+2 bits, in the case of JPEG 2000 RCT), only the
n (or n+1, in the case of JPEG 2000 RCT) least significant bits are
used, since this is sufficient to recover the original Sample. In
Figure 10, the term "bits" represents "bits_per_raw_sample + 1" for
JPEG 2000 RCT or "bits_per_raw_sample" otherwise:
coder_input = ((sample_difference + 2 ^ (bits - 1)) &
(2 ^ bits - 1)) - 2 ^ (bits - 1)
Figure 10: Description of the coding of the Sample Difference in
the bitstream.
3.8.1. Range Coding Mode
Early experimental versions of FFV1 used the Context-Adaptive Binary
Arithmetic Coding (CABAC) coder from H.264 as defined in
[ISO.14496-10.2020], but due to the uncertain patent/royalty
situation, as well as its slightly worse performance, CABAC was
replaced by a range coder based on an algorithm defined by G. Nigel
N. Martin in 1979 [Range-Encoding].
3.8.1.1. Range Binary Values
To encode binary digits efficiently, a range coder is used. A range
coder encodes a series of binary symbols by using a probability
estimation within each context. The sizes of each of the two
subranges are proportional to their estimated probability. The
Quantization Table is used to choose the context used from the
surrounding image sample values for the case of coding the Sample
Differences. The coding of integers is done by coding multiple
binary values. The range decoder will read bytes until it can
determine into which subrange the input falls to return the next
binary symbol.
To describe Range coding for FFV1, the following values are used:
C_i the i-th context.
B_i the i-th byte of the bytestream.
R_i the Range at the i-th symbol.
r_i the boundary between two subranges of R_i: a subrange of r_i
values and a subrange R_i - r_i values.
L_i the Low value of the Range at the i-th symbol.
l_i a temporary variable to carry over or adjust the Low value of
the Range between range coding operations.
t_i a temporary variable to transmit subranges between range coding
operations.
b_i the i-th range-coded binary value.
S_(0, i) the i-th initial state.
j_n the length of the bytestream encoding n binary symbols.
The following range coder state variables are initialized to the
following values. The Range is initialized to a value of 65,280
(expressed in base 16 as 0xFF00) as depicted in Figure 11. The Low
is initialized according to the value of the first two bytes as
depicted in Figure 12. j_i tracks the length of the bytestream
encoding while incrementing from an initial value of j_0 to a final
value of j_n. j_0 is initialized to 2 as depicted in Figure 13.
R_0 = 65280
Figure 11: The initial value for the Range.
L_0 = 2 ^ 8 * B_0 + B_1
Figure 12: The initial value for Low is set according to the
first two bytes of the bytestream.
j_0 = 2
Figure 13: The initial value for "j", the length of the
bytestream encoding.
The following equations define how the range coder variables evolve
as it reads or writes symbols.
r_i = floor( ( R_i * S_(i, C_i) ) / 2 ^ 8 )
Figure 14: This formula shows the positioning of range split
based on the state.
b_i = 0 <==>
L_i < R_i - r_i ==>
S_(i+1,C_i) = zero_state_(S_(i, C_i)) AND
l_i = L_i AND
t_i = R_i - r_i
b_i = 1 <==>
L_i >= R_i - r_i ==>
S_(i+1,C_i) = one_state_(S_(i, C_i)) AND
l_i = L_i - R_i + r_i AND
t_i = r_i
Figure 15: This formula shows the linking of the decoded symbol
(represented as b_i), the updated state (represented as
S_(i+1,C_i)), and the updated range (represented as a range from
l_i to t_i).
C_i != k ==> S_(i + 1, k) = S_(i, k)
Figure 16: If the value of "k" is unequal to the i-th value of
context, in other words, if the state is unchanged from the last
symbol coding, then the value of the state is carried over to the
next symbol coding.
t_i < 2 ^ 8 ==>
R_(i + 1) = 2 ^ 8 * t_i AND
L_(i + 1) = 2 ^ 8 * l_i + B_(j_i) AND
j_(i + 1) = j_i + 1
t_i >= 2 ^ 8 ==>
R_(i + 1) = t_i AND
L_(i + 1) = l_i AND
j_(i + 1) = j_i
Figure 17: This formula shows the linking of the range coder with
the reading or writing of the bytestream.
range = 0xFF00;
end = 0;
low = get_bits(16);
if (low >= range) {
low = range;
end = 1;
}
Figure 18: A pseudocode description of the initialization of
range coder variables in Range binary mode.
refill() {
if (range < 256) {
range = range * 256;
low = low * 256;
if (!end) {
c.low += get_bits(8);
if (remaining_bits_in_bitstream( NumBytes ) == 0) {
end = 1;
}
}
}
}
Figure 19: A pseudocode description of refilling the binary value
buffer of the range coder.
get_rac(state) {
rangeoff = (range * state) / 256;
range -= rangeoff;
if (low < range) {
state = zero_state[state];
refill();
return 0;
} else {
low -= range;
state = one_state[state];
range = rangeoff;
refill();
return 1;
}
}
Figure 20: A pseudocode description of the read of a binary value
in Range binary mode.
3.8.1.1.1. Termination
The range coder can be used in three modes:
* In Open mode when decoding, every symbol the reader attempts to
read is available. In this mode, arbitrary data can have been
appended without affecting the range coder output. This mode is
not used in FFV1.
* In Closed mode, the length in bytes of the bytestream is provided
to the range decoder. Bytes beyond the length are read as 0 by
the range decoder. This is generally one byte shorter than the
Open mode.
* In Sentinel mode, the exact length in bytes is not known, and thus
the range decoder MAY read into the data that follows the range-
coded bytestream by one byte. In Sentinel mode, the end of the
range-coded bytestream is a binary symbol with state 129, which
value SHALL be discarded. After reading this symbol, the range
decoder will have read one byte beyond the end of the range-coded
bytestream. This way the byte position of the end can be
determined. Bytestreams written in Sentinel mode can be read in
Closed mode if the length can be determined. In this case, the
last (sentinel) symbol will be read uncorrupted and be of value 0.
The above describes the range decoding. Encoding is defined as any
process that produces a decodable bytestream.
There are three places where range coder termination is needed in
FFV1. The first is in the "Configuration Record", which in this case
the size of the range-coded bytestream is known and handled as Closed
mode. The second is the switch from the "Slice Header", which is
range coded to Golomb-coded Slices as Sentinel mode. The third is
the end of range-coded Slices, which need to terminate before the CRC
at their end. This can be handled as Sentinel mode or as Closed mode
if the CRC position has been determined.
