1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
|
Network Working Group ISO
Request for Comments: 926 December 1984
Protocol for Providing the Connectionless-Mode Network Services
(Informally - ISO IP)
ISO DIS 8473
Status of this Memo:
This document is distributed as an RFC for information only. It does
not specify a standard for the ARPA-Internet. Distribution of this
memo is unlimited.
Note:
This document has been prepared by retyping the text of ISO DIS 8473 of
May 1984, which is currently undergoing voting within ISO as a Draft
International Standard (DIS). Although this RFC has been reviewed
after typing, and is believed to be substantially correct, it is
possible that typographic errors not present in the ISO document have
been overlooked.
Alex McKenzie
BBN
^L
RFC 926 December 1984
^L
RFC 926 December 1984
TABLE OF CONTENTS
1 SCOPE AND FIELD OF APPLICATION........................ 2
2 REFERENCES............................................ 3
3 DEFINITIONS........................................... 4
3.1 Reference Model Definitions......................... 4
3.2 Service Conventions Definitions..................... 4
3.3 Network Layer Architecture Definitions.............. 4
3.4 Network Layer Addressing Definitions................ 5
3.5 Additional Definitions.............................. 5
4 SYMBOLS AND ABBREVIATIONS............................. 7
4.1 Data Units.......................................... 7
4.2 Protocol Data Units................................. 7
4.3 Protocol Data Unit Fields........................... 7
4.4 Parameters.......................................... 8
4.5 Miscellaneous....................................... 8
5 OVERVIEW OF THE PROTOCOL.............................. 9
5.1 Internal Organization of the Network Layer.......... 9
5.2 Subsets of the Protocol............................. 9
5.3 Addressing......................................... 10
5.4 Service Provided by the Network Layer.............. 10
5.5 Service Assumed from the Subnetwork Service
Provider.............................................. 11
5.5.1 Subnetwork Addresses............................. 12
5.5.2 Subnetwork Quality of Service.................... 12
5.5.3 Subnetwork User Data............................. 13
5.5.4 Subnetwork Dependent Convergence Functions....... 13
5.6 Service Assumed from Local Evironment.............. 14
6 PROTOCOL FUNCTIONS................................... 16
6.1 PDU Composition Function........................... 16
6.2 PDU Decomposition Function......................... 17
6.3 Header Format Analysis Function.................... 17
6.4 PDU Lifetime Control Function...................... 18
6.5 Route PDU Function................................. 18
6.6 Forward PDU Function............................... 19
6.7 Segmentation Function.............................. 19
6.8 Reassembly Function................................ 20
6.9 Discard PDU Function............................... 21
ISO DIS 8473 (May 1984) [Page i]
^L
RFC 926 December 1984
6.10 Error Reporting Function.......................... 22
6.10.1 Overview........................................ 22
6.10.2 Requirements.................................... 23
6.10.3 Processing of Error Reports..................... 24
6.11 PDU Header Error Detection........................ 25
6.12 Padding Function.................................. 26
6.13 Security.......................................... 26
6.14 Source Routing Function........................... 27
6.15 Record Route Function............................. 28
6.16 Quality of Service Maintenance Function........... 29
6.17 Classification of Functions....................... 29
7 STRUCTURE AND ENCODING OF PDUS....................... 32
7.1 Structure.......................................... 32
7.2 Fixed Part......................................... 34
7.2.1 General.......................................... 34
7.2.2 Network Layer Protocol Identifier................ 34
7.2.3 Length Indicator................................. 35
7.2.4 Version/Protocol Identifier Extension............ 35
7.2.5 PDU Lifetime..................................... 35
7.2.6 Flags............................................ 36
7.2.6.1 Segmentation Permitted and More Segments Flags. 36
7.2.6.2 Error Report Flag.............................. 37
7.2.7 Type Code........................................ 37
7.2.8 PDU Segment Length............................... 37
7.2.9 PDUChecksum...................................... 38
7.3 Address Part....................................... 38
7.3.1 General.......................................... 38
7.3.1.1 Destination and Source Address Information... 39
7.4 Segmentation Part.................................. 40
7.4.1 Data Unit Identifier............................. 41
7.4.2 Segment Offset................................... 41
7.4.3 PDU Total Length................................. 41
7.5 Options Part....................................... 41
7.5.1 General.......................................... 41
7.5.2 Padding.......................................... 43
7.5.3 Security......................................... 43
7.5.4 Source Routing................................... 44
7.5.5 Recording of Route............................... 45
7.5.6 Quality of Service Maintenance................... 46
7.6 Priority........................................... 47
ISO DIS 8473 (May 1984) [Page ii]
^L
RFC 926 December 1984
7.7 Data Part.......................................... 47
7.8 Data (DT) PDU...................................... 49
7.8.1 Structure........................................ 49
7.8.1.1 Fixed Part..................................... 50
7.8.1.2 Addresses...................................... 50
7.8.1.3 Segmentation................................... 50
7.8.1.4 Options........................................ 50
7.8.1.5 Data........................................... 50
7.9 Inactive Network Layer Protocol.................... 51
7.9.1 Network Layer Protocol Id........................ 51
7.9.2 Data Field....................................... 51
7.10 Error Report PDU (ER)............................. 52
7.10.1 Structure....................................... 52
7.10.1.1 Fixed Part.................................... 53
7.10.1.2 Addresses..................................... 53
7.10.1.3 Segmentation.................................. 53
7.10.1.4 Options....................................... 54
7.10.1.5 Reason for Discard............................ 54
7.10.1.6 Error Report Data Field....................... 55
8 FORMAL DESCRIPTION................................... 56
8.1 Values of the State Variable....................... 57
8.2 Atomic Events...................................... 57
8.2.1 N.UNITDATA_request and N.UNITDATA_indication..... 57
8.2.2 SN.UNITDATA_request and SN.UNITDATA_indication... 58
8.2.3 TIMER Atomic Events.............................. 59
8.3 Operation of the Finite State Automation........... 59
8.3.1 Type and Constant Definitions.................... 61
8.3.2 Interface Definitions............................ 65
8.3.3 Formal Machine Definition........................ 67
9 CONFORMANCE.......................................... 84
9.1 Provision of Functions for Conformance............. 84
ISO DIS 8473 (May 1984) [Page iii]
^L
RFC 926 December 1984
ISO DIS 8473 (May 1984) [Page iv]
^L
RFC 926 December 1984
INTRODUCTION
This Protocol is one of a set of International Standards produced to
facilitate the interconnection of open systems. The set of standards
covers the services and protocols required to achieve such
interconnection.
This Protocol Standard is positioned with respect to other related
standards by the layers defined in the Reference Model for Open Systems
Interconnection (ISO 7498). In particular, it is a protocol of the
Network Layer. The Protocol herein described is a Subnetwork
Independent Convergence Protocol combined with relay and routing
functions as described in the Internal Organization of the Network
Layer (ISO iiii). This Protocol provides the connectionless-mode
Network Service as defined in ISO 8348/DAD1, Addendum to the Network
Service Definition Covering Connectionless-mode Transmission, between
Network Service users and/or Network Layer relay systems.
The interrelationship of these standards is illustrated in Figure 0-1
below:
______________OSI Network Service Definition______________
| ^
|
| |
Protocol Reference to aims __________|
|
Specification | Reference to assumptions ___
|
| |
|
| |
|
| v
______________Subnetwork Service Definition(s) ___________
Figure 0-1. Interrelationship of Standards
ISO DIS 8473 (May 1984) [Page 1]
^L
RFC 926 December 1984
1 SCOPE AND FIELD OF APPLICATION
This International Standard specifies a protocol which is used to
provide the Connectionless-mode Network Service as described in ISO
8348/DAD1, Addendum to the Network Service Definition Covering
Connectionless-mode Transmission. The protocol herein described relies
upon the provision of a connectionless-mode subnetwork service.
This Standard specifies:
a) procedures for the connectionless transmission of data and control
information from one network-entity to a peer network-entity;
b) the encoding of the protocol data units used for the transmission
of data and control information, comprising a variable-length
protocol header format;
c) procedures for the correct interpretation of protocol control
information; and
d) the functional requirements for implementations claiming
conformance to the Standard.
The procedures are defined in terms of:
a) the interactions among peer network-entities through the exchange
of protocol data units;
b) the interactions between a network-entity and a Network Service
user through the exchange of Network Service primitives; and
c) the interactions between a network-entity and a subnetwork service
provider through the exchange of subnetwork service primitives.
ISO DIS 8473 (May 1984) [Page 2]
^L
RFC 926 December 1984
2 REFERENCES
ISO 7498 Information Processing Systems - Open Systems
Interconnection - Basic Reference Model
DP 8524 Information Processing Systems - Open Systems
Interconnection - Addendum to ISO 7498 Covering
Connectionless-Mode Transmission
DIS 8348 Information Processing Systems - Data Communications -
Network Service Definition
ISO 8348/DAD1 Information Processing Systems - Data Communications -
Addendum to the Network Service Definition Covering
Connectionless-Mode Transmission
ISO 8348/DAD2 Information Processing Systems - Data Communications -
Addendum to the Network Service Definition Covering
Network Layer Addressing
DP iiii Information Processing Systems - Data Communications -
Internal Organization of the Network Layer
DP 8509 Information Processing Systems - Open Systems
Interconnection - Service Conventions
ISO TC97/SC16 A Formal Description Technique based on an N1825
Extended State Transition Model
ISO DIS 8473 (May 1984) [Page 3]
^L
RFC 926 December 1984
SECTION ONE. GENERAL
3 DEFINITIONS
3.1 Reference Model Definitions
This document makes use of the following concepts defined in ISO 7498:
a) Network layer
b) Network service
c) Network service access point
d) network service access point address
e) Network entity
f) Routing
f) Service
h) Network protocol
i) Network relay
j) Network protocol data unit
k) End system
3.2 Service Conventions Definitions
This document makes use of the following concepts from the OSI Service
Conventions (ISO 8509):
l) Service user
m) Service provider
3.3 Network Layer Architecture Definitions
This document makes use of the following concepts from the Internal
Organization of the Network Layer (ISO iiii):
n) Subnetwork
ISO DIS 8473 (May 1984) [Page 4]
^L
RFC 926 December 1984
o) Relay system
p) Intermediate system
q) Subnetwork service
3.4 Network Layer Addressing Definitions
This document makes use of the following concepts from DIS 8348/DAD2,
Addendum to the Network Service Definition Covering Network layer
addressing:
r) Network entity title
s) Network protocol address information
t) Subnetwork address
u) Domain
3.5 Additional Definitions
For the purposes of this document, the following definitions apply:
a) automaton - a machine designed to follow automatically a
predetermined sequence of operations or to respond
to encoded instructions.
b) local matter - a decision made by a system concerning its
behavior in the Network Layer that is not subject
to the requirements of this Protocol.
c) segment - part of the user data provided in the N_UNITDATA
request and delivered in the N_UNITDATA
indication.
d) initial PDU - a protocol data unit carrying the whole of the
user data from an N_UNITDATA request.
e) derived PDU - a protocol data unit whose fields are identical
to those of an initial PDU, except that it carries
only a segment of the user data from an N_UNITDATA
request.
ISO DIS 8473 (May 1984) [Page 5]
^L
RFC 926 December 1984
f) segmentation - the act of generating two or more derived PDUS
from an initial or derived PDU. The derived PDUs
together carry the entire user data of the initial
or derived PDU from which they were generated.
[Note: it is possible that such an initial PDU
will never actually be generated for a particular
N_UNITDATA request, owing to the immediate
application of segmentation.]
g) reassembly - the act of regenerating an initial PDU (in order
to issue an N_UNITDATA indication) from two or
more derived PDUs produced by segmentation.
ISO DIS 8473 (May 1984) [Page 6]
^L
RFC 926 December 1984
4 SYMBOLS AND ABBREVIATIONS
4.1 Data Units
PDU Protocol Data Unit
NSDU Network Service Data Unit
SNSDU Subnetwork Service Data Unit
4.2 Protocol Data Units
DT PDU Data Protocol Data Unit
ER PDU Error Report Protocol Data Unit
4.3 Protocol Data Unit Fields
NPID Network Layer Protocol Identifier
LI Length Indicator
V/P Version/protocol Identifier Extension
LT Lifetime
SP Segmentation Permitted Flag
MS More Segments Flag
E/R Error Report Flag
TP Type
SL Segment Length
CS Checksum
DAL Destination Address Length
DA Destination Address
SAL Source Address Length
SA Source Address
DUID Data Unit Identifier
SO Segment Offset
TL Total Length
ISO DIS 8473 (May 1984) [Page 7]
^L
RFC 926 December 1984
4.4 Parameters
DA Destination Address
SA Source Address
QOS Quality of Service
4.5 Miscellaneous
SNICP Subnetwork Independent Convergence Protocol
SNDCP Subnetwork Dependent Convergence Protocol
SNAcP Subnetwork Access Protocol
SN Subnetwork
P Protocol
NSAP Network Service Access Point
SNSAP Subnetwork Service Access Point
NPAI Network Protocol Address Information
NS Network Service
ISO DIS 8473 (May 1984) [Page 8]
^L
RFC 926 December 1984
5 OVERVIEW OF THE PROTOCOL
5.1 Internal Organization of the Network Layer
The architecture of the Network Layer is described in a separate
document, Internal Organization of the Network Layer (ISO iiii), in
which an OSI Network Layer structure is defined, and a structure to
classify protocols as an aid to the progression toward that structure
is presented. This protocol is designed to be used in the context of
the internetworking protocol approach defined in that document,
between Network Service users and/or Network Layer relay systems. As
described in the Internal Organization of the Network Layer, the
protocol herein described is a Subnetwork Independent Convergence
Protocol combined with relay and routing functions designed to allow
the incorporation of existing network standards within the OSI
framework.
A Subnetwork Independent Convergence Protocol is one which can be
defined on a subnetwork independent basis and which is necessary to
support the uniform appearance of the OSI Connectionless-mode Network
Service between Network Service users and/or Network Layer relay
systems over a set of interconnected homogeneous or heterogeneous
subnetworks. This protocol is defined in just such a subnetwork
independent way so as to minimize variability where subnetwork
dependent and/or subnetwork access protocols do not provide the OSI
Network Service.
The subnetwork service required from the lower sublayers by the
protocol described herein is identified in Section 5.5.
5.2 Subsets of the Protocol
Two proper subsets of the full protocol are also defined which permit
the use of known subnetwork characteristics, and are therefore not
subnetwork independent.
