summaryrefslogtreecommitdiff
path: root/doc/rfc/rfc908.txt
blob: 6601b61cf61f2394e04964b67f7c9870402e4605 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
                          Reliable Data Protocol



                                  RFC-908














                               David Velten

                               Robert Hinden

                                 Jack Sax






                      BBN Communications Corporation






                                July 1984





Status of This Memo

   This RFC specifies a proposed protocol for the ARPA Internet
   community, and requests discussion and suggestions for
   improvements.  Distribution of this memo is unlimited.




^L
^L

     RDP Specification                           



                             Table of Contents





     1   Introduction.......................................... 1

     2   General Description................................... 3
     2.1   Motivation.......................................... 3
     2.2   Relation to Other Protocols......................... 5

     3   Protocol Operation.................................... 7
     3.1   Protocol Service Objectives......................... 7
     3.2   RDP Connection Management........................... 7
     3.2.1   Opening a Connection.............................. 8
     3.2.2   Ports............................................. 8
     3.2.3   Connection States................................. 8
     3.2.4   Connection Record................................ 11
     3.2.5   Closing a Connection............................. 13
     3.2.6   Detecting an Half-Open Connection................ 14
     3.3   Data Communication................................. 14
     3.4   Reliable Communication............................. 15
     3.4.1   Segment Sequence Numbers......................... 15
     3.4.2   Checksums........................................ 16
     3.4.3   Positive Acknowledgement of Segments............. 16
     3.4.4   Retransmission Timeout........................... 17
     3.5   Flow Control and Window Management................. 17
     3.6   User Interface..................................... 19
     3.7   Event Processing................................... 20
     3.7.1   User Request Events.............................. 21
     3.7.2   Segment Arrival Events........................... 24
     3.7.3   Timeout Events................................... 29

     4   RDP Segments and Formats............................. 31
     4.1   IP Header Format................................... 31
     4.2   RDP Header Format.................................. 32
     4.2.1   RDP Header Fields................................ 33
     4.3   SYN Segment........................................ 36
     4.3.1   SYN Segment Format............................... 36
     4.3.2   SYN Segment Fields............................... 37
     4.4   ACK Segment........................................ 38
     4.4.1   ACK Segment Format............................... 38
     4.4.2   ACK Segment Fields............................... 39
     4.5   Extended ACK Segment............................... 40
     4.5.1   EACK Segment Format.............................. 40
     4.5.2   EACK Segment Fields.............................. 40



                                                                Page i

^L

     RFC-908                                                 July 1984



     4.6   RST Segment........................................ 42
     4.6.1   RST Segment Format............................... 42
     4.7   NUL Segment........................................ 43
     4.7.1   NUL segment format............................... 43

     5   Examples of Operation................................ 45
     5.1   Connection Establishment........................... 45
     5.2   Simultaneous Connection Establishment.............. 46
     5.3   Lost Segments...................................... 47
     5.4   Segments Received Out of Order..................... 48
     5.5   Communication Over Long Delay Path................. 49
     5.6   Communication Over Long Delay Path With Lost
       Segments
          .................................................... 50
     5.7   Detecting a Half-Open  Connection  on  Crash
       Recovery
          .................................................... 51
     5.8   Detecting a Half-Open  Connection  from  the
       Active Side
          .................................................... 52

     A   Implementing a Minimal RDP........................... 53




























     Page ii

^L

     RDP Specification                           



                                  FIGURES




     1  Relation to Other Protocols............................ 5
     2  Form of Data Exchange Between Layers................... 6
     3  RDP Connection State Diagram.......................... 10
     4  Segment Format........................................ 31
     5  RDP Header Format..................................... 32
     6  SYN Segment Format.................................... 37
     7  ACK Segment Format.................................... 38
     8  EACK Segment Format................................... 41
     9  RST Segment Format.................................... 42
     10  NUL Segment Format................................... 43


































                                                              Page iii


^L
^L




                                 CHAPTER 1


                               Introduction



          The Reliable Data Protocol (RDP) is designed  to  provide  a
     reliable  data  transport  service  for packet-based applications
     such as remote loading and debugging.  The protocol  is  intended
     to  be simple to implement but still be efficient in environments
     where there may be long transmission  delays  and  loss  or  non-
     sequential delivery of message segments.

          Although this protocol was designed with  applications  such
     as  remote  loading and debugging in mind, it may be suitable for
     other applications that require reliable message  services,  such
     as computer mail, file transfer, transaction processing, etc.

          Some of the concepts used come from a  variety  of  sources.
     The  authors  wish credit to be given to Eric Rosen, Rob Gurwitz,
     Jack Haverty, and to acknowledge material adapted from  "RFC-793,
     The Transmission Control Protocol", edited by Jon Postel.  Thanks
     to John Linn for the checksum algorithm.



























                                                                Page 1

^L

     RFC-908                                                 July 1984





















































     Page 2

^L

     RDP Specification                             General Description



                                 CHAPTER 2


                            General Description



     2.1  Motivation

          RDP is a transport protocol designed to efficiently  support
     the  bulk  transfer  of data for such host monitoring and control
     applications  as  loading/dumping  and  remote   debugging.    It
     attempts to provide only those services necessary, in order to be
     efficient in operation and small in size.  Before  designing  the
     protocol,  it  was  necessary  to  consider  what  minimum set of
     transport  functions  would  satisfy  the  requirements  of   the
     intended applications.

          The following is a list of requirements for such a transport
     protocol:


         o   Reliable delivery of packets is required.   When  loading
             or  dumping  a  memory  image,  it  is necessary that all
             memory segments be  delivered.   A  'hole'  left  in  the
             memory  image  is  not acceptable.  However, the internet
             environment is a lossy  one  in  which  packets  can  get
             damaged  or  lost.   So  a  positive  acknowledgement and
             retransmission mechanism is a necessary component of  the
             protocol.

         o   Since loading and  dumping  of  memory  images  over  the
             internet  involves  the bulk transfer of large amounts of
             data over a lossy network with potentially  long  delays,
             it  is necessary that the protocol move data efficiently.
             In particular,  unnecessary  retransmission  of  segments
             should be avoided.  If a single segment has been lost but
             succeeding  segments  correctly  received,  the  protocol
             should  not  require  the  retransmission  of  all of the
             segments.

         o   Loading  and  dumping  are  applications  that   do   not
             necessarily  require  sequenced  delivery of segments, as
             long as all segments eventually are  delivered.   So  the
             protocol  need  not  force sequenced delivery.  For these
             types of applications, segments may be delivered  in  the
             order in which they arrive.



                                                                Page 3

^L

     RFC-908                                                 July 1984



         o   However, some  applications  may  need  to  know  that  a
             particular  piece  of  data  has  been  delivered  before
             sending the next.  For example, a debugger will  want  to
             know  that  a  command inserting a breakpoint into a host
             memory  image  has  been  delivered  before   sending   a
             "proceed"  command.   If  those  segments  arrived out of
             sequence, the intended results  would  not  be  achieved.
             The  protocol  should  allow a user to optionally specify
             that a connection  must  deliver  segments  in  sequence-
             number order.

         o   The loading/dumping and debugging applications are  well-
             defined  and lend themselves to easy packetization of the
             transferred data.  They do not require  a  complex  byte-
             stream transfer mechanism.

          In order to combine the requirements for bulk  transfers  of
     data   and  reliable  delivery,  it  is  necessary  to  design  a
     connection-oriented  protocol  using  a  three-way  handshake  to
     synchronize   sequence   numbers.    The  protocol  seems  to  be
     approaching TCP in complexity, so  why  was  TCP  not,  in  fact,
     chosen?   The answer is that TCP has some disadvantages for these
     applications.  In particular:

         o   TCP  is  oriented  toward  a  more  general  environment,
             supporting  the transfer of a stream of bytes between two
             communicating  parties.   TCP  is  best  suited   to   an
             environment where there is no obvious demarcation of data
             in a communications exchange.  Much of the difficulty  in
             developing a TCP implementation stems from the complexity
             of supporting this general byte-stream transfer, and thus
             a  significant  amount  of  complexity  can be avoided by
             using  another   protocol.    This   is   not   just   an
             implementation consideration, but also one of efficiency.

         o   Since TCP does not allow a byte to be acknowledged  until
             all  prior  bytes have been acknowledged, it often forces
             unnecessary retransmission of data.  Therefore,  it  does
             not meet another of the requirements stated above.

         o   TCP  provides  sequenced  delivery   of   data   to   the
             application.   If  the  application does not require such
             sequenced delivery,  a  large  amount  of  resources  are
             wasted in providing it.  For example, buffers may be tied
             up  buffering  data  until  a  segment  with  an  earlier
             sequence  number  arrives.  The protocol should not force
             its segment-sequencing desires on the application.



     Page 4

^L

     RDP Specification                             General Description



          RDP supports a much simpler set of functions than TCP.   The
     flow control, buffering, and connection management schemes of RDP
     are considerably  simpler  and  less  complex.   The  goal  is  a
     protocol  that can be easily and efficiently implemented and that
     will serve a range of applications.