3.8.1.2. Range Nonbinary Values
To encode scalar integers, it would be possible to encode each bit
separately and use the past bits as context. However, that would
mean 255 contexts per 8-bit symbol, which is not only a waste of
memory but also requires more past data to reach a reasonably good
estimate of the probabilities. Alternatively, it would also be
possible to assume a Laplacian distribution and only deal with its
variance and mean (as in Huffman coding). However, for maximum
flexibility and simplicity, the chosen method uses a single symbol to
encode if a number is 0, and if the number is nonzero, it encodes the
number using its exponent, mantissa, and sign. The exact contexts
used are best described by Figure 21.
int get_symbol(RangeCoder *c, uint8_t *state, int is_signed) {
if (get_rac(c, state + 0) {
return 0;
}
int e = 0;
while (get_rac(c, state + 1 + min(e, 9)) { //1..10
e++;
}
int a = 1;
for (int i = e - 1; i >= 0; i--) {
a = a * 2 + get_rac(c, state + 22 + min(i, 9)); // 22..31
}
if (!is_signed) {
return a;
}
if (get_rac(c, state + 11 + min(e, 10))) { //11..21
return -a;
} else {
return a;
}
}
Figure 21: A pseudocode description of the contexts of Range
nonbinary values.
"get_symbol" is used for the read out of "sample_difference"
indicated in Figure 10.
"get_rac" returns a boolean computed from the bytestream as described
by the formula found in Figure 14 and by the pseudocode found in
Figure 20.
3.8.1.3. Initial Values for the Context Model
When the "keyframe" value (see Section 4.4) is 1, all range coder
state variables are set to their initial state.
3.8.1.4. State Transition Table
In Range Coding Mode, a state transition table is used, indicating to
which state the decoder will move based on the current state and the
value extracted from Figure 20.
one_state_i =
default_state_transition_i + state_transition_delta_i
Figure 22: Description of the coding of the state transition
table for a "get_rac" readout value of 1.
zero_state_i = 256 - one_state_(256-i)
Figure 23: Description of the coding of the state transition
table for a "get_rac" readout value of 0.
3.8.1.5. default_state_transition
By default, the following state transition table is used:
0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27,
28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42,
43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57,
58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73,
74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88,
89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99,100,101,102,103,
104,105,106,107,108,109,110,111,112,113,114,114,115,116,117,118,
119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,133,
134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,
150,151,152,152,153,154,155,156,157,158,159,160,161,162,163,164,
165,166,167,168,169,170,171,171,172,173,174,175,176,177,178,179,
180,181,182,183,184,185,186,187,188,189,190,190,191,192,194,194,
195,196,197,198,199,200,201,202,202,204,205,206,207,208,209,209,
210,211,212,213,215,215,216,217,218,219,220,220,222,223,224,225,
226,227,227,229,229,230,231,232,234,234,235,236,237,238,239,240,
241,242,243,244,245,246,247,248,248, 0, 0, 0, 0, 0, 0, 0,
Figure 24: Default state transition table for Range coding.
3.8.1.6. Alternative State Transition Table
The alternative state transition table has been built using iterative
minimization of frame sizes and generally performs better than the
default. To use it, the "coder_type" (see Section 4.2.3) MUST be set
to 2, and the difference to the default MUST be stored in the
"Parameters", see Section 4.2. At the time of this writing, the
reference implementation of FFV1 in FFmpeg uses Figure 25 by default
when Range coding is used.
0, 10, 10, 10, 10, 16, 16, 16, 28, 16, 16, 29, 42, 49, 20, 49,
59, 25, 26, 26, 27, 31, 33, 33, 33, 34, 34, 37, 67, 38, 39, 39,
40, 40, 41, 79, 43, 44, 45, 45, 48, 48, 64, 50, 51, 52, 88, 52,
53, 74, 55, 57, 58, 58, 74, 60,101, 61, 62, 84, 66, 66, 68, 69,
87, 82, 71, 97, 73, 73, 82, 75,111, 77, 94, 78, 87, 81, 83, 97,
85, 83, 94, 86, 99, 89, 90, 99,111, 92, 93,134, 95, 98,105, 98,
105,110,102,108,102,118,103,106,106,113,109,112,114,112,116,125,
115,116,117,117,126,119,125,121,121,123,145,124,126,131,127,129,
165,130,132,138,133,135,145,136,137,139,146,141,143,142,144,148,
147,155,151,149,151,150,152,157,153,154,156,168,158,162,161,160,
172,163,169,164,166,184,167,170,177,174,171,173,182,176,180,178,
175,189,179,181,186,183,192,185,200,187,191,188,190,197,193,196,
197,194,195,196,198,202,199,201,210,203,207,204,205,206,208,214,
209,211,221,212,213,215,224,216,217,218,219,220,222,228,223,225,
226,224,227,229,240,230,231,232,233,234,235,236,238,239,237,242,
241,243,242,244,245,246,247,248,249,250,251,252,252,253,254,255,
Figure 25: Alternative state transition table for Range coding.
3.8.2. Golomb Rice Mode
The end of the bitstream of the Frame is padded with zeroes until the
bitstream contains a multiple of eight bits.
3.8.2.1. Signed Golomb Rice Codes
This coding mode uses Golomb Rice codes. The VLC is split into two
parts: the prefix and suffix. The prefix stores the most significant
bits or indicates if the symbol is too large to be stored (this is
known as the ESC case, see Section 3.8.2.1.1). The suffix either
stores the k least significant bits or stores the whole number in the
ESC case.
int get_ur_golomb(k) {
for (prefix = 0; prefix < 12; prefix++) {
if (get_bits(1)) {
return get_bits(k) + (prefix << k);
}
}
return get_bits(bits) + 11;
}
Figure 26: A pseudocode description of the read of an unsigned
integer in Golomb Rice mode.
int get_sr_golomb(k) {
v = get_ur_golomb(k);
if (v & 1) return - (v >> 1) - 1;
else return (v >> 1);
}
Figure 27: A pseudocode description of the read of a signed
integer in Golomb Rice mode.
3.8.2.1.1. Prefix
+================+=======+
| bits | value |
+================+=======+
| 1 | 0 |
+----------------+-------+
| 01 | 1 |
+----------------+-------+
| ... | ... |
+----------------+-------+
| 0000 0000 01 | 9 |
+----------------+-------+
| 0000 0000 001 | 10 |
+----------------+-------+
| 0000 0000 0001 | 11 |
+----------------+-------+
| 0000 0000 0000 | ESC |
+----------------+-------+
Table 1: Description
of the coding of the
prefix of signed
Golomb Rice codes.
ESC is an ESCape symbol to indicate that the symbol to be stored is
too large for normal storage and that an alternate storage method is
used.
3.8.2.1.2. Suffix
+---------+----------------------------------------+
| non-ESC | the k least significant bits MSB first |
+---------+----------------------------------------+
| ESC | the value - 11, in MSB first order |
+---------+----------------------------------------+
Table 2: Description of the coding of the suffix
of signed Golomb Rice codes.
ESC MUST NOT be used if the value can be coded as non-ESC.
