1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
|
Internet Engineering Task Force (IETF) P. Hoffman
Request for Comments: 9499 ICANN
BCP: 219 K. Fujiwara
Obsoletes: 8499 JPRS
Updates: 2308 March 2024
Category: Best Current Practice
ISSN: 2070-1721
DNS Terminology
Abstract
The Domain Name System (DNS) is defined in literally dozens of
different RFCs. The terminology used by implementers and developers
of DNS protocols, and by operators of DNS systems, has changed in the
decades since the DNS was first defined. This document gives current
definitions for many of the terms used in the DNS in a single
document.
This document updates RFC 2308 by clarifying the definitions of
"forwarder" and "QNAME". It obsoletes RFC 8499 by adding multiple
terms and clarifications. Comprehensive lists of changed and new
definitions can be found in Appendices A and B.
Status of This Memo
This memo documents an Internet Best Current Practice.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
BCPs is available in Section 2 of RFC 7841.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
https://www.rfc-editor.org/info/rfc9499.
Copyright Notice
Copyright (c) 2024 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Revised BSD License text as described in Section 4.e of the
Trust Legal Provisions and are provided without warranty as described
in the Revised BSD License.
Table of Contents
1. Introduction
2. Names
3. DNS Response Codes
4. DNS Transactions
5. Resource Records
6. DNS Servers and Clients
7. Zones
8. Wildcards
9. Registration Model
10. General DNSSEC
11. DNSSEC States
12. Security Considerations
13. IANA Considerations
14. References
14.1. Normative References
14.2. Informative References
Appendix A. Definitions Updated by This Document
Appendix B. Definitions First Defined in This Document
Acknowledgements
Index
Authors' Addresses
1. Introduction
The Domain Name System (DNS) is a simple query-response protocol
whose messages in both directions have the same format. (Section 2
gives a definition of "global DNS", which is often what people mean
when they say "the DNS".) The protocol and message format are
defined in [RFC1034] and [RFC1035]. These RFCs defined some terms,
and later documents defined others. Some of the terms from [RFC1034]
and [RFC1035] have somewhat different meanings now than they did in
1987.
This document contains a collection of a wide variety of DNS-related
terms, organized loosely by topic. Some of them have been precisely
defined in earlier RFCs, some have been loosely defined in earlier
RFCs, and some are not defined in an earlier RFC at all.
Other organizations sometimes define DNS-related terms in their own
way. For example, the WHATWG defines "domain" at
<https://url.spec.whatwg.org/>. The Root Server System Advisory
Committee (RSSAC) has a good lexicon [RSSAC026].
Most of the definitions listed here represent the consensus
definition of the DNS community -- both protocol developers and
operators. Some of the definitions differ from earlier RFCs, and
those differences are noted. In this document, where the consensus
definition is the same as the one in an RFC, that RFC is quoted.
Where the consensus definition has changed somewhat, the RFC is
mentioned but the new stand-alone definition is given. See
Appendix A for a list of the definitions that this document updates.
It is important to note that, during the development of this
document, it became clear that some DNS-related terms are interpreted
quite differently by different DNS experts. Further, some terms that
are defined in early DNS RFCs now have definitions that are generally
agreed to, but that are different from the original definitions.
This document is a small revision to [RFC8499]; that document was a
substantial revision to [RFC7719].
Note that there is no single consistent definition of "the DNS". It
can be considered to be some combination of the following: a commonly
used naming scheme for objects on the Internet; a distributed
database representing the names and certain properties of these
objects; an architecture providing distributed maintenance,
resilience, and loose coherency for this database; and a simple
query-response protocol (as mentioned below) implementing this
architecture. Section 2 defines "global DNS" and "private DNS" as a
way to deal with these differing definitions.
Capitalization in DNS terms is often inconsistent among RFCs and
various DNS practitioners. The capitalization used in this document
is a best guess at current practices, and is not meant to indicate
that other capitalization styles are wrong or archaic. In some
cases, multiple styles of capitalization are used for the same term
due to quoting from different RFCs.
In this document, the words "byte" and "octet" are used
interchangeably. They appear here because they both appear in the
earlier RFCs that defined terms in the DNS.
Readers should note that the terms in this document are grouped by
topic. Someone who is not already familiar with the DNS probably
cannot learn about the DNS from scratch by reading this document from
front to back. Instead, skipping around may be the only way to get
enough context to understand some of the definitions. This document
has an index that might be useful for readers who are attempting to
learn the DNS by reading this document.
2. Names
Naming system: A naming system associates names with data. Naming
systems have many significant facets that help differentiate them
from each other. Some commonly identified facets include:
* Composition of names
* Format of names
* Administration of names
* Types of data that can be associated with names
* Types of metadata for names
* Protocol for getting data from a name
* Context for resolving a name
Note that this list is a small subset of facets that people have
identified over time for naming systems, and the IETF has yet to
agree on a good set of facets that can be used to compare naming
systems. For example, other facets might include "protocol to
update data in a name", "privacy of names", and "privacy of data
associated with names", but those are not as well defined as the
ones listed above. The list here is chosen because it helps
describe the DNS and naming systems similar to the DNS.
Domain name: An ordered list of one or more labels.
Note that this is a definition independent of the DNS RFCs
([RFC1034] and [RFC1035]), and the definition here also applies to
systems other than the DNS. [RFC1034] defines the "domain name
space" using mathematical trees and their nodes in graph theory,
and that definition has the same practical result as the
definition here. Any path of a directed acyclic graph can be
represented by a domain name consisting of the labels of its
nodes, ordered by decreasing distance from the root(s) (which is
the normal convention within the DNS, including this document). A
domain name whose last label identifies a root of the graph is
fully qualified; other domain names whose labels form a strict
prefix of a fully qualified domain name are relative to its first
omitted node.
Also note that different IETF and non-IETF documents have used the
term "domain name" in many different ways. It is common for
earlier documents to use "domain name" to mean "names that match
the syntax in [RFC1035]", but possibly with additional rules such
as "and are, or will be, resolvable in the global DNS" or "but
only using the presentation format".
Label: An ordered list of zero or more octets that makes up a
portion of a domain name. Using graph theory, a label identifies
one node in a portion of the graph of all possible domain names.
Global DNS: Using the short set of facets listed in "Naming system",
the global DNS can be defined as follows. Most of the rules here
come from [RFC1034] and [RFC1035], although the term "global DNS"
has not been defined before now.
Composition of names: A name in the global DNS has one or more
labels. The length of each label is between 0 and 63 octets
inclusive. In a fully qualified domain name, the last label in
the ordered list is 0 octets long; it is the only label whose
length may be 0 octets, and it is called the "root" or "root
label". A domain name in the global DNS has a maximum total
length of 255 octets in the wire format; the root represents
one octet for this calculation. (Multicast DNS [RFC6762]
allows names up to 255 bytes plus a terminating zero byte based
on a different interpretation of RFC 1035 and what is included
in the 255 octets.)
Format of names: Names in the global DNS are domain names. There
are three formats: wire format, presentation format, and common
display.
Wire format: The basic wire format for names in the global DNS
is a list of labels ordered by decreasing distance from the
root, with the root label last. Each label is preceded by a
length octet. [RFC1035] also defines a compression scheme
that modifies this format.
Presentation format: The presentation format for names in the
global DNS is a list of labels ordered by decreasing
distance from the root, encoded as ASCII, with a "."
character between each label. In presentation format, a
fully qualified domain name includes the root label and the
associated separator dot. For example, in presentation
format, a fully qualified domain name with two non-root
labels is always shown as "example.tld." instead of
"example.tld". [RFC1035] defines a method for showing
octets that do not display in ASCII.
Common display format: The common display format is used in
applications and free text. It is the same as the
presentation format, but showing the root label and the "."
before it is optional and is rarely done. For example, in
common display format, a fully qualified domain name with
two non-root labels is usually shown as "example.tld"
instead of "example.tld.". Names in the common display
format are normally written such that the directionality of
the writing system presents labels by decreasing distance
from the root (so, in both English and the C programming
language, the root or Top-Level Domain (TLD) label in the
ordered list is rightmost; but in Arabic, it may be
leftmost, depending on local conventions).
Administration of names: Administration is specified by
delegation (see the definition of "delegation" in Section 7).
Policies for administration of the root zone in the global DNS
are determined by the names operational community, which
convenes itself in the Internet Corporation for Assigned Names
and Numbers (ICANN). The names operational community selects
the IANA Functions Operator for the global DNS root zone. The
name servers that serve the root zone are provided by
independent root operators. Other zones in the global DNS have
their own policies for administration.
Types of data that can be associated with names: A name can have
zero or more resource records associated with it. There are
numerous types of resource records with unique data structures
defined in many different RFCs and in the IANA registry at
[IANA_Resource_Registry].
Types of metadata for names: Any name that is published in the
DNS appears as a set of resource records (see the definition of
"RRset" in Section 5). Some names do not, themselves, have
data associated with them in the DNS, but they "appear" in the
DNS anyway because they form part of a longer name that does
have data associated with it (see the definition of "empty non-
terminals" in Section 7).
Protocol for getting data from a name: The protocol described in
[RFC1035].
Context for resolving a name: The global DNS root zone
distributed by Public Technical Identifiers (PTI).
Private DNS: Names that use the protocol described in [RFC1035] but
do not rely on the global DNS root zone or names that are
otherwise not generally available on the Internet but are using
the protocol described in [RFC1035]. A system can use both the
global DNS and one or more private DNS systems; for example, see
"Split DNS" in Section 6.
Note that domain names that do not appear in the DNS and that are
intended never to be looked up using the DNS protocol are not part
of the global DNS or a private DNS, even though they are domain
names.
Multicast DNS (mDNS): "Multicast DNS (mDNS) provides the ability to
perform DNS-like operations on the local link in the absence of
any conventional Unicast DNS server. In addition, Multicast DNS
designates a portion of the DNS namespace to be free for local
use, without the need to pay any annual fee, and without the need
to set up delegations or otherwise configure a conventional DNS
server to answer for those names." (Quoted from [RFC6762],
Abstract) Although it uses a compatible wire format, mDNS is,
strictly speaking, a different protocol than DNS. Also, where the
above quote says "a portion of the DNS namespace", it would be
clearer to say "a portion of the domain name space". The names in
mDNS are not intended to be looked up in the DNS.
Locally served DNS zone: A locally served DNS zone is a special case
of private DNS. Names are resolved using the DNS protocol in a
local context. [RFC6303] defines subdomains of IN-ADDR.ARPA that
are locally served zones. Resolution of names through locally
served zones may result in ambiguous results. For example, the
same name may resolve to different results in different locally
served DNS zone contexts. The context for a locally served DNS
zone may be explicit, such as those that are listed in [RFC6303]
and [RFC7793], or implicit, such as those defined by local DNS
administration and not known to the resolution client.