          RDP functions can also be subset to further reduce the  size
     of  a particular implementation.  For example, a target processor
     requiring down-loading from another host might implement  an  RDP
     module  supporting  only  the  passive Open function and a single
     connection.  The module might also choose not to  implement  out-
     of-sequence acknowledgements.



     2.2  Relation to Other Protocols

          RDP is a transport  protocol  that  fits  into  the  layered
     internet protocol environment.  Figure 1 illustrates the place of
     RDP in the protocol hierarchy:


      +------+   +-----+     +-----+      +------+
      |TELNET|   | FTP |     |Debug|  ... |Loader|  Application Layer
      +------+   +-----+     +-----+      +------+
         |          |           |             |
         +-----+----+           +------+------+
               |                       |
            +------+               +-------+
            |  TCP |               |  RDP  |        Transport Layer
            +------+               +-------+
               |                     |
      +--------------------------------+
      | Internet Protocol & ICMP       |            Internetwork Layer
      +--------------------------------+
                             |
                   +-------------------------+
                   | Network Access Protocol |      Network Layer
                   +-------------------------+


                        Relation to Other Protocols
                                 Figure 1







                                                                Page 5

^L

     RFC-908                                                 July 1984



          RDP provides the application layer with a  reliable  message
     transport service.  The interface between users and RDP transfers
     data in units of messages.   When  implemented  in  the  internet
     environment,  RDP is layered on the Internet Protocol (IP), which
     provides an unreliable datagram service to RDP.  Data  is  passed
     across  the  RDP/IP  interface in the form of segments.  RDP uses
     the standard IP interface primitives  to  send  and  receive  RDP
     segments  as  IP  datagrams.  At the internet level, IP exchanges
     datagrams with the network layer.  An internet packet may contain
     an entire datagram or a fragment of a datagram.


                                                        #        %
                                                          ?  *     !
                                                                 @  )
       +------+         +-----+         +----+          $  =   ^   +
       |      |Messages |     |Segments |    | Datagrams   *
       | User |<------->| RDP |<------->| IP |<------->    Internet
       |      |         |     |         |    |          ,            ?
       +------+         +-----+         +----+               !    )
                                                          *   %     $
                                                        @    ^   !

                   Form of Data Exchange Between Layers
                                 Figure 2



          If internetwork services are  not  required,  it  should  be
     possible  to  use  the  RDP without the IP layer.  As long as the
     encapsulating protocol  provides  the  RDP  with  such  necessary
     information  as addressing and protocol demultiplexing, it should
     be possible  to  run  RDP  layered  on  a  variety  of  different
     protocols.
















     Page 6

^L

     RDP Specification                              Protocol Operation



                                 CHAPTER 3


                            Protocol Operation



     3.1  Protocol Service Objectives

          The RDP protocol has the following goals:

         o   RDP will provide  a  full-duplex  communications  channel
             between the two ports of each transport connection.

         o   RDP will attempt to reliably deliver  all  user  messages
             and  will  report  a  failure  to  the  user if it cannot
             deliver a message.  RDP extends the datagram  service  of
             IP to include reliable delivery.

         o   RDP will attempt to detect and discard  all  damaged  and
             duplicate  segments.  It will use a checksum and sequence
             number in each segment header to achieve this goal.

         o   RDP  will  optionally  provide  sequenced   delivery   of
             segments.    Sequenced   delivery  of  segments  must  be
             specified when the connection is established.

         o   RDP will acknowledge segments received out  of  sequence,
             as  they  arrive.   This  will  free  up resources on the
             sending side.



     3.2  RDP Connection Management

          RDP  is  a  connection-oriented  protocol  in   which   each
     connection  acts  as  a full-duplex communication channel between
     two processes.  Segments from a sender are directed to a port  on
     the  destination host.  The two 8-bit source and destination port
     identifiers in the RDP header are used in  conjunction  with  the
     network  source  and  destination  addresses to uniquely identify
     each connection.








                                                                Page 7

^L

     RFC-908                                                 July 1984



     3.2.1  Opening a Connection

          Connections are opened by issuing the  Open  request,  which
     can be either active or passive.  A passive Open request puts RDP
     into the Listen state, during which it passively  listens  for  a
     request to open a connection from a remote site.  The active Open
     request attempts to establish a connection with a specified  port
     at a remote site.

          The active Open request requires that a specific remote port
     and host address be specified with the request.  The passive Open
     may  optionally  specify  a  specific  remote  port  and  network
     address,  or it may specify that an open be accepted from anyone.
     If a specific remote port and host  address  were  specified,  an
     arriving  request  to  open  a  connection must exactly match the
     specified remote port and address.



     3.2.2  Ports

          Valid port numbers range from 1 to 255 (decimal). There  are
     two  types  of  ports:  "well known" ports and "allocable" ports.
     Well-known ports have numbers in the range 1 to 63 (decimal)  and
     allocable ports are given numbers in the range 64 to 255.

          The user, when issuing an active Open request, must  specify
     both  the  remote  host  and  port and may optionally specify the
     local port.  If the local port was not specified, RDP will select
     an  unused port from the range of allocable ports. When issuing a
     passive Open request,  the  user  must  specify  the  local  port
     number.   Generally,  in this case the local port will be a well-
     known port.



     3.2.3  Connection States

          An RDP connection will progress through a series  of  states
     during  its  lifetime.   The states are shown in Figure 3 and are
     individually described below.  In Figure 3, the  boxes  represent
     the  states  of  the  RDP  FSM  and the arcs represent changes in
     state.  Each arc is annotated with the event  causing  the  state
     change and the resulting output.






     Page 8

^L

     RDP Specification                              Protocol Operation



     CLOSED

          The CLOSED state exists when no connection exists and  there
          is no connection record allocated.


     LISTEN

          The LISTEN state is entered after a passive Open request  is
          processed.   A  connection record is allocated and RDP waits
          for an active request  to  establish  a  connection  from  a
          remote site.


     SYN-SENT

          The SYN-SENT state is entered  after  processing  an  active
          Open  request.  A connection record is allocated, an initial
          sequence number is generated, and a SYN segment is  sent  to
          the  remote  site.  RDP then waits in the SYN-SENT state for
          acknowledgement of its Open request.


     SYN-RCVD

          The SYN-RCVD state may be reached  from  either  the  LISTEN
          state  or from the SYN-SENT state.  SYN-RCVD is reached from
          the LISTEN state when a SYN segment requesting a  connection
          is  received  from  a  remote host.  In reply, the local RDP
          generates an initial sequence number for  its  side  of  the
          connection,  and  then  sends  the  sequence  number  and an
          acknowledgement of the SYN segment to the remote  site.   It
          then waits for an acknowledgement.

          The SYN-RCVD state is reached from the SYN-SENT state when a
          SYN  segment  is  received  from  the remote host without an
          accompanying acknowledgement of the SYN segment sent to that
          remote  host  by the local RDP.  This situation is caused by
          simultaneous attempts to open a  connection,  with  the  SYN
          segments  passing  each  other in transit.  The action is to
          repeat the SYN segment with the same  sequence  number,  but
          now  including  an  ACK  of the remote host's SYN segment to
          indicate acceptance of the Open request.







                                                                Page 9

^L

     RFC-908                                                 July 1984






                             +------------+
              Passive Open   |            |<-------------------------+
            +----------------|   CLOSED   |                          |
            |   Request      |            |---------------+          |
            V                +------------+               |          |
     +------------+                                       |          |
     |            |                                       |          |
     |   LISTEN   |                                       |          |
     |            |                                       |          |
     +------------+                                       |          |
            |                                   Active    |          |
            |  rcv SYN                       Open Request |          |
            | -----------                    ------------ |          |
            | snd SYN,ACK                      snd SYN    |          |
            V                   rcv SYN                   V          |
     +------------+          -----------           +------------+    |
     |            |          snd SYN,ACK           |            |    |
     |  SYN-RCVD  |<-------------------------------|  SYN-SENT  |    |
     |            |                                |            |    |
     +------------+                                +------------+    |
            |  rcv ACK                       rcv SYN,ACK  |          |
            | ----------                    ------------- |          |
            |    xxx         +------------+    snd ACK    |          |
            |                |            |               |          |
            +--------------->|    OPEN    |<--------------+          |
                             |            |                          |
                             +------------+                          |
                         rcv RST   |   Close request                 |
                       ----------- |  ---------------                |
                           xxx     |     snd RST                     |
                                   V                                 |
                             +------------+                          |
                             |            |                          |
                             | CLOSE-WAIT |--------------------------+
                             |            |  After a Delay
                             +------------+


                       RDP Connection State Diagram
                                 Figure 3







     Page 10

^L

     RDP Specification                              Protocol Operation



     OPEN

          The OPEN state exists when a connection has been established
          by  the successful exchange of state information between the
          two sides of the connection.  Each side  has  exchanged  and
          received  such  data  as  initial  sequence  number, maximum
          segment size, and maximum number of unacknowledged  segments
          that may be outstanding.  In the Open state data may be sent
          between the two parties of the connection.


     CLOSE-WAIT

          The CLOSE-WAIT state is entered from either a Close  request
          or  from the receipt of an RST segment from the remote site.
          RDP has sent an RST segment and is waiting  a  delay  period
          for activity on the connection to complete.