3.8.2.1.3. Examples
Table 3 shows practical examples of how signed Golomb Rice codes are
decoded based on the series of bits extracted from the bitstream as
described by the method above:
+=====+=======================+=======+
| k | bits | value |
+=====+=======================+=======+
| 0 | 1 | 0 |
+-----+-----------------------+-------+
| 0 | 001 | 2 |
+-----+-----------------------+-------+
| 2 | 1 00 | 0 |
+-----+-----------------------+-------+
| 2 | 1 10 | 2 |
+-----+-----------------------+-------+
| 2 | 01 01 | 5 |
+-----+-----------------------+-------+
| any | 000000000000 10000000 | 139 |
+-----+-----------------------+-------+
Table 3: Examples of decoded,
signed Golomb Rice codes.
3.8.2.2. Run Mode
Run mode is entered when the context is 0 and left as soon as a
nonzero difference is found. The Sample Difference is identical to
the predicted one. The run and the first different Sample Difference
are coded as defined in Section 3.8.2.4.1.
3.8.2.2.1. Run Length Coding
The run value is encoded in two parts. The prefix part stores the
more significant part of the run as well as adjusting the "run_index"
that determines the number of bits in the less significant part of
the run. The second part of the value stores the less significant
part of the run as it is. The "run_index" is reset to zero for each
Plane and Slice.
log2_run[41] = {
0, 0, 0, 0, 1, 1, 1, 1,
2, 2, 2, 2, 3, 3, 3, 3,
4, 4, 5, 5, 6, 6, 7, 7,
8, 9,10,11,12,13,14,15,
16,17,18,19,20,21,22,23,
24,
};
if (run_count == 0 && run_mode == 1) {
if (get_bits(1)) {
run_count = 1 << log2_run[run_index];
if (x + run_count <= w) {
run_index++;
}
} else {
if (log2_run[run_index]) {
run_count = get_bits(log2_run[run_index]);
} else {
run_count = 0;
}
if (run_index) {
run_index--;
}
run_mode = 2;
}
}
The "log2_run" array is also used within [ISO.14495-1.1999].
3.8.2.3. Sign Extension
"sign_extend" is the function of increasing the number of bits of an
input binary number in two's complement signed number representation
while preserving the input number's sign (positive/negative) and
value, in order to fit in the output bit width. It MAY be computed
with the following:
sign_extend(input_number, input_bits) {
negative_bias = 1 << (input_bits - 1);
bits_mask = negative_bias - 1;
output_number = input_number & bits_mask; // Remove negative bit
is_negative = input_number & negative_bias; // Test negative bit
if (is_negative)
output_number -= negative_bias;
return output_number
}
3.8.2.4. Scalar Mode
Each difference is coded with the per context mean prediction removed
and a per context value for "k".
get_vlc_symbol(state) {
i = state->count;
k = 0;
while (i < state->error_sum) {
k++;
i += i;
}
v = get_sr_golomb(k);
if (2 * state->drift < -state->count) {
v = -1 - v;
}
ret = sign_extend(v + state->bias, bits);
state->error_sum += abs(v);
state->drift += v;
if (state->count == 128) {
state->count >>= 1;
state->drift >>= 1;
state->error_sum >>= 1;
}
state->count++;
if (state->drift <= -state->count) {
state->bias = max(state->bias - 1, -128);
state->drift = max(state->drift + state->count,
-state->count + 1);
} else if (state->drift > 0) {
state->bias = min(state->bias + 1, 127);
state->drift = min(state->drift - state->count, 0);
}
return ret;
}
3.8.2.4.1. Golomb Rice Sample Difference Coding
Level coding is identical to the normal difference coding with the
exception that the 0 value is removed as it cannot occur:
diff = get_vlc_symbol(context_state);
if (diff >= 0) {
diff++;
}
Note that this is different from JPEG-LS (lossless JPEG), which
doesn't use prediction in run mode and uses a different encoding and
context model for the last difference. On a small set of test
Samples, the use of prediction slightly improved the compression
rate.
3.8.2.5. Initial Values for the VLC Context State
When "keyframe" (see Section 4.4) value is 1, all VLC coder state
variables are set to their initial state.
drift = 0;
error_sum = 4;
bias = 0;
count = 1;
4. Bitstream
An FFV1 bitstream is composed of a series of one or more Frames and
(when required) a "Configuration Record".
Within the following subsections, pseudocode as described in
Section 2.2.1 is used to explain the structure of each FFV1 bitstream
component. Table 4 lists symbols used to annotate that pseudocode in
order to define the storage of the data referenced in that line of
pseudocode.
+========+==================================================+
| symbol | definition |
+========+==================================================+
| u(n) | Unsigned, big-endian integer symbol using n bits |
+--------+--------------------------------------------------+
| br | Boolean (1-bit) symbol that is range coded with |
| | the method described in Section 3.8.1.1 |
+--------+--------------------------------------------------+
| ur | Unsigned scalar symbol that is range coded with |
| | the method described in Section 3.8.1.2 |
+--------+--------------------------------------------------+
| sr | Signed scalar symbol that is range coded with |
| | the method described in Section 3.8.1.2 |
+--------+--------------------------------------------------+
| sd | Sample Difference symbol that is coded with the |
| | method described in Section 3.8 |
+--------+--------------------------------------------------+
Table 4: Definition of pseudocode symbols for this document.
The following MUST be provided by external means during the
initialization of the decoder:
"frame_pixel_width" is defined as Frame width in pixels.
"frame_pixel_height" is defined as Frame height in pixels.
Default values at the decoder initialization phase:
"ConfigurationRecordIsPresent" is set to 0.
4.1. Quantization Table Set
The Quantization Table Sets store a sequence of values that are equal
to one less than the count of equal concurrent entries for each set
of equal concurrent entries within the first half of the table
(represented as "len - 1" in the pseudocode below) using the method
described in Section 3.8.1.2. The second half doesn't need to be
stored as it is identical to the first with flipped sign. "scale" and
"len_count[ i ][ j ]" are temporary values used for the computing of
"context_count[ i ]" and are not used outside Quantization Table Set
pseudocode.
Example:
Table: 0 0 1 1 1 1 2 2 -2 -2 -2 -1 -1 -1 -1 0
Stored values: 1, 3, 1
"QuantizationTableSet" has its own initial states, all set to 128.
pseudocode | type
--------------------------------------------------------------|-----
QuantizationTableSet( i ) { |
scale = 1 |
for (j = 0; j < MAX_CONTEXT_INPUTS; j++) { |
QuantizationTable( i, j, scale ) |
scale *= 2 * len_count[ i ][ j ] - 1 |
} |
context_count[ i ] = ceil( scale / 2 ) |
} |
"MAX_CONTEXT_INPUTS" is 5.
pseudocode | type
--------------------------------------------------------------|-----
QuantizationTable(i, j, scale) { |
v = 0 |
for (k = 0; k < 128;) { |
len - 1 | ur
for (n = 0; n < len; n++) { |
quant_tables[ i ][ j ][ k ] = scale * v |
k++ |
} |
v++ |
} |
for (k = 1; k < 128; k++) { |
quant_tables[ i ][ j ][ 256 - k ] = \ |
-quant_tables[ i ][ j ][ k ] |
} |
quant_tables[ i ][ j ][ 128 ] = \ |
-quant_tables[ i ][ j ][ 127 ] |
len_count[ i ][ j ] = v |
} |
4.1.1. "quant_tables"
"quant_tables[ i ][ j ][ k ]" indicates the Quantization Table value
of the Quantized Sample Difference "k" of the Quantization Table "j"
of the Quantization Table Set "i".