One protocol subset is for use where it is known that the source and
destination end-systems are connected by a single subnetwork. This is
known as the "Inactive Network Layer Protocol" subset. A second subset
permits simplification of the header where it is known that the source
and destination end-systems are connected by subnetworks whose
subnetwork service data unit (SNSDU) sizes are greater than or equal
to a known bound large enough for segmentation not to be required.
This subset, selected by setting the "segmentation permitted" flag to
zero, is known as the "non-segmenting" protocol subset.
ISO DIS 8473 (May 1984) [Page 9]
^L
RFC 926 December 1984
5.3 Addressing
The Source Address and Destination Address parameters referred to in
Section 7.3 of this International Standard are OSI Network Service
Access Point Addresses. The syntax and semantics of an OSI Network
Service Access Point Address, the syntax and encoding of the Network
Protocol Address Information employed by this Protocol, and the
relationship between the NSAP and the NPAI is described in a separate
document, ISO 8348/DAD2, Addendum to the Network Service Definition
covering Network Layer Addressing.
The syntax and semantics of the titles and addresses used for relaying
and routing are also described in ISO 8348/DAD2.
5.4 Service Provided by the Network Layer
The service provided by the protocol herein described is a
connectionless-mode Network Service. The connectionless-mode Network
Service is described in document ISO 8348/DAD1, Addendum to the
Network Service Definition Covering Connectionless-mode Transmission.
The Network Service primitives provided are summarized below:
ISO DIS 8473 (May 1984) [Page 10]
^L
RFC 926 December 1984
Primitives Parameters
+--------------------------------------------------------+
| | |
| N_UNITDATA Request | NS_Destination_Address, |
| Indication | NS_Source_Address, |
| | NS_Quality_of_Service, |
| | NS_Userdata |
+--------------------------------------------------------+
Table 5-1. Network Service Primitives
The Addendum to the Network Service Definition Covering
Connectionless-mode Transmission (ISO 8348/DAD1) states that the
maximum size of a connectionless-mode Network-service-data-unit is
limited to 64512 octets.
5.5 Service Assumed from the Subnetwork Service provider
The subnetwork service required to support this protocol is defined as
comprising the following primitives:
Primitives Parameters
+--------------------------------------------------------+
| | |
| SN_UNITDATA Request | SN_Destination_Address, |
| Indication | SN_Source_Address, |
| | SN_Quality_of_Service, |
| | SN_Userdata |
+--------------------------------------------------------+
Table 5-2. Subnetwork Service Primitives
ISO DIS 8473 (May 1984) [Page 11]
^L
RFC 926 December 1984
5.5.1 Subnetwork Addresses
The source and destination addresses specify the points of attachment
to a public or private subnetwork(s) involved in the transmission.
Subnetwork addresses are defined in the Service Definition of each
individual subnetwork.
The syntax and semantics of subnetwork addresses are not defined in
this Protocol Standard.
5.5.2 Subnetwork Quality of Service
Subnetwork Quality of Service describes aspects of a subnetwork
connectionless-mode service which are attributable solely to the
subnetwork service provider.
Associated with each subnetwork connectionless-mode transmission,
certain measures of quality of service are requested when the
primitive action is initiated. These requested measures (or parameter
values and options) are based on a priori knowledge by the Network
Service provider of the service(s) made available to it by the
subnetwork. Knowledge of the nature and type of service available is
typically obtained prior to an invocation of the subnetwork
connectionless-mode service.
Note:
The quality of service parameters identified for the subnetwork
connectionless-mode service may in some circumstances be directly
derivable from or mappable onto those identified in the
connectionless-mode Network Service; e.g., the parameters
a) transit delay;
b) protection against unauthorized access;
c) cost determinants;
d) priority; and
e) residual error probability
as defined in ISO 8348/DAD1, Addendum to the Network Service
Definition Covering Connectionless-mode Transmission, may be
employed.
ISO DIS 8473 (May 1984) [Page 12]
^L
RFC 926 December 1984
For those subnetworks which do not inherently provide Quality of
Service as a parameter when the primitive action is initiated, it
is a local matter as to how the semantics of the service requested
might be preserved. In particular, there may be instances in which
the Quality of Service requested cannot be maintained. In such
circumstances, the subnetwork service provider shall attempt to
deliver the protocol data unit at whatever Quality of Service is
available.
5.5.3 Subnetwork User Data
The SN_Userdata is an ordered multiple of octets, and is transferred
transparently between the specified subnetwork service access points.
The subnetwork service is required to support a subnetwork service
data unit size of at least the maximum size of the Data PDU header
plus one octet of NS-Userdata. This requires a minimum subnetwork
service data unit size of 256 octets.
Where the subnetwork service can support a subnetwork service data
unit (SNSDU) size greater than the size of the Data PDU header plus
one octet of NS_Userdata, the protocol may take advantage of this. In
particular, if all SNSDU sizes of the subnetworks involved are known
to be large enough that segmentation is not required, then the
"non-segmenting" protocol subset may be used.
5.5.4 Subnetwork Dependent Convergence Functions
Subnetwork Dependent Convergence Functions may be performed to
provide a connectionless-mode subnetwork service in the case where
subnetworks also provide a connection-oriented subnetwork service. If
a subnetwork provides a connection-oriented service, some subnetwork
dependent function is assumed to provide a mapping into the required
subnetwork service described in the preceding text.
A Subnetwork Dependent Convergence Protocol may also be employed in
those cases where functions assumed from the subnetwork service
provider are not performed.
ISO DIS 8473 (May 1984) [Page 13]
^L
RFC 926 December 1984
5.6 Service Assumed from Local Evironment
A timer service is provided to allow the protocol entity to schedule
events.
There are three primitives associated with the S_TIMER service:
1) the S-TIMER request;
2) the S_TIMER response; and
3) the S_TIMER cancel.
The S_TIMER request primitive indicates to the local environment that
it should initiate a timer of the specified name and subscript and
maintain it for the duration specified by the time parameter.
The S_TIMER response primitive is initiated by the local environment
to indicate that the delay requested by the corresponding S_TIMER
request primitive has elapsed.
The S_TIMER cancel primitive is an indication to the local environment
that the specified timer(s) should be cancelled. If the subscript
parameter is not specified, then all timers with the specified name
are cancelled; otherwise, the timer of the given name and subscript is
cancelled. If no timers correspond to the parameters specified, the
local environment takes no action.
The parameters of the S_TIMER service primitives are:
ISO DIS 8473 (May 1984) [Page 14]
^L
RFC 926 December 1984
Primitives Parameters
+--------------------------------------------------------+
| | |
| S_TIMER Request | S_Time |
| | S_Name |
| | S_Subscript |
| | |
| S_TIMER Response | S_Name |
| Cancel | S_Subscript |
+--------------------------------------------------------+
Table 5-3. Timer Primitives
The time parameter indicates the time duration of the specified timer.
An identifying label is associated with a timer by means of the name
parameter. The subscript parameter specifies a value to distinguish
timers with the same name. The name and subscript taken together
constitute a unique reference to the timer.
ISO DIS 8473 (May 1984) [Page 15]
^L
RFC 926 December 1984
SECTION TWO. SPECIFICATION OF THE PROTOCOL
6 PROTOCOL FUNCTIONS
This section describes the functions performed as part of the Protocol.
Not all of the functions must be performed by every implementation.
Section 6.17 specifies which functions may be omitted and the correct
behavior where requested functions are not implemented.
6.1 PDU Composition Function
This function is responsible for the construction of a protocol data
unit according to the rules of protocol given in Section 7. Protocol
Control Information required for delivering the data unit to its
destination is determined from current state information and from the
parameters provided with the N_UNITDATA Request; e.g., source and
destination addresses, QOS, etc. User data passed from the Network
Service user in the N_UNITDATA Request forms the Data field of the
protocol data unit.
During the composition of the protocol data unit, a Data Unit
Identifier is assigned to identify uniquely all segments of the
corresponding NS_Userdata. The "Reassemble PDU" function considers
PDUs to correspond to the same Initial PDU, and hence N_UNITDATA
request, if they have the same Source and Destination Addresses and
Data Unit Identifier.
The Data Unit Identifier is available for ancillary functions such as
error reporting. The originator of the PDU must choose the Data Unit
Identifier so that it remains unique (for this Source and Destination
Address pair) for the maximum lifetime of the PDU (or any Derived
PDUs) in the network.
ISO DIS 8473 (May 1984) [Page 16]
^L
RFC 926 December 1984
During the composition of the PDU, a value of the total length of the
PDU is determined by the originator and placed in the Total Length
field of the PDU header. This field is not changed in any Derived PDU
for the lifetime of the protocol data unit.
Where the non-segmenting subset is employed, neither the Total Length
field nor the Data Unit Identifier field is present. During the
composition of the protocol data unit, a value of the total length of
the PDU is determined by the originator and placed in the Segment
Length field of the PDU header. This field is not changed for the
lifetime of the PDU.
6.2 PDU Decomposition Function
This function is responsible for removing the Protocol Control
Information from the protocol data unit. During this process,
information pertinent to the generation of the N_UNITDATA Indication
is retained. The data field of the PDU received is reserved until all
segments of the original service data unit have been received; this is
the NS_Userdata parameter of the N_UNITDATA Indication.
6.3 Header Format Analysis Function
This function determines whether the full Protocol described in this
Standard is employed, or one of the defined proper subsets thereof. If
the protocol data unit has a Network Layer Protocol Identifier
indicating that this is a standard version of the Protocol, this
function determines whether a PDU received has reached its destination
using the destination address provided in the PDU is the same as the
one which addresses an NSAP served by this network-entity, then the
PDU has reached its destination; if not, it must be forwarded.
If the protocol data unit has a Network Layer Protocol Identifier
indicating that the Inactive Network Layer Protocol subset is in use,
then no further analysis of the PDU header is required. The
ISO DIS 8473 (May 1984) [Page 17]
^L
RFC 926 December 1984
network-entity in this case determines that either the network address
encoded in the network protocol address information of a supporting
subnetwork protocol corresponds to a network Service Access Point
address served by this network-entity, or that an error has occurred.
If the subnetwork PDU has been delivered correctly, then the protocol
data unit may be decomposed according to the procedure described for
that particular subnetwork protocol.
6.4 PDU Lifetime Control Function
This function is used to enforce the maximum PDU lifetime. It is
closely associated with the "Header Format Analysis" function. This
function determines whether a PDU received may be forwarded or whether
its assigned lifetime has expired, in which case it must be discarded.
The operation of the Lifetime Control function depends upon the
Lifetime field in the PDU header. This field contains, at any time,
the remaining lifetime of the PDU (represented in units of 500
Milliseconds). The Lifetime of the Initial PDU is determined by the
originating network-entity, and placed in the Lifetime field of the
PDU.
6.5 Route PDU Function
This function determines the network-entity to which a protocol data
unit should be forwarded, using the destination NSAP address
parameters, Quality of Service parameter, and/or other parameters. It
determines the subnetwork which must be transited to reach that
network-entity. Where segmentation occurs, it further determines which
subnetwork(s) the segments may transit to reach that network-entity.
ISO DIS 8473 (May 1984) [Page 18]
^L
RFC 926 December 1984
6.6 Forward PDU Function
This function issues a subnetwork service primitive (see Section 5.5)
supplying the subnetwork identified by the "Route PDU" function with
the protocol data unit as an SNSDU, and the address information
required by that subnetwork to identify the "next" intermediate-system
within the subnetwork-specific address domain.
When an Error Report PDU is to be forwarded, and is longer than the
maximum user data acceptable by the subnetwork, it shall be truncated
to the maximum acceptable length ad forwarded with no other change.
When a Data PDU is to be forwarded ad is longer than the maximum user
data acceptable by the subnetwork, the Segmentation function is
applied (See Section 6.7, which follows).
6.7 Segmentation Function
Segmentation is performed when the size of the protocol data unit is
greater than the maximum size of the user data parameter field of the
subnetwork service primitive.
Segmentation consists of composing two or more new PDUs (Derived PDUs)
from the PDU received. The PDU received may be the Initial PDU, or it
may be a Derived PDU. The Protocol Control Information required to
identify, route, and forward a PDU is duplicated in each PDU derived
from the Initial PDU. The user data encapsulated within the PDU
received is divided such that the Derived PDUs satisfy the size
requirements of the user data parameter field of the subnetwork
service primitive.
Derived PDUs are identified as being from the same Initial PDU by
means of
a) the source address,
b) the destination address, and
c) the data unit identifier.
ISO DIS 8473 (May 1984) [Page 19]
^L
RFC 926 December 1984
The following fields of the PDU header are used in conjunction with
the Segmentation function:
a) Segment Offset - identifies at which octet in the data field of
the Initial PDU the segment begins;
b) Segment Length - specifies the number of octets in the Derived
PDU, including both header and data;
c) More Segments Flag - set to one if this Derived PDU does not
contain, as its final octet of user data, the final octet of the
Initial PDU; and
d) Total Length - specifies the entire length of the Initial PDU,
including both header and data.
Derived PDUs may be further segmented without constraining the routing
of the individual Derived PDUs.
A Segmentation Permitted flag is set to one to indicate that
segmentation is permitted. If the Initial PDU is not to be segmented
at any point during its lifetime in the network, the flag is set to
zero.
When the "Segmentation Permitted" flag is set to zero, the non-
segmenting protocol subset is in use.
6.8 Reassembly Function
The Reassembly Function reconstructs the Initial PDU transmitted to
the destination network-entity from the Derived PDUs generated during
the lifetime of the Initial PDU.
A bound on the time during which segments (Derived PDUs) of an Initial
PDU will be held at a reassembly point is provided so that resources
may be released when it is no longer expected that any outstanding
segments of the Initial PDU will arrive at the reassembly point. When
such an event occurs, segments (Derived PDUs) of the Initial PDU held
at the reassembly point are discarded, the resources allocated for
those segments are freed,
ISO DIS 8473 (May 1984) [Page 20]
^L
RFC 926 December 1984
and if selected, an Error Report is generated.
Note:
The design of the Segmentation and Reassembly functions is intended
principally to be used such that reassembly takes place at the
destination. However, other schemes which
a) interact with the routing algorithm to favor paths on which
fewer segments are generated,
b) generate more segments than absolutely required in order to
avoid additional segmentation at some subsequent point, or
c) allow partial/full reassembly at some point along the route
where it is known that the subnetwork with the smallest PDU
size has been transited
are not precluded. The information necessary to enable the use of
one of these alternative strategies may be made available through
the operation of a Network Layer Management function.
While the exact relationship between reassembly lifetime and PDU
lifetime is a local matter, the reassembly algorithm must preserve
the intent of the PDU lifetime. Consequently, the reassembly
function must discard PDUs whose lifetime would otherwise have
expired had they not been under the control of the reassembly
function.