     3.2.4  Connection Record

          The variables that define the  state  of  a  connection  are
     stored  in  a  connection  record maintained for each connection.
     The following describes some  of  the  variables  that  would  be
     stored in a typical RDP connection record.  It is not intended to
     be  an  implementation  specification  nor  is  it   a   complete
     description.   The  purpose  of naming and describing some of the
     connection record fields is to simplify the  description  of  RDP
     protocol operation, particularly event processing.

          The connection record fields and their descriptions follow:

     STATE

          The current state of the connection.  Legal values are OPEN,
          LISTEN, CLOSED, SYN-SENT, SYN-RCVD,  and CLOSE-WAIT.


     Send Sequence Number Variables:

     SND.NXT

          The sequence number of the next segment that is to be sent.




                                                               Page 11

^L

     RFC-908                                                 July 1984



     SND.UNA

          The sequence number of the oldest unacknowledged segment.

     SND.MAX

          The maximum number of outstanding (unacknowledged)  segments
          that can be sent.  The sender should not send more than this
          number of segments without getting an acknowledgement.

     SND.ISS

          The initial send sequence  number.   This  is  the  sequence
          number that was sent in the SYN segment.

     Receive Sequence Number Variables:

     RCV.CUR

          The sequence number of the last segment  received  correctly
          and in sequence.

     RCV.MAX

          The maximum number of segments that can be buffered for this
          connection.

     RCV.IRS

          The initial receive sequence number.  This is  the  sequence
          number of the SYN segment that established this connection.

     RCVDSEQNO[n]

          The array of sequence numbers of  segments  that  have  been
          received and acknowledged out of sequence.

     Other Variables:

     CLOSEWAIT

          A timer used to time out the CLOSE-WAIT state.

     SBUF.MAX

          The largest possible segment (in octets) that can legally be
          sent.  This variable is specified by the foreign host in the



     Page 12

^L

     RDP Specification                              Protocol Operation



          SYN segment during connection establishment.

     RBUF.MAX

          The  largest  possible  segment  (in  octets)  that  can  be
          received.   This  variable is specified by the user when the
          connection is opened.  The variable is sent to  the  foreign
          host in the SYN segment.

     Variables from Current Segment:

     SEG.SEQ

          The  sequence  number  of  the   segment   currently   being
          processed.

     SEG.ACK

          The acknowledgement sequence number in the segment currently
          being processed.

     SEG.MAX

          The maximum number of outstanding segments the  receiver  is
          willing  to  hold,  as  specified  in  the  SYN segment that
          established the connection.

     SEG.BMAX

          The maximum segment size (in octets) accepted by the foreign
          host  on  a connection, as specified in the SYN segment that
          established the connection.



     3.2.5  Closing a Connection

          The closing of a connection can  be  initiated  by  a  Close
     request  from  the  user  process or by receipt of an RST segment
     from the other end of the connection.  In the case of  the  Close
     request,  RDP  will  send an RST segment to the other side of the
     connection and then enter the CLOSE-WAIT state for  a  period  of
     time.   While  in the CLOSE-WAIT state, RDP will discard segments
     received from the other side of the connection.  When  the  time-
     out  period expires, the connection record is deallocated and the
     connection ceases  to  exist.   This  simple  connection  closing
     facility  requires  that  users  determine that all data has been



                                                               Page 13

^L

     RFC-908                                                 July 1984



     reliably delivered before requesting a close of the connection.



     3.2.6  Detecting an Half-Open Connection

          If one side of a connection crashes, the connection  may  be
     left  with the other side still active.  This situation is termed
     to be an half-open connection.  For many cases,  the  active  RDP
     will  eventually  detect the half-open connection and reset.  Two
     examples of recovery from half-open connections are  provided  in
     sections  5.7  and  5.8.   Recovery  is  usually achieved by user
     activity or by the crashed host's attempts  to  re-establish  the
     connection.

          However, there are cases  where  recovery  is  not  possible
     without action by the RDP itself.  For example, if all connection
     blocks are in use, attempts to re-establish a  broken  connection
     will  be  rejected.   In  this  case, the RDP may attempt to free
     resources by verifying  that connections are fully open. It  does
     this  by  sending  a  NUL  segment to each of the other RDPs.  An
     acknowledgement indicates the connection is still open and valid.

          To minimize network overhead,  verification  of  connections
     should  only  be  done  when  necessary  to  prevent  a  deadlock
     situation.  Only inactive connections  should  be  verified.   An
     inactive  connection  is  defined  to be a connection that has no
     outstanding unacknowledged segments, has no segments in the  user
     input or output queues, and that has not had any traffic for some
     period of time.



     3.3  Data Communication

          Data  flows  through  an  RDP  connection  in  the  form  of
     segments.   Each  user  message  submitted with a Send request is
     packaged for transport as a single RDP segment.  Each RDP segment
     is packaged as an RDP header and one or more octets of data.  RDP
     will not attempt to fragment a large user  message  into  smaller
     segments  and re-assemble the message on the receiving end.  This
     differs from a byte-stream protocol such as  TCP  which  supports
     the  transfer  of  an indeterminate length stream of data between
     ports, buffering data until it is requested by the receiver.






     Page 14

^L

     RDP Specification                              Protocol Operation



          At the RDP level, outgoing segments, as  they  are  created,
     are queued as input to the IP layer.  Each segment is held by the
     sending RDP  until  it  is  acknowledged  by  the  foreign  host.
     Incoming segments are queued as input to the user process through
     the user interface.  Segments are  acknowledged  when  they  have
     been accepted by the receiving RDP.

          The receiving end of each connection specifies  the  maximum
     segment  size  it  will  accept.   Any  attempt  by the sender to
     transmit a larger segment is an error.  If RDP determines that  a
     buffer  submitted  with  a  Send request exceeds the maximum size
     segment permitted on the connection, RDP will return an error  to
     the  user.   In addition, RDP will abort a connection with an RST
     segment if an  incoming  segment  contains  more  data  than  the
     maximum  acceptable  segment  size.   No  attempt will be made to
     recover from or otherwise overcome this error condition.

          If  sequenced  delivery  of  segments  is  necessary  for  a
     connection, the requirement must be stated when the connection is
     established.  Sequenced  delivery  is  specified  when  the  Open
     request is made.  Sequenced delivery of segments will then be the
     mode of delivery for the life of the connection.



     3.4  Reliable Communication

          RDP implements a reliable message service through  a  number
     of  mechanisms.   These include the insertion of sequence numbers
     and checksums into  segments,  the  positive  acknowledgement  of
     segment  receipt,  and  timeout  and  retransmission  of  missing
     segments.



     3.4.1  Segment Sequence Numbers

          Each segment transporting data has a  sequence  number  that
     uniquely  identifies  it  among  all  other  segments in the same
     connection.  The initial  sequence  number  is  chosen  when  the
     connection  is  opened  and is selected by reading a value from a
     monotonically increasing clock.  Each time a  segment  containing
     data   is   transmitted,  the  sequence  number  is  incremented.
     Segments containing no data do not increment the sequence number.
     However, the SYN and NUL segments, which cannot contain data, are
     exceptions.  The  SYN  segment  is  always  sent  with  a  unique
     sequence number, the initial sequence number.  The NUL segment is



                                                               Page 15

^L

     RFC-908                                                 July 1984



     sent with the next valid sequence number.



     3.4.2  Checksums

          Each RDP segment contains a checksum to allow  the  receiver
     to  detect  damaged  segments.   RDP  uses  a non-linear checksum
     algorithm to compute a checksum that is 32-bits wide and operates
     on  data  in  units  of  four octets (32 bits).  The area that is
     covered by the checksum includes both the RDP header and the  RDP
     data area.

          If a segment contains a number of  header  and  data  octets
     that  is  not an integral multiple of 4 octets, the last octet is
     padded on the right with zeros to  form  a  32-bit  quantity  for
     computation  purposes.   The padding zeros are not transmitted as
     part of the segment.  While computing the checksum, the  checksum
     field  itself  is  replaced  with zeros.  The actual algorithm is
     described in Section 4.2.1.



     3.4.3  Positive Acknowledgement of Segments

          RDP assumes it has only an unreliable  datagram  service  to
     deliver  segments.   To  guarantee  delivery  of segments in this
     environment, RDP uses positive acknowledgement and retransmission
     of  segments.   Each  segment containing data and the SYN and NUL
     segments are acknowledged when they are  correctly  received  and
     accepted  by  the  destination host.  Segments containing only an
     acknowledgement  are  not  acknowledged.   Damaged  segments  are
     discarded  and  are not acknowledged.  Segments are retransmitted
     when there is no timely acknowledgement of  the  segment  by  the
     destination host.

          RDP allows  two  types  of  acknowledgement.   A  cumulative
     acknowledgement  is  used  to  acknowledge  all  segments up to a
     specified sequence number.  This type of acknowledgement  can  be
     sent   using   fixed   length   fields  within  the  RDP  header.
     Specifically,  the  ACK  control  flag  is  set  and   the   last
     acknowledged  sequence  number  is  placed in the Acknowledgement
     Number field.