4.1.2. "context_count"
"context_count[ i ]" indicates the count of contexts for Quantization
Table Set "i". "context_count[ i ]" MUST be less than or equal to
32768.
4.2. Parameters
The "Parameters" section, which could be in a global header of a
container file that may or may not be considered to be part of the
bitstream, contains significant characteristics about the decoding
configuration used for all instances of Frame (in FFV1 versions 0 and
1) or the whole FFV1 bitstream (other versions), including the stream
version, color configuration, and Quantization Tables. Figure 28
describes the contents of the bitstream.
"Parameters" has its own initial states, all set to 128.
pseudocode | type
--------------------------------------------------------------|-----
Parameters( ) { |
version | ur
if (version >= 3) { |
micro_version | ur
} |
coder_type | ur
if (coder_type > 1) { |
for (i = 1; i < 256; i++) { |
state_transition_delta[ i ] | sr
} |
} |
colorspace_type | ur
if (version >= 1) { |
bits_per_raw_sample | ur
} |
chroma_planes | br
log2_h_chroma_subsample | ur
log2_v_chroma_subsample | ur
extra_plane | br
if (version >= 3) { |
num_h_slices - 1 | ur
num_v_slices - 1 | ur
quant_table_set_count | ur
} |
for (i = 0; i < quant_table_set_count; i++) { |
QuantizationTableSet( i ) |
} |
if (version >= 3) { |
for (i = 0; i < quant_table_set_count; i++) { |
states_coded | br
if (states_coded) { |
for (j = 0; j < context_count[ i ]; j++) { |
for (k = 0; k < CONTEXT_SIZE; k++) { |
initial_state_delta[ i ][ j ][ k ] | sr
} |
} |
} |
} |
ec | ur
intra | ur
} |
} |
Figure 28: A pseudocode description of the bitstream contents.
CONTEXT_SIZE is 32.
4.2.1. "version"
"version" specifies the version of the FFV1 bitstream.
Each version is incompatible with other versions: decoders SHOULD
reject FFV1 bitstreams due to an unknown version.
Decoders SHOULD reject FFV1 bitstreams with "version <= 1 &&
ConfigurationRecordIsPresent == 1".
Decoders SHOULD reject FFV1 bitstreams with "version >= 3 &&
ConfigurationRecordIsPresent == 0".
+=======+=========================+
| value | version |
+=======+=========================+
| 0 | FFV1 version 0 |
+-------+-------------------------+
| 1 | FFV1 version 1 |
+-------+-------------------------+
| 2 | reserved* |
+-------+-------------------------+
| 3 | FFV1 version 3 |
+-------+-------------------------+
| Other | reserved for future use |
+-------+-------------------------+
Table 5: The definitions for
"version" values.
* Version 2 was experimental and this document does not describe it.
4.2.2. "micro_version"
"micro_version" specifies the micro-version of the FFV1 bitstream.
After a version is considered stable (a micro-version value is
assigned to be the first stable variant of a specific version), each
new micro-version after this first stable variant is compatible with
the previous micro-version: decoders SHOULD NOT reject FFV1
bitstreams due to an unknown micro-version equal or above the micro-
version considered as stable.
Meaning of "micro_version" for "version" 3:
+=======+=========================+
| value | micro_version |
+=======+=========================+
| 0...3 | reserved* |
+-------+-------------------------+
| 4 | first stable variant |
+-------+-------------------------+
| Other | reserved for future use |
+-------+-------------------------+
Table 6: The definitions for
"micro_version" values for FFV1
version 3.
* Development versions may be incompatible with the stable variants.
4.2.3. "coder_type"
"coder_type" specifies the coder used.
+=======+=================================================+
| value | coder used |
+=======+=================================================+
| 0 | Golomb Rice |
+-------+-------------------------------------------------+
| 1 | Range coder with default state transition table |
+-------+-------------------------------------------------+
| 2 | Range coder with custom state transition table |
+-------+-------------------------------------------------+
| Other | reserved for future use |
+-------+-------------------------------------------------+
Table 7: The definitions for "coder_type" values.
Restrictions:
If "coder_type" is 0, then "bits_per_raw_sample" SHOULD NOT be > 8.
Background: At the time of this writing, there is no known
implementation of FFV1 bitstream supporting the Golomb Rice algorithm
with "bits_per_raw_sample" greater than eight, and range coder is
preferred.
4.2.4. "state_transition_delta"
"state_transition_delta" specifies the range coder custom state
transition table.
If "state_transition_delta" is not present in the FFV1 bitstream, all
range coder custom state transition table elements are assumed to be
0.
4.2.5. "colorspace_type"
"colorspace_type" specifies the color space encoded, the pixel
transformation used by the encoder, the extra Plane content, as well
as interleave method.
+=======+==============+================+==============+============+
| value | color space | pixel | extra Plane | interleave |
| | encoded | transformation | content | method |
+=======+==============+================+==============+============+
| 0 | YCbCr | None | Transparency | Plane then |
| | | | | Line |
+-------+--------------+----------------+--------------+------------+
| 1 | RGB | JPEG 2000 RCT | Transparency | Line then |
| | | | | Plane |
+-------+--------------+----------------+--------------+------------+
| Other | reserved | reserved for | reserved for | reserved |
| | for future | future use | future use | for future |
| | use | | | use |
+-------+--------------+----------------+--------------+------------+
Table 8: The definitions for "colorspace_type" values.
FFV1 bitstreams with "colorspace_type == 1 && (chroma_planes != 1 ||
log2_h_chroma_subsample != 0 || log2_v_chroma_subsample != 0)" are
not part of this specification.
4.2.6. "chroma_planes"
"chroma_planes" indicates if chroma (color) Planes are present.
+=======+===============================+
| value | presence |
+=======+===============================+
| 0 | chroma Planes are not present |
+-------+-------------------------------+
| 1 | chroma Planes are present |
+-------+-------------------------------+
Table 9: The definitions for
"chroma_planes" values.
4.2.7. "bits_per_raw_sample"
"bits_per_raw_sample" indicates the number of bits for each Sample.
Inferred to be 8 if not present.
+=======+=================================+
| value | bits for each Sample |
+=======+=================================+
| 0 | reserved* |
+-------+---------------------------------+
| Other | the actual bits for each Sample |
+-------+---------------------------------+
Table 10: The definitions for
"bits_per_raw_sample" values.
* Encoders MUST NOT store "bits_per_raw_sample = 0". Decoders SHOULD
accept and interpret "bits_per_raw_sample = 0" as 8.
4.2.8. "log2_h_chroma_subsample"
"log2_h_chroma_subsample" indicates the subsample factor, stored in
powers to which the number 2 is raised, between luma and chroma width
("chroma_width = 2 ^ -log2_h_chroma_subsample * luma_width").
