summaryrefslogtreecommitdiff
path: root/doc/rfc/rfc907.txt
blob: 5629e57c9cdac7c4d6b17a8f9f46ffea8886bb21 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
     RFC 907






                    HOST ACCESS PROTOCOL SPECIFICATION



                                 July 1984








                               prepared for

                 Defense Advanced Research Projects Agency
                           1400 Wilson Boulevard
                         Arlington, Virginia 22209








                                    by

                   Bolt Beranek and Newman Laboratories
                             10 Moulton Street
                      Cambridge, Massachusetts 02238










^L





     RFC 907                                      Host Access Protocol
     July 1984                                           Specification



     Preface (Status of this Memo)

          This document specifies  the  Host  Access  Protocol  (HAP).
     Although  HAP was originally designed as the network-access level
     protocol for the DARPA/DCA sponsored  Wideband  Packet  Satellite
     Network,  it is intended that it evolve into a standard interface
     between hosts and  packet-switched  satellite  networks  such  as
     SATNET  and  TACNET (aka MATNET) as well as the Wideband Network.
     The HAP specification presented here is a minor revision of,  and
     supercedes,  the  specification  presented  in  Chapter  4 of BBN
     Report No. 4469, the  "PSAT  Technical  Report".   As  such,  the
     details  of  the  current  specification  are  still most closely
     matched to the characteristics if the Wideband Satellite Network.
     Revisions  to  the  specification  in the "PSAT Technical Report"
     include  the  definition  of  three  new  control  message  types
     (Loopback Request, Link Going Down, and NOP), a "Reason" field in
     Restart Request control messages, new Unnumbered Response  codes,
     and  new  values  for  the setup codes used to manage streams and
     groups.

          HAP is an experimental protocol, and  will  undergo  further
     revision as new capabilities are added and/or different satellite
     networks  are  supported.   Implementations  of  HAP  should   be
     performed  in coordination with satellite network development and
     operations personnel.






















^L





     RFC 907                                      Host Access Protocol
     July 1984                                           Specification



                             Table of Contents




     1   Introduction.......................................... 1
     2   Overview.............................................. 3
     3   Datagram Messages..................................... 8
     4   Stream Messages...................................... 14
     5   Flow Control Messages................................ 17
     6   Setup Level Messages................................. 24
     6.1   Stream Setup Messages.............................. 32
     6.2   Group Setup Messages............................... 44
     7   Link Monitoring...................................... 58
     8   Initialization....................................... 62
     9   Loopback Control..................................... 68
     10   Other Control Messages.............................. 72



























                                     i


^L





     RFC 907                                      Host Access Protocol
     July 1984                                           Specification



                                  FIGURES




     DATAGRAM MESSAGE.......................................... 9
     STREAM MESSAGE........................................... 15
     ACCEPTANCE/REFUSAL WORD.................................. 19
     ACCEPTANCE/REFUSAL MESSAGE............................... 21
     UNNUMBERED RESPONSE...................................... 22
     SETUP MESSAGE HEADER..................................... 26
     NOTIFICATION MESSAGE..................................... 29
     SETUP ACKNOWLEDGMENT..................................... 31
     STREAM EXAMPLE........................................... 33
     CREATE STREAM REQUEST.................................... 35
     CREATE STREAM REPLY...................................... 37
     CHANGE STREAM PARAMETERS REQUEST......................... 39
     CHANGE STREAM PARAMETERS REPLY........................... 41
     DELETE STREAM REQUEST.................................... 42
     DELETE STREAM REPLY...................................... 43
     GROUP EXAMPLE............................................ 45
     CREATE GROUP REQUEST..................................... 47
     CREATE GROUP REPLY....................................... 48
     JOIN GROUP REQUEST....................................... 50
     JOIN GROUP REPLY......................................... 52
     LEAVE GROUP REQUEST...................................... 53
     LEAVE GROUP REPLY........................................ 55
     DELETE GROUP REQUEST..................................... 56
     DELETE GROUP REPLY....................................... 57
     STATUS MESSAGE........................................... 59
     HAP LINK RESTART STATE DIAGRAM........................... 64
     RESTART REQUEST.......................................... 65
     RESTART COMPLETE......................................... 67
     LOOPBACK REQUEST......................................... 71
     LINK GOING DOWN.......................................... 73
     NO OPERATION (NOP)....................................... 75








                                    ii


^L





     RFC 907                                      Host Access Protocol
     July 1984                                           Specification



     1  Introduction

          The Host Access Protocol (HAP) specifies the  network-access
     level communication between an arbitrary computer, called a host,
     and a packet-switched satellite network.  The  satellite  network
     provides  message  delivery services for geographically separated
     hosts: Messages containing data which are meaningful to the hosts
     are submitted to the network by an originating (source) host, and
     are passed transparently through  the  network  to  an  indicated
     destination host.  To utilize such services, a host interfaces to
     the satellite network via an access link to a  dedicated  packet-
     switching  computer,  known  as  a  Satellite  Interface  Message
     Processor (Satellite IMP or SIMP).   HAP  defines  the  different
     types  of  control messages and (host-to-host) data messages that
     may be exchanged over the access link connecting  a  host  and  a
     SIMP.   The  protocol establishes formats for these messages, and
     describes procedures for determining when each  type  of  message
     should be transmitted and what it means when one is received.

          The term "Interface Message  Processor"  originates  in  the
     ARPANET, where it refers to the ARPANET's packet-switching nodes.
     SIMPs differ from ARPANET IMPs in that SIMPs form a  network  via
     connections  to a common multiaccess/broadcast satellite channel,
     whereas ARPANET IMPs are interconnected  by  dedicated  point-to-
     point   terrestrial   communications   lines.   This  fundamental
     difference between  satellite-based  and  ARPANET-style  networks
     results in different mechanisms for the delivery of messages from
     source  to   destination   hosts   and   for   internal   network
     coordination.   Additionally,  satellite  networks  tend to offer
     different type of service options to their connected  hosts  than
     do  ARPANET-style  networks.   These  options are included in the
     Host Access Protocol presented here.

          Several types of Satellite IMPs have  been  developed  on  a
     variety  of processors for the support of three different packet-
     switched satellite networks.  The original SIMP was  employed  in
     the Atlantic Packet Satellite Network (SATNET).  It was developed
     from one of the models of ARPANET IMP, and was implemented  on  a
     Honeywell  316  minicomputer.   The  316  SIMPs were succeeded in
     SATNET by  SIMPs  based  on  BBN  C/30  Communications  Processor
     hardware.   The  C/30 SIMPs have also been employed in the Mobile



                                     1


^L





     RFC 907                                      Host Access Protocol
     July 1984                                           Specification



     Access Terminal Network (MATNET).  The SATNET  and  MATNET  SIMPs
     implement  a  network-access  level protocol known as Host/SATNET
     Protocol.  Host/SATNET Protocol is the precursor to  HAP  and  is
     documented  in  Internet  Experiment  Note  (IEN)  No.  192.  The
     Wideband  Satellite  Network,  like  SATNET,  has  undergone   an
     evolution  in  the development of its SIMP hardware and software.
     The original Wideband Network  SIMP  is  known  as  the  Pluribus
     Satellite  IMP,  or  PSAT,  having  been  implemented  on the BBN
     Pluribus Multiprocessor.  Its successor, the BSAT,  is  based  on
     the  BBN  Butterfly  Multiprocessor.   Both the PSAT and the BSAT
     communicate with their connected network hosts via HAP.

          Section 2 presents an  overview  of  HAP.   Details  of  HAP
     formats and message exchange procedures are contained in Sections
     3  through  10.   Further  explanation  of  many  of  the  topics
     addressed  in  this  HAP specification can be found in BBN Report
     No. 4469, the "PSAT Technical Report".

          The protocol used to provide sufficiently  reliable  message
     exchange  over the host-SIMP link is assumed to be transparent to
     the network-access protocol defined in this  document.   Examples
     of  such  link-level protocols are ARPANET 1822 local and distant
     host, ARPANET VDH protocol, and HDLC.





















                                     2


^L





     RFC 907                                      Host Access Protocol
     July 1984                                           Specification



     2  Overview

          HAP can  be  characterized  as  a  full  duplex  nonreliable
     protocol  with  an optional flow control mechanism.  HAP messages
     flow simultaneously in both directions between the SIMP  and  the
     host.  Transmission is nonreliable in the sense that the protocol
     does not provide any guarantee of error-free sequenced  delivery.
     To  the  extent that this functionality is required on the access
     link  (e.g.,  non-collocated  SIMP  and  host  operating  over  a
     communication  circuit),  it  must be supported by the link-level
     protocol  below  HAP.   The  flow  control   mechanism   operates
     independently in each direction except that enabling or disabling
     the mechanism applies to both sides of the interface.

          HAP  supports  host-to-host  communication  in   two   modes
     corresponding  to  the  two  types of HAP data messages, datagram
     messages and stream messages.  Each type of message can be up  to
     approximately  16K bits in length.  Datagram messages provide the
     basic transmission service in the  satellite  network.   Datagram
     messages transmitted by a host experience a nominal two satellite
     hop end-to-end network delay. (Note that this delay, of about 0.6
     sec  excluding  access  link  delay,  is associated with datagram
     transmission between hosts on different SIMPs.  The  transmission
     delay  between  hosts  on  the  same  SIMP  will  be much smaller
     assuming the destination is not a group address.  See  Section  3
     and  6.2.)  A  datagram control header, passed to the SIMP by the
     host along with message text, determines the  processing  of  the
     message  within the satellite network independent of any previous
     exchanges.

          Stream  messages  provide  a   one   satellite   hop   delay
     (approximately  0.3  sec)  for  volatile traffic, such as speech,
     which  cannot  tolerate  the  delay  associated   with   datagram
     transmission.   Hosts  may  also use streams to support high duty
     cycle applications which require  guaranteed  channel  bandwidth.
     Host  streams are established by a setup message exchange between
     the host and the network prior to the commencement of data  flow.
     Although  established host streams can have their characteristics
     modified by subsequent setup messages while they are in use,  the
     fixed  allocation  properties  of  streams  relative to datagrams
     impose rather strict requirements on the source  of  the  traffic



                                     3


^L





     RFC 907                                      Host Access Protocol
     July 1984                                           Specification



     using  the stream.  Stream traffic arrivals must match the stream
     allocation  both  in  interarrival  time  and  message  size   if
     reasonable efficiency is to be achieved.  The characteristics and
     use of datagrams and streams are described in detail in  Sections
     3 and 4 of this document.

          Both datagram  and  stream  transmission  in  the  satellite
     network  use  logical  addressing.   Each  host on the network is
     assigned a permanent 16-bit logical address which is  independent
     of  the physical port on the SIMP to which it is attached.  These
     16-bit logical addresses are provided  in  all  Host-to-SIMP  and
     SIMP-to-Host data messages.

          Hosts may also be members of groups.   Group  addressing  is
     provided  primarily  to  support  the  multi-destination delivery
     required for  conferencing  applications.   Like  streams,  group
     addresses are dynamically created and deleted by the use of setup
     messages exchanged between a host and the network.  Membership in
     a  group  may consist of an arbitrary subset of all the permanent
     network hosts.   A  message  addressed  to  a  group  address  is
     delivered to all hosts that are members of that group.

          Although HAP does not guarantee error-free  delivery,  error
     control is an important aspect of the protocol design.  HAP error
     control is concerned with both local transfers between a host and
     its local SIMP and transfers from SIMP-to-SIMP over the satellite
     channel.  The  SIMP  offers  users  a  choice  of  network  error
     protection  options based on the network's ability to selectively
     send messages over the  satellite  channel  at  different  coding
     rates.  These forward error correction (FEC) options are referred
     to as reliability levels.  Three reliability levels (low, medium,
     and high) are available to the host.

          In  addition  to  forward  error  correction,  a  number  of
     checksum  mechanisms are employed in the satellite network to add
     an error detection capability.  A host has  an  opportunity  when
     sending  a  message  to  indicate  whether  the message should be
     delivered to its destination or discarded  if  a  data  error  is
     detected  by  the  network.  Each message received by a host from
     the network will have a flag indicating whether or not  an  error
     was  detected in that particular message.  A host can decide on a



                                     4


^L





     RFC 907                                      Host Access Protocol
     July 1984                                           Specification



     per-message basis whether or not it wants to  accept  or  discard
     transmissions containing data errors.

          For connection of a host and SIMP in close proximity,  error
     rates  due  to  external noise or hardware failures on the access
     circuit may reasonably be expected to be much  smaller  than  the
     best satellite channel error rate.  Thus for this case, little is
     gained by using error detection and retransmission on the  access
     circuit.   A  16-bit  header  checksum  is  provided, however, to
     insure that SIMPs do not act on  incorrect  control  information.
     For    relatively    long   distances   or   noisy   connections,
     retransmissions over  the  access  circuit  may  be  required  to
     optimize  performance  for both low and high reliability traffic.
     It is expected that link-level error control procedures (such  as
     HDLC) will be used for this purpose.

          Datagram and stream messages being presented to the  network
     by  a  host may not be accepted for a number of reasons: priority
     too low, destination dead, lack of buffers in  the  source  SIMP,
     etc.  The host faces a similar situation with respect to handling
     messages from the SIMP.  To permit the receiver of a  message  to
     inform  the  sender  of  the local disposition of its message, an
     acceptance/refusal (A/R) mechanism is implemented.  The mechanism
     is  the external manifestation of the SIMP's (or host's) internal
     flow and congestion control algorithm.  If A/Rs are  enabled,  an
     explicit  or  implicit  acceptance or refusal for each message is
     returned to the host by the SIMP (and conversely).   This  allows
     the  host  (or  SIMP) to retry refused messages at its discretion
     and can provide information useful for optimizing the sending  of
     subsequent  messages if the reason for refusals is also provided.
     The A/R mechanism can be disabled to  provide  a  "pure  discard"
     interface.

          Each message submitted to the SIMP by a host  is  marked  as
     being  in one of four priority classes, from priority 3 (highest)
     through priority 0 (lowest).  The priority class is used  by  the
     SIMP  for  arbitrating  contention  for  scarce network resources
     (e.g., channel time).  That is, if the network cannot deliver all
     of the offered messages, high priority messages will be delivered
     in  preference  to  low  priority  messages.   In  the  case   of
     datagrams,  priority  level  is  used  by  the  SIMP for ordering



                                     5


^L





     RFC 907                                      Host Access Protocol
     July 1984                                           Specification



     satellite channel reservation requests at  the  source  SIMP  and
     message  delivery  at  the  destination  SIMP.   In  the  case of
     streams, priority is associated with the ability of one stream to
     preempt another stream of lower priority at setup time.

          While the A/R mechanism allows control of individual message
     transfers,  it  does not facilitate regulation of priority flows.
     Such regulation is handled by passing advisory status information
     (GOPRI)   across   the   Host-SIMP   interface  indicating  which
     priorities  are  currently  being  accepted.   As  long  as  this
     information, relative to the change in priority status, is passed
     frequently, the sender can avoid originating messages  which  are
     sure to be refused.

          HAP defines both data messages (datagram messages and stream
     messages)  and  control messages.  Data messages are used to send
     information  between  network  hosts.    Control   messages   are
     exchanged  between  a  host  and  the network to manage the local
     access link.  HAP can also be viewed in  terms  of  two  distinct
     protocol  layers,  the  message  layer  and the setup layer.  The
     message layer is associated with the transmission  of  individual
     datagram  messages and stream messages.  The setup layer protocol
     is associated with the establishment, modification, and  deletion
     of  streams  and  groups.   Setup  layer  exchanges  are actually
     implemented as datagrams transmitted between the user host and an
     internal SIMP "service host."

          Every HAP message consists of an integral number  of  16-bit
     words.   The  first  several  words of the message always contain
     control information and are referred to as  the  message  header.
     The  first  word  of  the  message  header identifies the type of
     message which follows.  The second word of the message header  is
     a  checksum  which  covers  all  header information.  Any message
     whose received  header  checksum  does  not  match  the  checksum
     computed  on  the  received header information must be discarded.
     The format of the rest of the  header  depends  on  the  specific
     message type.

          The formats and use of  the  individual  message  types  are
     detailed  in the following sections.  A common format description
     is used for this  purpose.   Words  in  a  message  are  numbered



                                     6


^L





     RFC 907                                      Host Access Protocol
     July 1984                                           Specification



     starting  at  zero  (i.e.,  zero  is  the first word of a message
     header).  Bits within  a  word  are  numbered  from  zero  (least
     significant) to fifteen (most significant).  The notation used to
     identify a particular field location is:

     <WORD#>{-<WORD#>}  [ <BIT#>{-<BIT#>} ]  <description>

     where optional elements in {} are used to specify the (inclusive)
     upper  limit  of a range.  The reader should refer to these field
     identifiers for precise field size specifications.  Fields  which
     are  common  to  several  message  types are defined in the first
     section which uses them.  Only the name of the field will usually
     appear in the descriptions in subsequent sections.

          Link-level protocols used to support HAP can differ  in  the
     order  in which they transmit the bits constituting HAP messages.
     For HDLC  and  ARPANET  VDH,  each  word  of  a  HAP  message  is
     transmitted  starting  with the least significant bit (bit 0) and
     ending with the most significant bit (bit 15).  The words of  the
     message  are transmitted from word 0 to word N.  For ARPANET 1822
     local and distant host interfaces, the order of bit  transmission
     within  each  word is the reverse of that for HDLC and VDH, i.e.,
     the transmission is from bit 15 to bit 0.





















                                     7


^L





     RFC 907                                      Host Access Protocol
     July 1984                                           Specification



     3  Datagram Messages

          Datagram messages are one of the two types of message  level
     data  messages  used to support host-to-host communication.  Each
     datagram can contain up to 16,384 bits of  user  data.   Datagram
     messages  transmitted  by  a  host  to  a  host  on a remote SIMP
     experience a nominal two satellite hop end-to-end  network  delay
     (about  0.6  sec),  excluding  delay  on  the access links.  This
     network delay is due to the reservation  per  message  scheduling
     procedure  for datagrams which only allocates channel time to the
     message for the duration of the actual transfer.  Since  datagram
     transfers between permanent hosts on the same SIMP do not require
     satellite channel scheduling prior  to  data  transmission,   the
     network delay in this case will be much smaller and is determined
     strictly  by  SIMP  processing  time.  Datagrams  sent  to  group
     addresses  are treated as if they were addressed to  remote hosts
     and are  always sent over the satellite channel.  It is  expected
     that  datagram  messages  will be used to support the majority of
     computer-to-computer and terminal-to-computer  traffic  which  is
     bursty in nature.

          The format of datagram messages and the purpose of  each  of
     the header control fields is described in Figure 1.





















                                     8


^L





     RFC 907                                      Host Access Protocol
     July 1984                                           Specification






              15 14 13 12 11 10  9  8  7  6  5  4  3  2  1  0
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
      0      | 0|LB|GOPRI|  XXXX  | F|     MESSAGE NUMBER    |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
      1      |               HEADER CHECKSUM                 |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
      2      |                      A/R                      |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
      3      | 0|IL| D| E| TTL | PRI | RLY |      RLEN       |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
      4      |            DESTINATION HOST ADDRESS           |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
      5      |              SOURCE HOST ADDRESS              |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
     6-N     |                     DATA                      |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+


                        Figure 1 . DATAGRAM MESSAGE



     0[15]     Message Class.  This bit identifies the  message  as  a
               data message or a control message.

                    0 = Data Message
                    1 = Control Message

     0[14]     Loopback Bit.  This bit allows the sender of a  message
               to determine if its own messages are being looped back.
               The host and the SIMP each use  different  settings  of
               this bit for their transmissions.  If a message arrives
               with the loopback bit set equal to its outgoing  value,
               then the message has been looped.

                    0 = Sent by Host
                    1 = Sent by SIMP




                                     9


^L





     RFC 907                                      Host Access Protocol
     July 1984                                           Specification



     0[12-13]  Go-Priority.   In  SIMP-to-Host  messages,  this  field
               provides  advisory  information  concerning  the lowest
               priority currently being accepted  by  the  SIMP.   The
               host  may optionally choose to provide similar priority
               information to the SIMP.

                    0 = Low Priority
                    1 = Medium-Low Priority
                    2 = Medium-High Priority
                    3 = High Priority

     0[9-11]   Reserved.

     0[8]      Force Channel Transmission Flag.  This flag can be  set
               by  the  source  host to force the SIMP to transmit the
               message over the satellite channel even if the  message
               contains   permanent   destination   and   source  host
               addresses corresponding to hosts which  are  physically
               connected to the same SIMP.

                    0 = Normal operation
                    1 = Force channel transmission

     0[0-7]    Message Number.  This field contains the identification
               of  the  message  used  by the acceptance/refusal (A/R)
               mechanism (when enabled).  If  the  message  number  is
               zero,  A/R  is disabled for this specific message.  See
               Section  5  for  a  detailed  description  of  the  A/R
               mechanism.

     1[0-15]   Header Checksum.  This field contains a checksum  which
               covers  words  0-5.   It is computed as the negation of
               the 2's-complement sum  of  words  0-5  (excluding  the
               checksum word itself).

     2[0-15]   Piggybacked   A/R.    This   field   may   contain   an
               acceptance/refusal word providing A/R status on traffic
               flowing in the opposite direction.  Its  inclusion  may
               eliminate  the  need for a separate A/R control message
               (see Section 5).  A value of zero for this word is used
               to  indicate  that  no  piggybacked  A/R information is



                                    10


^L





     RFC 907                                      Host Access Protocol
     July 1984                                           Specification



               present.

     3[15]     Data Message Type.  This  bit  identifies  whether  the
               message is a datagram message or a stream message.

                    0 = Datagram Message
                    1 = Stream Message

     3[14]     Internet/Local Flag.  This flag is set by a source host
               to  specify  to  a  destination  host  whether the data
               portion of the message contains a standard DoD Internet
               header.   This  field  is  passed  transparently by the
               source  and  destination  SIMPs  for  traffic   between
               external   satellite   network  hosts.  This  field  is
               examined by internal  SIMP  hosts  (e.g.,  the  network
               service host) in order to support Internet operation.

                    0 = Internet
                    1 = Local


     3[13]     Discard Flag.   This  flag  allows  a  source  host  to
               instruct   the   satellite   network   (including   the
               destination host) what to do with the message when data
               errors  are  detected  (assuming the header checksum is
               correct).

                    0 = Discard message if data errors detected.
                    1 = Don't discard message if data errors detected.


               The value of this flag, set  by  the  source  host,  is
               passed on to the destination host.