6.9 Discard PDU Function
This function performs all of the actions necessary to free the
resources reserved by the network-entity in any of the following
situations (Note: the list is not exhaustive):
a) A violation of protocol procedure has occurred.
b) A PDU is received whose checksum is inconsistent with its
contents.
ISO DIS 8473 (May 1984) [Page 21]
^L
RFC 926 December 1984
c) A PDU is received, but due to congestion, it cannot be processed.
d) A PDU is received whose header cannot be analyzed.
e) A PDU is received which cannot be segmented and cannot be
forwarded because its length exceeds the maximum subnetwork
service data unit size.
f) A PDU is received whose destination address is unreachable or
unknown.
g) Incorrect or invalid source routing was specified. This may
include a syntax error in the source routing field, and unknown
or unreachable address in the source routing field, or a path
which is not acceptable for other reasons.
h) A PDU is received whose PDU lifetime has expired or the lifetime
expires during reassembly.
i) A PDU is received which contains an unsupported option.
6.10 Error Reporting Function
6.10.1 Overview
This function causes the return of an Error Report PDU to the source
network-entity when a protocol data unit is discarded. An "error
report flag" in the original PDU is set by the source network-entity
to indicate whether or not Error Report PDUs are to be returned.
The Error Report PDU identifies the discarded PDU, specifies the type
of error detected, and identifies the location at which the error was
detected. Part or all of the discarded PDU is included in the data
field of the Error Report PDU.
The address of the originator of the Data Protocol Data Unit is
ISO DIS 8473 (May 1984) [Page 22]
^L
RFC 926 December 1984
conveyed as both the destination address of the Error Report PDU as
well as the source address of the original Data PDU; the latter is
contained in the Data field of the Error Report PDU. The address of
the originator of the Error Report PDU is contained in the source
address field of the header of the Error Report PDU.
Note:
Non-receipt of an Error Report PDU does not imply correct delivery
of a PDU issued by a source network-entity.
6.10.2 Requirements
An Error Report PDU shall not be generated to report the discarding
of a PDU that itself contains an Error Report.
An Error Report PDU shall not be generated upon discarding of a PDU
unless that PDU has the Error Report flag set to allow Error Reports.
If a Data PDU is discarded, and has the Error Report flag set to
allow Error Reports, an Error Report PDU shall be generated if the
reason for discard (See Section 6.9) is
a) destination address unreachable,
b) source routing failure,
c) unsupported options, or
d) protocol violation.
ISO DIS 8473 (May 1984) [Page 23]
^L
RFC 926 December 1984
Note:
It is intended that this list shall include all nontransient
reasons for discard; the list may therefore need to be amended or
extended in the light of any changes made in the definitions of
such reasons.
If a Data PDU with the Error Report flag set to allow Error Reports
is discarded for any other reason, an Error Report PDU may be
generated (as an implementation option).
6.10.3 Processing of Error Reports
Error Report PDUs are forwarded by intermediate network-entities in
the same way as Data PDUs. It is possible that an Error Report PDU
may be longer than the maximum user data size of a subnetwork that
must be traversed to reach the origin of the discarded PDU. In this
case, the Forward PDU function shall truncate the PDU to the maximum
size acceptable.
The entire header of the discarded data unit shall be included in the
data field of the Error Report PDU. Some or all of the data field of
the discarded data unit may also be included.
Note:
Since the suppression of Error Report PDUs is controlled by the
originating network-entity and not by the NS User, care should be
exercised by the originator with regard to suppressing ER PDUs so
that error reporting is not suppressed for every PDU generated.
ISO DIS 8473 (May 1984) [Page 24]
^L
RFC 926 December 1984
6.11 PDU Header Error Detection
The PDU Header Error Detection function protects against failure of
intermediate or end-system network-entities due to the processing of
erroneous information in the PDU header. The function is realized by a
checksum computed on the PDU header. The checksum is verified at each
point at which the PDU header is processed. If PDU header fields are
modified (for example, due to lifetime function), then the checksum is
modified so that the checksum remains valid.
An intermediate system network-entity must not recompute the checksum
for the entire header, even if fields are modified.
Note:
This is to ensure that inadvertent modification of a header while a
PDU is being processed by an intermediate system (for example, due
to a memory fault) may still be detected by the PDU Header Error
function.
The use of this function is optional, and is selected by the
originating network-entity. If the function is not used, the checksum
field of the PDU header is set to zero.
If the function is selected by the originating network-entity, the
value of the checksum field causes the following formulae to be
satisfied:
L
(SUM) a = 0 (modulo 255)
i
i=1
L
(SUM) (L-i+1) a = 0 (modulo 255)
i
i=1
Where L = the number of octets in the PDU header, and
a = value of octet at position i.
i
ISO DIS 8473 (May 1984) [Page 25]
^L
RFC 926 December 1984
When the function is in use, neither octet of the checksum field may
be set to zero.
Annex C contains descriptions of algorithms which may be used to
calculate the correct value of the checksum field when the PDU is
created, and to update the checksum field when the header is modified.
6.12 Padding Function
The padding function is provided to allow space to be reserved in the
PDU header which is not used to support any other function. Octet
alignment must be maintained.
Note:
An example of the use of this function is to cause the data field of
a PDU to begin on a convenient boundary for the originating
network-entity, such as a computer word boundary.
6.13 Security
An issue related to the quality of the network service is the
protection of information flowing between transport-entities. A system
may wish to control the distribution of secure data by assigning
levels of security to PDUs. As a local consideration, the Network
Service user could be authenticated to ascertain whether the user has
permission to engage in communication at a particular security level
before sending the PDU. While no protocol exchange is required in the
authentication process, the optional security parameter in the options
part of the PDU header may be employed to convey the particular
security level between peer network-entities.
The syntax and semantics of the security parameter are not specified
by this Standard. The security parameter is related to the "protection
from unauthorized access" Quality of service parameter described in
ISO 8348/DAD1, Addendum to the Network Service Definition Covering
Connectionless-mode Transmission. However, to facilitate
interoperation between end-systems and relay-systems by avoiding
different interpretations of the same encoding, a mechanism is
provided to distinguish user-defined security encoding from
standardized security encoding.
ISO DIS 8473 (May 1984) [Page 26]
^L
RFC 926 December 1984
6.14 Source Routing Function
The Source Routing function allows the originator to specify the path
a generated PDU must take. Source routing can only be selected by the
originator of a PDU. Source Routing is accomplished using a list of
intermediate system addresses (or titles, see Section 5.3 and 5.5.1)
held in a parameter within the options part of the PDU Header. The
size of the option field is determined by the originating
network-entity. The length of this option does not change as the PDU
traverses the network. Associated with this list is an indicator which
identifies the next entry in the list to be used; this indicator is
advanced by the receiver of the PDU when the next address matches its
own address. The indicator is updated as the PDU is forwarded so as to
identify the appropriate entry at each stage of relaying.
Two forms of the source routing option are provided. The first form,
referred to as complete source routing, requires that the specified
path must be taken; if the specified path cannot be taken, the PDU
must be discarded. The source may be informed of the discard using the
Error Reporting function described in Section 6.10.
The second form is referred to as partial source routing. Again, each
address in the list must be visited in the order specified while on
route to the destination. However, with this form of source routing
the PDU may take any path necessary to arrive at the next address in
the list. The PDU will not be discarded (for source routing related
causes) unless one of the addresses specified cannot be reached by any
available route.
ISO DIS 8473 (May 1984) [Page 27]
^L
RFC 926 December 1984
6.15 Record Route Function
The Record Route function permits the exact recording of the paths
taken by a PDU as it traverses a series of interconnected subnetworks.
A recorded route is composed of a list of intermediate system
addresses held in a parameter within the options part of the PDU
header. The size of the option field is determined by the originating
network-entity. The length of this option does not change as the PDU
traverses the network.
The list is constructed as the PDU traverses a set of interconnected
subnetworks. Only intermediate system addresses are included in the
recorded route. The address of the originator of the PDU is not
recorded in the list. When an intermediate system network-entity
processes a PDU containing the record route parameter, the system
inserts its own address (or titles, see Sections 5.3 or 5.5.1) into
the list of recorded addresses.
The record route option contains an indicator which identifies the
next available octet to be used for recording of route. This
identifier is updated as entries are added to the list. If the
addition of the current address to the list would exceed the size of
the option field, the indicator is set to show that recording of route
has terminated. The PDU may still be forwarded to its final
destination, without further addition of intermediate system
addresses.
Note:
The Record Route function is principally intended to be used in the
diagnosis of network problems. Its mechanism has been designed on
this basis, and may provide a return path.
ISO DIS 8473 (May 1984) [Page 28]
^L
RFC 926 December 1984
6.16 Quality of Service Maintenance Function
In order to support the Quality of Service requested by Network
Service users, the Protocol may need to make QOS information available
at intermediate systems. This information may be used by network
entities in intermediate systems to make routing decisions where such
decisions affect the overall QOS provided to NS users.
In those instances where the QOS indicated cannot be maintained, the
NS provider will attempt to deliver the PDU at a QOS less than that
indicated. The NS provider will not necessarily provide a notification
of failure to meet the indicated quality of service.
6.17 Classification of Functions
Implementations do not have to support all of the functions described
in Section 6. Functions are divided into three categories:
Type 1: These functions must be supported.
Type 2: These functions may or may not be supported. If an
implementation does not support a Type 2 function, and the
function is selected by a PDU, then the PDU shall be
discarded, and an Error Report PDU shall be generated and
forwarded to the originating network-entity, providing that
the Error Report flag is set.
Type 3: These functions may or may not be supported. If an
implementation does not support a Type 3 function, and the
function is selected by a PDU, then the function is not
performed and the PDU is processed exactly as though the
function was not selected. The protocol data unit shall not
be discarded.
Table 6-1 shows how the functions are divided into these three
categories:
ISO DIS 8473 (May 1984) [Page 29]
^L
RFC 926 December 1984
+---------------------------------------------------+
| Function | Type |
|--------------------------------|------------------|
| | |
| PDU Composition | 1 |
| PDU Decomposition | 1 |
| Header Format Analysis | 1 |
| PDU Lifetime Control | 1 |
| Route PDU | 1 |
| Forward PDU | 1 |
| Segment PDU | 1 |
| Reassemble PDU | 1 |
| Discard PDU | 1 |
| Error Reporting | 1 (note 1) |
| PDU Header Error Detection | 1 (note 1) |
| Padding | 1 (notes 1 2) |
| Security | 2 |
| Complete Source Routing | 2 |
| Partial Source Routing | 3 |
| Priority | 3 |
| Record Route | 3 |
| Quality of Service Maintenance | 3 |
+---------------------------------------------------+
Table 6-1. Categorization of Protocol Functions
ISO DIS 8473 (May 1984) [Page 30]
^L
RFC 926 December 1984
Notes:
1) While the Padding, Error Reporting, and Header Error Detection
functions must be provided, they are provided only when selected
by the sending Network Service user.
2) The correct treatment of the Padding function involves no
processing. Therefore, this could equally be described as a Type
3 function.
3) The rationale for the inclusion of type 3 functions is that in
the case of some functions it is more important to forward the
PDUs between intermediate systems or deliver them to an
end-system than it is to support the functions. Type 3 functions
should be used in those cases where they are of an advisory
nature and should not be the cause of the discarding of a PDU
when not supported.
ISO DIS 8473 (May 1984) [Page 31]
^L
RFC 926 December 1984
7 STRUCTURE AND ENCODING OF PDUS
7.1 Structure
All Protocol Data Units shall contain an integral number of octets.
The octets in a PDU are numbered starting from one (1) and increasing
in the order in which they are put into an SNSDU. The bits in an octet
are numbered from one (1) to eight (8), where bit one (1) is the
low-order bit.
When consecutive octets are used to represent a binary number, the
lower octet number has the most significant value.
Any subnetwork supporting this protocol is required to state in its
specification the way octets are transferred, using the terms "most
significant bit" and "least significant bit." The PDUs of this
protocol are defined using the terms "most significant bit" and "least
significant bit."
Note:
When the encoding of a PDU is represented using a diagram in this
section, the following representation is used:
a) octets are shown with the lowest numbered octet to the left,
higher number octets being further to the right;
b) within an octet, bits are shown with bit eight (8) to the left
and bit one (1) to the right.
PDUs shall contain, in the following order:
1) the header, comprising:
a) the fixed part;
b) the address part;
c) the segmentation part, if present;
d) the options part, if present
and
ISO DIS 8473 (May 1984) [Page 32]
^L
RFC 926 December 1984
2) the data field, if present.
This structure is illustrated below:
Part: Described in:
+-------------------+
| Fixed Part | Section 7.2
+-------------------+
+-------------------+
| Address Part | Section 7.3
+-------------------+
+-------------------+
| Segmentation Part | Section 7.4
+-------------------+
+-------------------+
| Options Part | Section 7.5
+-------------------+
+-------------------+
| Data | Section 7.6
+-------------------+
Figure 7-1. PDU Structure
ISO DIS 8473 (May 1984) [Page 33]
^L
RFC 926 December 1984
7.2 Fixed Part
7.2.1 General
The fixed part contains frequently occuring parameters including the
type code (DT or ER) of the protocol data unit. The length and the
structure of the fixed part are defined by the PDU code.
The fixed part has the following format:
Octet
+------------------------------------+
| Network Layer Protocol Identifier | 1
|------------------------------------|
| Length Indicator | 2
|------------------------------------|
| Version/Protocol Id Extension | 3
|------------------------------------|
| Lifetime | 4
|------------------------------------|
|S |M |E/R| Type | 5
| P| S| | |
|------------------------------------|
| Segment Length | 6,7
|------------------------------------|
| Checksum | 8,9
+------------------------------------+
Figure 7-2. PDU Header--Fixed Part
7.2.2 Network Layer Protocol Identifier
The value of this field shall be binary 1000 0001. This field
identifies this Network Layer Protocol as ISO 8473, Protocol for
Providing the Connectionless-mode Network Service.
ISO DIS 8473 (May 1984) [Page 34]
^L
RFC 926 December 1984
7.2.3 Length Indicator
The length is indicated by a binary number, with a maximum value of
254 (1111 1110). The length indicated is the length in octets of the
header, as described in Section 7.1, Structure. The value 255 (1111
1111) is reserved for possible future extensions.
Note:
The rules for forwarding and segmentation ensure that the header
length is the same for all segments (Derived PDUs) of the Initial
PDU, and is the same as the header length of the Initial PDU.
7.2.4 Version/Protocol Identifier Extension
The value of this field is binary 0000 0001. This Identifies a
standard version of ISO 8473, Protocol for Providing the
Connectionless-mode Network Service.
7.2.5 PDU Lifetime
The Lifetime field is encoded as a binary number representing the
remaining lifetime of the PDU, in units of 500 milliseconds.
The Lifetime field is set by the originating network-entity, and is
decremented by every network-entity which processes the PDU. The PDU
shall be discarded if the value of the field reaches zero.
When a network-entity processes a PDU, it decrements the Lifetime by
at least one. The Lifetime shall be decremented by more than one if
the sum of:
1) the transit delay in the subnetwork from which the PDU was
received; and
ISO DIS 8473 (May 1984) [Page 35]
^L
RFC 926 December 1984
2) the delay within the system processing the PDU
exceeds or is estimated to exceed 500 milliseconds. In this case, the
lifetime field should be decremented by one for each additional 500
milliseconds of delay. The determination of delay need not be
precise, but where error exists the value used shall be an
overestimate, not an underestimate.
If the Lifetime reaches a value of zero before the PDU is delivered
to the destination, the PDU shall be discarded. The Error Reporting
function shall be invoked, as described in Section 6.10, Error
Reporting Function, and may result in the generation of an ER PDU. It
is a local matter whether the destination network-entity performs the
Lifetime Control function.
When the Segmentation function is applied to a PDU, the Lifetime
field is copied into all of the Derived PDUs.
7.2.6 Flags
7.2.6.1 Segmentation Permitted and More Segments Flags
The Segmentation Permitted flag determines whether segmentation is
permitted. A value of one indicates that segmentation is permitted.
A value of zero indicates that the non-segmenting protocol subset is
employed. Where this is the case, the segmentation part of the PDU
header is not present, and the Segment Length field serves as the
Total Length field.
The More Segments flag indicates whether the data segment in this
PDU contains (as its last octet) the last octet of the User Data in
the NSDU. When the More Segments flag is set to one (1) then
segmentation has taken place and the last octet of the NSDU is not
contained in this PDU. The More Segments flag cannot be set to one
(1) if the Segmentation Permitted flag is not set to one (1).
ISO DIS 8473 (May 1984) [Page 36]
^L
RFC 926 December 1984
When the More Segments flag is set to zero (0) the last octet of the
Data Part of the PDU is the last octet of the NSDU.
7.2.6.2 Error Report Flag
When the Error Report flag is set to one, the rules in Section 6.10
are used to determine whether to generate an Error Report PDU upon
discard of the PDU.
When the Error Report flag is set to zero, discard of the PDU will
not cause the generation of an Error Report PDU.
7.2.7 Type Code
The Type code field identifies the type of the protocol data unit.
Allowed values are given in Table 7-1:
Bits 5 4 3 2 1
+-----------------------------+
| DT PDU | 1 1 1 0 0 |
|-----------------------------|
| ER PDU | 0 0 0 0 1 |
+-----------------------------+
Table 7-1. Valid PDU Types
7.2.8 PDU Segment Length
The Segment Length field specifies the entire length of the PDU
segment including both header and data, if present. When the full
protocol is employed and a PDU is not segmented, then the value of
this field is identical to the value of the Total Length field
located in the Segmentation Part of the header.
ISO DIS 8473 (May 1984) [Page 37]
^L
RFC 926 December 1984
When the Non-segmenting protocol subset is employed, no segmentation
part is present in the header. In this subset, the Segment Length
field serves as the Total Length field of the header (see Section
7.4.3).
7.2.9 PDU Checksum
The checksum is computed on the entire PDU header. This includes the
segmentation and options parts, if present. A checksum value of zero
is reserved to indicate that the checksum is to be ignored. The
operation of the PDU Header Error Detection function ensures that the
value zero does not represent a valid checksum. A non-zero value
indicates that the checksum must be processed or the PDU must be
discarded.
7.3 Address Part
7.3.1 General
Address parameters are distinguished by their location, immediately
following the fixed part of the PDU header. The address part is
illustrated below:
ISO DIS 8473 (May 1984) [Page 38]
^L
RFC 926 December 1984
Octet
+--------------------------------------+
| |
| Destination Address Length Indicator | 10
| |
|--------------------------------------|
| | 11
| Destination Address |
| | m-1
|--------------------------------------|
| |
| Source Address Length Indicator | m
| |
|--------------------------------------|
| | m+1
| Source Address |
| | n-1
+--------------------------------------+
Figure 7-3. PDU header--Address Part
7.3.1.1 Destination and Source Address Information
The Destination and Source addresses are Network Service Access
Point addresses as defined in ISO 8348/DAD2, Addendum to the Network
Service Definition Covering Network Layer Addressing.
The Destination and Source Address information is of variable
length.
The Destination Address Length Indicator field specifies the length
of the Destination Address in number of octets. The Destination
Address field follows the Destination Address Length Indicator
field. The Source Address Length Indicator field specifies the
length of the Source Address in number of octets. The Source Address
Length Indicator field follows the Destination Address field. The
Source Address field follows the Source Address Length Indicator
field.
ISO DIS 8473 (May 1984) [Page 39]
^L
RFC 926 December 1984
Each address parameter is encoded as follows:
Bits 8 7 6 5 4 3 2 1
+---------------------------------------------+
| Octet | Address parameter Length Indicator |
| n | (e.g., 'm') |
|---------------------------------------------|
| Octets | |
| n+1 | Address Parameter Value |
| thru | |
| n+m | |
+---------------------------------------------+
Table 7-2. Address Parameters
7.4 Segmentation Part
If the Segmentation Permitted Flag in the Fixed Part of the PDU Header
(Octet 4, Bit 8) is set to one, the segmentation part of the header,
illustrated below, must be present:
Octet
+------------------------+
| Data Unit Identifier | n,n+1
|------------------------|
| Segment Offset | n+2,n+3
|------------------------|
| Total Length | n+4,n+5
+------------------------+
Figure 7-4. PDU Header--Segmentation Part
Where the "Segmentation Permitted" flag is set to zero, the
nonsegmenting protocol subset is in use.
ISO DIS 8473 (May 1984) [Page 40]
^L
RFC 926 December 1984
7.4.1 Data Unit Identifier
The Data Unit Identifier identifies an Initial PDU (and hence, its
Derived PDUs) so that a segmented data unit may be correctly
reassembled by the destination network-entity. The Data Unit
Identifier size is two octets.
7.4.2 Segment Offset
For each segment the Segment Offset field specifies the relative
position of the segment in the data part of the Initial PDU with
respect to the start of the data field. The offset is measured in
units of octets. The offset of the first segment is zero.
7.4.3 PDU Total Length
The Total Length field specifies the entire length of the Initial
PDU, including both the header and data. This field is not changed in
any segment (Derived PDU) for the lifetime of the PDU.
7.5 Options Part
7.5.1 General
The options part is used to convey optional parameters. If the
options part is present, it contains one or more parameters. The
number of parameters that may be contained in the options part is
indicated by the length of the options part which is:
PDU Header Length - (length of fixed part +
length of address part +
length of segmentation part).
ISO DIS 8473 (May 1984) [Page 41]
^L
RFC 926 December 1984
The options part of the PDU header is illustrated below:
Octet
+--------------------+
| | n+6
| Options |
| | p
+--------------------+
Figure 7-5. PDU Header--Options Part
Each parameter contained within the options part of the PDU header is
encoded as follows:
BITS 8 7 6 5 4 3 2 1
+------------------------------------------+
| Octets | |
| n | Parameter Code |
|------------------------------------------|
| n+1 | Parameter Length (e.g., 'm') |
|------------------------------------------|
| n+2 | Parameter Value |
| n+m+1 | |
+------------------------------------------+
Table 7-3. Encoding of Parameters
The parameter code field is coded in binary and, without extensions,
provides a maximum number of 255 different parameters. However, as
noted below, bits 8 and 7 cannot take every possible value, so the
practical maximum number of different parameters is less. A parameter
code of 255 (binary 1111 1111) is reserved for possible extensions of
the parameter code.
The parameter length field indicates the length, in octets, of the
parameter value field. The length is indicated by a binary number,
'm', with a theoretical maximum value of 255. The practical maximum
value of 'm' is lower. For example, in the case of a single parameter
contained within the options part, two octets are required for the
parameter code and the parameter length indication itself. Thus, the
value of 'm' is limited to:
ISO DIS 8473 (May 1984) [Page 42]
^L
RFC 926 December 1984
253 - (length of fixed part +
length of address part +
length of segmentation part).
For each succeeding parameter the maximum value of 'm' decreases.
The parameter value field contains the value of the parameter
identified in the parameter code field.
No parameter codes use bits 8 and 7 with the value 00.
Implementations shall accept the parameters defined in the options
part in any order. Duplication of options (where detected) is not
permitted. Receipt of a PDU with an option duplicated should be
treated as a protocol error. The rules governing the treatment of
protocol errors are described in Section 6.10, Error Reporting
Function.
The following parameters are permitted in the options part.
7.5.2 Padding
The padding parameter is used to lengthen the PDU header to a
convenient size (See Section 6.12).
Parameter Code: 1100 1100
Parameter Length: variable
Parameter Value: any value is allowed
7.5.3 Security
This parameter is user defined.
Parameter Code: 1100 0101
Parameter Length: variable
Parameter Value:
High order bit of first octet is Security Domain bit, S, to be
interpreted as follows:
ISO DIS 8473 (May 1984) [Page 43]
^L
RFC 926 December 1984
S=0
+---------------------------
| S | User Defined ----
+------------------------
S=1
+---------------------------
| S | CODE | ORGANIZATION ----
+------------------------
where
CODE = This field contains a geographic or non-geographic code to
which the option applies.
ORGANIZATION = This is a further subdivision of the CODE field
and is determined by an administrator of the
geographic or non-geographic domain identified by
the value of CODE.
7.5.4 Source Routing
The source routing parameter specifies, either completely or
partially, the route to be taken from Source Network Address to
Destination Network Address.
Parameter Code: 1100 1000
Parameter Length: variable
Parameter Value: 2 octet control information
succeeded by a concatenation
of ordered address fields
(ordered from source to destination)
ISO DIS 8473 (May 1984) [Page 44]
^L
RFC 926 December 1984
The first octet of the parameter value is the type code. This has the
following significance.
0000 0001 complete source routing
0000 0000 partial source routing
<all other values reserved>
The second octet indicates the octet offset of the next address to be
processed in the list. A value of three (3) indicates that the next
address begins immediately after this control octet. Successive
octets are indicated by correspondingly larger values of this
indicator.
The third octet begins the intermediate-system address list. The
address list consists of variable length address fields. The first
octet of each address field identifies the length of the address
which comprises the remainder of the address field.
7.5.5 Recording of Route
The recording of route parameter identifies the route of intermediate
systems traversed by the PDU.
Parameter Code: 1100 1011
Parameter Length: variable
Parameter Value: two octets control information
succeeded by a concatenation of
ordered addresses
The first octet is used to indicate that the recording of route has
been terminated owing to lack of space in the option. It has the
following significance:
0000 0000 Recording of Route still in progress
1111 1111 Recording of Route terminated
<all other values reserved>
ISO DIS 8473 (May 1984) [Page 45]
^L
RFC 926 December 1984
The second octet identifies the next octet which may be used to
record an address. It is encoded relative to the start of the
parameter, such that a value of three (3) indicates that the octet
after this one is the next to be used.
The third octet begins the address list. The address list consists of
variable length address fields. The first octet of each address field
identifies the length of the address which comprises the remainder of
the field. Address fields are always added to the beginning of the
address list; i.e., the most recently added field will begin in the
third octet of the parameter value.
7.5.6 Quality of Service Maintenance
The Quality of Service parameter conveys information about the
quality of service requested by the originating Network Service user.
At intermediate systems, Network Layer relay entities may (but are
not required to) make use of this information as an aid in selecting
a route when more than one route satisfying other routing criteria is
available and the available routes are known to differ with respect
to Quality of Service (see Section 6.16).
Parameter Code: 1100 0011
Parameter Length: one octet
Parameter Value: Bit 8: transit delay vs. cost
Bit 7: residual error probability vs.
transit delay
Bit 6: residual error probability vs.
cost
Bits 5 thru 0 are not specified.
Bit 8 is set to one indicates that where possible, routing decision
should favor low transit delay over low cost. A value of 0 indicates
that routing decisions should favor low cost over low transit delay.
ISO DIS 8473 (May 1984) [Page 46]
^L
RFC 926 December 1984
Bit 7 set to one indicates that where possible, routing decisions
should favor low residual error probability over low transit delay. A
value of zero indicates that routing decisions should favor low
transit delay over low residual error probability.
Bit 6 is set to one indicates that where possible, routing decisions
should favor low residual error probability over low cost. A value of
0 indicates that routing decisions should favor low cost over low
residual error probability.
7.6 Priority
The priority parameter carries the relative priority of the protocol
data unit. Intermediate systems that support this option should make
use of this information in routing and in ordering PDUs for
transmission.
Parameter Code: 1100 1100
Parameter Length: one octet
Parameter Value: 0000 0000 - Normal (Default)
thru
0000 1111 - Highest
The values 0000 0001 through 0000 1111 are to be used for higher
priority protocol data units. If an intermediate system does not
support this option then all PDUs shall be treated as if the field had
the value 0000 0000.
7.7 Data Part
The Data part of the PDU is structured as an ordered multiple of
octets, which is identical to the same ordered multiple of octets
specified for the NS_Userdata parameter of the N_UNITDATA Request and
Indication primitives. The data field is illustrated below:
ISO DIS 8473 (May 1984) [Page 47]
^L
RFC 926 December 1984
Octet
+------------------+
| | p+1
| Data |
| | z
+------------------+
Figure 7-6. PDU header--Data Field
ISO DIS 8473 (May 1984) [Page 48]
^L
RFC 926 December 1984
7.8 Data (DT) PDU
7.8.1 Structure
The DT PDU has the following format:
Octet
+--------------------------------------+
| Network Layer Protocol Identifier | 1
|--------------------------------------|
| Length Indicator | 2
|--------------------------------------|
| Version/Protocol Id Extension | 3
|--------------------------------------|
| Lifetime | 4
|--------------------------------------|
|SP|MS|E/R| Type | 5
|--------------------------------------|
| Segment Length | 6,7
|--------------------------------------|
| Checksum | 8,9
|--------------------------------------|
| Destination Address Length Indicator | 10
|--------------------------------------|
| Destination Address | 11 through m-1
|--------------------------------------|
| Source Address Length Indicator | m
|--------------------------------------|
| Source Address | m+1 through n-1
|--------------------------------------|
| Data Unit Identifier | n,n+1
|--------------------------------------|
| Segment Offset | n+2,n+3
|--------------------------------------|
| Total Length | n+4,n+5
|--------------------------------------|
| Options | n+6 through p
|--------------------------------------|
| Data | p+1 through z
+--------------------------------------+
Figure 7-7. PDU Header Format
ISO DIS 8473 (May 1984) [Page 49]
^L
RFC 926 December 1984
7.8.1.1 Fixed Part
1) Network Layer Protocol Identifier See Section 7.2.2.