4.2.9. "log2_v_chroma_subsample"
"log2_v_chroma_subsample" indicates the subsample factor, stored in
powers to which the number 2 is raised, between luma and chroma
height ("chroma_height = 2 ^ -log2_v_chroma_subsample *
luma_height").
4.2.10. "extra_plane"
"extra_plane" indicates if an extra Plane is present.
+=======+============================+
| value | presence |
+=======+============================+
| 0 | extra Plane is not present |
+-------+----------------------------+
| 1 | extra Plane is present |
+-------+----------------------------+
Table 11: The definitions for
"extra_plane" values.
4.2.11. "num_h_slices"
"num_h_slices" indicates the number of horizontal elements of the
Slice raster.
Inferred to be 1 if not present.
4.2.12. "num_v_slices"
"num_v_slices" indicates the number of vertical elements of the Slice
raster.
Inferred to be 1 if not present.
4.2.13. "quant_table_set_count"
"quant_table_set_count" indicates the number of Quantization
Table Sets. "quant_table_set_count" MUST be less than or equal to 8.
Inferred to be 1 if not present.
MUST NOT be 0.
4.2.14. "states_coded"
"states_coded" indicates if the respective Quantization Table Set has
the initial states coded.
Inferred to be 0 if not present.
+=======+================================+
| value | initial states |
+=======+================================+
| 0 | initial states are not present |
| | and are assumed to be all 128 |
+-------+--------------------------------+
| 1 | initial states are present |
+-------+--------------------------------+
Table 12: The definitions for
"states_coded" values.
4.2.15. "initial_state_delta"
"initial_state_delta[ i ][ j ][ k ]" indicates the initial range
coder state, and it is encoded using "k" as context index for the
range coder and the following pseudocode:
pred = j ? initial_states[ i ][j - 1][ k ] : 128
Figure 29: Predictor value for the coding of
"initial_state_delta[ i ][ j ][ k ]".
initial_state[ i ][ j ][ k ] =
( pred + initial_state_delta[ i ][ j ][ k ] ) & 255
Figure 30: Description of the coding of
"initial_state_delta[ i ][ j ][ k ]".
4.2.16. "ec"
"ec" indicates the error detection/correction type.
+=======+=================================================+
| value | error detection/correction type |
+=======+=================================================+
| 0 | 32-bit CRC in "ConfigurationRecord" |
+-------+-------------------------------------------------+
| 1 | 32-bit CRC in "Slice" and "ConfigurationRecord" |
+-------+-------------------------------------------------+
| Other | reserved for future use |
+-------+-------------------------------------------------+
Table 13: The definitions for "ec" values.
4.2.17. "intra"
"intra" indicates the constraint on "keyframe" in each instance of
Frame.
Inferred to be 0 if not present.
+=======+=======================================================+
| value | relationship |
+=======+=======================================================+
| 0 | "keyframe" can be 0 or 1 (non keyframes or keyframes) |
+-------+-------------------------------------------------------+
| 1 | "keyframe" MUST be 1 (keyframes only) |
+-------+-------------------------------------------------------+
| Other | reserved for future use |
+-------+-------------------------------------------------------+
Table 14: The definitions for "intra" values.
4.3. Configuration Record
In the case of a FFV1 bitstream with "version >= 3", a "Configuration
Record" is stored in the underlying container as described in
Section 4.3.3. It contains the "Parameters" used for all instances
of Frame. The size of the "Configuration Record", "NumBytes", is
supplied by the underlying container.
pseudocode | type
-----------------------------------------------------------|-----
ConfigurationRecord( NumBytes ) { |
ConfigurationRecordIsPresent = 1 |
Parameters( ) |
while (remaining_symbols_in_syntax(NumBytes - 4)) { |
reserved_for_future_use | br/ur/sr
} |
configuration_record_crc_parity | u(32)
} |
4.3.1. "reserved_for_future_use"
"reserved_for_future_use" is a placeholder for future updates of this
specification.
Encoders conforming to this version of this specification SHALL NOT
write "reserved_for_future_use".
Decoders conforming to this version of this specification SHALL
ignore "reserved_for_future_use".
4.3.2. "configuration_record_crc_parity"
"configuration_record_crc_parity" is 32 bits that are chosen so that
the "Configuration Record" as a whole has a CRC remainder of zero.
This is equivalent to storing the CRC remainder in the 32-bit parity.
The CRC generator polynomial used is described in Section 4.9.3.
4.3.3. Mapping FFV1 into Containers
This "Configuration Record" can be placed in any file format that
supports "Configuration Records", fitting as much as possible with
how the file format stores "Configuration Records". The
"Configuration Record" storage place and "NumBytes" are currently
defined and supported for the following formats:
4.3.3.1. Audio Video Interleave (AVI) File Format
The "Configuration Record" extends the stream format chunk ("AVI ",
"hdlr", "strl", "strf") with the "ConfigurationRecord" bitstream.
See [AVI] for more information about chunks.
"NumBytes" is defined as the size, in bytes, of the "strf" chunk
indicated in the chunk header minus the size of the stream format
structure.
4.3.3.2. ISO Base Media File Format
The "Configuration Record" extends the sample description box
("moov", "trak", "mdia", "minf", "stbl", "stsd") with a "glbl" box
that contains the "ConfigurationRecord" bitstream. See
[ISO.14496-12.2020] for more information about boxes.
"NumBytes" is defined as the size, in bytes, of the "glbl" box
indicated in the box header minus the size of the box header.
4.3.3.3. NUT File Format
The "codec_specific_data" element (in "stream_header" packet)
contains the "ConfigurationRecord" bitstream. See [NUT] for more
information about elements.
"NumBytes" is defined as the size, in bytes, of the
"codec_specific_data" element as indicated in the "length" field of
"codec_specific_data".
4.3.3.4. Matroska File Format
FFV1 SHOULD use "V_FFV1" as the Matroska "Codec ID". For FFV1
versions 2 or less, the Matroska "CodecPrivate" Element SHOULD NOT be
used. For FFV1 versions 3 or greater, the Matroska "CodecPrivate"
Element MUST contain the FFV1 "Configuration Record" structure and no
other data. See [Matroska] for more information about elements.
"NumBytes" is defined as the "Element Data Size" of the
"CodecPrivate" Element.
4.4. Frame
A "Frame" is an encoded representation of a complete static image.
The whole "Frame" is provided by the underlying container.
A "Frame" consists of the "keyframe" field, "Parameters" (if "version
<= 1"), and a sequence of independent Slices. The pseudocode below
describes the contents of a "Frame".