     3[12]     Data Error Flag.  This flag is used in conjunction with
               the  Discard  Flag  to indicate to the destination host
               whether any data  errors  have  been  detected  in  the
               message  prior  to  transmission  over the SIMP-to-Host
               access link.  It is used only if Discard Flag = 1.   It
               should be set to zero by the source host.




                                    11


^L





     RFC 907                                      Host Access Protocol
     July 1984                                           Specification



                    0 = No Data Errors Detected
                    1 = Data Errors Detected


     3[10-11]  Time-to-Live Designator.  The  source  host  uses  this
               field  to  specify  the  maximum  time  that a  message
               should be allowed to exist within the satellite network
               before being deleted.  Messages may be discarded by the
               network prior to this maximum elapsed time.

                    0 = 1 seconds
                    1 = 2 seconds
                    2 = 5 seconds
                    3 = 10 seconds


               The Time-to-Live field is undefined  in  messages  sent
               from a SIMP to a host.

     3[8-9]    Priority.  The source host uses this field  to  specify
               the  priority  with which the message should be handled
               within the network.

                    0 = Low Priority
                    1 = Medium-Low Priority
                    2 = Medium-High Priority
                    3 = High Priority


               The  priority  of  each  message  is  passed   to   the
               destination host by the destination SIMP.

     3[6-7]    Reliability.   The  source  host  uses  this  field  to
               specify  the  basic  bit error rate requirement for the
               data portion of this message.   The  source  SIMP  uses
               this   field   to   determine   the  satellite  channel
               transmission parameters required to  provide  that  bit
               error rate.

                    0 = Low Reliability
                    1 = Medium Reliability



                                    12


^L





     RFC 907                                      Host Access Protocol
     July 1984                                           Specification



                    2 = High Reliability
                    3 = Reserved


               The Reliability field is  undefined  in  messages  sent
               from a SIMP to a host.

     3[0-5]    Reliability Length.  This source host uses  this  field
               to  specify  a portion of the user data which should be
               transmitted at the highest  reliability  level  (lowest
               bit error rate).  Both the six message header words and
               the first Reliability Length words of user data will be
               transmitted at Reliability=2 while the remainder of the
               user data will be transmitted at  whatever  reliability
               level  is  specified  in field 3[6-7].  The reliability
               length mechanism gives the user the ability to transmit
               private  header  information (e.g., IP and TCP headers)
               at a higher reliability level than the remainder of the
               data.   The  Reliability  Length  field is undefined in
               messages sent from a SIMP to a host.

     4[0-15]   Destination Host  Address.   This  field  contains  the
               satellite  network  logical  address of the destination
               host.

     5[0-15]   Source Host Address.  This field contains the satellite
               network logical address of the source host.

     6-N       Data.  This field contains up to 16,384 bits (1024  16-
               bit words) of user data.














                                    13


^L





     RFC 907                                      Host Access Protocol
     July 1984                                           Specification



     4  Stream Messages

          Stream messages are the second type of  message  level  data
     messages.   As  noted  in  Section  2, streams exist primarily to
     provide a one satellite hop delay for volatile  traffic  such  as
     speech.   Hosts  may  also use streams to support high duty cycle
     applications which require guaranteed channel bandwidth.

          Streams must be created before stream messages can flow from
     host  to  host.   The  protocol  to accomplish stream creation is
     described  in  Section  6.1.   Once  established,  a  stream   is
     associated   with  a  recurring  channel  allocation  within  the
     satellite network.  This fixed allocation imposes  rather  strict
     requirements  on  the  host using the stream if efficient channel
     utilization is to be achieved.  In  particular,  stream  messages
     must  match  the  stream allocation both in terms of message size
     and message interarrival time.

          Within the bounds  of  its  stream  allocation,  a  host  is
     permitted  considerable  flexibility  in how it may use a stream.
     Although the priority, reliability,  and  reliability  length  of
     each  stream  message  is  fixed  at  stream  creation  time, the
     destination logical address  can  vary  from  stream  message  to
     stream  message.   A host can, therefore,  multiplex a variety of
     logical flows onto a single host stream.  The  format  of  stream
     messages is described in Figure 2.


















                                    14


^L





     RFC 907                                      Host Access Protocol
     July 1984                                           Specification






              15 14 13 12 11 10  9  8  7  6  5  4  3  2  1  0
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
      0      | 0|LB|GOPRI|   XXXX    |     MESSAGE NUMBER    |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
      1      |               HEADER CHECKSUM                 |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
      2      |                      A/R                      |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
      3      | 1|IL| D| E| TTL |       HOST STREAM ID        |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
      4      |            DESTINATION HOST ADDRESS           |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
      5      |              SOURCE HOST ADDRESS              |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
     6-N     |                     DATA                      |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+


                         Figure 2 . STREAM MESSAGE



     0[15]     Message Class = 0 (Data Message).

     0[14]     Loopback Bit.

     0[12-13]  Go-Priority.

     0[8-11]   Reserved.

     0[0-7]    Message Number.  This field serves the same purpose  as
               the  message  number  field  in  the  datagram message.
               Moreover, a single message number sequence is used  for
               both datagram and stream messages (see Section 5).

     1[0-15]   Header Checksum.  Covers Words 0-5.

     2[0-15]   Piggybacked A/R.



                                    15


^L





     RFC 907                                      Host Access Protocol
     July 1984                                           Specification



     3[15]     Data Message Type = 1 (Stream).

     3[14]     Internet/Local Flag.

     3[13]     Discard Flag.

     3[12]     Data Error Flag.

     3[10-11]  Time-to-live Designator.

                    0 = Reserved
                    1 = 1 second
                    2 = Reserved
                    3 = Reserved

     3[0-9]    Host Stream ID.  The service host uses  this  field  to
               identify  the  host stream over which the message is to
               be sent by the SIMP.  Host stream IDs  are  established
               at  stream  creation time via host exchanges with their
               network service host (see Section 6.1).

     4[0-15]   Destination Host Address.

     5[0-15]   Source Host Address.

     6-N       Data.  This field contains up to 16,000  bits  of  user
               data (multiple of 16-bits).

















                                    16


^L





     RFC 907                                      Host Access Protocol
     July 1984                                           Specification



     5  Flow Control Messages

          The SIMP supports an acceptance/refusal (A/R)  mechanism  in
     each  direction  on  the  host access link.  The A/R mechanism is
     enabled for the link by the host by setting a bit in the  Restart
     Complete  control  message  (see  Section  8).  Each datagram and
     stream message contains an 8-bit message number used to  identify
     the  message  for  flow  control purposes.  Both the host and the
     SIMP increment this number modulo 256 in successive messages they
     transmit.   Up  to  127  messages  may  be  outstanding  in  each
     direction at any time.  If the receiver of a message is unable to
     accept  the  message, a refusal indication containing the message
     number of the refused message and the reason for the  refusal  is
     returned.   The  refusal  indication  may  be piggybacked on data
     messages in the opposite direction over the link or may  be  sent
     in a separate control message in the absence of reverse traffic.

          Acceptance indications are returned  in  a  similar  manner,
     either  piggybacked  on  data  messages or in a  separate control
     message.  An acceptance is returned by the receiver  to  indicate
     that   the   identified  message  was  not  refused.   Acceptance
     indications returned  by  the  SIMP  do  not,  however,  imply  a
     guarantee of delivery or even any assurance that the message will
     not be intentionally discarded by the network at  a  later  time.
     They  are  sent  primarily to facilitate buffer management in the
     host.

          To reduce the number of A/R messages exchanged, a single A/R
     indication   can   be  returned  for  multiple  (lower  numbered)
     previously  unacknowledged  messages.   Explicit  acceptance   of
     message  number  N  implies  implicit  acceptance  of outstanding
     messages  with  numbers  N-1,  N-2,  etc.,   according   to   the
     definition  of  acceptance  outlined  above.  (Note that explicit
     acceptance of message number N  does not imply that  all  of  the
     unacknowledged  outstanding  messages  have  been  received.)  An
     analogous interpretation of refusal  message  number  allows  the
     receiver  of  a  group  of  messages  to  reject  them as a group
     assuming that they all are being refused for the same reason.  As
     a  further  efficiency  measure,  HAP  permits  a  block  of  A/R
     indications to be aggregated into a single A/R  control  message.
     Such  a  message might be used, for example, to reject a group of



                                    17


^L





     RFC 907                                      Host Access Protocol
     July 1984                                           Specification



     messages where the refusal code on each is different.

          In  some  circumstances   the   overhead   associated   with
     processing A/R messages may prove unattractive.  For these cases,
     it is possible to disable the A/R mechanism and operate  the  HAP
     interface  in  a purely discard mode.  The ability to effect this
     on a link basis has already been noted (see Sections  2  and  8).
     In  addition,  messages  with  sequence number  zero are taken as
     messages for which the A/R mechanism is selectively disabled.  To
     permit  critical  feedback,  even when operating in discard mode,
     HAP defines an "Unnumbered Response" control message.

          The format shown in  Figure 3  is used both for piggybacking
     A/R  indications on data messages (word 2), and for providing A/R
     information in separate control messages.  When separate  control
     messages  are  used to transmit A/R indications, the format shown
     in  Figure  4  applies.   Flow  control  information  and   other
     information  which cannot be sent as an A/R indication is sent in
     an Unnumbered Response control message.  The format of this  type
     of message is illustrated in Figure 5.
























                                    18


^L





     RFC 907                                      Host Access Protocol
     July 1984                                           Specification






              15 14 13 12 11 10  9  8  7  6  5  4  3  2  1  0
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
             |AR|    REFUSAL CODE    |  A/R MESSAGE NUMBER   |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+


                    Figure 3 . ACCEPTANCE/REFUSAL WORD



     [15]      Acceptance/Refusal Type.  This field identifies whether
               A/R information is an acceptance or a refusal.

                    0 = Acceptance
                    1 = Refusal

     [8-14]    Refusal Code.  When the Acceptance/Refusal  Type  =  1,
               this field gives the Refusal Code.

                    0 = Priority not being accepted
                    1 = Source SIMP congestion
                    2 = Destination SIMP congestion
                    3 = Destination host dead
                    4 = Destination SIMP dead
                    5 = Illegal destination host address
                    6 = Destination host access not allowed
                    7 = Illegal source host address
                    8 = Message lost in access link
                    9 = Nonexistent stream ID
                   10 = Illegal source host for stream ID
                   11 = Message length too long
                   12 = Stream message too early
                   13 = Illegal control message type
                   14 = Illegal refusal code in A/R
                   15 = Illegal reliability value
                   16 = Destination host congestion

     [0-7]     A/R Message Number.  This field contains the number  of



                                    19


^L





     RFC 907                                      Host Access Protocol
     July 1984                                           Specification



               the  message  to  which this acceptance/refusal refers.
               It  also  applies  to  all  outstanding  messages  with
               earlier  numbers.   Note  that  this field can never be
               zero since a message number of zero  implies  that  the
               A/R mechanism is disabled.







































                                    20


^L





     RFC 907                                      Host Access Protocol
     July 1984                                           Specification






              15 14 13 12 11 10  9  8  7  6  5  4  3  2  1  0
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
      0      | 1|LB|GOPRI|   XXXX    |  LENGTH   |     1     |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
      1      |                HEADER CHECKSUM                |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
      2      |                      A/R                      |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
      .      .                      ...                      .
      .      .                      ...                      .
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
      N      |                      A/R                      |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+


                   Figure 4 . ACCEPTANCE/REFUSAL MESSAGE



     0[15]     Message Class = 1 (Control Message).

     0[14]     Loopback Bit.

     0[12-13]  Go-Priority.

     0[8-11]   Reserved.

     0[4-7]    Message Length.  This field contains the  total  length
               of this message in words (N+1).

     0[0-3]    Control Message Type = 1 (Acceptance/Refusal).

     1[0-15]   Header Checksum.  The checksum covers words 0-N.

     2[0-15]   Acceptance/Refusal Word.

     3-N       Additional Acceptance/Refusal Words (optional).




                                    21


^L





     RFC 907                                      Host Access Protocol
     July 1984                                           Specification






              15 14 13 12 11 10  9  8  7  6  5  4  3  2  1  0
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
      0      | 1|LB|GOPRI|   XXXX    | RES-CODE  |     5     |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
      1      |                HEADER CHECKSUM                |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
      2      |                 RESPONSE INFO                 |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
      3      |                 RESPONSE INFO                 |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+


                      Figure 5 . UNNUMBERED RESPONSE



     0[15]     Message Class = 1 (Control Message).

     0[14]     Loopback Bit.

     0[12-13]  Go-Priority.

     0[8-11]   Reserved.

     0[4-7]    Response Code.

                    3 = Destination unreachable
                    5 = Illegal destination host address
                    7 = Illegal source host address
                    9 = Nonexistent stream ID
                   10 = Illegal stream ID
                   13 = Protocol violation
                   15 = Can't implement loop

     0[0-3]    Control Message Type = 5 (Unnumbered Response).

     1[0-15]   Header Checksum.  Covers words 0-3.




                                    22


^L





     RFC 907                                      Host Access Protocol
     July 1984                                           Specification



     2[0-15]   Response Information. If Response Code is:

                    3, Destination Host Address
                    5, Destination Host Address
                    7, Source Host Address
                    9, Stream ID (right justified)
                   10, Stream ID (right justified)
                   13, Word 0 of offending message
                   15, Word 0 of Loopback Request message

     3[0-15]   Response Information. If Response Code is:

                    3,5,7, or 9. Undefined
                    10, Source Host Address
                    13, Word 3 of offending message, or zero if
                        no word 3
                    15, Word 2 of Loopback Request message



























                                    23


^L





     RFC 907                                      Host Access Protocol
     July 1984                                           Specification



     6  Setup Level Messages

          Setup  level   protocol   is   provided   to   support   the
     establishment,  modification,  and deletion of groups and streams
     in the packet satellite network.  A host wishing to  perform  one
     of  these  generic  operations interacts with the network service
     host  (logical  address  zero).   The  service  host  causes  the
     requested action to be carried out and serves as the intermediary
     between the user and the rest of the network.  In the process  of
     implementing the requested action, various network data bases are
     updated to reflect the current state of the referenced  group  or
     stream.

          The communication between the host and the service  host  is
     implemented  via special-purpose datagrams called setup messages.
     Each interaction initiated by a host involves  a  3-way  exchange
     where: (1) the user host sends a Request to the service host, (2)
     the service host returns a Reply to the user host,  and  (3)  the
     user  host  returns  a  Reply Acknowledgment to the service host.
     This procedure  is  used  to   insure  reliable  transmission  of
     requests  and  replies.   In  order  to allow more than one setup
     request message from a host to be outstanding,  each  request  is
     assigned   a   unique  Request  ID.   The  associated  Reply  and
     subsequent Reply Acknowledgment are identified by the Request  ID
     that they contain.  Hosts should generally expect a minimum delay
     of about two satellite round-trip times between the  transmission
     of  a setup Request to the SIMP and the receipt of the associated
     Reply.  (Note that the Join Group Request  and  the  Leave  Group
     Request  require  only local communication between a host and its
     SIMP.  The  response  time  for  these  requests,  therefore,  is
     dependent   solely   on   SIMP  processing  time  and  should  be
     considerably shorter  than  two  round-trip  times.)  This  delay
     establishes  a  maximum rate at which changes can be processed by
     the SIMP.  The user should receive a reply  to  a  setup  request
     requiring  global  communication  within 2 seconds and to a setup
     request requiring local communication within 1 second.  The  host
     should respond to a SIMP Reply with a Reply Acknowledgment within
     1 second.






                                    24


^L





     RFC 907                                      Host Access Protocol
     July 1984                                           Specification



          Setup exchanges can also be initiated  by  the  SIMP.  SIMP-
     initiated  setup messages are used to notify a host of changes in
     the status of an associated group or  stream.  Each  notification
     involves  a  2-way  exchange  where: (1) the service host sends a
     Notification to the user host, and (2) the user  host  returns  a
     Notification  Acknowledgment  to  the  service  host. In order to
     allow more than one Notification  to  be  outstanding,  each   is
     assigned    a    unique   Notification   ID.   The   Notification
     Acknowledgment returned by the user host to the service host must
     contain the Notification ID.

          The general format of every setup message is:

                         <DATAGRAM MESSAGE HEADER>
                        <OPTIONAL INTERNET HEADER>
                          <SETUP MESSAGE HEADER>
                           <SETUP MESSAGE BODY>

     The service host accepts setup requests  in  either  Internet  or
     non-Internet  format.   Replies  from the service host will be in
     the same form as the request,  that  is,  Internet  requests  get
     Internet  replies,  and  non-Internet  requests  get non-Internet
     replies.

          The format of the combined datagram message header and setup
     message header is illustrated in Figure 6.  The body of the setup
     messages depends on the particular setup  message  type.   Stream
     request  and  reply messages are described in Section 6.1.  Group
     request and reply messages are  described  in  Section  6.2.   To
     simplify  the  presentation  in both of these sections, the setup
     messages are assumed to be exchanged between  a  local  host  and
     SIMP  even  though Internet group and stream setups are supported
     (see Figure 6).  The format of notifications, which  consists  of
     only  a  single  word  beyond the basic setup header, is shown in
     Figure 7.  Since the SIMP does not retain the  optional  Internet
     header  information  that  can  be  included  in  setup requests,
     Internet  notifications  are  not  supported.   The   format   of
     acknowledgment   messages   associated   with  request/reply  and
     notification setups is illustrated in Figure 8.





                                    25


^L





     RFC 907                                      Host Access Protocol
     July 1984                                           Specification






              15 14 13 12 11 10  9  8  7  6  5  4  3  2  1  0
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
     0-5     |            DATAGRAM MESSAGE HEADER            |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
     6-N     |          <OPTIONAL INTERNET HEADER>           |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
     N+1     |      SETUP TYPE       |      SETUP CODE       |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
     N+2     |                 SETUP CHECKSUM                |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
     N+3     |                   SETUP  ID                   |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+


                      Figure 6 . SETUP MESSAGE HEADER



     0-5        Datagram Message Header.  Each  setup  message  begins
                with the six word datagram message header (see Section
                3).

     6-N        Internet  Header  (Optional).   These   fields,   when
                present, conform to the DoD Standard Internet Protocol
                (IP). The Internet header size  is  a  minimum  of  10
                words  but  can  be  longer  depending  on  the use of
                optional  IP   facilities.    (Internet   notification
                messages are not supported.)

     N+1[8-15]  Setup Type.  This field determines the type  of  setup
                message.

                     0 = Acknowledgment
                     1 = Request
                     2 = Reply
                     3 = Notification

     N+1[0-7]   Setup Code.  For requests,  this field identifies  the



                                    26


^L





     RFC 907                                      Host Access Protocol
     July 1984                                           Specification



                Request Type.

                     1 = Create group address
                     2 = Delete group address
                     3 = Join group
                     4 = Leave group
                     5 = Create stream
                     6 = Delete stream
                     7 = Change stream parameters
                     8 = Reserved

                For Replies, this field provides the Reply Code.  Some
                of  the  Reply  Codes  can  be  returned  to any setup
                request and others are request specific.

                     0 = Group or stream created
                     1 = Group or stream deleted
                     2 = Group joined
                     3 = Group left
                     4 = Stream changed
                     5 = Reserved
                     6 = Bad request type
                     7 = Reserved
                     8 = Network trouble
                     9 = Bad key
                    10 = Group address/stream ID nonexistent
                    11 = Not member of group/creator of stream
                    12 = Stream priority not being accepted
                    13 = Reserved
                    14 = Reserved
                    15 = Illegal interval
                    16 = Reserved
                    17 = Insufficient network resources
                    18 = Requested bandwidth too large
                    19 = Reserved
                    20 = Reserved
                    21 = Maximum messages per slot not consistent with
                         slot size
                    22 = Reply lost in network
                    23 = Illegal reliability value




                                    27


^L





     RFC 907                                      Host Access Protocol
     July 1984                                           Specification



                For   Notifications,   this   field    contains    the
                Notification Type.

                     0 = Stream suspended
                     1 = Stream resumed
                     2 = Stream deleted
                     3 = Group deleted by host
                     4 = Group deleted by SIMP
                     5 = All streams deleted
                     6 = All groups deleted

                For   Acknowledgments,   this   field   contains   the
                Acknowledgment Type.

                     0 = Reply acknowledgment
                     1 = Notification acknowledgment

     N+2[0-15]  Setup Checksum.  The checksum covers the  three  setup
                message  header  words and the setup message body data
                words.  Setups received with  bad  checksums  must  be
                discarded.

     N+3[0-15]  Setup ID.  This field  is  assigned  by  the  host  to
                uniquely  identify  outstanding  requests (Request ID)
                and  by  the  service  host   to   uniquely   identify
                outstanding notifications (Notification ID).


















                                    28


^L





     RFC 907                                      Host Access Protocol
     July 1984                                           Specification






              15 14 13 12 11 10  9  8  7  6  5  4  3  2  1  0
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
     0-5     |            DATAGRAM MESSAGE HEADER            |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
      6      |           3           |   NOTIFICATION TYPE   |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
      7      |                 SETUP CHECKSUM                |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
      8      |                 NOTIFICATION ID               |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
      9      |                NOTIFICATION INFO              |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+


                      Figure 7 . NOTIFICATION MESSAGE



     0-5         Datagram Message Header (see Section 3).

       6[8-15]   Setup Type = 3 (Notification).

       6[0-7]    Notification Type.

                      0 = Stream suspended
                      1 = Stream resumed
                      2 = Stream deleted
                      3 = Group deleted by host
                      4 = Group deleted by SIMP
                      5 = All streams deleted
                      6 = All groups deleted

       7[0-15]   Setup Checksum. Covers words 6-9.

       8[0-15]   Notification ID.

       9[0-15]   Notification Information.  This  field  contains  the
                 16-bit   group   address  in  the  case  of  a  group



                                    29


^L





     RFC 907                                      Host Access Protocol
     July 1984                                           Specification



                 notification (types 3 and  4)  and  the  10-bit  host
                 stream  ID  (right justified) in the case of a stream
                 notification (types 0-2).  This  field  is  zero  for
                 Notification  Types  5  and  6,  which pertain to ALL
                 streams and groups, respectively.







































                                    30


^L





     RFC 907                                      Host Access Protocol
     July 1984                                           Specification






              15 14 13 12 11 10  9  8  7  6  5  4  3  2  1  0
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
     0-5     |            DATAGRAM MESSAGE HEADER            |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
      6      |           0           |        ACK TYPE       |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
      7      |                 SETUP CHECKSUM                |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
      8      |                   SETUP  ID                   |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+


                      Figure 8 . SETUP ACKNOWLEDGMENT



     0-5         Datagram Message Header.