          The extended or non-cumulative  acknowledgement  allows  the
     receiver  to  acknowledge segments out of sequence.  This type of
     acknowledgement is sent using  the  EACK  control  flag  and  the



     Page 16

^L

     RDP Specification                              Protocol Operation



     variable  length  fields in the RDP segment header.  The variable
     length header fields are used to hold the sequence numbers of the
     acknowledged out-of-sequence segments.

          The type of acknowledgement used is simply a function of the
     order  in which segments arrive.  Whenever possible, segments are
     acknowledged using the cumulative acknowledgement segment.   Only
     out-of-sequence  segments  are  acknowledged  using  the extended
     acknowledgement option.

          The user process, when  initiating  the  connection,  cannot
     restrict the type of acknowledgement used on the connection.  The
     receiver   may   choose   not   to   implement    out-of-sequence
     acknowledgements.   On  the  other hand, the sender may choose to
     ignore out-of-sequence acknowledgements.



     3.4.4  Retransmission Timeout

          Segments may be lost in transmission for two  reasons:  they
     may  be  lost  or  damaged  due  to  the  effects  of  the  lossy
     transmission media; or they may be  discarded  by  the  receiving
     RDP.   The  positive acknowledgement policy requires the receiver
     to acknowledge a segment only when the segment has been correctly
     received and accepted.

          To detect missing segments,  the  sending  RDP  must  use  a
     retransmission  timer for each segment transmitted.  The timer is
     set to a value approximating the transmission time of the segment
     in  the  network.   When  an  acknowledgement  is  received for a
     segment, the timer is cancelled for that segment.  If  the  timer
     expires before an acknowledgement is received for a segment, that
     segment is retransmitted and the timer is restarted.



     3.5  Flow Control and Window Management

          RDP employs a simple flow control mechanism that is based on
     the  number  of  unacknowledged  segments  sent  and  the maximum
     allowed number of outstanding  (unacknowledged)  segments.   Each
     RDP  connection  has an associated set of flow control parameters
     that include the maximum number of outstanding segments for  each
     side  of  a  connection.  These parameters are specified when the
     connection is opened with the Open request, with each side of the
     connection   specifying  its  own parameters.  The parameters are



                                                               Page 17

^L

     RFC-908                                                 July 1984



     passed from  one  host  to  another  in  the  initial  connection
     segments.

          The values specified for these parameters should be based on
     the  amount  and  size  of  buffers  that  the  RDP is willing to
     allocate to a connection.  The particular RDP implementation  can
     set  the  parameters to values that are optimal for its buffering
     scheme.  Once these parameters  are  set  they  remain  unchanged
     throughout the life of the connection.

          RDP employs the concept of  a  sequence  number  window  for
     acceptable segment sequence numbers.  The left edge of the window
     is the number  of  the  last  in-sequence  acknowledged  sequence
     number  plus  one.   The right edge of the window is equal to the
     left edge plus twice the allowed maximum  number  of  outstanding
     segments.   The allowed maximum number of outstanding segments is
     the number of segments the transmitting RDP software  is  allowed
     to send without receiving any acknowledgement.

          The flow control and window management parameters  are  used
     as  follows.   The  RDP  module  in  the  transmitting host sends
     segments  until  it  reaches  the  connection's   segment   limit
     specified  by the receiving process.  Once this limit is reached,
     the transmitting RDP module may only send a new segment for  each
     acknowledged segment.

          When a received segment has a  sequence  number  that  falls
     within  the  acceptance  window,  it  is  acknowledged.   If  the
     sequence number is equal to the left-hand edge (i.e., it  is  the
     next  sequence number expected), the segment is acknowledged with
     a cumulative acknowledgement (ACK).   The  acceptance  window  is
     adjusted  by  adding  one  to  the  value  of  the edges.  If the
     sequence number is within the acceptance window  but  is  out  of
     sequence,    it    is    acknowledged   with   a   non-cumulative
     acknowledgement (EACK).  The window  is  not  adjusted,  but  the
     receipt of the out-of-sequence segment is recorded.

          When  segments  are   acknowledged   out   of   order,   the
     transmitting  RDP  module must not transmit beyond the acceptance
     window.  This could occur if one segment is not acknowledged  but
     all  subsequent  segments  are  received  and acknowledged.  This
     condition will fix the left edge of the window  at  the  sequence
     number of the unacknowledged segment.  As additional segments are
     transmitted, the next  segment  to  be  sent  will  approach  and
     eventually  overtake  the  right  window edge.  At this point all
     transmission of new segments will cease until the  unacknowledged
     segment is acknowledged.



     Page 18

^L

     RDP Specification                              Protocol Operation



     3.6  User Interface

          The user interface to RDP is  implementation  dependent  and
     may  use  system  calls,  function calls or some other mechanism.
     The list of requests that follows is not intended  to  suggest  a
     particular implementation.


     OPEN Request

          Opens a connection.   Parameters  include  type  (active  or
          passive),  local  port,  remote  port,  remote host address,
          maximum  segment  size,  maximum  number  of  unacknowledged
          segments,  delivery  mode (sequenced or non-sequenced).  The
          connection id,  including  any  allocated  port  number,  is
          returned to the user.


     SEND Request

          Sends  a  user  message.   Parameters   include   connection
          identifier, buffer address and data count.


     RECEIVE Request

          Receives a  user  message.   Parameters  include  connection
          identifier, buffer address and data count.


     CLOSE Request

          Closes a specified connection.  The single parameter is  the
          connection identifier.


     STATUS Request

          Returns the status of a connection.  The parameters  include
          the  connection  identifier  and  the  address of the status
          buffer.









                                                               Page 19

^L

     RFC-908                                                 July 1984



     3.7  Event Processing

          This section describes one possible sequence for  processing
     events.    It   is   not   intended   to   suggest  a  particular
     implementation, but any actual implementation  should  vary  from
     this   description  only  in  detail  and  not  significantly  in
     substance.  The following are the kinds of events that may occur:

          USER REQUESTS

                Open
                Send
                Receive
                Close
                Status


          ARRIVING SEGMENT

                Segment Arrives


          TIMEOUTS

                Retransmission Timeout
                Close-Wait Timeout

          User request processing always terminates with a  return  to
     the  caller,  with  a possible error indication.  Error responses
     are given as a character string.   A  delayed  response  is  also
     possible  in  some  situations  and  is  returned  to the user by
     whatever event or pseudo interrupt mechanism is  available.   The
     term "signal" is used to refer to delayed responses.

          Processing of arriving segments usually follows this general
     sequence:  the  sequence  number  is checked for validity and, if
     valid, the segment is queued  and  processed  in  sequence-number
     order.   For  all events, unless a state change is specified, RDP
     remains in the same state.











     Page 20

^L

     RDP Specification                              Protocol Operation



     3.7.1  User Request Events

          The following scenarios demonstrate the processing of events
     caused by the issuance of user requests:


     Open Request


       CLOSED STATE

         Create a connection record
         If none available
           Return "Error - insufficient resources"
         Endif

         If passive Open
           If local port not specified
             Return "Error - local port not specified"
           Endif
           Generate SND.ISS
           Set SND.NXT = SND.ISS + 1
               SND.UNA = SND.ISS
           Fill in SND.MAX, RMAX.BUF from Open parameters
           Set State = LISTEN
           Return
         Endif


         If active Open
           If remote port not specified
             Return "Error - remote port not specified"
           Endif
           Generate SND.ISS
           Set SND.NXT = SND.ISS + 1
               SND.UNA = SND.ISS
           Fill in SND.MAX, RMAX.BUF from Open parameters
           If local port not specified
             Allocate a local port
           Endif
           Send <SEQ=SND.ISS><MAX=SND.MAX><MAXBUF=RMAX.BUF><SYN>
           Set State = SYN-SENT
           Return (local port, connection identifier)
         Endif






                                                               Page 21

^L

     RFC-908                                                 July 1984



       LISTEN STATE
       SYN-SENT STATE
       SYN-RCVD STATE
       OPEN STATE
       CLOSE-WAIT STATE

         Return "Error - connection already open"


     Close Request

       OPEN STATE

         Send <SEQ=SND.NXT><RST>
         Set State = CLOSE-WAIT
         Start TIMWAIT Timer
         Return

       LISTEN STATE

         Set State = CLOSED
         Deallocate connection record
         Return

       SYN-RCVD STATE
       SYN-SENT STATE

         Send <SEQ=SND.NXT><RST>
         Set State = CLOSED
         Return


       CLOSE-WAIT STATE

         Return "Error - connection closing"

       CLOSE STATE

         Return "Error - connection not open"











     Page 22

^L

     RDP Specification                              Protocol Operation



     Receive Request

       OPEN STATE

         If Data is pending
           Return with data
          else
           Return with "no data" indication
         Endif

       LISTEN STATE
       SYN-RCVD STATE
       SYN-SENT STATE

         Return with "no data" indication

       CLOSE STATE
       CLOSE-WAIT STATE

         Return "Error - connection not open"


     Send Request

       OPEN STATE

         If SND.NXT < SND.UNA + SND.MAX
           Send <SEQ=SND.NXT><ACK=RCV.CUR><ACK><Data>
           Set SND.NXT = SND.NXT + 1
           Return
          else
           Return "Error - insufficient resources to send data"
         Endif


       LISTEN STATE
       SYN-RCVD STATE
       SYN-SENT STATE
       CLOSE STATE
       CLOSE-WAIT STATE

         Return "Error - connection not open"


     Status Request

       Return with:



                                                               Page 23

^L

     RFC-908                                                 July 1984



         State of connection (OPEN, LISTEN, etc.)
         Number of segments unacknowledged
         Number of segments received not given to user
         Maximum segment size for the send side of the connection
         Maximum segment size for the receive side of the connection



     3.7.2  Segment Arrival Events

          The following scenarios describe the processing of the event
     caused  by  the arrival of a RDP segment from a remote host.  The
     assumption is made that the segment was addressed  to  the  local
     port associated with the connection record.