The "keyframe" field has its own initial state, set to 128.
pseudocode | type
--------------------------------------------------------------|-----
Frame( NumBytes ) { |
keyframe | br
if (keyframe && !ConfigurationRecordIsPresent { |
Parameters( ) |
} |
while (remaining_bits_in_bitstream( NumBytes )) { |
Slice( ) |
} |
} |
The following is an architecture overview of Slices in a Frame:
+-----------------------------------------------------------------+
| first Slice header |
+-----------------------------------------------------------------+
| first Slice content |
+-----------------------------------------------------------------+
| first Slice footer |
+-----------------------------------------------------------------+
| --------------------------------------------------------------- |
+-----------------------------------------------------------------+
| second Slice header |
+-----------------------------------------------------------------+
| second Slice content |
+-----------------------------------------------------------------+
| second Slice footer |
+-----------------------------------------------------------------+
| --------------------------------------------------------------- |
+-----------------------------------------------------------------+
| ... |
+-----------------------------------------------------------------+
| --------------------------------------------------------------- |
+-----------------------------------------------------------------+
| last Slice header |
+-----------------------------------------------------------------+
| last Slice content |
+-----------------------------------------------------------------+
| last Slice footer |
+-----------------------------------------------------------------+
4.5. Slice
A "Slice" is an independent, spatial subsection of a Frame that is
encoded separately from another region of the same Frame. The use of
more than one "Slice" per Frame provides opportunities for taking
advantage of multithreaded encoding and decoding.
A "Slice" consists of a "Slice Header" (when relevant), a "Slice
Content", and a "Slice Footer" (when relevant). The pseudocode below
describes the contents of a "Slice".
pseudocode | type
--------------------------------------------------------------|-----
Slice( ) { |
if (version >= 3) { |
SliceHeader( ) |
} |
SliceContent( ) |
if (coder_type == 0) { |
while (!byte_aligned()) { |
padding | u(1)
} |
} |
if (version <= 1) { |
while (remaining_bits_in_bitstream( NumBytes ) != 0) {|
reserved | u(1)
} |
} |
if (version >= 3) { |
SliceFooter( ) |
} |
} |
"padding" specifies a bit without any significance and used only for
byte alignment. "padding" MUST be 0.
"reserved" specifies a bit without any significance in this
specification but may have a significance in a later revision of this
specification.
Encoders SHOULD NOT fill "reserved".
Decoders SHOULD ignore "reserved".
4.6. Slice Header
A "Slice Header" provides information about the decoding
configuration of the "Slice", such as its spatial position, size, and
aspect ratio. The pseudocode below describes the contents of the
"Slice Header".
"Slice Header" has its own initial states, all set to 128.
pseudocode | type
--------------------------------------------------------------|-----
SliceHeader( ) { |
slice_x | ur
slice_y | ur
slice_width - 1 | ur
slice_height - 1 | ur
for (i = 0; i < quant_table_set_index_count; i++) { |
quant_table_set_index[ i ] | ur
} |
picture_structure | ur
sar_num | ur
sar_den | ur
} |
4.6.1. "slice_x"
"slice_x" indicates the x position on the Slice raster formed by
"num_h_slices".
Inferred to be 0 if not present.
4.6.2. "slice_y"
"slice_y" indicates the y position on the Slice raster formed by
"num_v_slices".
Inferred to be 0 if not present.
4.6.3. "slice_width"
"slice_width" indicates the width on the Slice raster formed by
"num_h_slices".
Inferred to be 1 if not present.
4.6.4. "slice_height"
"slice_height" indicates the height on the Slice raster formed by
"num_v_slices".
Inferred to be 1 if not present.
4.6.5. "quant_table_set_index_count"
"quant_table_set_index_count" is defined as the following:
1 + ( ( chroma_planes || version <= 3 ) ? 1 : 0 )
+ ( extra_plane ? 1 : 0 )
4.6.6. "quant_table_set_index"
"quant_table_set_index" indicates the Quantization Table Set index to
select the Quantization Table Set and the initial states for the
"Slice Content".
Inferred to be 0 if not present.
4.6.7. "picture_structure"
"picture_structure" specifies the temporal and spatial relationship
of each Line of the Frame.
Inferred to be 0 if not present.
+=======+=========================+
| value | picture structure used |
+=======+=========================+
| 0 | unknown |
+-------+-------------------------+
| 1 | top field first |
+-------+-------------------------+
| 2 | bottom field first |
+-------+-------------------------+
| 3 | progressive |
+-------+-------------------------+
| Other | reserved for future use |
+-------+-------------------------+
Table 15: The definitions for
"picture_structure" values.
4.6.8. "sar_num"
"sar_num" specifies the Sample aspect ratio numerator.
Inferred to be 0 if not present.
A value of 0 means that aspect ratio is unknown.
Encoders MUST write 0 if the Sample aspect ratio is unknown.
If "sar_den" is 0, decoders SHOULD ignore the encoded value and
consider that "sar_num" is 0.
4.6.9. "sar_den"
"sar_den" specifies the Sample aspect ratio denominator.
Inferred to be 0 if not present.
A value of 0 means that aspect ratio is unknown.
Encoders MUST write 0 if the Sample aspect ratio is unknown.
If "sar_num" is 0, decoders SHOULD ignore the encoded value and
consider that "sar_den" is 0.
4.7. Slice Content
A "Slice Content" contains all Line elements part of the "Slice".
Depending on the configuration, Line elements are ordered by Plane
then by row (YCbCr) or by row then by Plane (RGB).
pseudocode | type
--------------------------------------------------------------|-----
SliceContent( ) { |
if (colorspace_type == 0) { |
for (p = 0; p < primary_color_count; p++) { |
for (y = 0; y < plane_pixel_height[ p ]; y++) { |
Line( p, y ) |
} |
} |
} else if (colorspace_type == 1) { |
for (y = 0; y < slice_pixel_height; y++) { |
for (p = 0; p < primary_color_count; p++) { |
Line( p, y ) |
} |
} |
} |
} |
4.7.1. "primary_color_count"
"primary_color_count" is defined as the following:
1 + ( chroma_planes ? 2 : 0 ) + ( extra_plane ? 1 : 0 )
4.7.2. "plane_pixel_height"
"plane_pixel_height[ p ]" is the height in pixels of Plane p of the
"Slice". It is defined as the following:
chroma_planes == 1 && (p == 1 || p == 2)
? ceil(slice_pixel_height / (1 << log2_v_chroma_subsample))
: slice_pixel_height
4.7.3. "slice_pixel_height"
"slice_pixel_height" is the height in pixels of the Slice. It is
defined as the following:
floor(
( slice_y + slice_height )
* slice_pixel_height
/ num_v_slices
) - slice_pixel_y.
4.7.4. "slice_pixel_y"
"slice_pixel_y" is the Slice vertical position in pixels. It is
defined as the following:
floor( slice_y * frame_pixel_height / num_v_slices )
4.8. Line
A "Line" is a list of the Sample Differences (relative to the
predictor) of primary color components. The pseudocode below
describes the contents of the "Line".
pseudocode | type
--------------------------------------------------------------|-----
Line( p, y ) { |
if (colorspace_type == 0) { |
for (x = 0; x < plane_pixel_width[ p ]; x++) { |
sample_difference[ p ][ y ][ x ] | sd
} |
} else if (colorspace_type == 1) { |
for (x = 0; x < slice_pixel_width; x++) { |
sample_difference[ p ][ y ][ x ] | sd
} |
} |
} |
4.8.1. "plane_pixel_width"
"plane_pixel_width[ p ]" is the width in pixels of Plane p of the
"Slice". It is defined as the following:
chroma_planes == 1 && (p == 1 || p == 2)
? ceil( slice_pixel_width / (1 << log2_h_chroma_subsample) )
: slice_pixel_width.
4.8.2. "slice_pixel_width"
"slice_pixel_width" is the width in pixels of the Slice. It is
defined as the following:
floor(
( slice_x + slice_width )
* slice_pixel_width
/ num_h_slices
) - slice_pixel_x
4.8.3. "slice_pixel_x"
"slice_pixel_x" is the Slice horizontal position in pixels. It is
defined as the following:
floor( slice_x * frame_pixel_width / num_h_slices )
4.8.4. "sample_difference"
"sample_difference[ p ][ y ][ x ]" is the Sample Difference for
Sample at Plane "p", y position "y", and x position "x". The Sample
value is computed based on median predictor and context described in
Section 3.2.
4.9. Slice Footer
A "Slice Footer" provides information about Slice size and
(optionally) parity. The pseudocode below describes the contents of
the "Slice Footer".
Note: "Slice Footer" is always byte aligned.
pseudocode | type
--------------------------------------------------------------|-----
SliceFooter( ) { |
slice_size | u(24)
if (ec) { |
error_status | u(8)
slice_crc_parity | u(32)
} |
} |
4.9.1. "slice_size"
"slice_size" indicates the size of the Slice in bytes.
Note: this allows finding the start of Slices before previous Slices
have been fully decoded and allows parallel decoding as well as error
resilience.
4.9.2. "error_status"
"error_status" specifies the error status.
+=======+=======================================+
| value | error status |
+=======+=======================================+
| 0 | no error |
+-------+---------------------------------------+
| 1 | Slice contains a correctable error |
+-------+---------------------------------------+
| 2 | Slice contains an uncorrectable error |
+-------+---------------------------------------+
| Other | reserved for future use |
+-------+---------------------------------------+
Table 16: The definitions for "error_status"
values.
4.9.3. "slice_crc_parity"
"slice_crc_parity" is 32 bits that are chosen so that the Slice as a
whole has a CRC remainder of 0.
This is equivalent to storing the CRC remainder in the 32-bit parity.
The CRC generator polynomial used is the standard IEEE CRC polynomial
(0x104C11DB7) with initial value 0, without pre-inversion, and
without post-inversion.
5. Restrictions
To ensure that fast multithreaded decoding is possible, starting with
version 3 and if "frame_pixel_width * frame_pixel_height" is more
than 101376, "slice_width * slice_height" MUST be less or equal to
"num_h_slices * num_v_slices / 4". Note: 101376 is the frame size in
pixels of a 352x288 frame also known as CIF (Common Intermediate
Format) frame size format.
For each Frame, each position in the Slice raster MUST be filled by
one and only one Slice of the Frame (no missing Slice position and no
Slice overlapping).
For each Frame with a "keyframe" value of 0, each Slice MUST have the
same value of "slice_x", "slice_y", "slice_width", and "slice_height"
as a Slice in the previous Frame.
6. Security Considerations
Like any other codec (such as [RFC6716]), FFV1 should not be used
with insecure ciphers or cipher modes that are vulnerable to known
plaintext attacks. Some of the header bits as well as the padding
are easily predictable.
Implementations of the FFV1 codec need to take appropriate security
considerations into account. Those related to denial of service are
outlined in Section 2.1 of [RFC4732]. It is extremely important for
the decoder to be robust against malicious payloads. Malicious
payloads MUST NOT cause the decoder to overrun its allocated memory
or to take an excessive amount of resources to decode. An overrun in
allocated memory could lead to arbitrary code execution by an
attacker. The same applies to the encoder, even though problems in
encoders are typically rarer. Malicious video streams MUST NOT cause
the encoder to misbehave because this would allow an attacker to
attack transcoding gateways. A frequent security problem in image
and video codecs is failure to check for integer overflows. An
example is allocating "frame_pixel_width * frame_pixel_height" in
pixel count computations without considering that the multiplication
result may have overflowed the range of the arithmetic type. The
range coder could, if implemented naively, read one byte over the
end. The implementation MUST ensure that no read outside allocated
and initialized memory occurs.
None of the content carried in FFV1 is intended to be executable.
7. IANA Considerations
IANA has registered the following values.
7.1. Media Type Definition
This registration is done using the template defined in [RFC6838] and
following [RFC4855].
Type name: video
Subtype name: FFV1
Required parameters: None.
Optional parameters: These parameters are used to signal the
capabilities of a receiver implementation. These parameters MUST
NOT be used for any other purpose.
"version": The "version" of the FFV1 encoding as defined by
Section 4.2.1.
"micro_version": The "micro_version" of the FFV1 encoding as
defined by Section 4.2.2.
"coder_type": The "coder_type" of the FFV1 encoding as defined by
Section 4.2.3.
"colorspace_type": The "colorspace_type" of the FFV1 encoding as
defined by Section 4.2.5.
"bits_per_raw_sample": The "bits_per_raw_sample" of the FFV1
encoding as defined by Section 4.2.7.
"max_slices": The value of "max_slices" is an integer indicating
the maximum count of Slices within a Frame of the FFV1
encoding.
Encoding considerations: This media type is defined for
encapsulation in several audiovisual container formats and
contains binary data; see Section 4.3.3. This media type is
framed binary data; see Section 4.8 of [RFC6838].
Security considerations: See Section 6 of this document.
Interoperability considerations: None.
Published specification: RFC 9043.
Applications that use this media type: Any application that requires
the transport of lossless video can use this media type. Some
examples are, but not limited to, screen recording, scientific
imaging, and digital video preservation.
Fragment identifier considerations: N/A.
Additional information: None.
Person & email address to contact for further information:
Michael Niedermayer (mailto:michael@niedermayer.cc)
Intended usage: COMMON
Restrictions on usage: None.
Author: Dave Rice (mailto:dave@dericed.com)
Change controller: IETF CELLAR Working Group delegated from the
IESG.
8. References
8.1. Normative References
[ISO.9899.2018]
International Organization for Standardization,
"Information technology - Programming languages - C", ISO/
IEC 9899:2018, June 2018.
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,
<https://www.rfc-editor.org/info/rfc2119>.
[RFC4732] Handley, M., Ed., Rescorla, E., Ed., and IAB, "Internet
Denial-of-Service Considerations", RFC 4732,
DOI 10.17487/RFC4732, December 2006,
<https://www.rfc-editor.org/info/rfc4732>.
[RFC4855] Casner, S., "Media Type Registration of RTP Payload
Formats", RFC 4855, DOI 10.17487/RFC4855, February 2007,
<https://www.rfc-editor.org/info/rfc4855>.
[RFC6838] Freed, N., Klensin, J., and T. Hansen, "Media Type
Specifications and Registration Procedures", BCP 13,
RFC 6838, DOI 10.17487/RFC6838, January 2013,
<https://www.rfc-editor.org/info/rfc6838>.
[RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
May 2017, <https://www.rfc-editor.org/info/rfc8174>.
8.2. Informative References
[AddressSanitizer]
Clang Project, "AddressSanitizer", Clang 12 documentation,
<https://clang.llvm.org/docs/AddressSanitizer.html>.
[AVI] Microsoft, "AVI RIFF File Reference",
<https://docs.microsoft.com/en-
us/windows/win32/directshow/avi-riff-file-reference>.
[FFV1GO] Buitenhuis, D., "FFV1 Decoder in Go", 2019,
<https://github.com/dwbuiten/go-ffv1>.
[FFV1_V0] Niedermayer, M., "Commit to mark FFV1 version 0 as non-
experimental", April 2006, <https://git.videolan.org/?p=ff
mpeg.git;a=commit;h=b548f2b91b701e1235608ac882ea6df915167c
7e>.
[FFV1_V1] Niedermayer, M., "Commit to release FFV1 version 1", April
2009, <https://git.videolan.org/?p=ffmpeg.git;a=commit;h=6
8f8d33becbd73b4d0aa277f472a6e8e72ea6849>.
[FFV1_V3] Niedermayer, M., "Commit to mark FFV1 version 3 as non-
experimental", August 2013, <https://git.videolan.org/?p=f
fmpeg.git;a=commit;h=abe76b851c05eea8743f6c899cbe5f7409b0f
301>.
[HuffYUV] Rudiak-Gould, B., "HuffYUV revisited", December 2003,
<https://web.archive.org/web/20040402121343/
http://cultact-server.novi.dk/kpo/huffyuv/huffyuv.html>.
[ISO.14495-1.1999]
International Organization for Standardization,
"Information technology -- Lossless and near-lossless
compression of continuous-tone still images: Baseline",
ISO/IEC 14495-1:1999, December 1999.
[ISO.14496-10.2020]
International Organization for Standardization,
"Information technology -- Coding of audio-visual objects
-- Part 10: Advanced Video Coding", ISO/IEC 14496-10:2020,
December 2020.
[ISO.14496-12.2020]
International Organization for Standardization,
"Information technology -- Coding of audio-visual objects
-- Part 12: ISO base media file format", ISO/IEC
14496-12:2020, December 2020.
[ISO.15444-1.2019]
International Organization for Standardization,
"Information technology -- JPEG 2000 image coding system:
Core coding system", ISO/IEC 15444-1:2019, October 2019.
[Matroska] Lhomme, S., Bunkus, M., and D. Rice, "Matroska Media
Container Format Specifications", Work in Progress,
Internet-Draft, draft-ietf-cellar-matroska-07, 12 April
2021, <https://datatracker.ietf.org/doc/html/draft-ietf-
cellar-matroska-07>.
[MediaConch]
MediaArea.net, "MediaConch", 2018,
<https://mediaarea.net/MediaConch>.
[NUT] Niedermayer, M., "NUT Open Container Format", December
2013, <https://ffmpeg.org/~michael/nut.txt>.
[Range-Encoding]
Martin, G. N. N., "Range encoding: an algorithm for
removing redundancy from a digitised message", Proceedings
of the Conference on Video and Data Recording, Institution
of Electronic and Radio Engineers, Hampshire, England,
July 1979.
[REFIMPL] Niedermayer, M., "The reference FFV1 implementation / the
FFV1 codec in FFmpeg",
<https://ffmpeg.org/doxygen/trunk/ffv1_8h.html>.
[RFC6716] Valin, JM., Vos, K., and T. Terriberry, "Definition of the
Opus Audio Codec", RFC 6716, DOI 10.17487/RFC6716,
September 2012, <https://www.rfc-editor.org/info/rfc6716>.
[Valgrind] Valgrind Developers, "Valgrind website",
<https://valgrind.org/>.
[YCbCr] Wikipedia, "YCbCr", 25 May 2021,
<https://en.wikipedia.org/w/
index.php?title=YCbCr&oldid=1025097882>.
Appendix A. Multithreaded Decoder Implementation Suggestions
This appendix is informative.
The FFV1 bitstream is parsable in two ways: in sequential order as
described in this document or with the pre-analysis of the footer of
each Slice. Each Slice footer contains a "slice_size" field so the
boundary of each Slice is computable without having to parse the
Slice content. That allows multithreading as well as independence of
Slice content (a bitstream error in a Slice header or Slice content
has no impact on the decoding of the other Slices).
After having checked the "keyframe" field, a decoder should parse
"slice_size" fields, from "slice_size" of the last Slice at the end
of the "Frame" up to "slice_size" of the first Slice at the beginning
of the "Frame" before parsing Slices, in order to have Slice
boundaries. A decoder may fall back on sequential order e.g., in
case of a corrupted "Frame" (e.g., frame size unknown or "slice_size"
of Slices not coherent) or if there is no possibility of seeking into
the stream.
Appendix B. Future Handling of Some Streams Created by Nonconforming
Encoders
This appendix is informative.
Some bitstreams were found with 40 extra bits corresponding to
"error_status" and "slice_crc_parity" in the "reserved" bits of
"Slice". Any revision of this specification should avoid adding 40
bits of content after "SliceContent" if "version == 0" or "version ==
1", otherwise a decoder conforming to the revised specification could
not distinguish between a revised bitstream and such buggy bitstream
in the wild.
Appendix C. FFV1 Implementations
This appendix provides references to a few notable implementations of
FFV1.
C.1. FFmpeg FFV1 Codec
This reference implementation [REFIMPL] contains no known buffer
overflow or cases where a specially crafted packet or video segment
could cause a significant increase in CPU load.
The reference implementation [REFIMPL] was validated in the following
conditions:
* Sending the decoder valid packets generated by the reference
encoder and verifying that the decoder's output matches the
encoder's input.
* Sending the decoder packets generated by the reference encoder and
then subjected to random corruption.
* Sending the decoder random packets that are not FFV1.
In all of the conditions above, the decoder and encoder was run
inside the Valgrind memory debugger [Valgrind] as well as the Clang
AddressSanitizer [AddressSanitizer], which tracks reads and writes to
invalid memory regions as well as the use of uninitialized memory.
There were no errors reported on any of the tested conditions.
C.2. FFV1 Decoder in Go
An FFV1 decoder [FFV1GO] was written in Go by Derek Buitenhuis during
the work to develop this document.
C.3. MediaConch
The developers of the MediaConch project [MediaConch] created an
independent FFV1 decoder as part of that project to validate FFV1
bitstreams. This work led to the discovery of three conflicts
between existing FFV1 implementations and draft versions of this
document. These issues are addressed by Section 3.3.1,
Section 3.7.2.1, and Appendix B.
Authors' Addresses
Michael Niedermayer
Email: michael@niedermayer.cc
Dave Rice
Email: dave@dericed.com
Jérôme Martinez
Email: jerome@mediaarea.net
|