Fully Qualified Domain Name (FQDN): This is often just a clear way
of saying the same thing as "domain name of a node", as outlined
above. However, the term is ambiguous. Strictly speaking, a
fully qualified domain name would include every label, including
the zero-length label of the root; such a name would be written
"www.example.net." (note the terminating dot). But, because every
name eventually shares the common root, names are often written
relative to the root (such as "www.example.net") and are still
called "fully qualified". This term first appeared in [RFC819].
In this document, names are often written relative to the root.
The need for the term "fully qualified domain name" comes from the
existence of partially qualified domain names, which are names
where one or more of the last labels in the ordered list are
omitted (for example, a domain name of "www" relative to
"example.net" identifies "www.example.net"). Such relative names
are understood only by context.
Host name: This term and its equivalent, "hostname", have been
widely used but are not defined in [RFC1034], [RFC1035],
[RFC1123], or [RFC2181]. The DNS was originally deployed into the
Host Tables environment as outlined in [RFC952], and it is likely
that the term followed informally from the definition there. Over
time, the definition seems to have shifted. "Host name" is often
meant to be a domain name that follows the rules in Section 3.5 of
[RFC1034], which is also called the "preferred name syntax". (In
that syntax, every character in each label is a letter, a digit,
or a hyphen). Note that any label in a domain name can contain
any octet value; hostnames are generally considered to be domain
names where every label follows the rules in the "preferred name
syntax", with the amendment that labels can start with ASCII
digits (this amendment comes from Section 2.1 of [RFC1123]).
People also sometimes use the term "hostname" to refer to just the
first label of an FQDN, such as "printer" in
"printer.admin.example.com". (Sometimes this is formalized in
configuration in operating systems.) In addition, people
sometimes use this term to describe any name that refers to a
machine, and those might include labels that do not conform to the
"preferred name syntax".
Top-Level Domain (TLD): A Top-Level Domain is a zone that is one
layer below the root, such as "com" or "jp". There is nothing
special, from the point of view of the DNS, about TLDs. Most of
them are also delegation-centric zones (defined in Section 7), and
there are significant policy issues around their operation. TLDs
are often divided into sub-groups such as Country Code Top-Level
Domains (ccTLDs), Generic Top-Level Domains (gTLDs), and others;
the division is a matter of policy and beyond the scope of this
document.
Internationalized Domain Name (IDN): The Internationalized Domain
Names for Applications (IDNA) protocol is the standard mechanism
for handling domain names with non-ASCII characters in
applications in the DNS. The current standard at the time of this
writing, normally called "IDNA2008", is defined in [RFC5890],
[RFC5891], [RFC5892], [RFC5893], and [RFC5894]. These documents
define many IDN-specific terms such as "LDH label", "A-label", and
"U-label". [RFC6365] defines more terms that relate to
internationalization (some of which relate to IDNs); [RFC6055] has
a much more extensive discussion of IDNs, including some new
terminology.
Subdomain: "A domain is a subdomain of another domain if it is
contained within that domain. This relationship can be tested by
seeing if the subdomain's name ends with the containing domain's
name." (Quoted from [RFC1034], Section 3.1) For example, in the
host name "nnn.mmm.example.com", both "mmm.example.com" and
"nnn.mmm.example.com" are subdomains of "example.com". Note that
the comparisons here are done on whole labels; that is,
"ooo.example.com" is not a subdomain of "oo.example.com".
Alias: The owner of a CNAME resource record, or a subdomain of the
owner of a DNAME resource record (DNAME records are defined in
[RFC6672]). See also "canonical name".
Canonical name: A CNAME resource record "identifies its owner name
as an alias, and specifies the corresponding canonical name in the
RDATA section of the RR." (Quoted from [RFC1034], Section 3.6.2)
This usage of the word "canonical" is related to the mathematical
concept of "canonical form".
CNAME: "It has been traditional to refer to the [owner] of a CNAME
record as 'a CNAME'. This is unfortunate, as 'CNAME' is an
abbreviation of 'canonical name', and the [owner] of a CNAME
record is most certainly not a canonical name." (Quoted from
[RFC2181], Section 10.1.1. The quoted text has been changed from
"label" to "owner".)
3. DNS Response Codes
Some of the response codes (RCODEs) that are defined in [RFC1035]
have acquired their own shorthand names. All of the RCODEs are
listed at [IANA_Resource_Registry], although that list uses mixed-
case capitalization, while most documents use all caps. Some of the
common names for values defined in [RFC1035] are described in this
section. This section also includes an additional RCODE and a
general definition. The official list of all RCODEs is in the IANA
registry.
NOERROR: This RCODE appears as "No error condition" in Section 4.1.1
of [RFC1035].
FORMERR: This RCODE appears as "Format error - The name server was
unable to interpret the query" in Section 4.1.1 of [RFC1035].
SERVFAIL: This RCODE appears as "Server failure - The name server
was unable to process this query due to a problem with the name
server" in Section 4.1.1 of [RFC1035].
NXDOMAIN: This RCODE appears as "Name Error [...] this code
signifies that the domain name referenced in the query does not
exist." in Section 4.1.1 of [RFC1035]. [RFC2308] established
NXDOMAIN as a synonym for Name Error.
NOTIMP: This RCODE appears as "Not Implemented - The name server
does not support the requested kind of query" in Section 4.1.1 of
[RFC1035].
REFUSED: This RCODE appears as "Refused - The name server refuses to
perform the specified operation for policy reasons. For example,
a name server may not wish to provide the information to the
particular requester, or a name server may not wish to perform a
particular operation (e.g., zone transfer) for particular data."
in Section 4.1.1 of [RFC1035].
NODATA: "A pseudo RCODE which indicates that the name is valid, for
the given class, but [there] are no records of the given type. A
NODATA response has to be inferred from the answer." (Quoted from
[RFC2308], Section 1) "NODATA is indicated by an answer with the
RCODE set to NOERROR and no relevant answers in the Answer
section. The Authority section will contain an SOA record, or
there will be no NS records there." (Quoted from [RFC2308],
Section 2.2) Note that referrals have a similar format to NODATA
replies; [RFC2308] explains how to distinguish them.
The term "NXRRSET" is sometimes used as a synonym for NODATA.
However, this is a mistake, given that NXRRSET is a specific error
code defined in [RFC2136].
Negative response: A response that indicates that a particular RRset
does not exist or whose RCODE indicates that the nameserver cannot
answer. Sections 2 and 7 of [RFC2308] describe the types of
negative responses in detail.
4. DNS Transactions
The header of a DNS message is its first 12 octets. Many of the
fields and flags in the diagrams in Sections 4.1.1 through 4.1.3 of
[RFC1035] are referred to by their names in each diagram. For
example, the response codes are called "RCODEs", the data for a
record is called the "RDATA", and the authoritative answer bit is
often called "the AA flag" or "the AA bit".
Class: A class "identifies a protocol family or instance of a
protocol". (Quoted from [RFC1034], Section 3.6) "The DNS tags all
data with a class as well as the type, so that we can allow
parallel use of different formats for data of type address."
(Quoted from [RFC1034], Section 2.2) In practice, the class for
nearly every query is "IN" (the Internet). There are some queries
for "CH" (the Chaos class), but they are usually for the purposes
of information about the server itself rather than for a different
type of address.
QNAME: The most commonly used rough definition is that the QNAME is
a field in the Question section of a query. "A standard query
specifies a target domain name (QNAME), query type (QTYPE), and
query class (QCLASS) and asks for RRs which match." (Quoted from
[RFC1034], Section 3.7.1) Strictly speaking, the definition comes
from [RFC1035], Section 4.1.2, where the QNAME is defined in
respect of the Question section. This definition appears to be
applied consistently, as the discussion of inverse queries in
Section 6.4.1 of [RFC1035] refers to the "owner name of the query
RR and its TTL" because inverse queries populate the Answer
section and leave the Question section empty. (Inverse queries
are deprecated in [RFC3425]; thus, relevant definitions do not
appear in this document.)
However, [RFC2308] has an alternate definition that puts the QNAME
in the answer (or series of answers) instead of the query. It
defines QNAME as "...the name in the query section of an answer,
or where this resolves to a CNAME, or CNAME chain, the data field
of the last CNAME. The last CNAME in this sense is that which
contains a value which does not resolve to another CNAME." This
definition has a certain internal logic, because of the way CNAME
substitution works and the definition of CNAME. If a name server
does not find an RRset that matches a query, but does find the
same name in the same class with a CNAME record, then the name
server "includes the CNAME record in the response and restarts the
query at the domain name specified in the data field of the CNAME
record." (Quoted from [RFC1034], Section 3.6.2) This is made
explicit in the resolution algorithm outlined in Section 4.3.2 of
[RFC1034], which says to "change QNAME to the canonical name in
the CNAME RR, and go back to step 1" in the case of a CNAME RR.
Since a CNAME record explicitly declares that the owner name is
canonically named what is in the RDATA, then there is a way to
view the new name (i.e., the name that was in the RDATA of the
CNAME RR) as also being the QNAME.
However, this creates confusion because the response to a query
that results in CNAME processing contains in the echoed Question
section one QNAME (the name in the original query) and a second
QNAME that is in the data field of the last CNAME. The confusion
comes from the iterative/recursive mode of resolution, which
finally returns an answer that need not actually have the same
owner name as the QNAME contained in the original query.
To address this potential confusion, it is helpful to distinguish
between three meanings:
QNAME (original): The name actually sent in the Question section
in the original query, which is always echoed in the (final)
reply in the Question section when the QR bit is set to 1.
QNAME (effective): A name actually resolved, which is either the
name originally queried or a name received in a CNAME chain
response.
QNAME (final): The name actually resolved, which is either the
name actually queried or else the last name in a CNAME chain
response.
Note that, because the definition in [RFC2308] is actually for a
different concept than what was in [RFC1034], it would have been
better if [RFC2308] had used a different name for that concept.
In general use today, QNAME almost always means what is defined
above as "QNAME (original)".
Referrals: A type of response in which a server, signaling that it
is not (completely) authoritative for an answer, provides the
querying resolver with an alternative place to send its query.
Referrals can be partial.
A referral arises when a server is not performing recursive
service while answering a query. It appears in step 3(b) of the
algorithm in [RFC1034], Section 4.3.2.
There are two types of referral response. The first is a downward
referral (sometimes described as "delegation response"), where the
server is authoritative for some portion of the QNAME. The
Authority section RRset's RDATA contains the name servers
specified at the referred-to zone cut. In normal DNS operation,
this kind of response is required in order to find names beneath a
delegation. The bare use of "referral" means this kind of
referral, and many people believe that this is the only legitimate
kind of referral in the DNS.
The second is an upward referral (sometimes described as "root
referral"), where the server is not authoritative for any portion
of the QNAME. When this happens, the referred-to zone in the
Authority section is usually the root zone ("."). In normal DNS
operation, this kind of response is not required for resolution or
for correctly answering any query. There is no requirement that
any server send upward referrals. Some people regard upward
referrals as a sign of a misconfiguration or error. Upward
referrals always need some sort of qualifier (such as "upward" or
"root") and are never identified simply by the word "referral".