     If State = CLOSED

       If RST set
         Discard segment
         Return
       Endif

       If ACK or NUL set
          Send <SEQ=SEG.ACK + 1><RST>
          Discard segment
          Return
        else
          Send <SEQ=0><RST><ACK=RCV.CUR><ACK>
          Discard segment
          Return
       Endif

     Endif


     If State = CLOSE-WAIT
       If RST set
          Set State = CLOSED
          Discard segment
          Cancel TIMWAIT timer
          Deallocate connection record
        else
          Discard segment
       Endif
       Return
     Endif




     Page 24

^L

     RDP Specification                              Protocol Operation



     If State = LISTEN

       If RST set
         Discard the segment
         Return
       Endif

       If ACK or NUL set
         Send <SEQ=SEG.ACK + 1><RST>
         Return
       Endif

       If SYN set
         Set RCV.CUR = SEG.SEQ
             RCV.IRS = SEG.SEQ
             SND.MAX = SEG.MAX
             SBUF.MAX = SEG.BMAX
         Send <SEQ=SND.ISS><ACK=RCV.CUR><MAX=RCV.MAX><BUFMAX=RBUF.MAX>
              <ACK><SYN>
         Set State = SYN-RCVD
         Return
       Endif

       If anything else (should never get here)
         Discard segment
         Return
       Endif
     Endif

     If State = SYN-SENT

       If ACK set
         If RST clear and SEG.ACK != SND.ISS
           Send <SEQ=SEG.ACK + 1><RST>
         Endif
         Discard segment; Return
       Endif

       If RST set
         If ACK set
           Signal "Connection Refused"
           Set State =  CLOSED
           Deallocate connection record
         Endif
         Discard segment
         Return
       Endif



                                                               Page 25

^L

     RFC-908                                                 July 1984




       If SYN set
         Set RCV.CUR = SEG.SEQ
             RCV.IRS = SEG.SEQ
             SND.MAX = SEG.MAX
             RBUF.MAX = SEG.BMAX
         If ACK set
           Set SND.UNA = SEG.ACK
           State = OPEN
           Send <SEQ=SND.NXT><ACK=RCV.CUR><ACK>
          else
           Set State = SYN-RCVD
           Send <SEQ=SND.ISS><ACK=RCV.CUR><MAX=RCV.MAX><BUFMAX=RBUF.MAX>
                  <SYN><ACK>
         Endif
         Return
       Endif

       If anything else
         Discard segment
         Return
       Endif
     Endif

     If State = SYN-RCVD

       If RCV.IRS < SEG.SEQ =< RCV.CUR + (RCV.MAX * 2)
         Segment sequence number acceptable
        else
         Send <SEQ=SND.NXT><ACK=RCV.CUR><ACK>
         Discard segment
         Return
       Endif


       If RST set
         If passive Open
            Set State = LISTEN
         else
            Set State = CLOSED
            Signal "Connection Refused"
            Discard segment
            Deallocate connection record
         Endif
         Return
       Endif




     Page 26

^L

     RDP Specification                              Protocol Operation



       If SYN set
         Send <SEQ=SEG.ACK + 1><RST>
         Set State = CLOSED
         Signal "Connection Reset"
         Discard segment
         Deallocate connection record
         Return
       Endif

       If EACK set
          Send <SEQ=SEG.ACK + 1><RST>
          Discard segment
          Return
       Endif

       If ACK set
         If SEG.ACK = SND.ISS
            Set State = OPEN
          else
            Send <SEQ=SEG.ACK + 1><RST>
            Discard segment
            Return
         Endif
        else
         Discard segment
         Return
       Endif

       If Data in segment or NUL set
         If the received segment is in sequence
            Copy the data (if any) to user buffers
            Set RCV.CUR=SEG.SEQ
            Send <SEQ=SND.NXT><ACK=RCV.CUR><ACK>
          else
            If out-of-sequence delivery permitted
               Copy the data (if any) to user buffers
            Endif
            Send <SEQ=SND.NXT><ACK=RCV.CUR><ACK><EACK><RCVDSEQNO1>
                      ...<RCVDSEQNOn>
         Endif
       Endif

     Endif







                                                               Page 27

^L

     RFC-908                                                 July 1984



     If State = OPEN

       If RCV.CUR < SEG.SEQ =< RCV.CUR + (RCV.MAX * 2)
         Segment sequence number acceptable
        else
         Send <SEQ=SND.NXT><ACK=RCV.CUR><ACK>
         Discard segment and return
       Endif

       If RST set
         Set State = CLOSE-WAIT
         Signal "Connection Reset"
         Return
       Endif

       If NUL set
         Set RCV.CUR=SEG.SEQ
         Send <SEQ=SND.NXT><ACK=RCV.CUR><ACK>
         Discard segment
         Return
       Endif

       If SYN set
         Send <SEQ=SEG.ACK + 1><RST>
         Set State = CLOSED
         Signal "Connection Reset"
         Discard segment
         Deallocate connection record
         Return
       Endif

       If ACK set
         If SND.UNA =< SEG.ACK < SND.NXT
           Set SND.UNA = SEG.ACK
           Flush acknowledged segments
         Endif
       Endif

       If EACK set
         Flush acknowledged segments
       Endif









     Page 28

^L

     RDP Specification                              Protocol Operation



       If Data in segment
        If the received segment is in sequence
          Copy the data to user buffers
          Set RCV.CUR=SEG.SEQ
          Send <SEQ=SND.NXT><ACK=RCV.CUR><ACK>
         else
          If out-of-sequence delivery permitted
             Copy the data to user buffers
          Endif
          Send <SEQ=SND.NXT><ACK=RCV.CUR><ACK><EACK><RCVDSEQNO1>
                      ...<RCVDSEQNOn>
        Endif
       Endif
     Endif



     3.7.3  Timeout Events

          Timeout events occur when a timer expires  and  signals  the
     RDP.  Two types of timeout events can occur, as described below:

     RETRANSMISSION TIMEOUTS

       If timeout on segment at head of retransmission queue
          Resend the segment at head of queue
          Restart the retransmission timer for the segment
          Requeue the segment on retransmission queue
          Return
       Endif


     CLOSE-WAIT TIMEOUTS

       Set State = CLOSED
       Deallocate connection record
       Return













                                                               Page 29

^L

     RFC-908                                                 July 1984





















































     Page 30

^L

     RDP Specification                        RDP Segments and Formats



                                 CHAPTER 4


                         RDP Segments and Formats



          The segments sent by the application layer are  encapsulated
     in  headers  by  the  transport,  internet and network layers, as
     follows:


                            +----------------+
                            | Network Access |
                            |     Header     |
                            +----------------+
                            |   IP Header    |
                            +----------------+
                            |   RDP Header   |
                            +----------------+
                            |     D          |
                            |      A         |
                            |       T        |
                            |        A       |
                            +----------------+

                              Segment Format
                                 Figure 4





     4.1  IP Header Format

          When used in the internet environment, RDP segments are sent
     using  the  version 4 IP header as described in RFC791, "Internet
     Protocol."  The RDP protocol number is ??? (decimal).  The  time-
     to-live  field  should  be  set  to  a  reasonable  value for the
     network.

          All other fields should be set as specified in RFC-791.








                                                               Page 31

^L

     RFC-908                                                 July 1984



     4.2  RDP Header Format

          Every RDP segment is  prefaced  with  an  RDP  header.   The
     format  of the header is shown in Figure 5 below.  The RDP header
     is variable in length and its size is indicated by a field  in  a
     fixed location within the header.


                       0             0 0   1         1
                       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
                      +-+-+-+-+-+-+---+---------------+
                      |S|A|E|R|N| |Ver|    Header     |
                    0 |Y|C|A|S|U|0|No.|    Length     |
                      |N|K|K|T|L| |   |               |
                      +-+-+-+-+-+-+---+---------------+
                    1 | Source Port   |   Dest. Port  |
                      +---------------+---------------+
                    2 |          Data  Length         |
                      +---------------+---------------+
                    3 |                               |
                      +---    Sequence Number      ---+
                    4 |                               |
                      +---------------+---------------+
                    5 |                               |
                      +--- Acknowledgement Number  ---+
                    6 |                               |
                      +---------------+---------------+
                    7 |                               |
                      +---        Checksum         ---+
                    8 |                               |
                      +---------------+---------------+
                    9 |     Variable Header Area      |
                      .                               .
                      .                               .
                      |                               |
                      +---------------+---------------+

                             RDP Header Format
                                 Figure 5











     Page 32

^L

     RDP Specification                        RDP Segments and Formats



     4.2.1  RDP Header Fields

     Control Flags

          This 8-bit field occupies the first octet of word one in the
          header.  It is bit encoded with the following bits currently
          defined:

          Bit #  Bit Name   Description

          0      SYN        Establish connection and
                              synchronize sequence numbers.
          1      ACK        Acknowledge field significant.
          2      EACK       Non-cumulative (Extended) acknowledgement.
          3      RST        Reset the connection.
          4      NUL        This is a null (zero data length) segment.
          5                 Unused.



          Note that the SYN and RST are sent as separate segments  and
          may  not  contain  any  data.   The  ACK  may  accompany any
          message.  The NUL segment must have a zero data length,  but
          may  be  accompanied by ACK and EACK information.  The other
          control bit is currently unused and is defined to be zero.

     Version Number

          This field  occupies  bits  6-7  of  the  first  octet.   It
          contains  the  version  number  of the protocol described by
          this document.  Current value is one (1).

     Header Length

          The length of the RDP header in units  of  two  (2)  octets,
          including  this  field.   This  field allows RDP to find the
          start of the Data field, given a pointer to the head of  the
          segment.   This  field  is  8 bits in length.  For a segment
          with no variable header section,  the  header  length  field
          will have the value 9.

     Source and Destination Ports

          The Source and Destination Ports are used  to  identify  the
          processes  in the two hosts that are communicating with each
          other.  The combination of the  port  identifiers  with  the
          source  and  destination  addresses  in  the  network access



                                                               Page 33

^L

     RFC-908                                                 July 1984



          protocol header serves to fully qualify the  connection  and
          constitutes  the connection identifier.  This permits RDP to
          distinguish multiple connections between  two  hosts.   Each
          field  is  8 bits in length, allowing port numbers from 0 to
          255 (decimal).

     Data Length

          The length in octets of the data in this segment.  The  data
          length  does  not  include the RDP header.  This field is 16
          bits in length.

     Sequence Number

          The sequence number of this segment.  This field is 32  bits
          in length.

     Acknowledgement Number

          If the ACK bit is set in the header, this  is  the  sequence
          number  of  the segment that the sender of this segment last
          received correctly and in sequence.  Once  a  connection  is
          established  this  should  always be sent.  This field is 32
          bits in length.

     Checksum

          This field is a 32-bit checksum of the  segment  header  and
          data.    The   algorithm   description  below  includes  two
          variables,  the  checksum  accumulator  and   the   checksum
          pointer.   The  checksum  accumulator  is  an  actual 32-bit
          register in which the  checksum  is  formed.   The  checksum
          pointer   is   included  for  purposes  of  description,  to
          represent the operation of advancing through the  data  four
          octets  (32-bits) at a time.  It need not be maintained in a
          register by an implementation.

          1) The checksum pointer is set to zero, to correspond to the
          beginning  of  the  area  to  be  checksummed.  The checksum
          accumulator is also initialized to zero before beginning the
          computation of the checksum.

          2) The 32-bit memory word located at the address  referenced
          by  the  checksum  pointer  is  added  arithmetically to the
          checksum accumulator.   Any  carry  propagated  out  of  the
          checksum  accumulator is ignored.  The checksum field itself
          is replaced with zeros when  being  added  to  the  checksum



     Page 34

^L

     RDP Specification                        RDP Segments and Formats



          accumulator.

          3)  The  checksum  accumulator  is  rotated  left  one   bit
          position.  The checksum pointer is advanced to correspond to
          the address of the next 32-bit word in the segment.

          4) Steps 2 and 3 are repeated until the entire  segment  has
          been  summed.   If a segment contains a number of header and
          data octets that is not an integral multiple  of  4  octets,
          the  last  octet is padded on the right with zeros to form a
          32-bit quantity for computation purposes.

     Variable Header Area

          This area is used to transmit parameters  for  the  SYN  and
          EACK segments.


































                                                               Page 35

^L

     RFC-908                                                 July 1984



     4.3  SYN Segment

          The SYN is used to establish a  connection  and  synchronize
     sequence  numbers  between  two  hosts.   The  SYN  segment  also
     contains information to inform the remote  host  of  the  maximum
     number  of  segments  the local RDP  is willing to accept and the
     maximum segment size it can accept.  The SYN may be combined with
     an ACK in a segment but is never combined with user data.



     4.3.1  SYN Segment Format



                        0             0 0   1         1
                        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
                       +-+-+-+-+-+-+---+---------------+
                     0 |1|0|0|0|0|0|0 1| Header Length |
                       +-+-+-+-+-+-+---+---------------+
                     1 | Source Port   |   Dest. Port  |
                       +---------------+---------------+
                     2 |       Data  Length = 0        |
                       +---------------+---------------+
                     3 |                               |
                       +---    Sequence Number      ---+
                     4 |                               |
                       +---------------+---------------+
                     5 |                               |
                       +--- Acknowledgement Number  ---+
                     6 |                               |
                       +---------------+---------------+
                     7 |                               |
                       +---        Checksum         ---+
                     8 |                               |
                       +---------------+---------------+
                     9 | Max. # of Outstanding Segments|
                       +---------------+---------------+
                    10 |       Max. Segment Size       |
                       +-------------------------------+
                    11 |      Options Flag Field       |
                       +---------------+---------------+

                            SYN Segment Format
                                 Figure 6





     Page 36

^L

     RDP Specification                        RDP Segments and Formats



     4.3.2  SYN Segment Fields

     Sequence Number

          Contains the  initial  sequence  number  selected  for  this
          connection.

     Acknowledgement Number

          This field is valid only if the ACK flag is  set.   In  that
          case, this field will contain the sequence number of the SYN
          segment received from the other RDP.

     Maximum Number of Outstanding Segments

          The maximum number of segments that should be  sent  without
          getting an acknowledgement.  This is used by the receiver as
          a means of flow control.   The  number  is  selected  during
          connection  initiation  and  may not be changed later in the
          life of the connection.

     Maximum Segment Size

          The maximum size segment in octets that  the  sender  should
          send.   It informs the sender how big the receiver's buffers
          are.  The specified size  includes  the  length  of  the  IP
          header,  RDP  header,  and  data.   It  does not include the
          network access layer's header length.

     Options Flag Field

          This field of two octets contains a  set  of  options  flags
          that  specify the set of optional functions that are desired
          for this connection.  The flags are defined as follows:

          Bit #   Bit Name    Description

          0       SDM         Sequenced delivery mode.



          The sequenced delivery mode flag specifies whether  delivery
          of   segments   to  the  user  is  sequenced  (delivered  in
          sequence-number  order)  or  non-sequenced   (delivered   in
          arrival order, regardless of sequence number).  A value of 0
          specifies non-sequenced delivery of segments, and a value of
          1 specifies sequenced delivery.



                                                               Page 37

^L

     RFC-908                                                 July 1984



     4.4  ACK Segment

          The ACK segment is used to acknowledge in-sequence segments.
     It   contains   both  the  next  send  sequence  number  and  the
     acknowledgement sequence number  in  the  RDP  header.   The  ACK
     segment  may  be  sent  as  a  separate segment, but it should be
     combined with data whenever possible.  Data segments must  always
     include the ACK bit and Acknowledgement Number field.



     4.4.1  ACK Segment Format



                        0             0 0   1         1
                        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
                       +-+-+-+-+-+-+---+---------------+
                     0 |0|1|0|0|0|0|0 1| Header Length |
                       +-+-+-+-+-+-+---+---------------+
                     1 | Source Port   |   Dest. Port  |
                       +---------------+---------------+
                     2 |          Data  Length         |
                       +---------------+---------------+
                     3 |                               |
                       +---    Sequence Number      ---+
                     4 |                               |
                       +---------------+---------------+
                     5 |                               |
                       +--- Acknowledgement Number  ---+
                     6 |                               |
                       +---------------+---------------+
                     7 |                               |
                       +---        Checksum         ---+
                     8 |                               |
                       +---------------+---------------+
                       |                               |
                       |             Data              |
                       .                               .
                       .                               .
                       +---------------+---------------+

                            ACK Segment Format
                                 Figure 7






     Page 38

^L

     RDP Specification                        RDP Segments and Formats



     4.4.2  ACK Segment Fields

     Data Length

          A non-zero Data Length field indicates that  there  is  data
          present in the segment.

     Sequence Number

          The value of the Sequence Number field is  advanced  to  the
          next  sequence  number  only if there is data present in the
          segment.  An ACK segment without data does not use  sequence
          number space.

     Acknowledgement Number

          The  Acknowledgement  Number  field  contains  the  sequence
          number of the last segment received in sequential order.
































                                                               Page 39

^L

     RFC-908                                                 July 1984



     4.5  Extended ACK Segment

          The EACK segment is used to  acknowledge  segments  received
     out of sequence.  It contains the sequence numbers of one or more
     segments received with a correct checksum, but out  of  sequence.
     The  EACK  is  always combined with an ACK in the segment, giving
     the sequence number of the last  segment  received  in  sequence.
     The EACK segment may also include user data.