2) Length Indicator See Section 7.2.3.
3) Version/Protocol Id Extension See Section 7.2.4.
4) Lifetime See Section 7.2.5.
5) SP, MS, E/R See Section 7.2.6.
6) Type Code See Section 7.2.7.
7) Segment Length See Section 7.2.8.
8) Checksum See Section 7.2.9.
7.8.1.2 Addresses
See Section 7.3.
7.8.1.3 Segmentation
See Section 7.4.
7.8.1.4 Options
See Section 7.5.
7.8.1.5 Data
See Section 7.7.
ISO DIS 8473 (May 1984) [Page 50]
^L
RFC 926 December 1984
7.9 Inactive Network Layer Protocol
Octet
+-----------------------------+
| Network Layer Protocol Id | 1
|-----------------------------|
| Data | 2 through n
+-----------------------------+
Figure 7-9. Inactive Network Layer Protocol
7.9.1 Network Layer Protocol Id
The value of the Network Layer Protocol Identifier field is binary
zero (0000 0000).
7.9.2 Data Field
See Section 7.7.
The length of the NS_Userdata parameter is constrained to be less
than or equal to the value of the length of the SN_Userdata parameter
minus one.
ISO DIS 8473 (May 1984) [Page 51]
^L
RFC 926 December 1984
7.10 Error Report PDU (ER)
7.10.1 Structure
Octet
+--------------------------------------+
| Network Layer Protocol Identifier | 1
|--------------------------------------|
| Length Indicator | 2
|--------------------------------------|
| Version/Protocol Id Extension | 3
|--------------------------------------|
| Lifetime | 4
|--------------------------------------|
|SP|MS|E/R| Type | 5
|--------------------------------------|
| Segment Length | 6,7
|--------------------------------------|
| Checksum | 8,9
|--------------------------------------|
| Destination Address Length Indicator | 10
|--------------------------------------|
| Destination Address | 10 through m-1
|--------------------------------------|
| Source Address Length Indicator | m
|--------------------------------------|
| Source Address | m+1 through n-1
|--------------------------------------|
| Data Unit Identifier | n,n+1
|--------------------------------------|
| Segment Offset | n+2,n+3
|--------------------------------------|
| Total Length | n+4,n+5
|--------------------------------------|
| Options | n+6 through p-1
|--------------------------------------|
| Reason for Discard | p through q-1
|--------------------------------------|
| Error Report Data Field | z
+--------------------------------------+
Figure 7-10. Error Report PDU
ISO DIS 8473 (May 1984) [Page 52]
^L
RFC 926 December 1984
7.10.1.1 Fixed Part
The fixed part of the Error Report Protocol Data Unit is set as
though this is a new (Initial) PDU. Thus, references are provided to
precious sections describing the composition of the fields
comprising the fixed part:
1) Network Layer Protocol Identifier See Section 7.2.2.
2) Length Indicator See Section 7.2.3.
3) Version/Protocol Id Extension See Section 7.2.4.
4) Lifetime See Section 7.2.5.
5) SP, MS, E/R See Section 7.2.6.
6) Type Code See Section 7.2.7.
7) Segment Length See Section 7.2.8.
8) Checksum See Section 7.2.9.
7.10.1.2 Addresses
See Section 7.3.
The Destination Address specifies the original source of the
discarded PDU. The Source Address specifies the intermediate system
or end system network-entity initiating the Error Report PDU.
7.10.1.3 Segmentation
See Section 7.4.
ISO DIS 8473 (May 1984) [Page 53]
^L
RFC 926 December 1984
7.10.1.4 Options
See Section 7.5.
7.10.1.5 Reason for Discard
This parameter is only valid for the Error Report PDU. It provides a
report on the discarded protocol data unit.
Parameter Code:
1100 0001
Parameter Length:
two octets
type of error encoded in binary:
0000 0000: Reason not specified.
0000 0001: Protocol Procedure Error.
other than below:
0000 0010: Incorrect checksum.
0000 0011: PDU discarded due to congestion.
0000 0100: Header syntax error (header cannot
be parsed).
0000 0101: Segmentation is needed but is not
permitted.
1000 xxxx: Addressing Error:
0000 0000: Destination Address
Unreachable.
1000 0001: Destination Address
Unknown.
1001 xxxx: Source Routing Error:
1001 0000: Unspecified Source
Routing error.
1001 0001: Syntax error in Source
Routing field.
1001 0010: Unknown Address in
Source Routing field.
1001 0011: Path not acceptable.
ISO DIS 8473 (May 1984) [Page 54]
^L
RFC 926 December 1984
1010 xxxx: Lifetime Expiration:
1010 0000: Lifetime expired while
data unit in transit.
1010 0001: Lifetime expired
during reassembly.
1011 xxxx: PDU discarded due to unsupported
option:
1011 0000: unsupported option not
specified.
1011 0001: unsupported padding
option.
1011 0010: unsupported security
option.
1011 0011: unsupported source
routing option.
1011 0100: unsupported recording
of route option.
1011 0101: unsupported QoS
Maintenance option.
The second octet contains a pointer to the field in the associated
discarded PDU which caused the error. If no one particular field
can be associated with the error, then this field contains the
value of zero.
7.10.1.6 Error Report Data Field
This field provides all or a portion of the discarded PDU. The
octets comprising this field contain the rejected or discarded PDU
up to and including the octet which caused the rejection/discard.
ISO DIS 8473 (May 1984) [Page 55]
^L
RFC 926 December 1984
8 FORMAL DESCRIPTION
The operation of the protocol is modelled as a finite state automaton
governed by a state variable with three values. The behavior of the
automaton is defined with respect to individual independent Protocol
Data Units. A transition of the automaton is prompted by the occurrence
of an atomic event at one of three interfaces:
1) an interface to the Transport Layer, defined by the service
primitives of the Addendum to the Network Service Definition
Covering Connectionless-mode Transmission;
2) an interface to the subnetwork service provider, defined by the
SN_UNITDATA primitive of Section 5.5 of this Standard;
3) an interface to an implementation-dependent timer function defined
by the TIMER primitives described in Section 5.6 of this Standard.
In addition, a transition of the automaton may be prompted by the
occurrence of a condition of the automaton.
The atomic events are defined in Section 8.2. The occurrence of an
atomic event is not in itself sufficient to cause a transition to take
place; other conditions, called "enabling conditions" may also have to
be met before a particular transition can take place. Enabling
conditions are boolean expressions that depend on the values of
parameters associated with the corresponding atomic event (that is, the
parameters of some primitive), and on the values of locally maintained
variables.
More than one enabling condition -- and therefore, more than one
possible transition -- may be associated with a single atomic event. In
every such case, the enabling conditions are mutually exclusive, so
that for any given combination of atomic event and parameter values,
only one state transition can take place.
Associated with each transition is an action, or "output." Actions
consist of changes to the values of local variables and the sequential
performance of zero or more functions. The operation of the finite
state automaton is completely specified in Section 8.3 by defining the
action associated with every possible transition.
ISO DIS 8473 (May 1984) [Page 56]
^L
RFC 926 December 1984
8.1 Values of the State Variable
The protocol state variable has three values:
1) INITIAL The automaton is created in the INITIAL state. No
transition may carry the automaton into the INITIAL
state.
2) REASSEMBLING The automaton is in the REASSEMBLING state for the
period in which it is assembling PDU segments into a
complete PDU.
3) CLOSED The final state of the automaton is the CLOSED
state. When the automaton enters the CLOSED state
it ceases to exist.
8.2 Atomic Events
An atomic event is the transfer of a unit of information across an
interface. The description of an atomic event specifies a primitive
(such as an N_UNITDATA.Request), and the service boundary at which it
is invoked (such as the Network Service boundary). The direction of
information flow across the boundary is implied by the definition of
each of the primitives.
8.2.1 N.UNITDATA_request and N.UNITDATA_indication
The N.UNITDATA_request and N.UNITDATA_indication atomic events occur
at the Network Service boundary. They are defined by the Addendum to
the Network Service Definition Covering Connectionless Data
Transmission (ISO 8348/DAD1).
ISO DIS 8473 (May 1984) [Page 57]
^L
RFC 926 December 1984
N.UNITDATA_request (NS Source_Address,
NS_Destination_Address,
NS_Quality_of_Service,
NS_Userdata)
N.UNITDATA_indication (NS_Source_Address,
NS_Destination_Address,
NS_Quality_of_Service, NS_Userdata)
The parameters of the N.UNITDATA_request and
N.UNITDATA_indication are collectively referred to as Network
Service Data Unit (NSDUs).
8.2.2 SN.UNITDATA_request and SN.UNITDATA_indication
The SN.UNITDATA_request and SN.UNITDATA_indication atomic events
occur at the interface between the Protocol described herein and a
subnetwork service provider. They are defined in Section 5.5 of this
Standard.
SN.UNITDATA_request (SN_Source_Address,
SN_Destination_Address,
SN_Quality_of_Service,
SN_Userdata)
SN.UNITDATA_indication (SN_Source_Address,
SN_Destination_Address,
SN_Quality_of_Service,
SN_Userdata)
The parameters of the SN_UNITDATA request and SN_UNITDATA Indication
are collectively referred to as Subnetwork Service Data Units
(SNSDUs).
The value of the SN_Userdata parameter may represent an Initial PDU
or a Derived PDU.
ISO DIS 8473 (May 1984) [Page 58]
^L
RFC 926 December 1984
8.2.3 TIMER Atomic Events
The TIMER atomic events occur at the interface between the Protocol
described herein and its local environment. They are defined in
Section 5.6 of this Standard.
S.TIMER_request (Time,
Name,
Subscript)
S.TIMER_cancel (Name
Subscript)
S.TIMER_response (Name,
Subscript)
8.3 Operation of the Finite State Automation
The operation of the automaton is defined by use of the formal
description technique and notation specified in ISO/TC97/SC16 N1347.
This technique is based on an extended finite state transition model
and the Pascal programming language. The technique makes use of strong
variable typing to reduce ambiguity in interpretation of the
specification.
This specification formally specifies an abstract machine which
provides a single instance of the Connectionless-Mode Network Service
by use of the Protocol For Providing the Connectionless-Mode Network
Service. It should be emphasized that this formal specification does
not in any way constrain the internal operation or design of any
actual implementation. For example, it is not required that the
program segments contained in the state transitions will actually
appear as part of an actual implementation. A formal protocol
specification is useful in that it goes as far as possible to
eliminate any degree of ambiguity or vagueness in the specification of
a protocol standard.
The formal specification contained here specifies the behavior of a
single finite-state machine, which provides the protocol
ISO DIS 8473 (May 1984) [Page 59]
^L
RFC 926 December 1984
behavior corresponding to a single independent service request. It is
expected that any actual implementation will be able to handle
behavior corresponding to many simultaneous finite state machines.
ISO DIS 8473 (May 1984) [Page 60]
^L
RFC 926 December 1984
8.3.1 Type and Constant Definitions
const
ZERO = 0;
max_user_data = 64512;
type
NSAP_addr_type = ...;
{ NSAP_addr_type defines the data type for NSAP addresses, as
passed across the Network Service Boundary. }
NPAI_addr_type = ...;
{ NPAI_addr_type defines the data type for the addresses carried in
PDUs. }
SN_addr_type = ...;
{ SN_addr_type defines the data type for addresses in the
underlying service used by this protocol. }
quality_of_service_type = ...;
{ Quality_of_service_type defines the data type for the QOS
parameter passed across the Network Service boundary. }
SN_QOS_type = ...;
{ SN_QOS_type defines the data type for the QOS parameter, if any,
passed to the underlying service used by this protocol. }
data_type = ...;
{ Data_type defines the data type for user data. Conceptually this
is equivalent to a variable length binary string. }
buffer_type = ...;
{ Buffer_type defines the data type for the memory resources used
in sending and receiving of user data. This provides capabilities
required for segmentation and reassembly. }
ISO DIS 8473 (May 1984) [Page 61]
^L
RFC 926 December 1984
timer_name_type = (lifetime_timer);
timer_data_type = ...;
network_layer_protocol_id_type = (ISO_8473_protocol_id);
version_id_type = (version1);
pdu_tp_type = (DT, ER);
options_type = ...;
{ Options_type defines the data type used to store the options part
of the PDU header. }
subnet_id_type = ...;
{ The subnet_id_type defines the data type used to locally identify
a particular underlying service used by this protocol. In general
there may be multiple underlying subnetwork (or data link)
services. }
error_type = (NO_ERROR,
TOO_MUCH_USER_DATA,
PROTOCOL_PROCEDURE_ERROR,
INCORRECT_CHECKSUM, CONGESTION,
SYNTAX_ERROR,
SEG_NEEDED_AND_NOT_PERMITTED,
DESTINATION_UNREACHABLE,
DESTINATION_UNKNOWN,
UNSPECIFIED_SRC_ROUTING_ERROR,
SYNTAX_ERROR_IN_SRC_ROUTING,
UNKNOWN_ADDRESS_IN_SRC_ROUTING,
PATH_NOT_ACCEPTABLE_IN_SRC_ROUTING,
LIFETIME_EXPIRED_IN_TRANSIT,
LIFETIME_EXPIRED_IN_REASSEMBLY,
UNSUPPORTED_OPTION_NOT_SPECIFIED,
UNSUPPORTED_PADDING_OPTION,
UNSUPPORTED_SECURITY_OPTION,
UNSUPPORTED_SRC_ROUTING_OPTION,
UNSUPPORTED_RECORDING_OF_ROUTE_OPTION,
UNSUPPORTED_QOS_MAINTENANCE_OPTION);
ISO DIS 8473 (May 1984) [Page 62]
^L
RFC 926 December 1984
nsdu_type = record
da : NSAP_addr_type;
sa : NSAP_addr_type;
qos : quality_of_service_type;
data : data_type;
end;
pdu_type = record
nlp_id : network_layer_protocol_id_type;
hli : integer;
vp_id : version_id_type; lifetime : integer;
sp : boolean;
ms : boolean;
er_flag : boolean;
pdu_tp : pdu_tp_type;
seg_len : integer;
checksum : integer;
da_len : integer;
da : NPAI_addr_type;
sa_len : integer;
sa : NPAI_addr_type;
du_id : optional integer;
so : optional integer;
tot_len : optional integer;
{ du_id, so, and tot_len are present
only if sp has the value TRUE. }
options : options_type;
data : data_type;
end;
ISO DIS 8473 (May 1984) [Page 63]
^L
RFC 926 December 1984
route_result_type =
record
subnet_id : subnet_id_type;
sn_da : SN_addr_type;
sn_sa : SN_addr_type;
segment_size : integer;
end;
ISO DIS 8473 (May 1984) [Page 64]
^L
RFC 926 December 1984
8.3.2 Interface Definitions
channel Network_access_point (User, Provider);
by User:
UNITDATA_request
(NS_Destination_address : NSAP_addr_type;
NS_Source_address : NSAP_addr_type;
NS_Quality_of_Service : quality_of_service_type;
NS_Userdata : data_type);
by Provider:
UNITDATA_indication
(NS_Destination_address : NSAP_addr_type;
NS_Source_address : NSAP_addr_type;
NS_Quality_of_Service : quality_of_service_type;
NS_Userdata : data_type);
channel Subnetwork_access_point (User, Provider);
by User:
UNITDATA_request
(SN_Destination_address : SN_addr_type;
SN_Source_address : SN_addr_type;
SN_Quality_of_Service : SN_QOS_type;
SN_Userdata : pdu_type);
by Provider:
UNITDATA_indication
(SN_Destination_address : SN_addr_type;
SN_Source_address : SN_addr_type;
SN_Quality_of_Service : SN_QOS_type;
SN_Userdata : pdu_type);
channel System_access_point (User, Provider);
by User:
TIMER_request
(Time : integer;
Name : timer_name_type;
Subscript : integer);
ISO DIS 8473 (May 1984) [Page 65]
^L
RFC 926 December 1984
TIMER_cancel
(Name : timer_name_type;
Subscript : integer);
by Provider:
TIMER_indication
(Name : timer_name_type;
Subscript : integer);
ISO DIS 8473 (May 1984) [Page 66]
^L
RFC 926 December 1984
8.3.3 Formal Machine Definition
module Connectionless_Network_Protocol_Machine
(N: Network_access_point (Provider) common queue;
SN: array [subnet_id_type] of Subnetwork_access_point
(User) common queue;
S: System_access_point (User) individual queue );
var
nsdu : nsdu_type;
pdu : pdu_type;
rcv_buf : buffer_type;
state : (INITIAL, REASSEMBLING, CLOSED);
ISO DIS 8473 (May 1984) [Page 67]
^L
RFC 926 December 1984
procedure send_error_report (error : error_type;
pdu : pdu_type);
var
er_pdu : pdu_type;
begin
if (pdu.er_flag) then
begin
er_pdu.nlp_id := ISO_8473_protocol_id;
er_pdu.vp_id := version1;
er_pdu.lifetime := get_er_lifetime(pdu.sa);
er_pdu.sp := get_er_seg_per(pdu);
er_pdu.ms := FALSE;
er_pdu.er_flag := FALSE;
er_pdu.pdu_tp := ER;
er_pdu.da_len := pdu.sa_len;
er_pdu.da := pdu.sa;
er_pdu.sa_len := get_local_NPAI_addr_len;
er_pdu.sa := get_local_NPAI_addr;
er_pdu.options := get_er_options
(error,
er_pdu.da,
pdu.options);
er_pdu.hli := get_header_length
(er_pdu.da_len, er_pdu.sa_len,
er_pdu.sp,
er_pdu.options);
er_pdu.data := get_er_data_field(error, pdu);
if (er_pdu.sp) then
begin
er_pdu.du_id :=
get_data_unit_id(er_pdu.da);
er_pdu.so := ZERO;
er_pdu.tot_len := er_pdu.hli +
size(er_pdu.data);
end;
ISO DIS 8473 (May 1984) [Page 68]
^L
RFC 926 December 1984
if (NPAI_addr_local(er_pdu.da))
then
post_error_report(er_pdu)
else
send_pdu(er_pdu);
end;
end;
ISO DIS 8473 (May 1984) [Page 69]
^L
RFC 926 December 1984
procedure send_pdu (pdu : pdu_type);
var
rte_result : route_result_type;
error_code : error_type;
send_buf : buffer_type;
data_maxsize : integer;
more_seg : boolean;
sn_qos : SN_QOS_type;
begin
send_buf := make_buffer(pdu.data);
more_seg := pdu.ms;
repeat
begin
error_code := check_parameters
(pdu.hli,
pdu.sp,
pdu.da,
pdu.options,
size(pdu.data));
if (error_code = NO_ERROR) then
begin
rte_result := route(pdu.hli,
pdu.sp,
pdu.da,
pdu.options,
size(pdu.data));
data_maxsize := rte_result.segment_size -
pdu.hli;
pdu.data := extract(send_buf,
data_maxsize);
pdu.seg_len := pdu.hli + size(pdu.data);
if (size(send_buf) = ZERO) then
pdu.ms := more_seg
else
pdu.ms := TRUE;
ISO DIS 8473 (May 1984) [Page 70]
^L
RFC 926 December 1984
pdu.checksum := get_checksum(pdu);
sn_qos := get_sn_qos
(rte_result.subnet_id,
pdu.options);
out SN[rte_result.subnet_id].UNITDATA_request
(rte_result.sn_da,
rte_result.sn_sa,
sn_qos,
pdu);
pdu.so := pdu.so + data_maxsize;
end
else if (error_code = CONGESTION) then
begin
if (send_er_on_congestion (pdu)) then
send_error_report(CONGESTION, pdu);
end
else
send_error_report(error_code, pdu);
end;
until (size_buf(data_buf) = ZERO) or
(error_code <> NO_ERROR);
end;
ISO DIS 8473 (May 1984) [Page 71]
^L
RFC 926 December 1984
procedure allocate_reassembly_resources
(pdu_tot_len : integer);
primitive;
{ This procedure allocates resources required for reassembly of a
PDU of the specified total length. If this requires discarding of a
PDU in which the ER flag is set, then an error report is returned to
the source of the discarded data unit. }
function check_parameters
(hli : integer;
sp : boolean;
da : NPAI_addr_type;
options : options_type;
datalen : integer) : error_type;
primitive;
{ This function examines various parameters associated with a PDU,
to determine whether forwarding of the PDU can continue. If a
result of NO_ERROR is returned, then the primitive route can be
called to specify the route and segment size. Otherwise this
function specifies the reason that an error has occurred. }
function data_unit_complete
(buf : buffer_type) : boolean;
primitive;
{ This function returns a boolean value specifying whether the PDU
stored in the specified buffer has been completely received. }
ISO DIS 8473 (May 1984) [Page 72]
^L
RFC 926 December 1984
function elapsed_time : integer;
primitive;
{ This function returns an estimate of the time elapsed, in 500
microsecond increments, since the PDU was transmitted by the
previous peer network entity. This estimate includes both time
spent in transit, and any time to be spent in buffers within the
local system. Although this estimate need not be precise,
overestimates are preferable to underestimates, as underestimating
the time elapsed may defeat the intent of the lifetime function. }
procedure empty_buffer
(buf : buffer_type);
primitive;
{ This procedure empties the specified buffer. }
function extract
(buf : buffer_type;
amount : integer) : data_type;
primitive;
{ This function removes the specified amount of data from
the specified buffer, and returns this data as the function
value. }
procedure free_reassembly_resources;
primitive;
{ This procedure releases the resources that had been previously
allocated by the procedure allocate_reassembly_resources. }
function get_checksum
(pdu : pdu_type) : integer;
primitive;
{ This function returns the 16 bit integer value to be placed in the
checksum field of the PDU. If the checksum facility is not being
used, then this function returns the value zero. The algorithm for
producing a correct checksum value is specified in Annex A. }
function get_data_unit_id
(da : NPAI_addr_type) : integer;
primitive;
{ This function returns a data unit identifier which is unique for
the specified destination address. }
ISO DIS 8473 (May 1984) [Page 73]
^L
RFC 926 December 1984
function get_er_data_field
(error : error_type;
pdu : pdu_type) : data_type;
primitive;
{ This function returns the correct data field for an error report,
based on the information that the specified PDU is being discarded
due to the specified error. The data field of an error report must
include the header of the discarded PDU, and may optionally contain
additional user data. }
function get_er_flag
(nsdu : nsdu_type) : boolean;
primitive;
{ This function returns a boolean value to be used as the error
report flag in a PDU which transmits the specified nsdu. If the PDU
must be discarded at some future time, an error report can be
returned only if this value is set to TRUE. }
function get_er_lifetime
(da : NPAI_addr_type) : integer;
primitive;
{ This function returns the lifetime value to be used for an error
report being sent to the specified destination address. }
function get_er_options
(error : error_type;
da : NPAI_addr_type;
options : options_type) : options_type;
primitive;
{ This function returns the options field of an error report, based
on the reason for discard, and the destination address and options
field of the discarded PDU. The options field contains the reason
for discard option, and may contain other optional fields. }
ISO DIS 8473 (May 1984) [Page 74]
^L
RFC 926 December 1984
function get_er_seg_per
(pdu : pdu_type) : boolean;
primitive;
{ This function returns the boolean value which will be used for the
segmentation permitted flag of an error report. }
function get_header_len
(da_len : integer;
sa_len : integer;
sp : boolean;
options : options_type) : integer;
primitive;
{ This function returns the header length, in octets. This depends
upon the lengths of the source and destination addresses, whether
the segmentation part of the header is present, and the length of
the options part. }
function get_lifetime
(da : NSAP_addr_type;
qos : quality_of_service_type) : lifetime_type;
primitive;
{ This function returns the lifetime value to be used for a PDU,
based upon the destination address and requested quality of service.
}
function get_local_NPAI_addr : NPAI_addr_type;
primitive;
{ This functions returns the local address as used in the protocol
header. }
function get_local_NPAI_addr_len : integer;
primitive;
{ This functions returns the length of the local address as used in
the protocol header. }
ISO DIS 8473 (May 1984) [Page 75]
^L
RFC 926 December 1984
function get_NPAI
(addr : NSAP_addr_type) : NPAI_addr_type;
primitive;
{ This function returns the network address as used in the protocol
header, or "Network Protocol Addressing Information", corresponding
to the specified NSAP address. }
function get_NPAI_len
(addr : NSAP_addr_type) : integer;
primitive;
{ This function returns the length of the network address
corresponding to a specified NSAP address. }
function get_NSAP_addr
(addr : NPAI_addr_type;
len : integer) : NSAP_addr_type;
primitive;
{ This function returns the NSAP address corresponding to the
network protocol addressing information (as it appears in the
protocol header) of the specified length. }
function get_options
(da : NSAP_addr_type;
qos : quality_of_service_type) : options_type;
primitive;
{ This function returns the options field for a PDU, based on the
requested destination address and quality of service. }
function get_seg_permitted
(da : NSAP_addr_type;
qos : quality_of_service_type) : boolean;
primitive;
{ This function returns the boolean value to be used in the
segmentation permitted field of a PDU. This value may depend upon
the destination address, requested quality of service, and the
length of the user data. }
ISO DIS 8473 (May 1984) [Page 76]
^L
RFC 926 December 1984
function get_sn_qos
(subnet_id : subnet_id_type;
options : options_type) : SN_QOS_type;
primitive;
{ This function returns the quality of service to be used on the
specified subnetwork, in order to obtain the quality of service (if
any) and other parameters requested in the options part of the PDU.
}
function get_qos
(options : options_type) : quality_of_service_type;
primitive;
{ This function determines, to the extent possible, the quality of
service that was obtained for a particular PDU, based upon the
quality of service and other information contained in the options
part of the PDU header. }
function make_buffer
(data : data_type) : buffer_type;
primitive;
{ This function places the specified data in a newly created buffer.
The precise manner of handling buffers is implementation specific.
This newly created buffer is returned as the function value. }
procedure merge_seg
(buf : buffer_type;
so : integer;
data : data_type);
primitive;
{ This procedure merges the specified data into the specified
buffer, based on the specified segment offset of the data. }
function NPAI_addr_local
(addr : NPAI_addr_type) : boolean;
primitive;
{ This function returns the boolean value TRUE only if the specified
network protocol addressing information specifies a local address. }
ISO DIS 8473 (May 1984) [Page 77]
^L
RFC 926 December 1984
function NSAP_addr_local
(addr : NSAP_addr_type) : boolean;
primitive;
{ This function returns the boolean value TRUE only if the specified
NSAP address specifies a local address. }
procedure post_error_report
(er_pdu : pdu_type);
primitive;
{ This procedure posts the specified error report (ER) type PDU to
the appropriate local entity that handles error reports. }
function route
(hli : integer;
sp : boolean;
da : NPAI_addr_type;
options : options_type;
datalen : integer) : route_result_type;
primitive;
{ This function determines the route to be followed by a PDU
segment, as well as the segment size. Note that in general, the
segment size and route may be mutually dependent. This
determination is made on the basis of the header length, the
segmentation permitted flag, the destination address, several
parameters (such as source routing) contained in the options part of
the PDU header, and the length of data. This function returns a
structure that specifies the subnetwork on which the segment should
be transmitted, the source and destination addresses to be used on
the subnetwork, and the segment size. This routine may only be
called if the primitive function check_parameters has already
determined that an error will not occur. }
ISO DIS 8473 (May 1984) [Page 78]
^L
RFC 926 December 1984
function send_er_on_congestion
(pdu : pdu_type) : boolean;
primitive;
{ This function returns the boolean value true if an error report
should be sent when the indicated data unit is discarded due to
congestion. Note that if the value true is returned, then the
er_flag field of the discarded data unit must still be checked
before an error report can be sent. }
function size
(data : data_type) : integer;
primitive;
{ This function returns the length, in octets, of the specified
data. }
function size_buf
(buf : buffer_type) : integer;
primitive;
{ This function returns the length, in octets, of the data contained
in the specified buffer. }
initialize
begin
state to INITIAL;
end;
ISO DIS 8473 (May 1984) [Page 79]
^L
RFC 926 December 1984
trans (* begin transitions *)
from INITIAL to CLOSED
when N.UNITDATA_request
provided not NSAP_addr_local(NS_Destination_Address)
begin
nsdu.da := NS_Destination_Address;
nsdu.sa := NS_Source_Address;
nsdu.qos := NS_Quality_o _Service;
nsdu.data := NS_Userdata;
pdu.nlp_id := ISO_8473_protocol_id;
pdu.vp_id := version1;
pdu.lifetime := get_lifetime(nsdu.da, nsdu.qos);
pdu.sp := get_seg_permitted(nsdu.da, nsdu.qos);
pdu.ms := FALSE;
pdu.er_flag := get_er_flag(nsdu);
pdu.pdu_tp := DT;
pdu.da_len := get_NPAI_len(nsdu.da);
pdu.da := get_NPAI(nsdu.da);
pdu.sa_len := get_NPAI_len(nsdu.sa);
pdu.sa := get_NPAI(nsdu.sa);
pdu.options := get_options(nsdu.da, nsdu.qos);
pdu.data := nsdu.data;
pdu.hli := get_header_len(pdu.da_len,
pdu.sa_len,
pdu.sp,
pdu.options);
if (pdu.sp) then
begin
pdu.du_id := get_data_unit_id(pdu.da);
pdu.so := ZERO;
pdu.tot_len := pdu.hli + size(pdu.data);
end;
if (size(pdu.data) > max_user_data) then
send_error_report(TOO_MUCH_USER_DATA, pdu)
else
send_pdu(pdu);
end;
ISO DIS 8473 (May 1984) [Page 80]
^L
RFC 926 December 1984
from INITIAL to CLOSED
when N.UNITDATA_request
provided NSAP_addr_local(NS_Destination_Address)
begin
nsdu.da := NS_Destination_Address;
nsdu.sa := NS_Source_Address;
nsdu.qos := NS_Quality_of_Service;
nsdu.data := NS_Userdata;
out N.UNITDATA_indication
(nsdu.da, nsdu.sa, nsdu.qos, nsdu.data);
end;
from INITIAL to CLOSED
when SN[subnet_id].UNITDATA_indication
provided NPAI_addr_local(SN_Userdata.da) and
SN_Userdata.so = ZERO and
not SN_Userdata.ms
begin
pdu := SN_Userdata;
if (pdu.pdu_tp = DT) then
out N.UNITDATA_indication
(get_NSAP_addr(pdu.da_len, pdu.da),
get_NSAP_addr(pdu.sa_len, pdu.sa),
get_qos(pdu.options),
pdu.data)
else
post_error_report(pdu);
end;
ISO DIS 8473 (May 1984) [Page 81]
^L
RFC 926 December 1984
from INITIAL to REASSEMBLING
when SN[subnet_id].UNITDATA_indication
provided NPAI_addr_local(SN_Userdata.da) and
((SN_Userdata.so > ZERO) or (SN_Userdata.ms))
begin
pdu := SN_Userdata;
allocate_reassembly_resources(pdu.tot_len);
empty_buffer(rcv_buf);
merge_seg
(rcv_buf,
pdu.so,
pdu.data);
out S.TIMER_request
(pdu.lifetime,
lifetime_timer,
ZERO);
end;
from INITIAL to CLOSED
when SN[subnet_id].UNITDATA_indication
provided not NPAI_addr_local(SN_Userdata.da)
begin
pdu := SN_Userdata;
if (pdu.lifetime > elapsed_time) then
begin
pdu.lifetime := pdu.lifetime - elapsed_time;
send_pdu(pdu);
end
else
send_error_report(LIFETIME_EXPIRED, pdu);
end;
ISO DIS 8473 (May 1984) [Page 82]
^L
RFC 926 December 1984
from REASSEMBLING to REASSEMBLING
when SN[subnet_id].UNITDATA_indication
provided (SN_Userdata.du_id = pdu.du_id) and
(SN_Userdata.da_len = pdu.da_len) and
(SN_Userdata.da = pdu.da) and
(SN_Userdata.sa_len = pdu.sa_len) and
(SN_Userdata.sa = pdu.sa)
begin
merge_seg
(rcv_buf,
SN_Userdata.so,
SN_Userdata.data);
end;
from REASSEMBLING to CLOSED
provided data_unit_complete(rcv_buf)
no delay
begin
if (pdu.pdu_tp = DT) then
out N.UNITDATA_indication
(get_NSAP_addr(pdu.da_len, pdu.da),
get_NSAP_addr(pdu.sa_len, pdu.sa),
get_qos(pdu.options),
extract (rcv_buf, size_buf(rcv_buf)))
else
post_error_report(pdu);
out S.TIMER_cancel(lifetime_timer,ZERO);
free_reassembly_resources;
end;
from REASSEMBLING to CLOSED
when S.TIMER_indication
begin
send_error_report(LIFETIME_EXPIRED, pdu);
end;
ISO DIS 8473 (May 1984) [Page 83]
^L
RFC 926 December 1984
9 CONFORMANCE
For conformance to this International Standard, the ability to
originate, manipulate, and receive PDUs in accordance with the full
protocol (as opposed to the "non-segmenting" or "Inactive Network Layer
Protocol" subsets) is required.
Additionally, the provision of the optional functions described in
Section 6.17 and enumerated in Table 9-1 must meet the requirements
described therein.
Additionally, conformance to the Standard requires adherence to the
formal description of Section 8 and to the structure and encoding of
PDUs of Section 7.
If and only if the above requirements are met is there conformance to
this International Standard.
9.1 Provision of Functions for Conformance
The following table categorizes the functions in Section 6 with
respect to the type of system providing the function:
ISO DIS 8473 (May 1984) [Page 84]
^L
RFC 926 December 1984
+---------------------------------------------------------+
| Function | Send | Forward | Receive |
|---------------------------------------------------------|
| PDU Composition | M | - | - |
| PDU Decomposition | M | - | M |
| Header Format Analysis | - | M | M |
| PDU Lifetime Control | - | M | I |
| Route PDU | - | M | - |
| Forward PDU | M | M | - |
| Segment PDU | M | (note 1)| - |
| Reassemble PDU | - | I | M |
| Discard PDU | - | M | M |
| Error Reporting | - | M | M |
| PDU Header Error Detection | M | M | M |
| Padding |(note 2)| (note 2)| (note 2)|
| Security | - | (note 3)| (note 3)|
| Complete Source Routing | - | (note 3)| - |
| Partial Source Routing | - | (note 4)| - |
| Record Route | - | (note 4)| - |
| QoS Maintenance | - | (note 4)| - |
+---------------------------------------------------------+
Table 9-1. Categorization of Functions
+---------------------------------------------------------+
| KEY: |
| M : Mandatory Function; must be implemented |
| - : Not applicable |
| I : Implementation option, as described in text |
+---------------------------------------------------------+
Notes:
1) The Segment PDU function is in general mandatory for an
intermediate system. However, a system which is to be connected
only to subnetworks all offering the same maximum SNSDU size
(such as identical Local Area Networks) will not need to perform
this function and therefore does not need to implement it.
If this function is not implemented, this shall be stated as part
of the specification of the implementation.
ISO DIS 8473 (May 1984) [Page 85]
^L
RFC 926 December 1984
2) The correct treatment of the padding function requires no
processing. A conforming implementation shall support the
function, to the extent of ignoring this parameter wherever it
may appear.
3) This function may or may not be supported. If an implementation
does not support this function, and the function is selected by a
PDU, then the PDU shall be discarded, and an ER PDU shall be
generated and forwarded to the originating network-entity if the
Error Report flag is set.
4) This function may or may not be supported. If an implementation
does not support this function, and the function is selected by a
PDU, then the function is not provided and the PDU is processed
exactly as though the function was not selected. The PDU shall
not be discarded.
ISO DIS 8473 (May 1984) [Page 86]
^L
RFC 926 December 1984
ANNEXES
(These annexes are provided for information for implementors and are
not an integral part of the body of the Standard.)
ANNEX A. SUPPORTING TECHNICAL MATERIAL
A.1 Data Unit Lifetime
There are two primary purposes of providing a PDU lifetime capability
in the ISO 8473 Protocol. One purpose is to ensure against unlimited
looping of protocol data units. Although the routing algorithm should
ensure that it will be very rare for data to loop, the PDU lifetime
field provides additional assurance that loops will be limited in
extent.
The other important purpose of the lifetime capability is to provide
for a means by which the originating network entity can limit the
Maximum NSDU lifetime. ISO Transport Protocol Class 4 assumes that
there is a particular Maximum NSDU Lifetime in order to protect
against certain error states in the connection establishment and
termination phases. If a TPDU does not arrive within this time, then
there is no chance that it will ever arrive. It is necessary to make
this assumption, even if the Network Layer does not guarantee any
particular upper bound on NSDU lifetime. It is much easier for
Transport Protocol Class 4 to deal with occasional lost TPDUs than to
deal with occasional very late TPDUs. For this reason, it is
preferable to discard very late TPDUs than to deliver them. Note that
NSDU lifetime is not directly associated with the retransmission of
lost TPDUs, but relates to the problem of distinguishing old
(duplicate) TPDUs from new TPDUs.
Maximum NSDU Lifetime must be provided to transport protocol entity in
units of time; a transport entity cannot count "hops". Thus NSDU
lifetime must be calculated in units of time in order to be useful in
determining Transport timer values.
In the absence of any guaranteed bound, it is common to simply guess
some value which seems like a reasonable compromise. In essence one is
simply assuming that "surely no TPDU would ever take more than 'x'
seconds to traverse the network." This value is probably chosen by
observation of past performance, and may
ISO DIS 8473 (May 1984) [Page 87]
^L
RFC 926 December 1984
vary with source and destination.
Three possible ways to deal with the requirement for a limit on the
maximum NSDU lifetime are: (1) specify lifetime in units of time,
thereby requiring intermediate systems to decrement the lifetime field
by a value which is an upper bound on the time spent since the
previous intermediate system, and have the Network Layer discard
protocol data units whose lifetime has expired; (2) provide a
mechanism in the Transport Layer to recognize and discard old TPDUs;
or (3) ignore the problem, anticipating that the resulting
difficulties will be rare. Which solution should be followed depends
in part upon how difficult it is to implement solutions (1) and (2),
and how strong the transport requirement for a bounded time to live
really is.
There is a problem with solution (2) above, in that transport entities
are inherently transient. In case of a computer system outage or other
error, or in the case where one of the two endpoints of a connection
closes without waiting for a sufficient period of time (approximately
twice Maximum NSDU Lifetime), it is possible for the Transport Layer
to have no way to know whether a particular TPDU is old unless
globally synchronized clocks are used (which is unlikely). On the
other hand, it is expected that intermediate systems will be
comparatively stable. In addition, even if intermediate systems do
fail and resume processing without memory of the recent past, it will
still be possible (in most instances) for the intermediate system to
easily comply with lifetime in units of time, as discussed below.
It is not necessary for each intermediate system to subtract a precise
measure of the time that has passed since an NPDU (containing the TPDU
or a segment thereof) has left the previous intermediate system. It is
sufficient to subtract an upper bound on the time taken. In most
cases, an intermediate system may simply subtract a constant value
which depends upon the typical near-maximum delays that are
encountered in a specific subnetwork. It is only necessary to make an
accurate estimate on a per NPDU basis for those subnetworks which have
both a relatively large maximum delay, and a relatively large
variation in delay.
As an example, assume that a particular local area network has short
average delays, with overall delays generally in the 1 to 5
ISO DIS 8473 (May 1984) [Page 88]
^L
RFC 926 December 1984
millisecond range and with occasional delays up to 20 milliseconds. In
this case, although the relative range in delays might be large (a
factor of 20), it would still not be necessary to measure the delay
for actual NPDUs. A constant value of 20 milliseconds (or more) can be
subtracted for all delays ranging from .5 seconds to .6 seconds (.5
seconds for the propagation delay, 0 to .1 seconds for queueing delay)
then the constant value .6 seconds could be used.
If a third subnetwork had normal delays ranging from .1 to 1 second,
but occasionally delivered an NPDU after a delay of 15 seconds, the
intermediate system attached to this subnetwork might be required to
determine how long it has actually take the PDU to transit the
subnetwork. In this last example, it is likely to be more useful to
have the intermediate systems determine when the delays are extreme ad
discard very old NPDUs, as occasional large delays are precisely what
causes the Transport Protocol the most trouble.
In addition to the time delay within each subnetwork, it is important
to consider the time delay within intermediate systems. It should be
relatively simple for those gateways which expect to hold on to some
data-units for significant periods of time to decrement the lifetime
appropriately.
Having observed that (i) the Transport Protocol requires Maximum NSDU
to be calculated in units of time; (ii) in the great majority of
cases, it is not difficult for intermediate systems to determine a
valid upper bound on subnetwork transit time; and (iii) those few
cases where the gateways must actually measure the time take by a NPDU
are precisely the cases where such measurement truly needs to be made,
it can be concluded that NSDU lifetime should in fact be measured in
units of time, and that intermediate systems should required to
decrement the lifetime field of the ISO 8473 Protocol by a value which
represents an upper bound on the time actually taken since the
lifetime field was last decremented.
A.2 Reassembly Lifetime Control
In order to ensure a bound on the lifetime of NSDUs, and to
effectively manage reassembly buffers in the Network Layer, the
Reassembly Function described in Section 6 must control the
ISO DIS 8473 (May 1984) [Page 89]
^L
RFC 926 December 1984
lifetime of segments representing partially assembled PDUs. This annex
discusses methods of bounding reassembly lifetime and suggests some
implementation guidelines for the reassembly function.
When segments of a PDU arrive at a destination network-entity, they
are buffered until an entire PDU is received, assembled, and passed to
the PDU Decomposition Function. The connectionless Internetwork
Protocol does not guarantee the delivery of PDUs; hence, it is
possible for some segments of a PDU to be lost or delayed such that
the entire PDU cannot be assembled in a reasonable length of time. In
the case of loss of a PDU "segment", for example, this could be
forever. There are a number of possible schemes to prevent this:
a) Per-PDU reassembly timers,
b) Extension of the PDU Lifetime control function, and
c) Coupling of the Transport Retransmission timers.
Each of these methods is discussed in the subsections which follow.
A.2.1 Method (a)
assigns a "reassembly lifetime" to each PDU received and identified
by its Data-unit Identifier. This is a local, real time which is
assigned by the reassembly function and decremented while some, but
not all segments of the PDU are being buffered by the destination
network-entity. If the timer expires, all segments of the PDU are
discarded, thus freeing the reassembly buffers and preventing a "very
old" PDU from being confused with a newer one bearing the same
Data-unit Identifier. For this scheme to function properly, the
timers must be assigned in such a fashion as to prevent the
phenomenon of Reassembly Interference (discussed below). In
particular, the following guidelines should be followed:
1) The Reassembly Lifetime must be much less than the maximum PDU
lifetime of the network (to prevent the confusion of old and new
data-units).
ISO DIS 8473 (May 1984) [Page 90]
^L
RFC 926 December 1984
2) The lifetime should be less than the Transport protocol's
retransmission timers minus the average transit time of the
network. If this is not done, extra buffers are tied up holding
data which has already been retransmitted by the Transport
Protocol. (Note that an assumption has been made that such
timers are integral to the Transport Protocol, which in some
sense, dictates that retransmission functions must exist in the
Transport Protocol employed).
A.2.2 Method (b)
is feasible if the PDU lifetime control function operates based on
real or virtual time rather than hop-count. In this scheme, the
lifetime field of all PDU segments of a Data-unit continues to be
decremented by the reassembly function of the destination
network-entity as if the PdU were still in transit (in a sense, it
still is). When the lifetime of any segment of a partially
reassembled PDU expires, all segments of that PDU are discarded. This
scheme is attractive since the delivery behavior of the ISO 8473
Protocol would be identical for segmented and unsegmented PDUs.
A.2.3 Method (c)
couples the reassembly lifetime directly to the Transport Protocol's
retransmission timers, and requires that Transport Layer management
make known to Network Layer Management (and hence, the Reassembly
Function) the values of its retransmission timers for each source
from which it expects to be receiving traffic. When a PDU segment is
received from a source, the retransmission time minus the anticipated
transit time becomes the reassembly lifetime of that PDU. If this
timer expires before the entire PDU has been reassembled, all
segments of the PDU are discarded. This scheme is attractive since it
has a low probability of holding PDU segments that have already been
retransmitted by the source Transport-entity; it has, however, the
disadvantage of depending on reliable operation of the Transport
Protocol to work effectively. If the retransmission timers are not
set correctly, it is possible that all PDUs would be discarded too
soon, and the Transport Protocol would make no progress.
A.3 The Power of the Header Error Detection Function
ISO DIS 8473 (May 1984) [Page 91]
^L
RFC 926 December 1984
A.3.1 General
The form of the checksum used for PDU header error detection is such
that it is easily calculated in software or firmware using only two
additions per octet of header, yet it has an error detection power
approaching (but not quite equalling) that of techniques (such as
cyclic polynomial checks) which involve calculations that are much
more time- or space-consuming. This annex discusses the power of this
error detection function.
The checksum consists of two octets, either of which can assume any
value except zero. That is, 255 distinct values for each octet are
possible. The calculation of the two octets is such that the value of
either is independent of the value of the other, so the checksum has
a total of 255 x 255 = 65025 values. If one considers all ways in
which the PDU header might be corrupted as equally likely, then there
is only one chance in 65025 that the checksum will have the correct
value for any particular corruption. This corresponds to 0.0015 of
all possible errors.
The remainder of this annex considers particular classes of errors
that are likely to be encountered. The hope is that the error
detection function will be found to be more powerful, or at least no
less powerful, against these classes as compared to errors in
general.
A.3.2 Bit Alteration Errors
First considered are classes of errors in which bits are altered, but
no bits are inserted nor deleted. This section does not consider the
case where the checksum itself is erroneously set to be all zero;
this case is discussed in section A.3.4.
A burst error of length b is a corruption of the header in which all
of the altered bits (no more than b in number) are within a single
span of consecutively transmitted bits that is b bits long. Checksums
are usually expected to do well against burst errors of a length not
exceeding the number of bits in the header error detection parameter
(16 for the PDU header). The PDU header error detection parameter in
fact fails to detect only 0.000019 of all such errors, each distinct
burst error of length 16 or less being considered to be equally
likely. In particular,
ISO DIS 8473 (May 1984) [Page 92]
^L
RFC 926 December 1984
it cannot detect an 8-bit burst in which an octet of zero is altered
to an octet of 255 (all bits = 1) or vice versa. Similarly, it fails
to detect the swapping of two adjacent octets only if one is zero and
the other is 255.
The PDU header error detection, as should be expected, detects all
errors involving only a single altered bit.
Undetected errors involving only two altered bits should occur only
if the two bits are widely separated (and even then only rarely). The
PDU header error detection detects all double bit errors for which
the spacing between the two altered bits is less than 2040 bits = 255
octets. Since this separation exceeds the maximum header length, all
double bit errors are detected.
The power to detect double bit errors is an advantage of the checksum
algorithm used for the protocol, versus a simple modulo 65536
summation of the header split into 16 bit fields. This simple
summation would not catch all such double bit errors. In fact, double
bit errors with a spacing as little as 16 bits apart could go
undetected.
A.3.3 Bit Insertion/Deletion Errors
Although errors involving the insertion or deletion of bits are in
general neither more nor less likely to go undetected than are all
other kinds of general errors, at least one class of such errors is
of special concern. If octets, all equal to either zero or 255, are
inserted at a point such that the simple sum CO in the running
calculation (described in Annex C) happens to equal zero, then the
error will go undetected. This is of concern primarily because there
are two points in the calculation for which this value for the sum is
not a rare happenstance, but is expected; namely, at the beginning
and the end. That is, if the header is preceded or followed by
inserted octets all equal to zero or 255 then no error is detected.
Both cases are examined separately.
Insertion of erroneous octets at the beginning of the header
completely misaligns the header fields, causing them to be
misinterpreted. In particular, the first inserted octet is
interpreted as the network layer protocol identifier, probably
eliminating any knowledge that the data unit is related to the
ISO DIS 8473 (May 1984) [Page 93]
^L
RFC 926 December 1984
ISO 8473 Protocol, and thereby eliminating any attempt to perform the
checksum calculation or invoking a different form of checksum
calculation. An initial octet of zero is reserved for the Inactive
Network Layer Protocol. This is indeed a problem but not one which
can be ascribed to the form of checksum being used. Therefore, it is
not discussed further here.
Insertion of erroneous octets at the end of the header, in the
absence of other errors, is impossible because the length field
unequivocally defines where the header ends. Insertion or deletion of
octets at the end of the header requires an alteration in the value
of the octet defining the header length. Such an alteration implies
that the value of the calculated sum at the end of the header would
not be expected to have the dangerous value of zero and consequently
that the error is just as likely to be detected as is any error in
general.
Insertion of an erroneous octet in the middle of the header is
primarily of concern if the inserted octet has either the value zero
or 255, and if the variable CO happens to have the value zero at this
point. In most cases, this error will completely destroy the parsing
of the header, which will cause the data unit to e discarded. In
addition, in the absence of any other error, the last octet of the
header will be thought to be data. This in turn will cause the header
to end in the wrong place. In the case where the header otherwise can
parse correctly, the last field will be found to be missing. Even in
the case where necessary, the length field is the padding option, and
therefore not necessary, the length field for the padding function
will be inconsistent with the header length field, and therefore the
error can be detected.
A.3.4 Checksum Non-calculation Errors
Use of the header error detection function is optional. The choice of
not using it is indicated by a checksum parameter value of zero. This
creates the possibility that the two octets of the checksum parameter
(neither of which is generated as being zero) could both be altered
to zero. This would in effect be an error not detected by the
checksum since the check would not be made. One of three
possibilities exists:
1) A burst error of length sixteen (16) which sets the entire
ISO DIS 8473 (May 1984) [Page 94]
^L
RFC 926 December 1984
checksum to zero. Such an error could not be detected; however, it
requires a particular positioning of the burst within the
header. [A calculation of its effect on overall detectability of
burst errors depends upon the length of the header.]
2) All single bit errors are detected. Since both octets of the
checksum field must be non-zero when the checksum is being used,
no single bit error can set the checksum to zero.
3) Where each of the two octets of the checksum parameter has a
value that is a power of two, such that only one bit in each
equals one (1), then a zeroing of the checksum parameter could
result in an undetected double bit error. Furthermore, the two
altered bits have a separation of less than sixteen (16), and
could be consecutive. This is clearly a decline from the
complete detectability previously described.
Where a particular administration is highly concerned about the
possibility of accidental zeroing of the checksum among data units
within its domain, then the administration may impose the restriction
that all data units whose source or destination lie within its domain
must make use of the header error detection function. Any data units
which do not could be discarded, nor would they be allowed outside
the domain. This protects against errors that occur within the
domain, and would protect all data units whose source or destination
lies within the domain, even where the data path between all such
pairs crosses other domains (errors outside the protected domain
notwithstanding).
ISO DIS 8473 (May 1984) [Page 95]
^L
RFC 926 December 1984
ANNEX B. NETWORK MANAGEMENT
The following topics are considered to be major components of Network
Layer management:
A. Routing
Considered by many to be the most crucial element of Network Layer
management, since management of the Routing algorithms for networking
seem to be an absolutely necessary prerequisite to a practical
networking scheme.
Routing management consists of three parts; forwarding, decision, and
update. Management of forwarding is the process of interpreting the
Network Layer address to properly forward NSDUs on its next network
hop on a route through the network. Management of decision is the
process of choosing routes for either connections or NSDUs, depending
on whether the network is operating a connection-oriented or
connectionless protocol. The decision component will be driven by a
number of considerations, not the least of which are those associated
with Quality of Service. Management of update is the management
protocol(s) used to exchange information among
intermediate-systems/network- entities which is used in the decision
component to determine routes.
To what extent is it desirable and/or practical to pursue a single
OSI network routing algorithm and associated Management protocol(s)?
It is generally understood that it is impractical to expect ISO to
adopt a single global routing algorithm. On the other hand, it is
recognized that having no standard at all upon which to make routing
decisions effectively prevents an internetwork protocol from working
at all. One possible compromise would be to define the principles for
the behavior of an internetwork routing algorithm. A possible next
step would be to specify the types of information that must be
propagated among the intermediate-systems/network-entities via their
update procedures. The details of the updating protocol might then be
left to bilateral agreements among the cooperating administrations.
ISO DIS 8473 (May 1984) [Page 96]
^L
RFC 926 December 1984
B. Statistical Analysis
These management functions relate to the gathering and reporting of
information about the real-time behavior of the global network. They
consist of Data counts such as number of PDUs forwarded, entering
traffic, etc., and Event Counts such as topology changes, quality of
service changes, etc.
C. Network Control
These management functions are those related to the control of the
global network, and possibly could be performed by a Network Control
Center(s). The control functions needed are not al all clear. Neither
are the issues relating to what organization(s) is/are responsible
for the management of the environment. Should there be a Network
Control Center distinct from those provided by the subnetwork
administrations? What subnetwork management information is needed by
the network management components to perform their functions?
D. Directory Mapping Functions
Does the Network layer contain a Directory function as defined in the
Reference Model? Current opinion is that the Network Layer restricts
itself to the function of mapping NSAP addresses to routes.
E. Congestion Control
Does this come under the umbrella of Network Layer management? How?
F. Configuration Control
This is tightly associated with the concepts of Resource Management,
and is generally considered to be somehow concerned with the control
of the resources used in the management of the global network. The
resources which have to be managed are Bandwidth (use of subnetwork
resources), Processor (CPU), and Memory (buffers). Where is the
responsibility for resources assigned, and are they appropriate for
standardization? It appears that these
ISO DIS 8473 (May 1984) [Page 97]
^L
RFC 926 December 1984
functions are tightly related to how one signals changes in Quality
of Service.
G. Accounting
What entities, administrations, etc., are responsible for network
accounting? How does this happen? What accounting information, if
any, is required from the subnetworks in order to charge for network
resources? Who is charged? To what degree is this to be standardized?
ISO DIS 8473 (May 1984) [Page 98]
^L
RFC 926 December 1984
ANNEX C. ALGORITHMS FOR PDU HEADER ERROR DETECTION FUNCTION
This Annex describes algorithm which may be used to computer, check and
update the checksum field of the PDU Header in order to provide the PDU
Header Error Detection function described in Section 6.11.
C.1 Symbols used in algorithms
CO,C1 variables used in the algorithms
i number (i.e., position) of an octet within the header
n number (i.e., position) of the first octet of the checksum
parameter (n=8)
L length of the PDU header in octets
X value of octet one of the checksum parameter
Y value of octet two of the checksum parameter
a octet occupying position i of the PDU header
C.2 Arithmetic Conventions
Addition is performed in one of the two following modes:
a) modulo 255 arithmetic;
b) eight-bit one's complement arithmetic in which, if any of the
variables has the value minus zero (i.e., 255) it shall be
regarded as though it was plus zero (i.e., 0).
C.3 Algorithm for Generating Checksum Parameters
A: Construct the complete PDU header with the value of the checksum
parameter field set to zero;
B: Initialize C0 and C1 to zero;
C: Process each octet of the PDU header sequentially from i = 1 to L
by
a) adding the value of the octet to C0; then
b) adding the value of C0 to C1;
D: Calculate X = (L-8)C0 - C1 (modulo 255) and Y = (L-7) (-C0) + C1
(modulo 255)
ISO DIS 8473 (May 1984) [Page 99]
^L
RFC 926 December 1984
E: If X = 0, set X = 255;
F: If Y = 0, set Y = 255;
G: Place the values X and Y in octets 8 and 9 respectively.
C.4 Algorithm for Checking Checksum Parameters
A: If octets 8 and 9 of PDU header both contain 0 (all bits off),
then the checksum calculation has succeeded; otherwise initialize
C1 = 0, C0 - 0 and proceed;
B: process each octet of the PDU header sequentially from i = 1 to L
by
a) adding the value of the octet to C0; then
b) adding the value of C0 to C1;
C: If, when all the octets have been processed, C0 = C1 = 0 (modulo
255) then the checksum calculation has succeeded; otherwise, the
checksum calculation has failed.
C.5 Algorithm to adjust checksum parameter when an octet is altered
This algorithm adjusts the checksum when an octet (such as the
lifetime field) is altered. Suppose the value in octet k is changed by
Z = new_value - old_value.
If X and Y denote the checksum values held in octets n and n+1,
respectively, then adjust X and Y as follows:
If X = 0 and Y = 0 do nothing, else;
X := (k-n-1)Z + X (modulo 255) and
Y := (n-k)Z + Y (modulo 255).
If X is equal to zero, then set it to 255; and
similarly for Y.
For this Protocol, n = 8. If the octet being altered is the lifetime
field, k = 4. For the case where the lifetime is decreased by 1 unit
(Z = -1), the results simplify to
ISO DIS 8473 (May 1984) [Page 100]
^L
RFC 926 December 1984
X := X + 5 (modulo 255) and
Y := Y - 4 (modulo 255).
Note:
To derive this result, assume that when octet k has the value Z
added to it then X and Y have values ZX and ZY added to them. For
the checksum parameters to satisfy the conditions of Section 6.11
both before and after the values are added, the following is
required:
Z + ZX + ZY = 0 (modulo 255) and
(L-k+1)Z + (L-n+1)ZX + (L-n)ZY = 0 (modulo 255).
Solving these equations simultaneously yields ZX = (k-n-1)Z and ZY +
(m-k)Z.
ISO DIS 8473 (May 1984) [Page 101]
^L
|