A response that has only a referral contains an empty Answer
section. It contains the NS RRset for the referred-to zone in the
Authority section. It may contain RRs that provide addresses in
the Additional section. The AA bit is clear.
In the case where the query matches an alias, and the server is
not authoritative for the target of the alias but is authoritative
for some name above the target of the alias, the resolution
algorithm will produce a response that contains both the
authoritative answer for the alias and a referral. Such a partial
answer and referral response has data in the Answer section. It
has the NS RRset for the referred-to zone in the Authority
section. It may contain RRs that provide addresses in the
Additional section. The AA bit is set because the first name in
the Answer section matches the QNAME and the server is
authoritative for that answer (see [RFC1035], Section 4.1.1).
5. Resource Records
RR: An acronym for resource record. (See [RFC1034], Section 3.6.)
RRset: A set of resource records "with the same label, class and
type, but with different data" (according to [RFC2181],
Section 5). Also written as "RRSet" in some documents. As a
clarification, "same label" in this definition means "same owner
name". In addition, [RFC2181] states that "the TTLs of all RRs in
an RRSet must be the same".
Note that RRSIG resource records do not match this definition.
[RFC4035] says:
An RRset MAY have multiple RRSIG RRs associated with it. Note
that as RRSIG RRs are closely tied to the RRsets whose
signatures they contain, RRSIG RRs, unlike all other DNS RR
types, do not form RRsets. In particular, the TTL values among
RRSIG RRs with a common owner name do not follow the RRset
rules described in [RFC2181].
Master file: "Master files are text files that contain RRs in text
form. Since the contents of a zone can be expressed in the form
of a list of RRs a master file is most often used to define a
zone, though it can be used to list a cache's contents." (Quoted
from [RFC1035], Section 5) Master files are sometimes called "zone
files".
Presentation format: The text format used in master files. This
format is shown but not formally defined in [RFC1034] or
[RFC1035]. The term "presentation format" first appears in
[RFC4034].
EDNS: The extension mechanisms for DNS, defined in [RFC6891].
Sometimes called "EDNS0" or "EDNS(0)" to indicate the version
number. EDNS allows DNS clients and servers to specify message
sizes larger than the original 512-octet limit, to expand the
response code space, and to carry additional options that affect
the handling of a DNS query.
OPT: A pseudo-RR (sometimes called a "meta-RR") that is used only to
contain control information pertaining to the question-and-answer
sequence of a specific transaction. (Definition paraphrased from
[RFC6891], Section 6.1.1.) It is used by EDNS.
Owner: "The domain name where the RR is found." (Quoted from
[RFC1034], Section 3.6) Often appears in the term "owner name".
SOA field names: DNS documents, including the definitions here,
often refer to the fields in the RDATA of an SOA resource record
by field name. "SOA" stands for "start of a zone of authority".
Those fields are defined in Section 3.3.13 of [RFC1035]. The
names (in the order they appear in the SOA RDATA) are MNAME,
RNAME, SERIAL, REFRESH, RETRY, EXPIRE, and MINIMUM. Note that the
meaning of the MINIMUM field is updated in Section 4 of [RFC2308];
the new definition is that the MINIMUM field is only "the TTL to
be used for negative responses". This document tends to use field
names instead of terms that describe the fields.
TTL: The maximum "time to live" of a resource record. "A TTL value
is an unsigned number, with a minimum value of 0, and a maximum
value of 2147483647. That is, a maximum of 2^31 - 1. When
transmitted, this value shall be encoded in the less significant
31 bits of the 32 bit TTL field, with the most significant, or
sign, bit set to zero." (Quoted from [RFC2181], Section 8) Note
that [RFC1035] erroneously stated that this is a signed integer;
that was fixed by [RFC2181].
The TTL "specifies the time interval that the resource record may
be cached before the source of the information should again be
consulted." (Quoted from [RFC1035], Section 3.2.1) Section 4.1.3
of [RFC1035] states "the time interval (in seconds) that the
resource record may be cached before it should be discarded".
Despite being defined for a resource record, the TTL of every
resource record in an RRset is required to be the same ([RFC2181],
Section 5.2).
The reason that the TTL is the maximum time to live is that a
cache operator might decide to shorten the time to live for
operational purposes, for example, if there is a policy to
disallow TTL values over a certain number. Some servers are known
to ignore the TTL on some RRsets (such as when the authoritative
data has a very short TTL) even though this is against the advice
in [RFC1035]. An RRset can be flushed from the cache before the
end of the TTL interval, at which point, the value of the TTL
becomes unknown because the RRset with which it was associated no
longer exists.
There is also the concept of a "default TTL" for a zone, which can
be a configuration parameter in the server software. This is
often expressed by a default for the entire server, and a default
for a zone using the $TTL directive in a zone file. The $TTL
directive was added to the master file format by [RFC2308].
Class independent: A resource record type whose syntax and semantics
are the same for every DNS class. A resource record type that is
not class independent has different meanings, depending on the DNS
class of the record or if the meaning is undefined for some
classes. Most resource record types are defined for class 1 (IN,
the Internet), but many are undefined for other classes.
Address records: Records whose type is either A or AAAA. [RFC2181]
informally defines these as "(A, AAAA, etc)". Note that new types
of address records could be defined in the future.
6. DNS Servers and Clients
This section defines the terms used for the systems that act as DNS
clients, DNS servers, or both. In past RFCs, DNS servers are
sometimes called "name servers", "nameservers", or just "servers".
There is no formal definition of "DNS server", but RFCs generally
assume that it is an Internet server that listens for queries and
sends responses using the DNS protocol defined in [RFC1035] and its
successors.
It is important to note that the terms "DNS server" and "name server"
require context in order to understand the services being provided.
Both authoritative servers and recursive resolvers are often called
"DNS servers" and "name servers" even though they serve different
roles (but may be part of the same software package).
For terminology specific to the global DNS root server system, see
[RSSAC026]. That document defines terms such as "root server", "root
server operator", and terms that are specific to the way that the
root zone of the global DNS is served.
Resolver: A program "that extract[s] information from name servers
in response to client requests." (Quoted from [RFC1034],
Section 2.4) A resolver performs queries for a name, type, and
class, and receives responses. The logical function is called
"resolution". In practice, the term is usually referring to some
specific type of resolver (some of which are defined below), and
understanding the use of the term depends on understanding the
context.
A related term is "resolve", which is not formally defined in
[RFC1034] or [RFC1035]. An imputed definition might be "asking a
question that consists of a domain name, class, and type, and
receiving some sort of response". Similarly, an imputed
definition of "resolution" might be "the response received from
resolving".
Stub resolver: A resolver that cannot perform all resolution itself.
Stub resolvers generally depend on a recursive resolver to
undertake the actual resolution function. Stub resolvers are
discussed but never fully defined in Section 5.3.1 of [RFC1034].
They are fully defined in Section 6.1.3.1 of [RFC1123].
Iterative mode: A resolution mode of a server that receives DNS
queries and responds with a referral to another server.
Section 2.3 of [RFC1034] describes this as "The server refers the
client to another server and lets the client pursue the query." A
resolver that works in iterative mode is sometimes called an
"iterative resolver". See also "iterative resolution" later in
this section.
Recursive mode: A resolution mode of a server that receives DNS
queries and either responds to those queries from a local cache or
sends queries to other servers in order to get the final answers
to the original queries. Section 2.3 of [RFC1034] describes this
as "the first server pursues the query for the client at another
server". Section 4.3.1 of [RFC1034] says: "in [recursive] mode
the name server acts in the role of a resolver and returns either
an error or the answer, but never referrals." That same section
also says:
The recursive mode occurs when a query with RD set arrives at a
server which is willing to provide recursive service; the
client can verify that recursive mode was used by checking that
both RA and RD are set in the reply.
A server operating in recursive mode may be thought of as having a
name server side (which is what answers the query) and a resolver
side (which performs the resolution function). Systems operating
in this mode are commonly called "recursive servers". Sometimes
they are called "recursive resolvers". In practice, it is not
possible to know in advance whether the server that one is
querying will also perform recursion; both terms can be observed
in use interchangeably.
Recursive resolver: A resolver that acts in recursive mode. In
general, a recursive resolver is expected to cache the answers it
receives (which would make it a full-service resolver), but some
recursive resolvers might not cache.
[RFC4697] tried to differentiate between a recursive resolver and
an iterative resolver.
Recursive query: A query with the Recursion Desired (RD) bit set to
1 in the header. (See Section 4.1.1 of [RFC1035].) If recursive
service is available and is requested by the RD bit in the query,
the server uses its resolver to answer the query. (See
Section 4.3.2 of [RFC1034].)
Non-recursive query: A query with the Recursion Desired (RD) bit set
to 0 in the header. A server can answer non-recursive queries
using only local information: the response contains either an
error, the answer, or a referral to some other server "closer" to
the answer. (See Section 4.3.1 of [RFC1034].)
Iterative resolution: A name server may be presented with a query
that can only be answered by some other server. The two general
approaches to dealing with this problem are "recursive", in which
the first server pursues the query on behalf of the client at
another server, and "iterative", in which the server refers the
client to another server and lets the client pursue the query
there. (See Section 2.3 of [RFC1034].)
In iterative resolution, the client repeatedly makes non-recursive
queries and follows referrals and/or aliases. The iterative
resolution algorithm is described in Section 5.3.3 of [RFC1034].
Full resolver: This term is used in [RFC1035], but it is not defined
there. RFC 1123 defines a "full-service resolver" that may or may
not be what was intended by "full resolver" in [RFC1035]. This
term is not properly defined in any RFC, and there is no consensus
on what the term means. The use of this term without proper
context is discouraged.
Full-service resolver: Section 6.1.3.1 of [RFC1123] defines this
term as a resolver that acts in recursive mode with a cache (and
meets other requirements).
Priming: "The act of finding the list of root servers from a
configuration that lists some or all of the purported IP addresses
of some or all of those root servers." (Quoted from [RFC8109],
Section 2) In order to operate in recursive mode, a resolver needs
to know the address of at least one root server. Priming is most
often done from a configuration setting that contains a list of
authoritative servers for the root zone.
Root hints: "Operators who manage a DNS recursive resolver typically
need to configure a 'root hints file'. This file contains the
names and IP addresses of the authoritative name servers for the
root zone, so the software can bootstrap the DNS resolution
process. For many pieces of software, this list comes built into
the software." (Quoted from [IANA_RootFiles]) This file is often
used in priming.