     4.5.1  EACK Segment Format

          The EACK segment has the format shown in Figure 8.



     4.5.2  EACK Segment Fields

     Data Length

          A non-zero Data Length field indicates that  there  is  data
          present in the segment.

     Sequence Number

          The value of the Sequence Number field is  advanced  to  the
          next  sequence  number  only if there is data present in the
          segment.  An EACK segment without data does not use sequence
          number space.

     Acknowledgement Number

          The  Acknowledgement  Number  field  contains  the  sequence
          number of the last segment received in sequential order.


     Sequence # Received OK

          Each entry is the sequence number  of  a  segment  that  was
          received with a correct checksum, but out of sequence.









     Page 40

^L

     RDP Specification                        RDP Segments and Formats




                        0             0 0   1         1
                        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
                       +-+-+-+-+-+-+---+---------------+
                     0 |0|1|1|0|0|0|0 1| Header Length |
                       +-+-+-+-+-+-+---+---------------+
                     1 | Source Port   |   Dest. Port  |
                       +---------------+---------------+
                     2 |          Data  Length         |
                       +---------------+---------------+
                     3 |                               |
                       +---    Sequence Number      ---|
                     4 |                               |
                       +---------------+---------------+
                     5 |                               |
                       +--- Acknowledgement Number  ---+
                     6 |                               |
                       +---------------+---------------+
                     7 |                               |
                       +---        Checksum         ---+
                     8 |                               |
                       +---------------+---------------+
                     9 |                               |
                       +--- Sequence # Received OK  ---+
                    10 |                               |
                       +---------------+---------------+
                    11 |                               |
                       +--- Sequence # Received OK  ---+
                    12 |                               |
                       +---------------+---------------+
                       :               .               :
                       :               .               :
                       :               .               :
                       +---------------+---------------+
                       |                               |
                       |             Data              |
                       |                               |
                       +---------------+---------------+

                            EACK Segment Format
                                 Figure 8









                                                               Page 41

^L

     RFC-908                                                 July 1984



     4.6  RST Segment

          The RST segment is used to  close  or  reset  a  connection.
     Upon  receipt of an RST segment, the sender must stop sending and
     must abort any  unserviced  requests.   The  RST  is  sent  as  a
     separate segment and does not include any data.



     4.6.1  RST Segment Format



                        0             0 0   1         1
                        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
                       +-+-+-+-+-+-+---+---------------+
                     0 |0|0|0|1|0|0|0 1| Header Length |
                       +-+-+-+-+-+-+---+---------------+
                     1 | Source Port   |   Dest. Port  |
                       +---------------+---------------+
                     2 |       Data  Length = 0        |
                       +---------------+---------------+
                     3 |                               |
                       +---    Sequence Number      ---+
                     4 |                               |
                       +---------------+---------------+
                     5 |                               |
                       +--- Acknowledgement Number  ---+
                     6 |                               |
                       +---------------+---------------+
                     7 |                               |
                       +---        Checksum         ---+
                     8 |                               |
                       +-------------------------------+

                            RST Segment Format
                                 Figure 9













     Page 42

^L

     RDP Specification                        RDP Segments and Formats



     4.7  NUL Segment

          The NUL segment is used to determine if the other side of  a
     connection  is  still active.  When a NUL segment is received, an
     RDP implementation  must  acknowledge  the  segment  if  a  valid
     connection  exists  and  the segment sequence number falls within
     the acceptance window.  The segment is then discarded.   The  NUL
     may  be  combined  with an ACK in a segment but is never combined
     with user data.



     4.7.1  NUL segment format



                        0             0 0   1         1
                        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
                       +-+-+-+-+-+-+---+---------------+
                     0 |0|0|0|0|1|0|0 1| Header Length |
                       +-+-+-+-+-+-+---+---------------+
                     1 | Source Port   |   Dest. Port  |
                       +---------------+---------------+
                     2 |       Data  Length = 0        |
                       +---------------+---------------+
                     3 |                               |
                       +---    Sequence Number      ---+
                     4 |                               |
                       +---------------+---------------+
                     5 |                               |
                       +--- Acknowledgement Number  ---+
                     6 |                               |
                       +---------------+---------------+
                     7 |                               |
                       +---        Checksum         ---+
                     8 |                               |
                       +-------------------------------+

                            NUL Segment Format
                                 Figure 10










                                                               Page 43

^L

     RFC-908                                                 July 1984





















































     Page 44

^L

     RDP Specification                           Examples of Operation



                                 CHAPTER 5


                           Examples of Operation



     5.1  Connection Establishment

          This is an example of a connection being established between
     Host  A  and  Host  B.   Host B has done a passive Open and is in
     LISTEN state.  Host A  does  an  active  Open  to  establish  the
     connection.


                  Host A                         Host B

     Time State                                              State

     1.    CLOSED                                             LISTEN

     2.    SYN-SENT    <SEQ=100><SYN> --->

     3.                               <--- <SEQ=200><ACK=100><SYN,ACK>
                                                             SYN-RCVD

     4.    OPEN    <SEQ=101><ACK=200> --->                    OPEN

     5.      <SEQ=101><ACK=200><Data> --->

     6.                               <--- <SEQ=201><ACK=101>



















                                                               Page 45

^L

     RFC-908                                                 July 1984



     5.2  Simultaneous Connection Establishment

          This is an example  of  two  hosts  trying  to  establishing
     connections  to  each other at the same time.  Host A sends a SYN
     request to Host B at the same time Host B sends a SYN request  to
     Host A.

          Host A                         Host B

     Time State                                            State

     1.   CLOSED                                           CLOSED

     2.   SYN-SENT <SEQ=100><SYN>  --->
                                   <--- <SEQ=200><SYN>     SYN-SENT

     3.   SYN-RCVD                                         SYN-RCVD
        <SEQ=100><ACK=200><SYN,ACK> --->
                                   <--- <SEQ=200><ACK=100><SYN,ACK>

     4.   OPEN                                             OPEN





























     Page 46

^L

     RDP Specification                           Examples of Operation



     5.3  Lost Segments

          This is an example of what happens when a segment  is  lost.
     It  shows  how  segments  can be acknowledged out of sequence and
     that only the missing segment need be retransmitted.   Note  that
     in  this  and  the  following  examples  "EA"  stands for "Out of
     Sequence Acknowledgement."


     Time   Host A                           Host B

     1.     <SEQ=100><ACK=200><Data>  --->

     2.                               <--- <SEQ=201><ACK=100>

     3.     <SEQ=101><ACK=200><Data> (segment lost)

     4.

     5.     <SEQ=102><ACK=200><Data>  --->

     6.                               <--  <SEQ=201><ACK=100><EA=102>

     7.     <SEQ=103><ACK=200><Data>  --->

     8.                               <--- <SEQ=201><ACK=100>
                                             <EA=102,103>

     9.     <SEQ=101><ACK=200><Data>  --->

     10.                              <--- <SEQ=201><ACK=103>

     11.    <SEQ=104><ACK=200><Data>  --->

     12.                              <--- <SEQ=201><ACK=104>















                                                               Page 47

^L

     RFC-908                                                 July 1984



     5.4  Segments Received Out of Order

          This an example of  segments  received  out  of  order.   It
     further  illustrates  the  use  of  acknowledging segments out of
     order to prevent needless retransmissions.


     Time     Host A                           Host B

     1.   <SEQ=100><ACK=200><Data>  --->

     2.                             <--- <SEQ=201><ACK=100>

     3.   <SEQ=101><ACK=200><Data> (delayed)

     4.

     5.   <SEQ=102><ACK=200><Data>  --->

     6.                             <--- <SEQ=201><ACK=100><EA=102>

     7.   <SEQ=103><ACK=200><Data>  --->
                                   ---> (delayed segment 101 arrives)

     8.                             <--- <SEQ=201><ACK=103>

     9.   <SEQ=104><ACK=200><Data>  --->

     10.                            <--- <SEQ=201><ACK=104>





















     Page 48

^L

     RDP Specification                           Examples of Operation



     5.5  Communication Over Long Delay Path

          This is an example of a data  transfer  over  a  long  delay
     path.   In  this  example, Host A is permitted to have as many as
     five unacknowledged segments.  The example shows that it  is  not
     necessary  to  wait  for  an  acknowledgement  in  order  to send
     additional data.


     Time        Host A                     Host B

     1.   <SEQ=100><ACK=200><Data> -1->
     2.   <SEQ=101><ACK=200><Data> -2->
     3.   <SEQ=102><ACK=200><Data> -3->
                                   -1-> (received)
     4.                           <-4-  <SEQ=201><ACK=100>
     5.   <SEQ=103><ACK=200><Data> -5->
                                   -2-> (received)
     6.                           <-6-  <SEQ=201><ACK=101>
     7.   <SEQ=104><ACK=200><Data> -7->
                                   -3-> (received)
     8.                           <-8-  <SEQ=201><ACK=102>
                       (received) <-4-
     9.   <SEQ=105><ACK=200><Data> -9->
                                   -5-> (received)
     10.                          <-10- <SEQ=201><ACK=103>
                       (received) <-6-
     11.  <SEQ=106><ACK=200><Data> -11->
                                   -7-> (received)
     12.                          <-12- <SEQ=201><ACK=104>
                       (received) <-8-
     13.                           -9-> (received)
     14.                          <-13- <SEQ=201><ACK=105>
                       (received) <-10-
     15.                           -11-> (received)
     16.                          <-14- <SEQ=201><ACK=106>
                       (received) <-12-
     17.               (received) <-13-
     18.               (received) <-14-











                                                               Page 49

^L

     RFC-908                                                 July 1984



     5.6  Communication Over Long Delay Path With Lost Segments

          This is an example of communication over a long  delay  path
     with a lost segment.  It shows that by acknowledging segments out
     of sequence, only the lost segment need be retransmitted.


     Time       Host A                     Host B

     1. <SEQ=100><ACK=200><Data>  -1->
     2. <SEQ=101><ACK=200><Data>  -2->
     3. <SEQ=102><ACK=200><Data>  -3->
                                  -1-> (received)
     4.                          <-4-  <SEQ=201><ACK=100>
     5. <SEQ=103><ACK=200><Data> (segment lost)
                                  -2-> (received)
     6.                          <-5-  <SEQ=201><ACK=101>
     7. <SEQ=104><ACK=200><Data>  -6->
                                  -3-> (received)
     8.                          <-7-  <SEQ=201><ACK=102>
                      (received) <-4-
     9. <SEQ=105><ACK=200><Data>  -8->
     10.
                      (received) <-5-
     11. <SEQ=106><ACK=200><Data> -10->
                                  -6-> (received)
     12.                         <-11- <SEQ=201><ACK=102><EA=104>
                      (received) <-7-
                                  -8-> (received)
     13.                         <-12- <SEQ=201><ACK=102><EA=104,105>
                                  -10-> (received)
     14.                         <-13- <SEQ=201><ACK=102><EA=104-106>
                      (received) <-11-
     15. <SEQ=103><ACK=200><Data> -14->
                      (received) <-12-
     16.              (received) <-13-
                                  -14-> (received)
     17.                         <-15- <SEQ=201><ACK=106>
     18.
     19.              (received) <-15-










     Page 50

^L

     RDP Specification                           Examples of Operation



     5.7  Detecting a Half-Open Connection on Crash Recovery

          This  is  an  example  of  a  host  detecting  a   half-open
     connection  due  to the crash and subsequent restart of the host.
     In this example, Host A crashes during a  communication  session,
     then  recovers  and  tries  to reopen the connection.  During the
     reopen attempt, it discovers that a  half-open  connection  still
     exists and it then resets the other side.  Both sides were in the
     OPEN state prior to the crash.

        Host A                                  Host B

     Time

     1.  OPEN                                     OPEN
        (crash!)               <--- <SEQ=200><ACK=100><ACK>

     2.  CLOSED                                   OPEN
        (recover)

     3.  SYN-SENT                                 OPEN
                 <SEQ=400><SYN> --->             (?)

     4.  SYN-SENT                                 OPEN
          (!)                  <--- <SEQ=200><ACK=100><ACK>

     5.  SYN-SENT                                 OPEN
                 <SEQ=101><RST> --->             (abort)

     6.  SYN-SENT                                 CLOSED

     7.  SYN-SENT <SEQ=400><SYN> --->


















                                                               Page 51

^L

     RFC-908                                                 July 1984



     5.8  Detecting a Half-Open Connection from the Active Side

          This is another example of detecting a half-open  connection
     due  to the crash and restart of a host involved in a connection.
     In this example, host A again crashes and restarts.   Host  B  is
     still  active and tries to send data to host A.  Since host A has
     no knowledge of the connection, it rejects the data with  an  RST
     segment, causing host B to reset the connection.

              Host A                         Host B

     Time

     1.  (crash!)                                            OPEN

     2.  CLOSED                <--- <SEQ=200><ACK=100><Data> OPEN

     3.  CLOSED  <SEQ=101><RST> --->                         (abort)

     4.  CLOSED                                              CLOSED






























     Page 52

^L

     RDP Specification                           Examples of Operation



                                APPENDIX A


                        Implementing a Minimal RDP



          It  is  not  necessary   to   implement   the   entire   RDP
     specification  to  be  able  to use RDP.  For simple applications
     such as a loader, where  size  of  the  protocol  module  may  be
     important,  a  subset  of  RDP  may  be  used.   For  example, an
     implementation of  RDP  for  loading  may  employ  the  following
     restrictions:

     o    Only one connection  and  connection  record  is  supported.
          This is the connection used to load the device.

     o    A single, well-known  port  is  used  as  the  loader  port.
          Allocable ports are not implemented.

     o    Only the passive Open request is implemented.  Active  Opens
          are not supported.

     o    The sequenced delivery option is  not  supported.   Messages
          arriving  out  of  order  are  delivered  in  the order they
          arrive.

     o    If efficiency is less  important  than  protocol  size,  the
          extended acknowledgement feature need not be supported.





















                                                               Page 53

^L

     RFC-908                                                 July 1984



                                   INDEX





     ACK.......................................... 16, 33, 34, 38
     ACK segment format....................................... 38
     acknowledgement number field......... 16, 34, 37, 38, 39, 40
     byte-stream protocols................................. 4, 14
     checksum................................................. 16
     checksum field........................................... 34
     Close request............................................ 13
     Closed state.......................................... 9, 10
     CLOSEWAIT................................................ 12
     Close-Wait state................................. 10, 11, 13
     CLOSE-WAIT timeouts...................................... 29
     connection, closing of............................... 13, 42
     connection, establishment of...................... 8, 11, 45
     connection identifier................................. 7, 33
     connection management..................................... 7
     connection record..................................... 9, 11
     connection state diagram................................. 10
     connection states......................................... 8
     control flags field...................................... 33
     cumulative acknowledgement............................... 16
     data communication....................................... 14
     data length field................................ 34, 39, 40
     datagrams................................................. 6
     debugging.............................................. 1, 3
     dumping................................................... 3
     EACK......................................... 16, 33, 35, 40
     EACK segment format...................................... 40
     event processing......................................... 20
     extended acknowledgement................................. 16
     flow control............................................. 17
     half-open connection, detection of............... 14, 51, 52
     initial sequence number....................... 9, 11, 12, 15
     internet protocols........................................ 5
     IP................................................ 6, 15, 31
     IP header............................................ 31, 37
     Listen state................................... 8, 9, 10, 45
     loading................................................ 1, 3
     maximum segment size..................... 11, 12, 13, 15, 37
     maximum unacknowledged segments.............. 11, 12, 17, 37
     message fragmentation.................................... 14
     non-cumulative acknowledgement........................... 16



     Page 54

^L

     RDP Specification                           Examples of Operation



     NUL.................................................. 33, 43
     NUL segment format....................................... 43
     Open request.......................................... 8, 17
     Open request, active................................... 8, 9
     Open request, passive.................................. 8, 9
     Open state....................................... 10, 11, 45
     options flag field....................................... 37
     out-of-sequence acknowledgement.................. 12, 16, 18
     ports................................................. 7, 33
     ports, well-known......................................... 8
     positive acknowledgement............................. 15, 16
     RBUF.MAX................................................. 13
     RCV.CUR.................................................. 12
     RCVDSEQNO................................................ 12
     RCV.IRS.................................................. 12
     RCV.MAX.................................................. 12
     RDP connection........................................... 14
     RDP header................................... 14, 16, 32, 37
     RDP header length........................................ 33
     RDP segment format....................................... 31
     reliable communication................................... 15
     retransmission of segments....................... 15, 16, 17
     retransmission timeout............................... 17, 29
     RST.................................................. 33, 42
     RST segment.......................................... 13, 52
     RST segment format....................................... 42
     SBUF.MAX................................................. 12
     SDM...................................................... 37
     SEG.ACK.................................................. 13
     SEG.BMAX................................................. 13
     SEG.MAX.................................................. 13
     segment arrival events............................... 20, 24
     segments................................................. 14
     SEG.SEQ.................................................. 13
     Send request......................................... 14, 15
     sequence number...................................... 12, 15
     sequence number acceptance window........................ 18
     sequence number field........................ 34, 37, 39, 40
     sequenced delivery................................. 3, 4, 37
     sequential acknowledgement................................ 4
     SND.ISS.................................................. 12
     SND.MAX.................................................. 12
     SND.NXT.................................................. 11
     SND.UNA.................................................. 12
     STATE.................................................... 11
     SYN.................................. 12, 13, 15, 33, 35, 36
     SYN segment........................................... 9, 36



                                                               Page 55

^L

     RFC-908                                                 July 1984



     Syn-Rcvd state........................................ 9, 10
     Syn-Sent state........................................ 9, 10
     TCP................................................... 4, 14
     three-way handshake....................................... 4
     user request events.................................. 20, 21
     version number field..................................... 33












































     Page 56

^L

     RDP Specification                           Examples of Operation





















































                                                               Page 57