       6[8-15]   Setup Type = 0 (Acknowledgment).

       6[0-7]    Acknowledgment Type.

                     0 = Reply acknowledgment
                     1 = Notification acknowledgment

       7[0-15]   Setup Checksum.  Covers words 6-8.

       8[0-15]   Setup  ID.   This  is  either  a  Request  ID  or   a
                 Notification ID.












                                    31


^L





     RFC 907                                      Host Access Protocol
     July 1984                                           Specification



     6.1  Stream Setup Messages

          Hosts use  streams to support high duty  cycle  applications
     and   applications   requiring   a   one  satellite  hop  network
     transmission delay.  Host streams must be set  up  before  stream
     data messages can flow.  The stream setup messages defined by HAP
     are Create Stream Request, Create  Stream  Reply,  Delete  Stream
     Request,  Delete  Stream Reply, Change Stream Parameters Request,
     and Change Stream Parameters Reply.  The use of these messages is
     illustrated  in  the scenario of exchanges between a host and its
     local SIMP shown in Figure 9 where the host establishes a stream,
     sends  some data, modifies the stream characteristics, sends some
     more data, and finally closes down the stream.

          It is worthwhile noting that the setup exchanges in Figure 9
     are  completely  between  the host originating the stream and its
     local SIMP.  Other SIMPs and hosts are essentially unaware of the
     existence   of   the  stream.   Stream  messages  received  by  a
     destination  host  are,  therefore,  processed   identically   to
     datagram  messages.   (All SIMPs must, of course, be aware of the
     channel allocation associated with a  host  stream  in  order  to
     perform  satellite  channel  scheduling.)   Not  illustrated, but
     implicit in this  scenario,  are  the  optional  A/R  indications
     associated with each of the stream setup messages.




















                                    32


^L





     RFC 907                                      Host Access Protocol
     July 1984                                           Specification






                                              Host       SIMP

             Create Stream Request                ------>
             Create Stream Reply                  <------
             Reply Acknowledgment                 ------>
             Stream Message                       ------>
                  .
                  .
             Stream Message                       ------>
             Change Stream Parameters Request     ------>
             Change Stream Parameters Reply       <------
             Reply Acknowledgment                 ------>
             Stream Message                       ------>
                  .
                  .
             Stream Message                       ------>
             Delete Stream Request                ------>
             Delete Stream Reply                  <------
             Reply Acknowledgment                 ------>



                         Figure 9 . STREAM EXAMPLE



          Host streams have six characteristic  properties  which  are
     selected  at stream setup time.  These properties, which apply to
     every message transmitted in the stream, are: (1) slot size,  (2)
     interval,  (3) reliability, (4) reliability length, (5) priority,
     and (6) maximum messages per slot.  To establish  a  stream,  the
     host  sends  the  Create  Stream  Request  message illustrated in
     Figure 10 to the SIMP.  After the satellite network has processed
     the Create Stream Request, the SIMP will respond to the host with
     a Create Stream Reply message formatted as shown  in  Figure  11.
     Assuming  that the reply code in the Create Stream Reply  is zero
     indicating that the stream has  been  created  successfully,  the
     host may proceed to transmit stream data messages after sending a



                                    33


^L





     RFC 907                                      Host Access Protocol
     July 1984                                           Specification



     Reply Acknowledgment.

          During the lifetime of a stream, the host which  created  it
     may  decide that some of its six characteristic properties should
     be modified.  All of the properties except  the  stream  interval
     can  be  modified  using  the  Change  Stream  Parameters Request
     message.  The format of this command is illustrated in Figure 12.
     After  the  network  has  processed  the Change Stream Parameters
     Request, the  SIMP  will  respond  by  sending  a  Change  Stream
     Parameters  Reply to the host with the format shown in Figure 13.
     A host requesting a reduced channel  allocation  should  decrease
     its  sending  rate immediately without waiting for receipt of the
     Change Stream Parameters Reply.  A host requesting  an  increased
     allocation  should  not  proceed to transmit according to the new
     set of parameters without first having received a Reply Code of 4
     indicating that the requested change has taken effect.

          When the host which created the host stream determines  that
     the  stream  is  no  longer  needed  and the associated satellite
     channel allocation can be freed up, the host sends its local SIMP
     a  Delete Stream Request message formatted as indicated in Figure
     14.  After the network has processed the Delete  Stream  Request,
     the  SIMP  will  respond  by sending a Delete Stream Reply to the
     host with the format shown in Figure 15.




















                                    34


^L





     RFC 907                                      Host Access Protocol
     July 1984                                           Specification






              15 14 13 12 11 10  9  8  7  6  5  4  3  2  1  0
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
     0-5     |            DATAGRAM MESSAGE HEADER            |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
      6      |           1           |           5           |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
      7      |                 SETUP CHECKSUM                |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
      8      |                  REQUEST ID                   |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
      9      |  MAX MES  | INT | PRI | RLY |      RLEN       |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
     10      |                   SLOT SIZE                   |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+


                     Figure 10 . CREATE STREAM REQUEST



     0-5         Datagram Message Header.

       6[8-15]   Setup Type = 1 (Request).

       6[0-7]    Request Type = 5 (Create Stream).

       7[0-15]   Setup Checksum.  Covers words 6-10.

       8[0-15]   Request ID.

       9[12-15]  Maximum Messages Per Slot.  This field specifies  the
                 the  maximum number of stream messages that will ever
                 be delivered to the SIMP by the host for transmission
                 in one stream slot.

       9[10-11]  Interval.  This  field  specifies  the  interval,  in
                 number of 21.2 ms  frames, between stream slots.




                                    35


^L





     RFC 907                                      Host Access Protocol
     July 1984                                           Specification



                      0 = 1 frame
                      1 = 2 frames
                      2 = 4 frames
                      3 = 8 frames

                 As an example, an interval of 4 frames corresponds to
                 an allocation of Slot Size words every 85 ms.

       9[8-9]    Priority.  This field specifies the priority at which
                 all messages in the host stream should be handled.

                      0 = Low priority
                      1 = Medium Low Priority
                      2 = Medium High Priority
                      3 = High Priority

       9[6-7]    Reliability.  This field  specifies  the  basic  bit-
                 error  rate  requirement  for the data portion of all
                 messages in the host stream.

                      0 = Low Reliability
                      1 = Medium Reliability
                      2 = High Reliability
                      3 = Reserved

       9[0-5]    Reliability Length.  This field  specifies  how  many
                 words  beyond  the  stream  message  header should be
                 transmitted at maximum reliability for  all  messages
                 in the host stream.

       10[0-15]  Slot Size.  This field specifies  the  slot  size  in
                 16-bit  words of stream message text.  Stream message
                 header words are excluded from this count.  The  host
                 can partition this allocation on a slot-by-slot basis
                 among a variable number of messages as  long  as  the
                 maximum  number  of messages per slot does not exceed
                 MAX MES.







                                    36


^L





     RFC 907                                      Host Access Protocol
     July 1984                                           Specification






              15 14 13 12 11 10  9  8  7  6  5  4  3  2  1  0
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
     0-5     |            DATAGRAM MESSAGE HEADER            |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
      6      |           2           |      REPLY CODE       |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
      7      |                 SETUP CHECKSUM                |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
      8      |                  REQUEST ID                   |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
      9      |      XXXXX      |       HOST STREAM ID        |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+


                      Figure 11 . CREATE STREAM REPLY



     0-5          Datagram Message Header.

       6[8-15]    Setup Type = 2 (Reply).

       6[0-7]     Reply Code.

                       0 = Stream created
                       8 = Network trouble
                      12 = Stream priority not being accepted
                      17 = Insufficient network resources
                      18 = Requested bandwidth too large
                      21 = Maximum messages per slot not consistent
                           with slot size
                      22 = Reply lost in network
                      23 = Illegal reliability value

       7[0-15]    Setup Checksum.  Covers words 6-9.

       8[0-15]    Request ID.




                                    37


^L





     RFC 907                                      Host Access Protocol
     July 1984                                           Specification



       9[10-15]   Reserved.

       9[0-9]     Host Stream ID.  This field contains a  host  stream
                  ID  assigned by the network.  It must be included in
                  all stream data messages sent by the host  to  allow
                  the SIMP to associate the message with stored stream
                  characteristics and the reserved  satellite  channel
                  time.




































                                    38


^L





     RFC 907                                      Host Access Protocol
     July 1984                                           Specification






              15 14 13 12 11 10  9  8  7  6  5  4  3  2  1  0
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
     0-5     |            DATAGRAM MESSAGE HEADER            |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
      6      |           1           |           7           |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
      7      |                 SETUP CHECKSUM                |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
      8      |                  REQUEST ID                   |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
      9      |      XXXXX      |       HOST STREAM ID        |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
     10      |  MAX MES  | INT | PRI | RLY |      RLEN       |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
     11      |                   SLOT SIZE                   |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+


               Figure 12 . CHANGE STREAM PARAMETERS REQUEST



     0-5          Datagram Message Header.

       6[8-15]    Setup Type = 1 (Request).

       6[0-7]     Request Type = 7 (Change Stream Parameters).

       7[0-15]    Setup Checksum.  Covers words 6-11.

       8[0-15]    Request ID.

       9[10-15]   Reserved.

       9[0-9]     Host Stream ID.

       10[12-15]  New Maximum Messages Per Slot.




                                    39


^L





     RFC 907                                      Host Access Protocol
     July 1984                                           Specification



       10[10-11]  Interval.   This  field  must  specifiy   the   same
                  interval  as  was  specified  in  the  Create Stream
                  Request message for this stream.

       10[8-9]    New Priority.

       10[6-7]    New Reliability.

       10[0-5]    New Reliability Length.

       11[0-15]   New Slot Size.

































                                    40


^L





     RFC 907                                      Host Access Protocol
     July 1984                                           Specification






              15 14 13 12 11 10  9  8  7  6  5  4  3  2  1  0
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
     0-5     |            DATAGRAM MESSAGE HEADER            |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
      6      |           2           |      REPLY CODE       |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
      7      |                 SETUP CHECKSUM                |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
      8      |                  REQUEST ID                   |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+


                Figure 13 . CHANGE STREAM PARAMETERS REPLY



     0-5        Datagram Message Header.

       6[8-15]  Setup Type = 2 (Reply).

       6[0-7]   Reply Code.

                     4 = Stream changed
                     8 = Network trouble
                    10 = Stream ID nonexistent
                    11 = Not creator of stream
                    12 = Stream priority not being accepted
                    15 = Illegal interval
                    17 = Insufficient network resources
                    18 = Requested bandwidth too large
                    21 = Maximum messages per slot not consistent with
                         slot size
                    22 = Reply lost in network
                    23 = Illegal reliability value

       7[0-15]  Setup Checksum.  Covers words 6-8.

       8[0-15]  Request ID.



                                    41


^L





     RFC 907                                      Host Access Protocol
     July 1984                                           Specification






              15 14 13 12 11 10  9  8  7  6  5  4  3  2  1  0
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
     0-5     |            DATAGRAM MESSAGE HEADER            |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
      6      |           1           |           6           |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
      7      |                 SETUP CHECKSUM                |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
      8      |                  REQUEST ID                   |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
      9      |      XXXXX      |       HOST STREAM ID        |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+


                     Figure 14 . DELETE STREAM REQUEST



     0-5      Datagram Message Header.

     6[8-15]  Setup Type = 1 (Request).

     6[0-7]   Request Type = 6 (Delete Stream).

     7[0-15]  Setup Checksum.  Covers words 6-9.

     8[0-15]  Request ID.

     9[10-15] Reserved.

     9[0-9]   Host Stream ID.










                                    42


^L





     RFC 907                                      Host Access Protocol
     July 1984                                           Specification






              15 14 13 12 11 10  9  8  7  6  5  4  3  2  1  0
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
     0-5     |            DATAGRAM MESSAGE HEADER            |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
      6      |           2           |      REPLY CODE       |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
      7      |                 SETUP CHECKSUM                |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
      8      |                  REQUEST ID                   |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+


                      Figure 15 . DELETE STREAM REPLY



     0-5      Datagram Message Header.

     6[8-15]  Setup Type = 2 (Reply).

     6[0-7]   Reply Code.

          1 = Stream deleted
          8 = Network trouble
         10 = Stream ID nonexistent
         11 = Not creator of stream
         17 = Insufficient network resources
         22 = Reply lost in network

     7[0-15]  Setup Checksum.  Covers words 6-8.

     8[0-15]  Request ID.









                                    43


^L





     RFC 907                                      Host Access Protocol
     July 1984                                           Specification



     6.2  Group Setup Messages

          Group addressing allows  hosts  to  take  advantage  of  the
     broadcast  capability  of  the satellite network and is primarily
     provided to support the multi-destination delivery  required  for
     conferencing   applications.   Group  addresses  are  dynamically
     created and deleted via setup messages  exchanged  between  hosts
     and  the  network.   Membership  in  a  group  may  consist of an
     arbitrary subset of all the permanent network hosts.  A  datagram
     message  or  stream  message  addressed to a group is always sent
     over the satellite channel and delivered to all  hosts  that  are
     members of that group.  The group setup messages are Create Group
     Request, Create Group Reply, Delete Group Request,  Delete  Group
     Reply, Join Group Request, Join Group Reply, Leave Group Request,
     and Leave Group Reply.

          The use of group setup messages is shown in Figure 16.   The
     figure  illustrates a scenario of exchanges between two hosts and
     their local SIMPs.  In the scenario one host, Host A,  creates  a
     group  which  is  joined by a second host, Host B.  After the two
     hosts have exchanged some data mesages addressed  to  the  group,
     Host  B  decides  to leave the group and Host A decides to delete
     the group.  As in the scenario in Section  6.1,  A/R  indications
     have been omitted for clarity.

          Part of the group creation procedure involves  the   service
     host  returning a 48-bit key along with a 16-bit group address to
     the host creating the group.  The creating host must pass the key
     along with the group address to the other hosts which it wants as
     group members.  These other hosts must supply the key along  with
     the  group address in their Join Group Requests.  The key is used
     by the network  to  authenticate  these  operations  and  thereby
     minimize the probability that unwanted hosts will deliberately or
     inadvertently become members of the group.  The procedure used by
     a  host to distribute the group address and key is not within the
     scope of HAP.








                                    44


^L





     RFC 907                                      Host Access Protocol
     July 1984                                           Specification






                                   Host   SIMP    SIMP   Host
                                    A      A       B      B

        Create Group Request         ------>
        Create Group Reply           <------
        Reply Acknowledgment         ------>
             .
             .
                                     >>Group Address,Key>>
             .
             .
        Join Group Request                          <------
        Join Group Reply                            ------>
        Reply Acknowledgment                        <------

        Data Message 1               ------>
        Data Message 1               <------        ------>
        Data Message 2                              <------
        Data Message 2               <------        ------>
        Leave Group Request                         <------
        Leave Group Reply                           ------>
        Reply Acknowledgment                        <------
        Delete Group Request         ------>
        Delete Group Reply           <------
        Reply Acknowledgment         ------>


                         Figure 16 . GROUP EXAMPLE




          Any host no longer wishing to participate  in  a  group  may
     choose  to  drop out.  This can be accomplished by either a Leave
     or a Delete.  Both Leave and Delete operations are  authenticated
     using  the 48-bit key.  Leave is a local operation between a host
     and its SIMP which removes the requesting  host  from  the  group
     membership  list  but  does not alter the global existence of the



                                    45


^L





     RFC 907                                      Host Access Protocol
     July 1984                                           Specification



     group.  A Delete, on the other hand, expunges  all  knowledge  of
     the  group  from  every SIMP in the network.  HAP will permit any
     member of a group to delete the group at any time.   Thus,  group
     addresses  can  be  deleted  even  if  the  host which originally
     created the group has left the group or has  crashed.   Moreover,
     groups may exist for which there are currently no members because
     each member has executed  a  Leave  while  none  has  executed  a
     Delete.  It  is the responsibility of the hosts to coordinate and
     manage the use of groups.

          The Create Group Request message sent to the service host to
     establish a group address is illustrated in Figure 17.  After the
     network has processed the Create Group Request, the service  host
     will  respond  by  sending  a  Create  Group Reply to the host as
     illustrated in Figure 18.

          A host may become a member of a  group  once  it  knows  the
     address  and key associated with the group by sending the service
     host the Join Group Request message  shown  in  Figure  19.   The
     service  host  will respond to the Join Group Request with a Join
     Group Reply formatted as indicated in Figure 20.  The host  which
     creates  a  group  automatically  becomes  a member of that group
     without any need for an explicit Join Group Request.

          At any time after becoming a member of a group, a  host  may
     choose  to  drop out of the group.  To effect this the host sends
     the service host a Leave Group  Request  formatted  as  shown  in
     Figure  21.   The  service  host  will respond to the Leave Group
     Request with a Leave Group Reply formatted as shown in Figure 22.

          Any member of a group can  request  that  the  service  host
     delete  an existing group via a Delete Group Request.  The format
     of the Delete Group  Request  setup  message  is  illustrated  in
     Figure  23.   After  the  network  has processed the Delete Group
     Request, the service host will respond to the host with a  Delete
     Group Reply formatted as illustrated in Figure 24.








                                    46


^L





     RFC 907                                      Host Access Protocol
     July 1984                                           Specification






              15 14 13 12 11 10  9  8  7  6  5  4  3  2  1  0
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
     0-5     |            DATAGRAM MESSAGE HEADER            |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
      6      |           1           |           1           |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
      7      |                 SETUP CHECKSUM                |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
      8      |                  REQUEST ID                   |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+


                     Figure 17 . CREATE GROUP REQUEST



     0-5        Datagram Message Header.

       6[8-15]  Setup Type = 1 (Request).

       6[0-7]   Request Type = 1 (Create Group).

       7[0-15]  Setup Checksum.  Covers words 6-8.

       8[0-15]  Request ID.
















                                    47


^L





     RFC 907                                      Host Access Protocol
     July 1984                                           Specification






              15 14 13 12 11 10  9  8  7  6  5  4  3  2  1  0
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
     0-5     |            DATAGRAM MESSAGE HEADER            |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
      6      |           2           |      REPLY CODE       |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
      7      |                 SETUP CHECKSUM                |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
      8      |                  REQUEST ID                   |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
      9      |                 GROUP ADDRESS                 |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
     10      |                      KEY                      |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
     11      |                      KEY                      |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
     12      |                      KEY                      |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+


                      Figure 18 . CREATE GROUP REPLY



     0-5        Datagram Message Header.

       6[8-15]  Setup Type = 2 (Reply).

       6[0-7]   Reply Code.

                     0 = Group created
                     8 = Network trouble
                    17 = Insufficient network resources
                    22 = Reply lost in network

       7[0-15]  Setup Checksum.  Covers words 6-12.

       8[0-15]  Request ID.



                                    48


^L





     RFC 907                                      Host Access Protocol
     July 1984                                           Specification



       9[0-15]  Group Address.  This field contains a  16-bit  logical
                address  assigned  by the network which may be used by
                the host as a group address.

       10-12    Key.  This field contains a 48-bit key assigned by the
                network  which  is  associated with the group address.
                It must be provided for subsequent  Join,  Leave,  and
                Delete requests which reference the group address.




































                                    49


^L





     RFC 907                                      Host Access Protocol
     July 1984                                           Specification






              15 14 13 12 11 10  9  8  7  6  5  4  3  2  1  0
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
     0-5     |            DATAGRAM MESSAGE HEADER            |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
      6      |           1           |           3           |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
      7      |                 SETUP CHECKSUM                |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
      8      |                  REQUEST ID                   |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
      9      |                 GROUP ADDRESS                 |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
     10      |                      KEY                      |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
     11      |                      KEY                      |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
     12      |                      KEY                      |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+


                      Figure 19 . JOIN GROUP REQUEST



     0-5        Datagram Message Header.

       6[8-15]  Setup Type = 1 (Request).

       6[0-7]   Request Type = 3 (Join Group).

       7[0-15]  Setup Checksum.  Covers words 6-12.

       8[0-15]  Request ID.

       9[0-15]  Group Address.  This is the  logical  address  of  the
                group that the host wishes to join.

     10-12      Key.  This  is  the  key  associated  with  the  group



                                    50


^L





     RFC 907                                      Host Access Protocol
     July 1984                                           Specification



                address.











































                                    51


^L





     RFC 907                                      Host Access Protocol
     July 1984                                           Specification






              15 14 13 12 11 10  9  8  7  6  5  4  3  2  1  0
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
     0-5     |            DATAGRAM MESSAGE HEADER            |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
      6      |           2           |      REPLY CODE       |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
      7      |                 SETUP CHECKSUM                |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
      8      |                  REQUEST ID                   |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+


                       Figure 20 . JOIN GROUP REPLY



     0-5        Datagram Message Header.

       6[8-15]  Setup Type = 2 (Reply).

       6[0-7]   Reply Code.

                     2 = Group joined
                     9 = Bad key
                    10 = Group address nonexistent
                    17 = Insufficient network resources

       7[0-15]  Setup Checksum.  Covers words 6-8.

       8[0-15]  Request ID.











                                    52


^L





     RFC 907                                      Host Access Protocol
     July 1984                                           Specification






              15 14 13 12 11 10  9  8  7  6  5  4  3  2  1  0
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
     0-5     |            DATAGRAM MESSAGE HEADER            |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
      6      |           1           |           4           |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
      7      |                 SETUP CHECKSUM                |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
      8      |                  REQUEST ID                   |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
      9      |                 GROUP ADDRESS                 |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
     10      |                      KEY                      |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
     11      |                      KEY                      |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
     12      |                      KEY                      |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+


                      Figure 21 . LEAVE GROUP REQUEST



     0-5        Datagram Message Header.

       6[8-15]  Setup Type = 1 (Request).

       6[0-7]   Request Type = 4 (Leave Group).

       7[0-15]  Setup Checksum.  Covers words 6-12.

       8[0-15]  Request ID.

       9[0-15]  Group Address.  This is the  logical  address  of  the
                group that the host wishes to leave.

     10-12      Key.  This  is  the  key  associated  with  the  group



                                    53


^L





     RFC 907                                      Host Access Protocol
     July 1984                                           Specification



                address.











































                                    54


^L





     RFC 907                                      Host Access Protocol
     July 1984                                           Specification






              15 14 13 12 11 10  9  8  7  6  5  4  3  2  1  0
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
     0-5     |            DATAGRAM MESSAGE HEADER            |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
      6      |           2            |     REPLY CODE       |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
      7      |                 SETUP CHECKSUM                |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
      8      |                  REQUEST ID                   |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+


                       Figure 22 . LEAVE GROUP REPLY



     0-5        Datagram Message Header.

       6[8-15]  Setup Type = 2 (Reply).

       6[0-7]   Reply Code.

                     3 = Group left
                     9 = Bad key
                    10 = Group address nonexistent
                    11 = Not member of group
                    17 = Insufficient network resources

       7[0-15]  Setup Checksum.  Covers words 6-8.

       8[0-15]  Request ID.










                                    55


^L





     RFC 907                                      Host Access Protocol
     July 1984                                           Specification






              15 14 13 12 11 10  9  8  7  6  5  4  3  2  1  0
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
     0-5     |            DATAGRAM MESSAGE HEADER            |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
      6      |           1           |           2           |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
      7      |                 SETUP CHECKSUM                |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
      8      |                  REQUEST ID                   |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
      9      |                 GROUP ADDRESS                 |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
     10      |                      KEY                      |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
     11      |                      KEY                      |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
     12      |                      KEY                      |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+


                     Figure 23 . DELETE GROUP REQUEST



     0-5        Datagram Message Header.

       6[8-15]  Setup Type = 1 (Request).

       6[0-7]   Request Type = 2 (Delete Group).

       7[0-15]  Setup Checksum.  Covers words 6-12.

       8[0-15]  Request ID.

       9[0-15]  Group Address.

     10-12      Key.




                                    56


^L





     RFC 907                                      Host Access Protocol
     July 1984                                           Specification






              15 14 13 12 11 10  9  8  7  6  5  4  3  2  1  0
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
     0-5     |            DATAGRAM MESSAGE HEADER            |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
      6      |           2           |      REPLY CODE       |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
      7      |                 SETUP CHECKSUM                |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
      8      |                  REQUEST ID                   |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+


                      Figure 24 . DELETE GROUP REPLY



     0-5        Datagram Message Header.

       6[8-15]  Setup Type = 2 (Reply).

       6[0-7]   Reply Code.

                     1 = Group deleted
                     8 = Network trouble
                     9 = Bad key
                    10 = Group address nonexistent
                    11 = Not member of group
                    17 = Insufficient network resources
                    22 = Reply lost in network

       7[0-15]  Setup Checksum.  Covers words 6-8.

       8[0-15]  Request ID.








                                    57


^L





     RFC 907                                      Host Access Protocol
     July 1984                                           Specification



     7  Link Monitoring

          While the access link is operating,  statistics  on  traffic
     load  and  error  rate  are maintained by the host and SIMP.  The
     host and SIMP  must  exchange  status  messages  once  a  second.
     Periodic  exchange  of  status  messages permits both ends of the
     link to monitor flows in both  directions.  Status  messages  are
     required  to  support monitoring by the Network Operations Center
     (NOC).

          The link restart procedure (see Section 8)  initializes  all
     internal  SIMP  counts  and statistics for that link to zero.  As
     data and control messages are processed, counts  are  updated  to
     reflect  the  total  number  of  messages sent, messages received
     correctly, and messages received with different classes of errors
     since  the last link restart.  Whenever a status message arrives,
     a snapshot is taken of the local SIMP counts.  The local  receive
     counts,  in  conjunction  with  a  sent  count  contained  in the
     received status  message,  permits  the  computation  of  traffic
     statistics  in  the  one second update interval assuming that the
     set of counts at the time of the previous monitoring report  have
     been  saved.   By  including  in  the status message sent (in the
     opposite direction) the receive  counts  and  the  received  sent
     count that was used with them, the transmitting end of the access
     link as  well  as  the  receiving  end  can  determine  the  link
     performance  from  sender  to receiver.  The format of the Status
     control message is illustrated in Figure 25.

















                                    58


^L





     RFC 907                                      Host Access Protocol
     July 1984                                           Specification






              15 14 13 12 11 10  9  8  7  6  5  4  3  2  1  0
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
      0      | 1|LB|GOPRI|         XXXXX         |     0     |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
      1      |                HEADER CHECKSUM                |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
      2      |             MOST RECENT A/R SENT              |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
      3      |                STREAM CAPACITY                |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
      4      |                   TIMESTAMP                   |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
      5      |                      SBU                      |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
      6      |                      STU                      |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
      7      |                      RNE                      |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
      8      |                      RWE                      |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
      9      |                      BHC                      |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
     10      |                      HEI                      |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+


                        Figure 25 . STATUS MESSAGE



     0[15]     Message Class = 1 (Control Message).

     0[14]     Loopback Bit.

     0[12-13]  Go-Priority.

     0[4-11]   Reserved.




                                    59


^L





     RFC 907                                      Host Access Protocol
     July 1984                                           Specification



     0[0-3]    Control Message Type = 0 (Status).

     1[0-15]   Header Checksum.  Covers words 0-10.

     2[0-15]   Most Recent A/R Sent.  This field is a duplicate of the
               most recent acceptance/refusal word.  It is included in
               the  periodic   status   message   in   case   previous
               transmissions containing A/R information were lost.

     3[0-15]   Stream Capacity.  When sent by  the  SIMP,  this  field
               indicates  how much stream capacity is unused, in units
               of data  bits  per  frame.   Since  available  capacity
               depends directly on a variety of parameters that can be
               selected by the user, the value of this  field  is  the
               maximum  capacity  that  could  be achieved if existing
               host streams were expanded at  low  reliability.   This
               field  is  undefined  in messages sent from the host to
               the SIMP.

     4[0-15]   Timestamp.  This field  indicates  the  time  that  the
               status message was generated.  When sent by a SIMP, the
               time is in  units  of   seconds  since  the  last  link
               restart.   The  host should also timestamp its messages
               in units of seconds.

     5[0-15]   Sent By Us. Count of messages sent by us since the last
               link restart (not including this one).

     6[0-15]   Sent To Us.  Count of messages sent  to  us  since  the
               last  link  restart.   This is the count from word 5 of
               the last status message received.

     7[0-15]   Received, No Errors. This  is  the  count  of  messages
               received  without  errors (since the last link restart)
               at the time that the last status message was received.

     8[0-15]   Received With Errors.  This is the  count  of  messages
               received  with  errors (since the last link restart) at
               the time the last status message was received.

     9[0-15]   Bad Header Checksums. This is  the  count  of  messages



                                    60


^L





     RFC 907                                      Host Access Protocol
     July 1984                                           Specification



               received with bad header checksums (since the last link
               restart) at the  time  the  last   status  message  was
               received.

     10[0-15]  Hardware  Error  Indication.   This  is  the  count  of
               messages  received with hardware CRC errors or hardware
               interface  error  indications  (since  the  last   link
               restart)  at  the  time   the  last  status message was
               received.



































                                    61


^L





     RFC 907                                      Host Access Protocol
     July 1984                                           Specification



     8  Initialization

          The Host Access Protocol uses a number  of  state  variables
     that  must  be  initialized in order to function properly.  These
     variables are  associated  with  the  send  and  receive  message
     numbers   used   by  the  acceptance/refusal  mechanism  and  the
     statistics  maintained  to   support   link   monitoring.    Link
     initialization  should be carried out when a machine is initially
     powered up, when it does a system restart, when the ON state (see
     below)  times  out,  when  a  loopback  condition  times out (see
     Section 9), or whenever the link transitions from non-operational
     to operational status.

          Initialization is accomplished by the  exchange  of  Restart
     Request  (RR)  and  Restart Complete (RC) messages between a host
     and a SIMP.  The state diagram in Figure 26 shows the sequence of
     events  during initialization.  Both SIMP and host must implement
     this state diagram  if  deadlocks  and  oscillations  are  to  be
     avoided.   This  particular initialization sequence requires both
     sides to send and receive the Restart Complete message.   Because
     this  message  is  a  reply  (to  a  Restart  Request  or Restart
     Complete), its receipt  guarantees  that  the  physical  link  is
     operating  in both directions.  Five states are identified in the
     state diagram:

     OFF            Entered  upon  recognition  of  a  requirement  to
                    restart.     The   device   can   recognize   this
                    requirement  itself or be forced  to  restart   by
                    receipt of an RR  message from the other end while
                    in the ON state.

     INIT           Local state variables have  been  initialized  and
                    local  counters  have  been  zeroed but no restart
                    control messages have yet been sent or received.

     RR-SNT         A request to reinitialize (RR) has  been  sent  to
                    the other end but no restart control messages have
                    yet been received.

     RC-SNT         A reply (RC) has been sent to  the  other  end  in
                    response  to  a  received reinitialization request



                                    62


^L





     RFC 907                                      Host Access Protocol
     July 1984                                           Specification



                    (RR).  The device is waiting for a reply (RC).

     ON             Reply  (RC)  messages  have  been  both  sent  and
                    received.   Data  and  control messages can now be
                    exchanged between the SIMP and host.

          All states have 10-second timeouts (not  illustrated)  which
     return  the  protocol  to  the  OFF state.  The occurrence of any
     events other than those indicated in the diagram are ignored.

          The Restart Request control message illustrated in Figure 27
     is  sent  by  either a host or a SIMP when it wishes to restart a
     link.  The Restart Request causes all the  monitoring  statistics
     to  be  reset  to  zero and stops all traffic on the link in both
     directions.  The Restart Complete message illustrated  in  Figure
     28  is  sent in response to a received Restart Request or Restart
     Complete to complete link initialization.  The  Restart  Complete
     carries  a  field  used  by  the  host  to  enable or disable the
     acceptance/refusal mechanism for the link  being  restarted  (see
     Section 5).  After the Restart Complete is processed, traffic may
     flow on the link.























                                    63


^L





     RFC 907                                      Host Access Protocol
     July 1984                                           Specification






                              -------
         Any Timeout or ----->| OFF |<-----------------------------
         Device Down          -------                             |
                                 |                                |
                                 |  Device Up                     |
                                 |  Initialize Variables          |
                                 |                                |
                                 V                                |
                             ---------                            |
                             | INIT  |                            |
                             ---------                            |
                               |   |                              |
                      Rcv RR   |   |   Snd RR                     |
                      Snd RC   |   |                              |
                               |   |                              |
                  --------------   --------------                 |
                  |                             |                 |
                  |                             |                 |
                  V           Rcv RR            V                 |
             ----------       Snd RC        ----------            |
             | RC-SNT |<--------------------| RR-SNT |            |
             ----------                     ----------            |
                  |                             |                 |
         Rcv RC   |                             |   Rcv RC        |
                  |                             |   Snd RC        |
                  V                             V                 |
                  -------------------------------                 |
                                 |                                |
                                 |                                |
                                 V                                |
                              -------                             |
          Rcv Any      ------>| ON  |------------------------------
          Other        |      -------    Rcv RR
                       ----------|


                Figure 26 . HAP LINK RESTART STATE DIAGRAM




                                    64


^L





     RFC 907                                      Host Access Protocol
     July 1984                                           Specification






              15 14 13 12 11 10  9  8  7  6  5  4  3  2  1  0
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
     0       | 1|LB|     XXXXXXX     |  REASON   |     3     |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
     1       |                HEADER CHECKSUM                |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
     2       |          HOST ADDRESS / SITE NUMBER           |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
     3       |                  LINK NUMBER                  |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+


                        Figure 27 . RESTART REQUEST



     0[15]    Message Type = 1 (Control Message).

     0[14]    Loopback Bit.

     0[8-13]  Reserved.

     0[4-7]   Reason.  This field is used by the SIMP or the  host  to
              indicate the reason for the restart as follows:

                   0 = power up
                   1 = system restart
                   2 = link restart
                   3 = link timeout
                   4 = loopback timeout

     0[0-3]   Control Message Type = 3 (Restart Request).

     1[0-15]  Header Checksum.  Covers words 0-3.

     2[0-15]  Host Address  /  Site  Number.   The  host  inserts  its
              satellite  network  address  in  this  field.   The SIMP
              validates that the host address is correct for the  port



                                    65


^L





     RFC 907                                      Host Access Protocol
     July 1984                                           Specification



              being  used.   When  sent  by  the SIMP, this field will
              contain the SIMP site number.

     3[0-15]  Link  Number.   This   field   contains   the   sender's
              identification  of  the  physical link being used.  This
              information is used to identify the link when  reporting
              errors to the Network Operations Center (NOC).





































                                    66


^L





     RFC 907                                      Host Access Protocol
     July 1984                                           Specification






              15 14 13 12 11 10  9  8  7  6  5  4  3  2  1  0
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
     0       | 1|LB|          XXXXXX          |AR|     4     |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
     1       |                HEADER CHECKSUM                |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
     2       |          HOST ADDRESS / SITE NUMBER           |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
     3       |                  LINK NUMBER                  |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+


                       Figure 28 . RESTART COMPLETE



     0[15]    Message Type = 1 (Control Message).

     0[14]    Loopback Bit.

     0[5-13]  Reserved.

     0[4]     Acceptance/Refusal Control.  This bit  is  used  by  the
              host   to   enable  or  disable  the  acceptance/refusal
              mechanism for all traffic on the link.

                   0 = Disable acceptance/refusal
                   1 = Enable acceptance/refusal

     0[0-3]   Control Message Type = 4 (Restart Complete).

     1[0-15]  Header Checksum.  Covers words 0-3.

     2[0-15]  Host Address / Site Number.

     3[0-15]  Link Number.





                                    67


^L





     RFC 907                                      Host Access Protocol
     July 1984                                           Specification



     9  Loopback Control

          The Host Access Protocol provides a Loopback Request control
     message  which  can  be  used  by a SIMP or a host to request the
     remote loopback of its HAP messages.  Such requests  are  usually
     the  result of operator intervention for purposes of system fault
     diagnosis.  For clarity in the  following  discussion,  the  unit
     (SIMP  or  host) requesting the remote loopback is referred to as
     the "transmitter" and the unit implementing  (or  rejecting)  the
     loopback  is  referred  to  as  the  "receiver".  The format of a
     Loopback Request control message is illustrated in Figure 29.

          When a transmitter  is  remotely  looped,  all  of  its  HAP
     messages  will  be  returned, unmodified, over the access link by
     the receiver.  The receiver will not send any of its own messages
     to  the  transmitter  while  it  is implementing the loop.  SIMP-
     generated messages are distinguished from host-generated messages
     by means of the Loopback Bit that is in every HAP message header.

          Two types of remote loopback may be requested:  loopback  at
     the  receiver's interface hardware and loopback at the receiver's
     I/O driver software.  HAP does not specify the  manner  in  which
     the  receiver  should  implement  these loops; additionally, some
     receivers may  use  interface  hardware  which  is  incapable  of
     looping the transmitter's messages, only allowing the receiver to
     provide software loops.  A receiver may not be able to  interpret
     the  transmitter's  messages as it is looping them back.  If such
     interpretation is possible, however, the receiver will not act on
     any   of  the  transmitter's  messages  other  than  requests  to
     reinitialize the SIMP-host link  (Restart  Request  (RR)  control
     messages; see Section 8.)

          When a receiver initiates a loopback condition  in  response
     to  a  loopback request, it makes an implicit promise to maintain
     the condition for the duration specified in the Loopback  Request
     message.  However, if an unanticipated condition such as a system
     restart occurs in either the transmitter  or  the  receiver,  the
     affected  unit  will  try  to  reinitialize the SIMP-host link by
     sending an RR message to the other unit.  If the  RR  message  is
     recognized  by  the other unit a link initialization sequence can
     be  completed.   This  will  restore  the  link  to  an  unlooped



                                    68


^L





     RFC 907                                      Host Access Protocol
     July 1984                                           Specification



     condition  even  if  the  specified  loop  duration  has  not yet
     expired.  If a  receiver  cannot  interpret  a  transmitter's  RR
     messages,  and  in  the  absence  of operator intervention at the
     receiver, the loop will remain in place for its duration.

          HAP does not specify the  characteristics  of  any  loopback
     conditions  that  may be locally implemented by a given unit.  An
     example of such a condition is that obtained when a SIMP commands
     its  host interface to loop back its own messages.  If such local
     loop conditions also cause the reflection  of  messages  received
     from  the  remote unit, the remote unit will detect the condition
     via the HAP header Loopback Bit.

          A specific sequence must be followed for setting up a remote
     loopback  condition.   It  begins  after  the  HAP  link has been
     initialized and a decision is made to request a remote loop.  The
     transmitter then sends a Loopback Request message to the receiver
     and waits for either (1) a  10-second  timer  to  expire,  (2)  a
     "Can't  implement  loop"  Unnumbered  Response  message  from the
     receiver, or (3) one of its own reflected messages.  If event (1)
     or  (2) occurs the request has failed and the transmitter may, at
     its option, try again with a new Loopback  Request  message.   If
     event   (3)  occurs,  the  remote  loopback  condition  has  been
     established.  While waiting for one  of  these  events,  messages
     from  the receiver are processed normally.  Note that RR messages
     arriving from the receiver during this time  will  terminate  the
     loopback request.

          When a receiver gets a Loopback Request message,  it  either
     implements  the  requested  loop  for  the specified duration, or
     returns a "Can't implement loop" response  without  changing  the
     state  of  the  link.  The latter response would be returned, for
     example, if a receiver is incapable of implementing  a  requested
     hardware  loop.   A  receiver should initiate reinitialization of
     the link with an RR  message(s)  whenever  a  loopback  condition
     times out.

          There is  one  asymmetry  that  is  required  in  the  above
     sequence  to resolve the (unlikely) case where both SIMP and host
     request a remote loopback at the same time. If a SIMP receives  a
     Loopback  Request  message from a host while it is itself waiting



                                    69


^L





     RFC 907                                      Host Access Protocol
     July 1984                                           Specification



     for an event of type (1)-(3), it will return a  "Can't  implement
     loop"  response to the host and will continue to wait.  A host in
     the converse situation, however, will abort its loopback  request
     and will instead act on the SIMP's loopback request.








































                                    70


^L





     RFC 907                                      Host Access Protocol
     July 1984                                           Specification






              15 14 13 12 11 10  9  8  7  6  5  4  3  2  1  0
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
     0       | 1|LB|GOPRI|   XXXXX   | LOOP TYPE |     8     |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
     1       |                HEADER CHECKSUM                |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
     2       |                LOOP DURATION                  |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+


                       Figure 29 . LOOPBACK REQUEST



     0[15]     Message Type = 1 (Control Message).

     0[14]     Loopback Bit.

     0[12-13]  Go-Priority.

     0[8-11]   Reserved.

     0[4-7]    Loop Type.  This field indicates the type of loop  that
               is being requested as follows:

                    0 = Undefined
                    1 = Loop at interface (hardware loop)
                    2 = Loop at driver (software loop)
                    3-15 = Undefined

     0[0-3]    Control Message Type = 8 (Loopback Request).

     1[0-15]   Header Checksum.  Covers words 0-2.

     2[0-15]   Loop  Duration.   The   transmitter   of  a    Loopback
               Request  message uses this field  to specify the number
               of seconds that the loop is to  be  maintained  by  the
               receiver.



                                    71


^L





     RFC 907                                      Host Access Protocol
     July 1984                                           Specification



     10  Other Control Messages

          Before a SIMP or a host  voluntarily  disables  a  SIMP-host
     link, it should send at least one Link Going Down control message
     over that link.  The format of such a message is  illustrated  in
     Figure  30.   HAP  does  not  define the action(s) that should be
     taken by a SIMP or a  host  when  such  a  message  is  received;
     informing  the Network Operations Center (NOC) and/or the network
     users of the impending event is a typical course of action.  Note
     that  each Link Going Down message only pertains to the SIMP-host
     link that it is sent over; if a host and a SIMP are connected  by
     multiple links, these links may be selectively disabled.

          A No Operation (NOP) control message may be sent at any time
     by a SIMP or a host.  The format of such a message is illustrated
     in Figure 31.  A NOP message contains up to 32 words of arbitrary
     data which are undefined by HAP.  NOP messages may be required in
     some cases to clear the state of the SIMP-host link hardware.


























                                    72


^L





     RFC 907                                      Host Access Protocol
     July 1984                                           Specification






              15 14 13 12 11 10  9  8  7  6  5  4  3  2  1  0
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
     0       | 1|LB|GOPRI|   XXXXX   |  REASON   |     7     |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
     1       |                HEADER CHECKSUM                |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
     2       |               TIME UNTIL DOWN                 |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
     3       |                DOWN DURATION                  |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+


                        Figure 30 . LINK GOING DOWN



     0[15]     Message Type = 1 (Control Message).

     0[14]     Loopback Bit.

     0[12-13]  Go-Priority.

     0[8-11]   Reserved.

     0[4-7]    Reason.  This field is  used by the  SIMP or  the  host
               to  indicate  the  reason  for disabling this SIMP-host
               link  as follows:

                    0 = NOT going down:  Cancel previous Link
                        Going Down message
                    1 = Unspecified reason
                    2 = Scheduled PM
                    3 = Scheduled hardware work
                    4 = Scheduled software work
                    5 = Emergency restart
                    6 = Power outage
                    7 = Software breakpoint
                    8 = Hardware failure



                                    73


^L





     RFC 907                                      Host Access Protocol
     July 1984                                           Specification



                    9 = Not scheduled up
                   10 = Last warning:  The SIMP  or host  is disabling
                        the link in 10 seconds
                   11-15 = Undefined

     0[0-3]    Control Message Type = 7 (Link Going Down).

     1[0-15]   Header Checksum.  Covers words 0-3.

     2[0-15]   Time Until Down.  This field specifies  the  amount  of
               time  remaining   until the  SIMP or host  disables the
               link (in minutes).  An  entry of  zero  indicates  that
               there is less than a minute remaining.

     3[0-15]   Down Duration.  This field  specifies  the   amount  of
               time   that  the  SIMP-host  link  will   be  down  (in
               minutes).   An entry of  zero indicates  that the  down
               duration  will  be  less than a minute.  An entry of -1
               (all bits set) indicates an indefinite down duration.

























                                    74


^L





     RFC 907                                      Host Access Protocol
     July 1984                                           Specification






              15 14 13 12 11 10  9  8  7  6  5  4  3  2  1  0
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
     0       | 1|LB|            XXXXX            |     6     |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
     1       |                HEADER CHECKSUM                |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
     2-N     |                ARBITRARY DATA                 |
             +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+


                      Figure 31 . NO OPERATION (NOP)



     0[15]     Message Type = 1 (Control Message).

     0[14]     Loopback Bit.

     0[4-13]   Reserved.

     0[0-3]    Control Message Type = 6 (NOP).

     1[0-15]   Header Checksum.  Covers words 0-N.

     2-N       Arbitrary Data.  Up to 32 words of data  may  be  sent.
               The data are undefined by HAP.















                                    75