Negative caching: "The storage of knowledge that something does not
exist, cannot or does not give an answer." (Quoted from
[RFC2308], Section 1)
Authoritative server: "A server that knows the content of a DNS zone
from local knowledge, and thus can answer queries about that zone
without needing to query other servers." (Quoted from [RFC2182],
Section 2) An authoritative server is named in the NS ("name
server") record in a zone. It is a system that responds to DNS
queries with information about zones for which it has been
configured to answer with the AA flag in the response header set
to 1. It is a server that has authority over one or more DNS
zones. Note that it is possible for an authoritative server to
respond to a query without the parent zone delegating authority to
that server. Authoritative servers also provide "referrals",
usually to child zones delegated from them; these referrals have
the AA bit set to 0 and come with referral data in the Authority
and (if needed) the Additional sections.
Authoritative-only server: A name server that only serves
authoritative data and ignores requests for recursion. It will
"not normally generate any queries of its own. Instead it answers
non-recursive queries from iterative resolvers looking for
information in zones it serves." (Quoted from [RFC4697],
Section 2.4) In this case, "ignores requests for recursion" means
"responds to requests for recursion with responses indicating that
recursion was not performed".
Zone transfer: The act of a client requesting a copy of a zone and
an authoritative server sending the needed information. (See
Section 7 for a description of zones.) There are two common
standard ways to do zone transfers: the AXFR ("Authoritative
Transfer") mechanism to copy the full zone (described in
[RFC5936], and the IXFR ("Incremental Transfer") mechanism to copy
only parts of the zone that have changed (described in [RFC1995]).
Many systems use non-standard methods for zone transfers outside
the DNS protocol.
Slave server: See "Secondary server".
Secondary server: "An authoritative server which uses zone transfer
to retrieve the zone." (Quoted from [RFC1996], Section 2.1)
Secondary servers are also discussed in [RFC1034]. [RFC2182]
describes secondary servers in more detail. Although early DNS
RFCs such as [RFC1996] referred to this as a "slave", the current
common usage has shifted to calling it a "secondary".
Master server: See "Primary server".
Primary server: "Any authoritative server configured to be the
source of zone transfer for one or more [secondary] servers."
(Quoted from [RFC1996], Section 2.1) Or, more specifically,
[RFC2136] calls it "an authoritative server configured to be the
source of AXFR or IXFR data for one or more [secondary] servers".
Primary servers are also discussed in [RFC1034]. Although early
DNS RFCs such as [RFC1996] referred to this as a "master", the
current common usage has shifted to "primary".
Primary master: "The primary master is named in the zone's SOA MNAME
field and optionally by an NS RR." (Quoted from [RFC1996],
Section 2.1) [RFC2136] defines "primary master" as "Master server
at the root of the AXFR/IXFR dependency graph. The primary master
is named in the zone's SOA MNAME field and optionally by an NS RR.
There is by definition only one primary master server per zone."
The idea of a primary master is only used in [RFC1996] and
[RFC2136]. A modern interpretation of the term "primary master"
is a server that is both authoritative for a zone and that gets
its updates to the zone from configuration (such as a master file)
or from UPDATE transactions.
Stealth server: This is "like a slave server except not listed in an
NS RR for the zone." (Quoted from [RFC1996], Section 2.1)
Hidden master: A stealth server that is a primary server for zone
transfers. "In this arrangement, the master name server that
processes the updates is unavailable to general hosts on the
Internet; it is not listed in the NS RRset." (Quoted from
[RFC6781], Section 3.4.3) [RFC4641] said that the hidden master's
name "appears in the SOA RRs MNAME field"; however, the name does
not appear at all in the global DNS in some setups. A hidden
master can also be a secondary server for the zone itself.
Forwarding: The process of one server sending a DNS query with the
RD bit set to 1 to another server to resolve that query.
Forwarding is a function of a DNS resolver; it is different than
simply blindly relaying queries.
[RFC5625] does not give a specific definition for forwarding, but
describes in detail what features a system that forwards needs to
support. Systems that forward are sometimes called "DNS proxies",
but that term has not yet been defined (even in [RFC5625]).
Forwarder: Section 1 of [RFC2308] describes a forwarder as "a
nameserver used to resolve queries instead of directly using the
authoritative nameserver chain". [RFC2308] further says "The
forwarder typically either has better access to the internet, or
maintains a bigger cache which may be shared amongst many
resolvers." That definition appears to suggest that forwarders
normally only query authoritative servers. In current use,
however, forwarders often stand between stub resolvers and
recursive servers. [RFC2308] is silent on whether a forwarder is
iterative-only or can be a full-service resolver.
Policy-implementing resolver: A resolver acting in recursive mode
that changes some of the answers that it returns based on policy
criteria, such as to prevent access to malware sites or
objectionable content. In general, a stub resolver has no idea
whether upstream resolvers implement such policy or, if they do,
the exact policy about what changes will be made. In some cases,
the user of the stub resolver has selected the policy-implementing
resolver with the explicit intention of using it to implement the
policies. In other cases, policies are imposed without the user
of the stub resolver being informed.
Open resolver: A full-service resolver that accepts and processes
queries from any (or nearly any) client. This is sometimes also
called a "public resolver", although the term "public resolver" is
used more with open resolvers that are meant to be open, as
compared to the vast majority of open resolvers that are probably
misconfigured to be open. Open resolvers are discussed in
[RFC5358].
Split DNS: The terms "split DNS" and "split-horizon DNS" have long
been used in the DNS community without formal definition. In
general, they refer to situations in which DNS servers that are
authoritative for a particular set of domains provide partly or
completely different answers in those domains depending on the
source of the query. Nevertheless, the effect of this is that a
domain name that is notionally globally unique has different
meanings for different network users. This can sometimes be the
result of a "view" configuration, as described below.
Section 3.8 of [RFC2775] gives a related definition that is too
specific to be generally useful.
View: A configuration for a DNS server that allows it to provide
different responses depending on attributes of the query, such as
for "split DNS". Typically, views differ by the source IP address
of a query, but can also be based on the destination IP address,
the type of query (such as AXFR), whether it is recursive, and so
on. Views are often used to provide more names or different
addresses to queries from "inside" a protected network than to
those "outside" that network. Views are not a standardized part
of the DNS, but they are widely implemented in server software.
Passive DNS: A mechanism to collect DNS data by storing DNS
responses from name servers. Some of these systems also collect
the DNS queries associated with the responses, although doing so
raises some privacy concerns. Passive DNS databases can be used
to answer historical questions about DNS zones, such as which
values were present at a given time in the past, or when a name
was spotted first. Passive DNS databases allow searching of the
stored records on keys other than just the name and type, such as
"find all names which have A records of a particular value".
Anycast: "The practice of making a particular service address
available in multiple, discrete, autonomous locations, such that
datagrams sent are routed to one of several available locations."
(Quoted from [RFC4786], Section 2) See [RFC4786] for more detail
on Anycast and other terms that are specific to its use.
Instance: "When anycast routing is used to allow more than one
server to have the same IP address, each one of those servers is
commonly referred to as an 'instance'." It goes on to say: "An
instance of a server, such as a root server, is often referred to
as an 'Anycast instance'." (Quoted from [RSSAC026])
Privacy-enabling DNS server: "A DNS server that implements DNS over
TLS [RFC7858] and may optionally implement DNS over DTLS
[RFC8094]." (Quoted from [RFC8310], Section 2) Other types of DNS
servers might also be considered privacy-enabling, such as those
running DNS-over-HTTPS [RFC8484] or DNS-over-QUIC [RFC9250].
DNS-over-TLS (DoT): DNS over TLS as defined in [RFC7858] and its
successors.
DNS-over-HTTPS (DoH): DNS over HTTPS as defined in [RFC8484] and its
successors.
DNS-over-QUIC (DoQ): DNS over QUIC as defined in [RFC9250] and its
successors. [RFC9250] specifically defines DoQ as general-purpose
transport for DNS that can be used in stub to recursive, recursive
to authoritative, and zone transfer scenarios.
Classic DNS: DNS over UDP or DNS over TCP as defined in [RFC1035]
and its successors. Classic DNS applies to DNS communication
between stub resolvers and recursive resolvers, and between
recursive resolvers and authoritative servers. This has sometimes
been called "Do53". Classic DNS is not encrypted.
Recursive DoT (RDoT): RDoT specifically means DNS-over-TLS for
transport between a stub resolver and a recursive resolver, or
between a recursive resolver and another recursive resolver. This
term is necessary because it is expected that DNS-over-TLS will
later be defined as a transport between recursive resolvers and
authoritative servers.
Authoritative DoT (ADoT): If DNS-over-TLS is later defined as a
transport between recursive resolvers and authoritative servers,
ADoT specifically means DNS-over-TLS for transport between
recursive resolvers and authoritative servers.
XFR-over-TLS (XoT): DNS zone transfer over TLS, as specified in
[RFC9103]. This term applies to both AXFR over TLS (AXoT) and
IXFR over TLS (IXoT).
7. Zones
This section defines terms that are used when discussing zones that
are being served or retrieved.
Zone: "Authoritative information is organized into units called
ZONEs, and these zones can be automatically distributed to the
name servers which provide redundant service for the data in a
zone." (Quoted from [RFC1034], Section 2.4)
Child: "The entity on record that has the delegation of the domain
from the Parent." (Quoted from [RFC7344], Section 1.1)
Parent: "The domain in which the Child is registered." (Quoted from
[RFC7344], Section 1.1) Earlier, "parent name server" was defined
in [RFC0882] as "the name server that has authority over the place
in the domain name space that will hold the new domain". (Note
that [RFC0882] was obsoleted by [RFC1034] and [RFC1035].)
[RFC819] also has some description of the relationship between
parents and children.
Origin:
There are two different uses for this term:
(a) "The domain name that appears at the top of a zone (just
below the cut that separates the zone from its parent)... The
name of the zone is the same as the name of the domain at the
zone's origin." (Quoted from [RFC2181], Section 6) These
days, this sense of "origin" and "apex" (defined below) are
often used interchangeably.
(b) The domain name within which a given relative domain name
appears in zone files. Generally seen in the context of
"$ORIGIN", which is a control entry defined in [RFC1035],
Section 5.1, as part of the master file format. For example,
if the $ORIGIN is set to "example.org.", then a master file
line for "www" is in fact an entry for "www.example.org.".
Apex: The point in the tree at an owner of an SOA and corresponding
authoritative NS RRset. This is also called the "zone apex".
[RFC4033] defines it as "the name at the child's side of a zone
cut". The "apex" can usefully be thought of as a data-theoretic
description of a tree structure, and "origin" is the name of the
same concept when it is implemented in zone files. The
distinction is not always maintained in use, however, and one can
find uses that conflict subtly with this definition. [RFC1034]
uses the term "top node of the zone" as a synonym of "apex", but
that term is not widely used. These days, the first sense of
"origin" (above) and "apex" are often used interchangeably.
Zone cut: The delimitation point between two zones where the origin
of one of the zones is the child of the other zone.
"Zones are delimited by 'zone cuts'. Each zone cut separates a
'child' zone (below the cut) from a 'parent' zone (above the
cut)." (Quoted from [RFC2181], Section 6; note that this is
barely an ostensive definition.) Section 4.2 of [RFC1034] uses
"cuts" instead of "zone cut".
Delegation: The process by which a separate zone is created in the
name space beneath the apex of a given domain. Delegation happens
when an NS RRset is added in the parent zone for the child origin.
Delegation inherently happens at a zone cut. The term is also
commonly a noun: the new zone that is created by the act of
delegating.
Authoritative data: "All of the RRs attached to all of the nodes
from the top node of the zone down to leaf nodes or nodes above
cuts around the bottom edge of the zone." (Quoted from [RFC1034],
Section 4.2.1) Note that this definition might inadvertently also
cause any NS records that appear in the zone to be included, even
those that might not truly be authoritative, because there are
identical NS RRs below the zone cut. This reveals the ambiguity
in the notion of authoritative data, because the parent-side NS
records authoritatively indicate the delegation, even though they
are not themselves authoritative data.
[RFC4033], Section 2, defines "Authoritative RRset", which is
related to authoritative data but has a more precise definition.
Lame delegation: "A lame delegations exists [sic] when a nameserver
is delegated responsibility for providing nameservice for a zone
(via NS records) but is not performing nameservice for that zone
(usually because it is not set up as a primary or secondary for
the zone)." (Quoted from [RFC1912], Section 2.8) Another
definition is that a lame delegation "...happens when a name
server is listed in the NS records for some domain and in fact it
is not a server for that domain. Queries are thus sent to the
wrong servers, who don't know nothing [sic] (at least not as
expected) about the queried domain. Furthermore, sometimes these
hosts (if they exist!) don't even run name servers." (Quoted from
[RFC1713], Section 2.3)
These early definitions do not match the current use of the term
"lame delegation", but there is no consensus on what a lame
delegation is. The term is used not only for the specific case
described above, but for a variety of other flaws in delegations
that lead to non-authoritative answers or no answers at all, such
as:
* a nameserver with an NS record for a zone that does not answer
DNS queries;
* a nameserver with an IP address that is not reachable by the
resolver; and
* a nameserver that responds to a query for a specific name with
an error or without the authoritative bit set.
Because the term in current usage has drifted from the original
definition, and now is not specific or clear as to the intended
meaning, it should be considered historic and avoided in favor of
terms that are specific and clear.
Glue records: "...[Resource records] which are not part of the
authoritative data [of the zone], and are address RRs for the
[name] servers [in subzones]. These RRs are only necessary if the
name server's name is 'below' the cut, and are only used as part
of a referral response." Without glue "we could be faced with the
situation where the NS RRs tell us that in order to learn a name
server's address, we should contact the server using the address
we wish to learn." (Quoted from [RFC1034], Section 4.2.1)
A later definition is that glue "includes any record in a zone
file that is not properly part of that zone, including nameserver
records of delegated sub-zones (NS records), address records that
accompany those NS records (A, AAAA, etc), and any other stray
data that might appear." (Quoted from [RFC2181], Section 5.4.1)
Although glue is sometimes used today with this wider definition
in mind, the context surrounding the definition in [RFC2181]
suggests it is intended to apply to the use of glue within the
document itself and not necessarily beyond.
In an NS record, there are three types of relationships between
the owner name of the record, the name in the NS RDATA, and the
zone origin: unrelated, in-domain, and sibling domain. The
application of these three types of relationships to glue records
is defined in [RFC9471].
An unrelated relationship is one where the NS RDATA contains a
name server that is not subordinate to the zone origin and
therefore is not part of the same zone.
An in-domain relationship is one where the NS RDATA contains a
name server whose name is either subordinate to or (rarely) the
same as the owner name of the NS resource records. For example, a
delegation for "child.example.com" might have an in-domain name
server called "ns.child.example.com".
A sibling domain relationship is one where the NS RDATA contains a
name server whose name is either subordinate to or (rarely) the
same as the zone origin of the parent and not subordinate to or
the same as the owner name of the NS resource records. For
example, a delegation for "child.example.com" in "example.com"
zone might have a sibling domain name server called
"ns.another.example.com".
The following table shows examples of delegation types:
+=============+========+====================+================+
| Delegation | Parent | Name Server Name | Type |
+=============+========+====================+================+
| com | . | a.gtld-servers.net | sibling domain |
+-------------+--------+--------------------+----------------+
| net | . | a.gtld-servers.net | in-domain |
+-------------+--------+--------------------+----------------+
| example.org | org | ns.example.org | in-domain |
+-------------+--------+--------------------+----------------+
| example.org | org | ns.ietf.org | sibling domain |
+-------------+--------+--------------------+----------------+
| example.org | org | ns.example.com | unrelated |
+-------------+--------+--------------------+----------------+
| example.jp | jp | ns.example.jp | in-domain |
+-------------+--------+--------------------+----------------+
| example.jp | jp | ns.example.ne.jp | sibling domain |
+-------------+--------+--------------------+----------------+
| example.jp | jp | ns.example.com | unrelated |
+-------------+--------+--------------------+----------------+
Table 1
Bailiwick: "In-bailiwick" and "Out-of-bailiwick" are modifiers used
to describe the relationship between a zone and the name servers
for that zone. The dictionary definition of bailiwick has been
observed to cause more confusion than meaning for this use. These
terms should be considered historic in nature.
Root zone: The zone of a DNS-based tree whose apex is the zero-
length label. Also sometimes called "the DNS root".
Empty non-terminals (ENTs): "Domain names that own no resource
records but have subdomains that do." (Quoted from [RFC4592],
Section 2.2.2) A typical example is in SRV records: in the name
"_sip._tcp.example.com", it is likely that "_tcp.example.com" has
no RRsets, but that "_sip._tcp.example.com" has (at least) an SRV
RRset.
Delegation-centric zone: A zone that consists mostly of delegations
to child zones. This term is used in contrast to a zone that
might have some delegations to child zones but also has many data
resource records for the zone itself and/or for child zones. The
term is used in [RFC4956] and [RFC5155], but it is not defined in
either document.
Occluded name: "The addition of a delegation point via dynamic
update will render all subordinate domain names to be in a limbo,
still part of the zone but not available to the lookup process.
The addition of a DNAME resource record has the same impact. The
subordinate names are said to be 'occluded'." (Quoted from
[RFC5936], Section 3.5)
Fast flux DNS: This "occurs when a domain is [found] in DNS using A
records to multiple IP addresses, each of which has a very short
Time-to-Live (TTL) value associated with it. This means that the
domain resolves to varying IP addresses over a short period of
time." (Quoted from [RFC6561], Section 1.1.5, with a typo
corrected) In addition to having legitimate uses, fast flux DNS
can be used to deliver malware. Because the addresses change so
rapidly, it is difficult to ascertain all the hosts. It should be
noted that the technique also works with AAAA records, but such
use is not frequently observed on the Internet as of this writing.
Reverse DNS, reverse lookup: "The process of mapping an address to a
name is generally known as a 'reverse lookup', and the IN-
ADDR.ARPA and IP6.ARPA zones are said to support the 'reverse
DNS'." (Quoted from [RFC5855], Section 1)
Forward lookup: "Hostname-to-address translation". (Quoted from
[RFC3493], Section 6)
arpa (Address and Routing Parameter Area Domain): "The 'arpa' domain
was originally established as part of the initial deployment of
the DNS to provide a transition mechanism from the Host Tables
that were common in the ARPANET, as well as a home for the IPv4
reverse mapping domain. During 2000, the abbreviation was
redesignated to 'Address and Routing Parameter Area' in the hope
of reducing confusion with the earlier network name." (Quoted
from [RFC3172], Section 2) .arpa is an "infrastructure domain", a
domain whose "role is to support the operating infrastructure of
the Internet". (Quoted from [RFC3172], Section 2) See [RFC3172]
for more history of this name.
Service name: "Service names are the unique key in the Service Name
and Transport Protocol Port Number registry. This unique symbolic
name for a service may also be used for other purposes, such as in
DNS SRV records." (Quoted from [RFC6335], Section 5)
8. Wildcards
Wildcard: [RFC1034] defined "wildcard", but in a way that turned out
to be confusing to implementers. For an extended discussion of
wildcards, including clearer definitions, see [RFC4592]. Special
treatment is given to RRs with owner names starting with the label
"*". "Such RRs are called 'wildcards'. Wildcard RRs can be
thought of as instructions for synthesizing RRs." (Quoted from
[RFC1034], Section 4.3.3)
Asterisk label: "The first octet is the normal label type and length
for a 1-octet-long label, and the second octet is the ASCII
representation [RFC20] for the '*' character. A descriptive name
of a label equaling that value is an 'asterisk label'." (Quoted
from [RFC4592], Section 2.1.1)
Wildcard domain name: "A 'wildcard domain name' is defined by having
its initial (i.e., leftmost or least significant) label, in binary
format: 0000 0001 0010 1010 (binary) = 0x01 0x2a (hexadecimal)".
(Quoted from [RFC4592], Section 2.1.1) The second octet in this
label is the ASCII representation for the "*" character.
Closest encloser: "The longest existing ancestor of a name."
(Quoted from [RFC5155], Section 1.3) An earlier definition is "The
node in the zone's tree of existing domain names that has the most
labels matching the query name (consecutively, counting from the
root label downward). Each match is a 'label match' and the order
of the labels is the same." (Quoted from [RFC4592],
Section 3.3.1)
Closest provable encloser: "The longest ancestor of a name that can
be proven to exist. Note that this is only different from the
closest encloser in an Opt-Out zone." (Quoted from [RFC5155],
Section 1.3) See Section 10 for more on "opt-out".
Next closer name: "The name one label longer than the closest
provable encloser of a name." (Quoted from [RFC5155],
Section 1.3)
Source of Synthesis: "The source of synthesis is defined in the
context of a query process as that wildcard domain name
immediately descending from the closest encloser, provided that
this wildcard domain name exists. 'Immediately descending' means
that the source of synthesis has a name of the form:
<asterisk label>.<closest encloser>."
(Quoted from [RFC4592], Section 3.3.1)
9. Registration Model
Registry: The administrative operation of a zone that allows
registration of names within that zone. People often use this
term to refer only to those organizations that perform
registration in large delegation-centric zones (such as TLDs); but
formally, whoever decides what data goes into a zone is the
registry for that zone. This definition of "registry" is from a
DNS point of view; for some zones, the policies that determine
what can go in the zone are decided by zones that are
superordinate and not the registry operator.
Registrant: An individual or organization on whose behalf a name in
a zone is registered by the registry. In many zones, the registry
and the registrant may be the same entity, but in TLDs they often
are not.
Registrar: A service provider that acts as a go-between for
registrants and registries. Not all registrations require a
registrar, though it is common to have registrars involved in
registrations in TLDs.
EPP: The Extensible Provisioning Protocol (EPP), which is commonly
used for communication of registration information between
registries and registrars. EPP is defined in [RFC5730].
WHOIS: A protocol specified in [RFC3912], often used for querying
registry databases. WHOIS data is frequently used to associate
registration data (such as zone management contacts) with domain
names. The term "WHOIS data" is often used as a synonym for the
registry database, even though that database may be served by
different protocols, particularly RDAP. The WHOIS protocol is
also used with IP address registry data.
RDAP: The Registration Data Access Protocol, defined in [RFC7480],
[RFC7481], [RFC7485], [RFC9082], [RFC9083], and [RFC9224]. The
RDAP protocol and data format are meant as a replacement for
WHOIS.
DNS operator: An entity responsible for running DNS servers. For a
zone's authoritative servers, the registrant may act as their own
DNS operator, their registrar may do it on their behalf, or they
may use a third-party operator. For some zones, the registry
function is performed by the DNS operator plus other entities who
decide about the allowed contents of the zone.
Public suffix: "A domain that is controlled by a public registry."
(Quoted from [RFC6265], Section 5.3) A common definition for this
term is a domain under which subdomains can be registered by third
parties and on which HTTP cookies (which are described in detail
in [RFC6265]) should not be set. There is no indication in a
domain name whether it is a public suffix; that can only be
determined by outside means. In fact, both a domain and a
subdomain of that domain can be public suffixes.
There is nothing inherent in a domain name to indicate whether it
is a public suffix. One resource for identifying public suffixes
is the Public Suffix List (PSL) maintained by Mozilla
<https://publicsuffix.org/>.
For example, at the time this document is published, the "com.au"
domain is listed as a public suffix in the PSL. (Note that this
example might change in the future.)
Note that the term "public suffix" is controversial in the DNS
community for many reasons, and it may be significantly changed in
the future. One example of the difficulty of calling a domain a
public suffix is that designation can change over time as the
registration policy for the zone changes, such as was the case
with the "uk" TLD in 2014.
Subordinate and Superordinate: These terms are introduced in
[RFC5731] for use in the registration model, but not defined
there. Instead, they are given in examples. "For example, domain
name 'example.com' has a superordinate relationship to host name
ns1.example.com'... For example, host ns1.example1.com is a
subordinate host of domain example1.com, but it is a not a
subordinate host of domain example2.com." (Quoted from [RFC5731],
Section 1.1) These terms are strictly ways of referring to the
relationship standing of two domains where one is a subdomain of
the other.
10. General DNSSEC
Most DNSSEC terms are defined in [RFC4033], [RFC4034], [RFC4035], and
[RFC5155]. The terms that have caused confusion in the DNS community
are highlighted here.
DNSSEC-aware and DNSSEC-unaware: These two terms, which are used in
some RFCs, have not been formally defined. However, Section 2 of
[RFC4033] defines many types of resolvers and validators,
including "non-validating security-aware stub resolver", "non-
validating stub resolver", "security-aware name server",
"security-aware recursive name server", "security-aware resolver",
"security-aware stub resolver", and "security-oblivious
'anything'". (Note that the term "validating resolver", which is
used in some places in DNSSEC-related documents, is also not
defined in those RFCs, but is defined below.)
Signed zone: "A zone whose RRsets are signed and that contains
properly constructed DNSKEY, Resource Record Signature (RRSIG),
Next Secure (NSEC), and (optionally) DS records." (Quoted from
[RFC4033], Section 2) It has been noted in other contexts that the
zone itself is not really signed, but all the relevant RRsets in
the zone are signed. Nevertheless, if a zone that should be
signed contains any RRsets that are not signed (or opted out),
those RRsets will be treated as bogus, so the whole zone needs to
be handled in some way.
It should also be noted that, since the publication of [RFC6840],
NSEC records are no longer required for signed zones: a signed
zone might include NSEC3 records instead. [RFC7129] provides
additional background commentary and some context for the NSEC and
NSEC3 mechanisms used by DNSSEC to provide authenticated denial-
of-existence responses. NSEC and NSEC3 are described below.
Online signing: [RFC4470] defines "on-line signing" (note the
hyphen) as "generating and signing these records on demand", where
"these" was defined as NSEC records. The current definition
expands that to generating and signing RRSIG, NSEC, and NSEC3
records on demand.
Unsigned zone: Section 2 of [RFC4033] defines this as "a zone that
is not signed". Section 2 of [RFC4035] defines this as a "zone
that does not include these records [properly constructed DNSKEY,
Resource Record Signature (RRSIG), Next Secure (NSEC), and
(optionally) DS records] according to the rules in this
section..." There is an important note at the end of Section 5.2
of [RFC4035] that defines an additional situation in which a zone
is considered unsigned: "If the resolver does not support any of
the algorithms listed in an authenticated DS RRset, then the
resolver will not be able to verify the authentication path to the
child zone. In this case, the resolver SHOULD treat the child
zone as if it were unsigned."
NSEC: "The NSEC record allows a security-aware resolver to
authenticate a negative reply for either name or type non-
existence with the same mechanisms used to authenticate other DNS
replies." (Quoted from [RFC4033], Section 3.2) In short, an NSEC
record provides authenticated denial of existence.
"The NSEC resource record lists two separate things: the next
owner name (in the canonical ordering of the zone) that contains
authoritative data or a delegation point NS RRset, and the set of
RR types present at the NSEC RR's owner name." (Quoted from
[RFC4034], Section 4)
NSEC3: Like the NSEC record, the NSEC3 record also provides
authenticated denial of existence; however, NSEC3 records mitigate
zone enumeration and support Opt-Out. NSEC3 resource records
require associated NSEC3PARAM resource records. NSEC3 and
NSEC3PARAM resource records are defined in [RFC5155].
Note that [RFC6840] says that [RFC5155] "is now considered part of
the DNS Security Document Family as described by Section 10 of
[RFC4033]". This means that some of the definitions from earlier
RFCs that only talk about NSEC records should probably be
considered to be talking about both NSEC and NSEC3.
Opt-out: "The Opt-Out Flag indicates whether this NSEC3 RR may cover
unsigned delegations." (Quoted from [RFC5155], Section 3.1.2.1)
Opt-out tackles the high costs of securing a delegation to an
insecure zone. When using Opt-Out, names that are an insecure
delegation (and empty non-terminals that are only derived from
insecure delegations) don't require an NSEC3 record or its
corresponding RRSIG records. Opt-Out NSEC3 records are not able
to prove or deny the existence of the insecure delegations.
(Adapted from [RFC7129], Section 5.1)
Insecure delegation: "A signed name containing a delegation (NS
RRset), but lacking a DS RRset, signifying a delegation to an
unsigned subzone." (Quoted from [RFC4956], Section 2)
Zone enumeration: "The practice of discovering the full content of a
zone via successive queries." (Quoted from [RFC5155],
Section 1.3) This is also sometimes called "zone walking". Zone
enumeration is different from zone content guessing where the
guesser uses a large dictionary of possible labels and sends
successive queries for them, or matches the contents of NSEC3
records against such a dictionary.
Validation: Validation, in the context of DNSSEC, refers to one of
the following:
* Checking the validity of DNSSEC signatures,
* Checking the validity of DNS responses, such as those including
authenticated denial of existence, or
* Building an authentication chain from a trust anchor to a DNS
response or individual DNS RRsets in a response.
The first two definitions above consider only the validity of
individual DNSSEC components, such as the RRSIG validity or NSEC
proof validity. The third definition considers the components of
the entire DNSSEC authentication chain; thus, it requires
"configured knowledge of at least one authenticated DNSKEY or DS
RR" (as described in [RFC4035], Section 5).
[RFC4033], Section 2, says that a "Validating Security-Aware Stub
Resolver... performs signature validation" and uses a trust anchor
"as a starting point for building the authentication chain to a
signed DNS response"; thus, it uses the first and third
definitions above. The process of validating an RRSIG resource
record is described in [RFC4035], Section 5.3.
[RFC5155] refers to validating responses throughout the document
in the context of hashed authenticated denial of existence; this
uses the second definition above.
The term "authentication" is used interchangeably with
"validation", in the sense of the third definition above.
[RFC4033], Section 2, describes the chain linking trust anchor to
DNS data as the "authentication chain". A response is considered
to be authentic if "all RRsets in the Answer and Authority
sections of the response [are considered] to be authentic" (Quoted
from [RFC4035]) DNS data or responses deemed to be authentic or
validated have a security status of "secure" ([RFC4035],
Section 4.3; [RFC4033], Section 5). "Authenticating both DNS keys
and data is a matter of local policy, which may extend or even
override the [DNSSEC] protocol extensions..." (Quoted from
[RFC4033], Section 3.1)
The term "verification", when used, is usually a synonym for
"validation".
Validating resolver: A security-aware recursive name server,
security-aware resolver, or security-aware stub resolver that is
applying at least one of the definitions of validation (above) as
appropriate to the resolution context. For the same reason that
the generic term "resolver" is sometimes ambiguous and needs to be
evaluated in context (see Section 6), "validating resolver" is a
context-sensitive term.
Key signing key (KSK): DNSSEC keys that "only sign the apex DNSKEY
RRset in a zone." (Quoted from [RFC6781], Section 3.1)
Zone signing key (ZSK): "DNSSEC keys that can be used to sign all
the RRsets in a zone that require signatures, other than the apex
DNSKEY RRset." (Quoted from [RFC6781], Section 3.1) Also note
that a ZSK is sometimes used to sign the apex DNSKEY RRset.
Combined signing key (CSK): "In cases where the differentiation
between the KSK and ZSK is not made, i.e., where keys have the
role of both KSK and ZSK, we talk about a Single-Type Signing
Scheme." (Quoted from [RFC6781], Section 3.1) This is sometimes
called a "combined signing key" or "CSK". It is operational
practice, not protocol, that determines whether a particular key
is a ZSK, a KSK, or a CSK.
Secure Entry Point (SEP): A flag in the DNSKEY RDATA that "can be
used to distinguish between keys that are intended to be used as
the secure entry point into the zone when building chains of
trust, i.e., they are (to be) pointed to by parental DS RRs or
configured as a trust anchor.... Therefore, it is suggested that
the SEP flag be set on keys that are used as KSKs and not on keys
that are used as ZSKs, while in those cases where a distinction
between a KSK and ZSK is not made (i.e., for a Single-Type Signing
Scheme), it is suggested that the SEP flag be set on all keys."
(Quoted from [RFC6781], Section 3.2.3) Note that the SEP flag is
only a hint, and its presence or absence may not be used to
disqualify a given DNSKEY RR from use as a KSK or ZSK during
validation.
The original definition of SEPs was in [RFC3757]. That definition
clearly indicated that the SEP was a key, not just a bit in the
key. The abstract of [RFC3757] says: "With the Delegation Signer
(DS) resource record (RR), the concept of a public key acting as a
secure entry point (SEP) has been introduced. During exchanges of
public keys with the parent there is a need to differentiate SEP
keys from other public keys in the Domain Name System KEY (DNSKEY)
resource record set. A flag bit in the DNSKEY RR is defined to
indicate that DNSKEY is to be used as a SEP." That definition of
the SEP as a key was made obsolete by [RFC4034], and the
definition from [RFC6781] is consistent with [RFC4034].
Trust anchor: "A configured DNSKEY RR or DS RR hash of a DNSKEY RR.
A validating security-aware resolver uses this public key or hash
as a starting point for building the authentication chain to a
signed DNS response. In general, a validating resolver will have
to obtain the initial values of its trust anchors via some secure
or trusted means outside the DNS protocol." (Quoted from
[RFC4033], Section 2)
DNSSEC Policy (DP): A statement that "sets forth the security
requirements and standards to be implemented for a DNSSEC-signed
zone." (Quoted from [RFC6841], Section 2)
DNSSEC Practice Statement (DPS): "A practices disclosure document
that may support and be a supplemental document to the DNSSEC
Policy (if such exists), and it states how the management of a
given zone implements procedures and controls at a high level."
(Quoted from [RFC6841], Section 2)
Hardware security module (HSM): A specialized piece of hardware that
is used to create keys for signatures and to sign messages without
ever disclosing the private key. In DNSSEC, HSMs are often used
to hold the private keys for KSKs and ZSKs and to create the
signatures used in RRSIG records at periodic intervals.
Signing software: Authoritative DNS servers that support DNSSEC
often contain software that facilitates the creation and
maintenance of DNSSEC signatures in zones. There is also stand-
alone software that can be used to sign a zone regardless of
whether the authoritative server itself supports signing.
Sometimes signing software can support particular HSMs as part of
the signing process.
11. DNSSEC States
A validating resolver can determine that a response is in one of four
states: secure, insecure, bogus, or indeterminate. These states are
defined in [RFC4033] and [RFC4035], although the definitions in the
two documents differ a bit. This document makes no effort to
reconcile the definitions in the two documents and takes no position
as to whether they need to be reconciled.
Section 5 of [RFC4033] says:
| A validating resolver can determine the following 4 states:
| Secure: The validating resolver has a trust anchor, has a chain
| of trust, and is able to verify all the signatures in the
| response.
|
| Insecure: The validating resolver has a trust anchor, a chain of
| trust, and, at some delegation point, signed proof of the non-
| existence of a DS record. This indicates that subsequent
| branches in the tree are provably insecure. A validating
| resolver may have a local policy to mark parts of the domain
| space as insecure.
|
| Bogus: The validating resolver has a trust anchor and a secure
| delegation indicating that subsidiary data is signed, but the
| response fails to validate for some reason: missing signatures,
| expired signatures, signatures with unsupported algorithms,
| data missing that the relevant NSEC RR says should be present,
| and so forth.
|
| Indeterminate: There is no trust anchor that would indicate that
| a specific portion of the tree is secure. This is the default
| operation mode.
Section 4.3 of [RFC4035] says:
| A security-aware resolver must be able to distinguish between four
| cases:
| Secure: An RRset for which the resolver is able to build a chain
| of signed DNSKEY and DS RRs from a trusted security anchor to
| the RRset. In this case, the RRset should be signed and is
| subject to signature validation, as described above.
|
| Insecure: An RRset for which the resolver knows that it has no
| chain of signed DNSKEY and DS RRs from any trusted starting
| point to the RRset. This can occur when the target RRset lies
| in an unsigned zone or in a descendent [sic] of an unsigned
| zone. In this case, the RRset may or may not be signed, but
| the resolver will not be able to verify the signature.
|
| Bogus: An RRset for which the resolver believes that it ought to
| be able to establish a chain of trust but for which it is
| unable to do so, either due to signatures that for some reason
| fail to validate or due to missing data that the relevant
| DNSSEC RRs indicate should be present. This case may indicate
| an attack but may also indicate a configuration error or some
| form of data corruption.
|
| Indeterminate: An RRset for which the resolver is not able to
| determine whether the RRset should be signed, as the resolver
| is not able to obtain the necessary DNSSEC RRs. This can occur
| when the security-aware resolver is not able to contact
| security-aware name servers for the relevant zones.
12. Security Considerations
These definitions do not change any security considerations for
either the global DNS or private DNS.
13. IANA Considerations
References to RFC 8499 in the IANA registries have been replaced with
references to this document.
14. References
14.1. Normative References
[IANA_RootFiles]
IANA, "Root Files",
<https://www.iana.org/domains/root/files>.
[RFC0882] Mockapetris, P., "Domain names: Concepts and facilities",
RFC 882, DOI 10.17487/RFC0882, November 1983,
<https://www.rfc-editor.org/info/rfc882>.
[RFC1034] Mockapetris, P., "Domain names - concepts and facilities",
STD 13, RFC 1034, DOI 10.17487/RFC1034, November 1987,
<https://www.rfc-editor.org/info/rfc1034>.
[RFC1035] Mockapetris, P., "Domain names - implementation and
specification", STD 13, RFC 1035, DOI 10.17487/RFC1035,
November 1987, <https://www.rfc-editor.org/info/rfc1035>.
[RFC1123] Braden, R., Ed., "Requirements for Internet Hosts -
Application and Support", STD 3, RFC 1123,
DOI 10.17487/RFC1123, October 1989,
<https://www.rfc-editor.org/info/rfc1123>.
[RFC1912] Barr, D., "Common DNS Operational and Configuration
Errors", RFC 1912, DOI 10.17487/RFC1912, February 1996,
<https://www.rfc-editor.org/info/rfc1912>.
[RFC1996] Vixie, P., "A Mechanism for Prompt Notification of Zone
Changes (DNS NOTIFY)", RFC 1996, DOI 10.17487/RFC1996,
August 1996, <https://www.rfc-editor.org/info/rfc1996>.
[RFC2136] Vixie, P., Ed., Thomson, S., Rekhter, Y., and J. Bound,
"Dynamic Updates in the Domain Name System (DNS UPDATE)",
RFC 2136, DOI 10.17487/RFC2136, April 1997,
<https://www.rfc-editor.org/info/rfc2136>.
[RFC2181] Elz, R. and R. Bush, "Clarifications to the DNS
Specification", RFC 2181, DOI 10.17487/RFC2181, July 1997,
<https://www.rfc-editor.org/info/rfc2181>.
[RFC2182] Elz, R., Bush, R., Bradner, S., and M. Patton, "Selection
and Operation of Secondary DNS Servers", BCP 16, RFC 2182,
DOI 10.17487/RFC2182, July 1997,
<https://www.rfc-editor.org/info/rfc2182>.
[RFC2308] Andrews, M., "Negative Caching of DNS Queries (DNS
NCACHE)", RFC 2308, DOI 10.17487/RFC2308, March 1998,
<https://www.rfc-editor.org/info/rfc2308>.
[RFC4033] Arends, R., Austein, R., Larson, M., Massey, D., and S.
Rose, "DNS Security Introduction and Requirements",
RFC 4033, DOI 10.17487/RFC4033, March 2005,
<https://www.rfc-editor.org/info/rfc4033>.
[RFC4034] Arends, R., Austein, R., Larson, M., Massey, D., and S.
Rose, "Resource Records for the DNS Security Extensions",
RFC 4034, DOI 10.17487/RFC4034, March 2005,
<https://www.rfc-editor.org/info/rfc4034>.
[RFC4035] Arends, R., Austein, R., Larson, M., Massey, D., and S.
Rose, "Protocol Modifications for the DNS Security
Extensions", RFC 4035, DOI 10.17487/RFC4035, March 2005,
<https://www.rfc-editor.org/info/rfc4035>.
[RFC4592] Lewis, E., "The Role of Wildcards in the Domain Name
System", RFC 4592, DOI 10.17487/RFC4592, July 2006,
<https://www.rfc-editor.org/info/rfc4592>.
[RFC5155] Laurie, B., Sisson, G., Arends, R., and D. Blacka, "DNS
Security (DNSSEC) Hashed Authenticated Denial of
Existence", RFC 5155, DOI 10.17487/RFC5155, March 2008,
<https://www.rfc-editor.org/info/rfc5155>.
[RFC5358] Damas, J. and F. Neves, "Preventing Use of Recursive
Nameservers in Reflector Attacks", BCP 140, RFC 5358,
DOI 10.17487/RFC5358, October 2008,
<https://www.rfc-editor.org/info/rfc5358>.
[RFC5730] Hollenbeck, S., "Extensible Provisioning Protocol (EPP)",
STD 69, RFC 5730, DOI 10.17487/RFC5730, August 2009,
<https://www.rfc-editor.org/info/rfc5730>.
[RFC5731] Hollenbeck, S., "Extensible Provisioning Protocol (EPP)
Domain Name Mapping", STD 69, RFC 5731,
DOI 10.17487/RFC5731, August 2009,
<https://www.rfc-editor.org/info/rfc5731>.
[RFC5855] Abley, J. and T. Manderson, "Nameservers for IPv4 and IPv6
Reverse Zones", BCP 155, RFC 5855, DOI 10.17487/RFC5855,
May 2010, <https://www.rfc-editor.org/info/rfc5855>.
[RFC5936] Lewis, E. and A. Hoenes, Ed., "DNS Zone Transfer Protocol
(AXFR)", RFC 5936, DOI 10.17487/RFC5936, June 2010,
<https://www.rfc-editor.org/info/rfc5936>.
[RFC6561] Livingood, J., Mody, N., and M. O'Reirdan,
"Recommendations for the Remediation of Bots in ISP
Networks", RFC 6561, DOI 10.17487/RFC6561, March 2012,
<https://www.rfc-editor.org/info/rfc6561>.
[RFC6781] Kolkman, O., Mekking, W., and R. Gieben, "DNSSEC
Operational Practices, Version 2", RFC 6781,
DOI 10.17487/RFC6781, December 2012,
<https://www.rfc-editor.org/info/rfc6781>.
[RFC6840] Weiler, S., Ed. and D. Blacka, Ed., "Clarifications and
Implementation Notes for DNS Security (DNSSEC)", RFC 6840,
DOI 10.17487/RFC6840, February 2013,
<https://www.rfc-editor.org/info/rfc6840>.
[RFC6841] Ljunggren, F., Eklund Lowinder, AM., and T. Okubo, "A
Framework for DNSSEC Policies and DNSSEC Practice
Statements", RFC 6841, DOI 10.17487/RFC6841, January 2013,
<https://www.rfc-editor.org/info/rfc6841>.
[RFC6891] Damas, J., Graff, M., and P. Vixie, "Extension Mechanisms
for DNS (EDNS(0))", STD 75, RFC 6891,
DOI 10.17487/RFC6891, April 2013,
<https://www.rfc-editor.org/info/rfc6891>.
[RFC7344] Kumari, W., Gudmundsson, O., and G. Barwood, "Automating
DNSSEC Delegation Trust Maintenance", RFC 7344,
DOI 10.17487/RFC7344, September 2014,
<https://www.rfc-editor.org/info/rfc7344>.
[RFC7719] Hoffman, P., Sullivan, A., and K. Fujiwara, "DNS
Terminology", RFC 7719, DOI 10.17487/RFC7719, December
2015, <https://www.rfc-editor.org/info/rfc7719>.
[RFC8310] Dickinson, S., Gillmor, D., and T. Reddy, "Usage Profiles
for DNS over TLS and DNS over DTLS", RFC 8310,
DOI 10.17487/RFC8310, March 2018,
<https://www.rfc-editor.org/info/rfc8310>.
[RFC8499] Hoffman, P., Sullivan, A., and K. Fujiwara, "DNS
Terminology", BCP 219, RFC 8499, DOI 10.17487/RFC8499,
January 2019, <https://www.rfc-editor.org/info/rfc8499>.
[RFC9250] Huitema, C., Dickinson, S., and A. Mankin, "DNS over
Dedicated QUIC Connections", RFC 9250,
DOI 10.17487/RFC9250, May 2022,
<https://www.rfc-editor.org/info/rfc9250>.
[RFC9471] Andrews, M., Huque, S., Wouters, P., and D. Wessels, "DNS
Glue Requirements in Referral Responses", RFC 9471,
DOI 10.17487/RFC9471, September 2023,
<https://www.rfc-editor.org/info/rfc9471>.
14.2. Informative References
[IANA_Resource_Registry]
IANA, "Resource Record (RR) TYPEs",
<https://www.iana.org/assignments/dns-parameters/>.
[RFC20] Cerf, V., "ASCII format for network interchange", STD 80,
RFC 20, DOI 10.17487/RFC0020, October 1969,
<https://www.rfc-editor.org/info/rfc20>.
[RFC819] Su, Z. and J. Postel, "The Domain Naming Convention for
Internet User Applications", RFC 819,
DOI 10.17487/RFC0819, August 1982,
<https://www.rfc-editor.org/info/rfc819>.
[RFC952] Harrenstien, K., Stahl, M., and E. Feinler, "DoD Internet
host table specification", RFC 952, DOI 10.17487/RFC0952,
October 1985, <https://www.rfc-editor.org/info/rfc952>.
[RFC1713] Romao, A., "Tools for DNS debugging", FYI 27, RFC 1713,
DOI 10.17487/RFC1713, November 1994,
<https://www.rfc-editor.org/info/rfc1713>.
[RFC1995] Ohta, M., "Incremental Zone Transfer in DNS", RFC 1995,
DOI 10.17487/RFC1995, August 1996,
<https://www.rfc-editor.org/info/rfc1995>.
[RFC2775] Carpenter, B., "Internet Transparency", RFC 2775,
DOI 10.17487/RFC2775, February 2000,
<https://www.rfc-editor.org/info/rfc2775>.
[RFC3172] Huston, G., Ed., "Management Guidelines & Operational
Requirements for the Address and Routing Parameter Area
Domain ("arpa")", BCP 52, RFC 3172, DOI 10.17487/RFC3172,
September 2001, <https://www.rfc-editor.org/info/rfc3172>.
[RFC3425] Lawrence, D., "Obsoleting IQUERY", RFC 3425,
DOI 10.17487/RFC3425, November 2002,
<https://www.rfc-editor.org/info/rfc3425>.
[RFC3493] Gilligan, R., Thomson, S., Bound, J., McCann, J., and W.
Stevens, "Basic Socket Interface Extensions for IPv6",
RFC 3493, DOI 10.17487/RFC3493, February 2003,
<https://www.rfc-editor.org/info/rfc3493>.
[RFC3757] Kolkman, O., Schlyter, J., and E. Lewis, "Domain Name
System KEY (DNSKEY) Resource Record (RR) Secure Entry
Point (SEP) Flag", RFC 3757, DOI 10.17487/RFC3757, April
2004, <https://www.rfc-editor.org/info/rfc3757>.
[RFC3912] Daigle, L., "WHOIS Protocol Specification", RFC 3912,
DOI 10.17487/RFC3912, September 2004,
<https://www.rfc-editor.org/info/rfc3912>.
[RFC4470] Weiler, S. and J. Ihren, "Minimally Covering NSEC Records
and DNSSEC On-line Signing", RFC 4470,
DOI 10.17487/RFC4470, April 2006,
<https://www.rfc-editor.org/info/rfc4470>.
[RFC4641] Kolkman, O. and R. Gieben, "DNSSEC Operational Practices",
RFC 4641, DOI 10.17487/RFC4641, September 2006,
<https://www.rfc-editor.org/info/rfc4641>.
[RFC4697] Larson, M. and P. Barber, "Observed DNS Resolution
Misbehavior", BCP 123, RFC 4697, DOI 10.17487/RFC4697,
October 2006, <https://www.rfc-editor.org/info/rfc4697>.
[RFC4786] Abley, J. and K. Lindqvist, "Operation of Anycast
Services", BCP 126, RFC 4786, DOI 10.17487/RFC4786,
December 2006, <https://www.rfc-editor.org/info/rfc4786>.
[RFC4956] Arends, R., Kosters, M., and D. Blacka, "DNS Security
(DNSSEC) Opt-In", RFC 4956, DOI 10.17487/RFC4956, July
2007, <https://www.rfc-editor.org/info/rfc4956>.
[RFC5625] Bellis, R., "DNS Proxy Implementation Guidelines",
BCP 152, RFC 5625, DOI 10.17487/RFC5625, August 2009,
<https://www.rfc-editor.org/info/rfc5625>.
[RFC5890] Klensin, J., "Internationalized Domain Names for
Applications (IDNA): Definitions and Document Framework",
RFC 5890, DOI 10.17487/RFC5890, August 2010,
<https://www.rfc-editor.org/info/rfc5890>.
[RFC5891] Klensin, J., "Internationalized Domain Names in
Applications (IDNA): Protocol", RFC 5891,
DOI 10.17487/RFC5891, August 2010,
<https://www.rfc-editor.org/info/rfc5891>.
[RFC5892] Faltstrom, P., Ed., "The Unicode Code Points and
Internationalized Domain Names for Applications (IDNA)",
RFC 5892, DOI 10.17487/RFC5892, August 2010,
<https://www.rfc-editor.org/info/rfc5892>.
[RFC5893] Alvestrand, H., Ed. and C. Karp, "Right-to-Left Scripts
for Internationalized Domain Names for Applications
(IDNA)", RFC 5893, DOI 10.17487/RFC5893, August 2010,
<https://www.rfc-editor.org/info/rfc5893>.
[RFC5894] Klensin, J., "Internationalized Domain Names for
Applications (IDNA): Background, Explanation, and
Rationale", RFC 5894, DOI 10.17487/RFC5894, August 2010,
<https://www.rfc-editor.org/info/rfc5894>.
[RFC6055] Thaler, D., Klensin, J., and S. Cheshire, "IAB Thoughts on
Encodings for Internationalized Domain Names", RFC 6055,
DOI 10.17487/RFC6055, February 2011,
<https://www.rfc-editor.org/info/rfc6055>.
[RFC6265] Barth, A., "HTTP State Management Mechanism", RFC 6265,
DOI 10.17487/RFC6265, April 2011,
<https://www.rfc-editor.org/info/rfc6265>.
[RFC6303] Andrews, M., "Locally Served DNS Zones", BCP 163,
RFC 6303, DOI 10.17487/RFC6303, July 2011,
<https://www.rfc-editor.org/info/rfc6303>.
[RFC6335] Cotton, M., Eggert, L., Touch, J., Westerlund, M., and S.
Cheshire, "Internet Assigned Numbers Authority (IANA)
Procedures for the Management of the Service Name and
Transport Protocol Port Number Registry", BCP 165,
RFC 6335, DOI 10.17487/RFC6335, August 2011,
<https://www.rfc-editor.org/info/rfc6335>.
[RFC6365] Hoffman, P. and J. Klensin, "Terminology Used in
Internationalization in the IETF", BCP 166, RFC 6365,
DOI 10.17487/RFC6365, September 2011,
<https://www.rfc-editor.org/info/rfc6365>.
[RFC6672] Rose, S. and W. Wijngaards, "DNAME Redirection in the
DNS", RFC 6672, DOI 10.17487/RFC6672, June 2012,
<https://www.rfc-editor.org/info/rfc6672>.
[RFC6762] Cheshire, S. and M. Krochmal, "Multicast DNS", RFC 6762,
DOI 10.17487/RFC6762, February 2013,
<https://www.rfc-editor.org/info/rfc6762>.
[RFC7129] Gieben, R. and W. Mekking, "Authenticated Denial of
Existence in the DNS", RFC 7129, DOI 10.17487/RFC7129,
February 2014, <https://www.rfc-editor.org/info/rfc7129>.
[RFC7480] Newton, A., Ellacott, B., and N. Kong, "HTTP Usage in the
Registration Data Access Protocol (RDAP)", STD 95,
RFC 7480, DOI 10.17487/RFC7480, March 2015,
<https://www.rfc-editor.org/info/rfc7480>.
[RFC7481] Hollenbeck, S. and N. Kong, "Security Services for the
Registration Data Access Protocol (RDAP)", STD 95,
RFC 7481, DOI 10.17487/RFC7481, March 2015,
<https://www.rfc-editor.org/info/rfc7481>.
[RFC9082] Hollenbeck, S. and A. Newton, "Registration Data Access
Protocol (RDAP) Query Format", STD 95, RFC 9082,
DOI 10.17487/RFC9082, June 2021,
<https://www.rfc-editor.org/info/rfc9082>.
[RFC9083] Hollenbeck, S. and A. Newton, "JSON Responses for the
Registration Data Access Protocol (RDAP)", STD 95,
RFC 9083, DOI 10.17487/RFC9083, June 2021,
<https://www.rfc-editor.org/info/rfc9083>.
[RFC9224] Blanchet, M., "Finding the Authoritative Registration Data
Access Protocol (RDAP) Service", STD 95, RFC 9224,
DOI 10.17487/RFC9224, March 2022,
<https://www.rfc-editor.org/info/rfc9224>.
[RFC7485] Zhou, L., Kong, N., Shen, S., Sheng, S., and A. Servin,
"Inventory and Analysis of WHOIS Registration Objects",
RFC 7485, DOI 10.17487/RFC7485, March 2015,
<https://www.rfc-editor.org/info/rfc7485>.
[RFC7793] Andrews, M., "Adding 100.64.0.0/10 Prefixes to the IPv4
Locally-Served DNS Zones Registry", BCP 163, RFC 7793,
DOI 10.17487/RFC7793, May 2016,
<https://www.rfc-editor.org/info/rfc7793>.
[RFC7858] Hu, Z., Zhu, L., Heidemann, J., