1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
|
Internet Engineering Task Force (IETF) B. Stark
Request for Comments: 9046 AT&T
Category: Informational M. Jethanandani
ISSN: 2070-1721 Kloud Services
June 2021
Babel Information Model
Abstract
The Babel information model provides structured data elements for a
Babel implementation reporting its current state and may allow
limited configuration of some such data elements. This information
model can be used as a basis for creating data models under various
data modeling regimes. This information model only includes
parameters and parameter values useful for managing Babel over IPv6.
Status of This Memo
This document is not an Internet Standards Track specification; it is
published for informational purposes.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Not all documents
approved by the IESG are candidates for any level of Internet
Standard; see Section 2 of RFC 7841.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
https://www.rfc-editor.org/info/rfc9046.
Copyright Notice
Copyright (c) 2021 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
Table of Contents
1. Introduction
1.1. Requirements Language
1.2. Notation
2. Overview
3. The Information Model
3.1. Definition of babel-information-obj
3.2. Definition of babel-constants-obj
3.3. Definition of babel-interface-obj
3.4. Definition of babel-if-stats-obj
3.5. Definition of babel-neighbor-obj
3.6. Definition of babel-route-obj
3.7. Definition of babel-mac-key-set-obj
3.8. Definition of babel-mac-key-obj
3.9. Definition of babel-dtls-cert-set-obj
3.10. Definition of babel-dtls-cert-obj
4. Extending the Information Model
5. Security Considerations
6. IANA Considerations
7. References
7.1. Normative References
7.2. Informative References
Acknowledgements
Authors' Addresses
1. Introduction
Babel is a loop-avoiding, distance-vector routing protocol defined in
[RFC8966]. [RFC8967] defines a security mechanism that allows Babel
packets to be cryptographically authenticated, and [RFC8968] defines
a security mechanism that allows Babel packets to be both
authenticated and encrypted. This document describes an information
model for Babel (including implementations using one or both of these
security mechanisms) that can be used to create management protocol
data models (such as a NETCONF [RFC6241] YANG [RFC7950] data model).
Due to the simplicity of the Babel protocol, most of the information
model is focused on reporting the Babel protocol operational state,
and very little of that is considered mandatory to implement for an
implementation claiming compliance with this information model. Some
parameters may be configurable. However, it is up to the Babel
implementation whether to allow any of these to be configured within
its implementation. Where the implementation does not allow
configuration of these parameters, it MAY still choose to expose them
as read-only.
The information model is presented using a hierarchical structure.
This does not preclude a data model based on this information model
from using a referential or other structure.
This information model only includes parameters and parameter values
useful for managing Babel over IPv6. This model has no parameters or
values specific to operating Babel over IPv4, even though [RFC8966]
does define a multicast group for sending and listening to multicast
announcements on IPv4. There is less likelihood of breakage due to
inconsistent configuration and increased implementation simplicity if
Babel is operated always and only over IPv6. Running Babel over IPv6
requires IPv6 at the link layer and does not need advertised
prefixes, router advertisements, or DHCPv6 to be present in the
network. Link-local IPv6 is widely supported among devices where
Babel is expected to be used. Note that Babel over IPv6 can be used
for configuration of both IPv4 and IPv6 routes.
1.1. Requirements Language
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in
BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
capitals, as shown here.
1.2. Notation
This document uses a programming-language-like notation to define the
properties of the objects of the information model. An optional
property is enclosed by square brackets, [ ], and a list property is
indicated by two numbers in angle brackets, <m..n>, where m indicates
the minimal number of list elements, and n indicates the maximum
number of list elements. The symbol "*" for n means there are no
defined limits on the number of list elements. Each parameter and
object includes an indication of "ro" or "rw". "ro" means the
parameter or object is read-only. "rw" means it is read-write. For
an object, read-write means instances of the object can be created or
deleted. If an implementation is allowed to choose to implement a
"rw" parameter as read-only, this is noted in the parameter
description.
The object definitions use base types that are defined as follows:
binary: A binary string (sequence of octets).
boolean: A type representing a Boolean (true or false) value.
datetime: A type representing a date and time using the Gregorian
calendar. The datetime format MUST conform to
[RFC3339], Section 5.6.
ip-address: A type representing an IP address. This type supports
both IPv4 and IPv6 addresses.
operation: A type representing a remote procedure call or other
action that can be used to manipulate data elements or
system behaviors.
reference: A type representing a reference to another information
or data model element or to some other device resource.
string: A type representing a human-readable string consisting
of a (possibly restricted) subset of Unicode and ISO/
IEC 10646 [ISO.10646] characters.
uint: A type representing an unsigned integer number. This
information model does not define a precision.
2. Overview
The information model is hierarchically structured as follows:
+-- babel-information
+-- babel-implementation-version
+-- babel-enable
+-- router-id
+-- self-seqno
+-- babel-metric-comp-algorithms
+-- babel-security-supported
+-- babel-mac-algorithms
+-- babel-dtls-cert-types
+-- babel-stats-enable
+-- babel-stats-reset
+-- babel-constants
| +-- babel-udp-port
| +-- babel-mcast-group
+-- babel-interfaces
| +-- babel-interface-reference
| +-- babel-interface-enable
| +-- babel-interface-metric-algorithm
| +-- babel-interface-split-horizon
| +-- babel-mcast-hello-seqno
| +-- babel-mcast-hello-interval
| +-- babel-update-interval
| +-- babel-mac-enable
| +-- babel-if-mac-key-sets
| +-- babel-mac-verify
| +-- babel-dtls-enable
| +-- babel-if-dtls-cert-sets
| +-- babel-dtls-cached-info
| +-- babel-dtls-cert-prefer
| +-- babel-packet-log-enable
| +-- babel-packet-log
| +-- babel-if-stats
| | +-- babel-sent-mcast-hello
| | +-- babel-sent-mcast-update
| | +-- babel-sent-ucast-hello
| | +-- babel-sent-ucast-update
| | +-- babel-sent-IHU
| | +-- babel-received-packets
| +-- babel-neighbors
| +-- babel-neighbor-address
| +-- babel-hello-mcast-history
| +-- babel-hello-ucast-history
| +-- babel-txcost
| +-- babel-exp-mcast-hello-seqno
| +-- babel-exp-ucast-hello-seqno
| +-- babel-ucast-hello-seqno
| +-- babel-ucast-hello-interval
| +-- babel-rxcost
| +-- babel-cost
+-- babel-routes
| +-- babel-route-prefix
| +-- babel-route-prefix-length
| +-- babel-route-router-id
| +-- babel-route-neighbor
| +-- babel-route-received-metric
| +-- babel-route-calculated-metric
| +-- babel-route-seqno
| +-- babel-route-next-hop
| +-- babel-route-feasible
| +-- babel-route-selected
+-- babel-mac-key-sets
| +-- babel-mac-default-apply
| +-- babel-mac-keys
| +-- babel-mac-key-name
| +-- babel-mac-key-use-send
| +-- babel-mac-key-use-verify
| +-- babel-mac-key-value
| +-- babel-mac-key-algorithm
| +-- babel-mac-key-test
+-- babel-dtls-cert-sets
+-- babel-dtls-default-apply
+-- babel-dtls-certs
+-- babel-cert-name
+-- babel-cert-value
+-- babel-cert-type
+-- babel-cert-private-key
Most parameters are read-only. The following is a descriptive list
of the parameters that are not required to be read-only:
* enable/disable Babel
* create/delete Babel Message Authentication Code (MAC) Key sets
* create/delete Babel Certificate sets
* enable/disable statistics collection
* Constant: UDP port
* Constant: IPv6 multicast group
* Interface: enable/disable Babel on this interface
* Interface: metric algorithm
* Interface: split horizon
* Interface: sets of MAC keys
* Interface: verify received MAC packets
* Interface: set of certificates for use with DTLS
* Interface: use cached info extensions
* Interface: preferred order of certificate types
* Interface: enable/disable packet log
* MAC-keys: create/delete entries
* MAC-keys: key used for sent packets
* MAC-keys: key used to verify packets
* DTLS-certs: create/delete entries
The following parameters are required to return no value when read:
* MAC key values
* DTLS private keys
Note that this overview is intended simply to be informative and is
not normative. If there is any discrepancy between this overview and
the detailed information model definitions in subsequent sections,
the error is in this overview.
3. The Information Model
3.1. Definition of babel-information-obj
object {
string ro babel-implementation-version;
boolean rw babel-enable;
binary ro babel-self-router-id;
[uint ro babel-self-seqno;]
string ro babel-metric-comp-algorithms<1..*>;
string ro babel-security-supported<0..*>;
[string ro babel-mac-algorithms<1..*>;]
[string ro babel-dtls-cert-types<1..*>;]
[boolean rw babel-stats-enable;]
[operation babel-stats-reset;]
babel-constants-obj ro babel-constants;
babel-interface-obj ro babel-interfaces<0..*>;
babel-route-obj ro babel-routes<0..*>;
[babel-mac-key-set-obj rw babel-mac-key-sets<0..*>;]
[babel-dtls-cert-set-obj rw babel-dtls-cert-sets<0..*>;]
} babel-information-obj;
babel-implementation-version: The name and version of this
implementation of the Babel protocol.
babel-enable: When written, it configures whether the protocol
should be enabled (true) or disabled (false). A read from the
running or intended datastore indicates the configured
administrative value of whether the protocol is enabled (true) or
not (false). A read from the operational datastore indicates
whether the protocol is actually running (true) or not (i.e., it
indicates the operational state of the protocol). A data model
that does not replicate parameters for running and operational
datastores can implement this as two separate parameters. An
implementation MAY choose to expose this parameter as read-only
("ro").
babel-self-router-id: The router-id used by this instance of the
Babel protocol to identify itself. [RFC8966] describes this as an
arbitrary string of 8 octets.
babel-self-seqno: The current sequence number included in route
updates for routes originated by this node. This is a 16-bit
unsigned integer.
babel-metric-comp-algorithms: List of supported cost computation
algorithms. Possible values include "2-out-of-3", as described in
[RFC8966], Appendix A.2.1, and "ETX", as described in [RFC8966],
Appendix A.2.2.
babel-security-supported: List of supported security mechanisms.
Possible values include "MAC" to indicate support of [RFC8967] and
"DTLS" to indicate support of [RFC8968].
babel-mac-algorithms: List of supported MAC computation algorithms.
Possible values include "HMAC-SHA256" and "BLAKE2s-128" to
indicate support for algorithms indicated in [RFC8967].
babel-dtls-cert-types: List of supported certificate types.
Possible values include "X.509" and "RawPublicKey" to indicate
support for types indicated in [RFC8968].
babel-stats-enable: Indicates whether statistics collection is
enabled (true) or disabled (false) on all interfaces. When
enabled, existing statistics values are not cleared and will be
incremented as new packets are counted.
babel-stats-reset: An operation that resets all babel-if-stats
parameters to zero. This operation has no input or output
parameters.
babel-constants: A babel-constants-obj object.
babel-interfaces: A set of babel-interface-obj objects.
babel-routes: A set of babel-route-obj objects. Contains the routes
known to this node.
babel-mac-key-sets: A set of babel-mac-key-set-obj objects. If this
object is implemented, it provides access to parameters related to
the MAC security mechanism. An implementation MAY choose to
expose this object as read-only ("ro").
babel-dtls-cert-sets: A set of babel-dtls-cert-set-obj objects. If
this object is implemented, it provides access to parameters
related to the DTLS security mechanism. An implementation MAY
choose to expose this object as read-only ("ro").
3.2. Definition of babel-constants-obj
object {
uint rw babel-udp-port;
[ip-address rw babel-mcast-group;]
} babel-constants-obj;
babel-udp-port: UDP port for sending and listening for Babel
packets. Default is 6696. An implementation MAY choose to expose
this parameter as read-only ("ro"). This is a 16-bit unsigned
integer.
babel-mcast-group: Multicast group for sending and listening to
multicast announcements on IPv6. Default is ff02::1:6. An
implementation MAY choose to expose this parameter as read-only
("ro").
3.3. Definition of babel-interface-obj
object {
reference ro babel-interface-reference;
[boolean rw babel-interface-enable;]
string rw babel-interface-metric-algorithm;
[boolean rw babel-interface-split-horizon;]
[uint ro babel-mcast-hello-seqno;]
[uint ro babel-mcast-hello-interval;]
[uint ro babel-update-interval;]
[boolean rw babel-mac-enable;]
[reference rw babel-if-mac-key-sets<0..*>;]
[boolean rw babel-mac-verify;]
[boolean rw babel-dtls-enable;]
[reference rw babel-if-dtls-cert-sets<0..*>;]
[boolean rw babel-dtls-cached-info;]
[string rw babel-dtls-cert-prefer<0..*>;]
[boolean rw babel-packet-log-enable;]
[reference ro babel-packet-log;]
[babel-if-stats-obj ro babel-if-stats;]
babel-neighbor-obj ro babel-neighbors<0..*>;
} babel-interface-obj;
babel-interface-reference: Reference to an interface object that can
be used to send and receive IPv6 packets, as defined by the data
model (e.g., YANG [RFC7950] and Broadband Forum (BBF) [TR-181]).
Referencing syntax will be specific to the data model. If there
is no set of interface objects available, this should be a string
that indicates the interface name used by the underlying operating
system.
babel-interface-enable: When written, it configures whether the
protocol should be enabled (true) or disabled (false) on this
interface. A read from the running or intended datastore
indicates the configured administrative value of whether the
protocol is enabled (true) or not (false). A read from the
operational datastore indicates whether the protocol is actually
running (true) or not (i.e., it indicates the operational state of
the protocol). A data model that does not replicate parameters
for running and operational datastores can implement this as two
separate parameters. An implementation MAY choose to expose this
parameter as read-only ("ro").
babel-interface-metric-algorithm: Indicates the metric computation
algorithm used on this interface. The value MUST be one of those
listed in the babel-metric-comp-algorithms parameter. An
implementation MAY choose to expose this parameter as read-only
("ro").
babel-interface-split-horizon: Indicates whether or not the split-
horizon optimization is used when calculating metrics on this
interface. A value of "true" indicates split-horizon optimization
is used. Split-horizon optimization is described in [RFC8966],
Section 3.7.4. An implementation MAY choose to expose this
parameter as read-only ("ro").
babel-mcast-hello-seqno: The current sequence number in use for
multicast Hellos sent on this interface. This is a 16-bit
unsigned integer.
babel-mcast-hello-interval: The current interval in use for
multicast Hellos sent on this interface. Units are centiseconds.
This is a 16-bit unsigned integer.
babel-update-interval: The current interval in use for all updates
(multicast and unicast) sent on this interface. Units are
centiseconds. This is a 16-bit unsigned integer.
babel-mac-enable: Indicates whether the MAC security mechanism is
enabled (true) or disabled (false). An implementation MAY choose
to expose this parameter as read-only ("ro").
babel-if-mac-key-sets: List of references to the babel-mac-key-sets
entries that apply to this interface. When an interface instance
is created, all babel-mac-key-sets instances with babel-mac-
default-apply "true" will be included in this list. An
implementation MAY choose to expose this parameter as read-only
("ro").
babel-mac-verify: A Boolean flag indicating whether MACs in incoming
Babel packets are required to be present and are verified. If
this parameter is "true", incoming packets are required to have a
valid MAC. An implementation MAY choose to expose this parameter
as read-only ("ro").
babel-dtls-enable: Indicates whether the DTLS security mechanism is
enabled (true) or disabled (false). An implementation MAY choose
to expose this parameter as read-only ("ro").
babel-if-dtls-cert-sets: List of references to the babel-dtls-cert-
sets entries that apply to this interface. When an interface
instance is created, all babel-dtls-cert-sets instances with
babel-dtls-default-apply "true" will be included in this list. An
implementation MAY choose to expose this parameter as read-only
("ro").
babel-dtls-cached-info: Indicates whether the cached_info extension
(see [RFC8968], Appendix A) is included in ClientHello and
ServerHello packets. The extension is included if the value is
"true". An implementation MAY choose to expose this parameter as
read-only ("ro").
babel-dtls-cert-prefer: List of supported certificate types, in
order of preference. The values MUST be among those listed in the
babel-dtls-cert-types parameter. This list is used to populate
the server_certificate_type extension (see [RFC8968], Appendix A)
in a ClientHello. Values that are present in at least one
instance in the babel-dtls-certs object of a referenced babel-dtls
instance and that have a non-empty babel-cert-private-key will be
used to populate the client_certificate_type extension in a
ClientHello.
babel-packet-log-enable: Indicates whether packet logging is enabled
(true) or disabled (false) on this interface.
babel-packet-log: A reference or URL link to a file that contains a
timestamped log of packets received and sent on babel-udp-port on
this interface. The [libpcap] file format with a .pcap file
extension SHOULD be supported for packet log files. Logging is
enabled/disabled by babel-packet-log-enable. Implementations will
need to carefully manage and limit memory used by packet logs.
babel-if-stats: Statistics collection object for this interface.
babel-neighbors: A set of babel-neighbor-obj objects.
3.4. Definition of babel-if-stats-obj
object {
uint ro babel-sent-mcast-hello;
uint ro babel-sent-mcast-update;
uint ro babel-sent-ucast-hello;
uint ro babel-sent-ucast-update;
uint ro babel-sent-IHU;
uint ro babel-received-packets;
} babel-if-stats-obj;
babel-sent-mcast-hello: A count of the number of multicast Hello
packets sent on this interface.
babel-sent-mcast-update: A count of the number of multicast update
packets sent on this interface.
babel-sent-ucast-hello: A count of the number of unicast Hello
packets sent on this interface.
babel-sent-ucast-update: A count of the number of unicast update
packets sent on this interface.
babel-sent-IHU: A count of the number of "I Heard You" (IHU) packets
sent on this interface.
babel-received-packets: A count of the number of Babel packets
received on this interface.
3.5. Definition of babel-neighbor-obj
object {
ip-address ro babel-neighbor-address;
[binary ro babel-hello-mcast-history;]
[binary ro babel-hello-ucast-history;]
uint ro babel-txcost;
uint ro babel-exp-mcast-hello-seqno;
uint ro babel-exp-ucast-hello-seqno;
[uint ro babel-ucast-hello-seqno;]
[uint ro babel-ucast-hello-interval;]
[uint ro babel-rxcost;]
[uint ro babel-cost;]
} babel-neighbor-obj;
babel-neighbor-address: IPv4 or IPv6 address the neighbor sends
packets from.
babel-hello-mcast-history: The multicast Hello history of whether or
not the multicast Hello packets prior to babel-exp-mcast-hello-
seqno were received. A binary sequence where the most recently
received Hello is expressed as a "1" placed in the leftmost bit,
with prior bits shifted right (and "0" bits placed between prior
Hello bits and most recent Hello for any not-received Hellos).
This value should be displayed using hex digits ([0-9a-fA-F]).
See [RFC8966], Appendix A.1.
babel-hello-ucast-history: The unicast Hello history of whether or
not the unicast Hello packets prior to babel-exp-ucast-hello-seqno
were received. A binary sequence where the most recently received
Hello is expressed as a "1" placed in the leftmost bit, with prior
bits shifted right (and "0" bits placed between prior Hello bits
and the most recent Hello for any not-received Hellos). This
value should be displayed using hex digits ([0-9a-fA-F]). See
[RFC8966], Appendix A.1.
babel-txcost: Transmission cost value from the last IHU packet
received from this neighbor, or the maximum value to indicate the
IHU hold timer for this neighbor has expired. See [RFC8966],
Section 3.4.2. This is a 16-bit unsigned integer.
babel-exp-mcast-hello-seqno: Expected multicast Hello sequence
number of next Hello to be received from this neighbor. If
multicast Hello packets are not expected or processing of
multicast packets is not enabled, this MUST be NULL. This is a
16-bit unsigned integer; if the data model uses zero (0) to
represent NULL values for unsigned integers, the data model MAY
use a different data type that allows differentiation between zero
(0) and NULL.
babel-exp-ucast-hello-seqno: Expected unicast Hello sequence number
of next Hello to be received from this neighbor. If unicast Hello
packets are not expected or processing of unicast packets is not
enabled, this MUST be NULL. This is a 16-bit unsigned integer; if
the data model uses zero (0) to represent NULL values for unsigned
integers, the data model MAY use a different data type that allows
differentiation between zero (0) and NULL.
babel-ucast-hello-seqno: The current sequence number in use for
unicast Hellos sent to this neighbor. If unicast Hellos are not
being sent, this MUST be NULL. This is a 16-bit unsigned integer;
if the data model uses zero (0) to represent NULL values for
unsigned integers, the data model MAY use a different data type
that allows differentiation between zero (0) and NULL.
babel-ucast-hello-interval: The current interval in use for unicast
Hellos sent to this neighbor. Units are centiseconds. This is a
16-bit unsigned integer.
babel-rxcost: Reception cost calculated for this neighbor. This
value is usually derived from the Hello history, which may be
combined with other data, such as statistics maintained by the
link layer. The rxcost is sent to a neighbor in each IHU. See
[RFC8966], Section 3.4.3. This is a 16-bit unsigned integer.
babel-cost: The link cost, as computed from the values maintained in
the neighbor table: the statistics kept in the neighbor table
about the reception of Hellos and the txcost computed from
received IHU packets. This is a 16-bit unsigned integer.
3.6. Definition of babel-route-obj
object {
ip-address ro babel-route-prefix;
uint ro babel-route-prefix-length;
binary ro babel-route-router-id;
reference ro babel-route-neighbor;
uint ro babel-route-received-metric;
uint ro babel-route-calculated-metric;
uint ro babel-route-seqno;
ip-address ro babel-route-next-hop;
boolean ro babel-route-feasible;
boolean ro babel-route-selected;
} babel-route-obj;
babel-route-prefix: Prefix (expressed in IP address format) for
which this route is advertised.
babel-route-prefix-length: Length of the prefix for which this route
is advertised.
babel-route-router-id: The router-id of the router that originated
this route.
babel-route-neighbor: Reference to the babel-neighbors entry for the
neighbor that advertised this route.
babel-route-received-metric: The metric with which this route was
advertised by the neighbor, or the maximum value to indicate the
route was recently retracted and is temporarily unreachable (see
Section 3.5.4 of [RFC8966]). This metric will be NULL if the
route was not received from a neighbor but was generated through
other means. At least one of the following MUST be non-NULL:
babel-route-calculated-metric or babel-route-received-metric.
Having both be non-NULL is expected for a route that is received
and subsequently advertised. This is a 16-bit unsigned integer;
if the data model uses zero (0) to represent NULL values for
unsigned integers, the data model MAY use a different data type
that allows differentiation between zero (0) and NULL.
babel-route-calculated-metric: A calculated metric for this route.
How the metric is calculated is implementation specific. The
maximum value indicates the route was recently retracted and is
temporarily unreachable (see Section 3.5.4 of [RFC8966]). At
least one of the following MUST be non-NULL: babel-route-
calculated-metric or babel-route-received-metric. Having both be
non-NULL is expected for a route that is received and subsequently
advertised. This is a 16-bit unsigned integer; if the data model
uses zero (0) to represent NULL values for unsigned integers, the
data model MAY use a different data type that allows
differentiation between zero (0) and NULL.
babel-route-seqno: The sequence number with which this route was
advertised. This is a 16-bit unsigned integer.
babel-route-next-hop: The next-hop address of this route. This will
be empty if this route has no next-hop address.
babel-route-feasible: A Boolean flag indicating whether this route
is feasible, as defined in Section 3.5.1 of [RFC8966]).
babel-route-selected: A Boolean flag indicating whether this route
is selected (i.e., whether it is currently being used for
forwarding and is being advertised).
3.7. Definition of babel-mac-key-set-obj
object {
boolean rw babel-mac-default-apply;
babel-mac-key-obj rw babel-mac-keys<0..*>;
} babel-mac-key-set-obj;
babel-mac-default-apply: A Boolean flag indicating whether this
object instance is applied to all new babel-interfaces instances
by default. If "true", this instance is applied to new babel-
interfaces instances at the time they are created by including it
in the babel-if-mac-key-sets list. If "false", this instance is
not applied to new babel-interfaces instances when they are
created. An implementation MAY choose to expose this parameter as
read-only ("ro").
babel-mac-keys: A set of babel-mac-key-obj objects.
3.8. Definition of babel-mac-key-obj
object {
string rw babel-mac-key-name;
boolean rw babel-mac-key-use-send;
boolean rw babel-mac-key-use-verify;
binary -- babel-mac-key-value;
string rw babel-mac-key-algorithm;
[operation babel-mac-key-test;]
} babel-mac-key-obj;
babel-mac-key-name: A unique name for this MAC key that can be used
to identify the key in this object instance since the key value is
not allowed to be read. This value MUST NOT be empty and can only
be provided when this instance is created (i.e., it is not
subsequently writable). The value MAY be auto-generated if not
explicitly supplied when the instance is created.
babel-mac-key-use-send: Indicates whether this key value is used to
compute a MAC and include that MAC in the sent Babel packet. A
MAC for sent packets is computed using this key if the value is
"true". If the value is "false", this key is not used to compute
a MAC to include in sent Babel packets. An implementation MAY
choose to expose this parameter as read-only ("ro").
babel-mac-key-use-verify: Indicates whether this key value is used
to verify incoming Babel packets. This key is used to verify
incoming packets if the value is "true". If the value is "false",
no MAC is computed from this key for comparison with the MAC in an
incoming packet. An implementation MAY choose to expose this
parameter as read-only ("ro").
babel-mac-key-value: The value of the MAC key. An implementation
MUST NOT allow this parameter to be read. This can be done by
always providing an empty string when read, through permissions,
or by other means. This value MUST be provided when this instance
is created and is not subsequently writable. This value is of a
length suitable for the associated babel-mac-key-algorithm. If
the algorithm is based on the Hashed Message Authentication Code
(HMAC) construction [RFC2104], the length MUST be between 0 and an
upper limit that is at least the size of the output length (where
the "HMAC-SHA256" output length is 32 octets as described in
[RFC4868]). Longer lengths MAY be supported but are not necessary
if the management system has the ability to generate a suitably
random value (e.g., by randomly generating a value or by using a
key derivation technique as recommended in the security
considerations in Section 7 of [RFC8967]). If the algorithm is
"BLAKE2s-128", the length MUST be between 0 and 32 bytes inclusive
as specified by [RFC7693].
babel-mac-key-algorithm The name of the MAC algorithm used with this
key. The value MUST be the same as one of the enumerations listed
in the babel-mac-algorithms parameter. An implementation MAY
choose to expose this parameter as read-only ("ro").
babel-mac-key-test: An operation that allows the MAC key and MAC
algorithm to be tested to see if they produce an expected outcome.
Input to this operation is a binary string and a calculated MAC
(also in the format of a binary string) for the binary string.
The implementation is expected to create a MAC over the binary
string using the babel-mac-key-value and the babel-mac-key-
algorithm. The output of this operation is a Boolean indication
that the calculated MAC matched the input MAC (true) or the MACs
did not match (false).
3.9. Definition of babel-dtls-cert-set-obj
object {
boolean rw babel-dtls-default-apply;
babel-dtls-cert-obj rw babel-dtls-certs<0..*>;
} babel-dtls-cert-set-obj;
babel-dtls-default-apply: A Boolean flag indicating whether this
object instance is applied to all new babel-interfaces instances
by default. If "true", this instance is applied to new babel-
interfaces instances at the time they are created by including it
in the babel-interface-dtls-certs list. If "false", this instance
is not applied to new babel-interfaces instances when they are
created. An implementation MAY choose to expose this parameter as
read-only ("ro").
babel-dtls-certs: A set of babel-dtls-cert-obj objects. This
contains both certificates for this implementation to present for
authentication and those to accept from others. Certificates with
a non-empty babel-cert-private-key can be presented by this
implementation for authentication.
3.10. Definition of babel-dtls-cert-obj
object {
string rw babel-cert-name;
string rw babel-cert-value;
string rw babel-cert-type;
binary -- babel-cert-private-key;
} babel-dtls-cert-obj;
babel-cert-name: A unique name for this certificate that can be used
to identify the certificate in this object instance since the
value is too long to be useful for identification. This value
MUST NOT be empty and can only be provided when this instance is
created (i.e., it is not subsequently writable). The value MAY be
auto-generated if not explicitly supplied when the instance is
created.
babel-cert-value: The certificate in Privacy-Enhanced Mail (PEM)
format [RFC7468]. This value MUST be provided when this instance
is created and is not subsequently writable.
babel-cert-type: The name of the certificate type of this object
instance. The value MUST be the same as one of the enumerations
listed in the babel-dtls-cert-types parameter. This value can
only be provided when this instance is created and is not
subsequently writable.
babel-cert-private-key: The value of the private key. If this is
non-empty, this certificate can be used by this implementation to
provide a certificate during DTLS handshaking. An implementation
MUST NOT allow this parameter to be read. This can be done by
always providing an empty string when read, through permissions,
or by other means. This value can only be provided when this
instance is created and is not subsequently writable.
4. Extending the Information Model
Implementations MAY extend this information model with other
parameters or objects. For example, an implementation MAY choose to
expose Babel route filtering rules by adding a route filtering object
with parameters appropriate to how route filtering is done in that
implementation. The precise means used to extend the information
model would be specific to the data model the implementation uses to
expose this information.
5. Security Considerations
This document defines a set of information model objects and
parameters that may be exposed and visible from other devices. Some
of these information model objects and parameters may be configured.
Securing access to and ensuring the integrity of this data is in
scope of and the responsibility of any data model derived from this
information model. Specifically, any YANG [RFC7950] data model is
expected to define security exposure of the various parameters, and a
[TR-181] data model will be secured by the mechanisms defined for the
management protocol used to transport it.
Misconfiguration (whether unintentional or malicious) can prevent
reachability or cause poor network performance (increased latency,
jitter, etc.). Misconfiguration of security credentials can cause a
denial-of-service condition for the Babel routing protocol. The
information in this model discloses network topology, which can be
used to mount subsequent attacks on traffic traversing the network.
This information model defines objects that can allow credentials
(for this device, for trusted devices, and for trusted certificate
authorities) to be added and deleted. Public keys may be exposed
through this model. This model requires that private keys and MAC
keys never be exposed. Certificates used by [RFC8968]
implementations use separate parameters to model the public parts
(including the public key) and the private key.
MAC keys are allowed to be as short as zero length. This is useful
for testing. It is RECOMMENDED that network operators follow current
best practices for key length and generation of keys related to the
MAC algorithm associated with the key. Short (and zero-length) keys
are highly susceptible to brute-force attacks and therefore SHOULD
NOT be used. See the security considerations as described in
Section 7 of [RFC8967] for additional considerations related to MAC
keys; note that there are some specific key value recommendations in
the fifth paragraph. It says that if it is necessary to derive keys
from a human-readable passphrase, "only the derived keys should be
communicated to the routers" and "the original passphrase itself
should be kept on the host used to perform the key generation" (which
would be the management system in the case of a remote management
protocol). It also recommends that keys "should have a length of 32
octets (both for HMAC-SHA256 and BLAKE2s), and be chosen randomly".
This information model uses key sets and certification sets to
provide a means of grouping keys and certificates. This makes it
easy to use a different set per interface, use the same set for one
or more interfaces, have a default set in case a new interface is
instantiated, and change keys and certificates as needed.
6. IANA Considerations
This document has no IANA actions.
7. References
7.1. Normative References
[ISO.10646]
International Organization for Standardization,
"Information technology - Universal Coded Character Set
(UCS)", ISO Standard 10646:2014, 2014.
[libpcap] GitLab, "Libpcap File Format", Wireshark Foundation,
November 2020, <https://gitlab.com/wireshark/wireshark/-
/wikis/Development/LibpcapFileFormat>.
[RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
Hashing for Message Authentication", RFC 2104,
DOI 10.17487/RFC2104, February 1997,
<https://www.rfc-editor.org/info/rfc2104>.
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,
<https://www.rfc-editor.org/info/rfc2119>.
[RFC3339] Klyne, G. and C. Newman, "Date and Time on the Internet:
Timestamps", RFC 3339, DOI 10.17487/RFC3339, July 2002,
<https://www.rfc-editor.org/info/rfc3339>.
[RFC4868] Kelly, S. and S. Frankel, "Using HMAC-SHA-256, HMAC-SHA-
384, and HMAC-SHA-512 with IPsec", RFC 4868,
DOI 10.17487/RFC4868, May 2007,
<https://www.rfc-editor.org/info/rfc4868>.
[RFC7468] Josefsson, S. and S. Leonard, "Textual Encodings of PKIX,
PKCS, and CMS Structures", RFC 7468, DOI 10.17487/RFC7468,
April 2015, <https://www.rfc-editor.org/info/rfc7468>.
[RFC7693] Saarinen, M-J., Ed. and J-P. Aumasson, "The BLAKE2
Cryptographic Hash and Message Authentication Code (MAC)",
RFC 7693, DOI 10.17487/RFC7693, November 2015,
<https://www.rfc-editor.org/info/rfc7693>.
[RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
May 2017, <https://www.rfc-editor.org/info/rfc8174>.
[RFC8966] Chroboczek, J. and D. Schinazi, "The Babel Routing
Protocol", RFC 8966, DOI 10.17487/RFC8966, January 2021,
<https://www.rfc-editor.org/info/rfc8966>.
[RFC8967] Dô, C., Kolodziejak, W., and J. Chroboczek, "MAC
Authentication for the Babel Routing Protocol", RFC 8967,
DOI 10.17487/RFC8967, January 2021,
<https://www.rfc-editor.org/info/rfc8967>.
[RFC8968] Décimo, A., Schinazi, D., and J. Chroboczek, "Babel
Routing Protocol over Datagram Transport Layer Security",
RFC 8968, DOI 10.17487/RFC8968, January 2021,
<https://www.rfc-editor.org/info/rfc8968>.
7.2. Informative References
[RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
and A. Bierman, Ed., "Network Configuration Protocol
(NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
<https://www.rfc-editor.org/info/rfc6241>.
[RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
RFC 7950, DOI 10.17487/RFC7950, August 2016,
<https://www.rfc-editor.org/info/rfc7950>.
[RFC8193] Burbridge, T., Eardley, P., Bagnulo, M., and J.
Schoenwaelder, "Information Model for Large-Scale
Measurement Platforms (LMAPs)", RFC 8193,
DOI 10.17487/RFC8193, August 2017,
<https://www.rfc-editor.org/info/rfc8193>.
[TR-181] Broadband Forum, "Device Data Model", Issue: 2 Amendment
14, November 2020,
<http://cwmp-data-models.broadband-forum.org/>.
Acknowledgements
Juliusz Chroboczek, Toke Høiland-Jørgensen, David Schinazi, Antonin
Décimo, Roman Danyliw, Benjamin Kaduk, Valery Smyslov, Alvaro Retana,
Donald Eastlake, Martin Vigoureux, Acee Lindem, and Carsten Bormann
have been very helpful in refining this information model.
The language in the "Notation" section was mostly taken from
[RFC8193].
Authors' Addresses
Barbara Stark
AT&T
TX
United States of America
Email: barbara.stark@att.com
Mahesh Jethanandani
Kloud Services
CA
United States of America
Email: mjethanandani@gmail.com
|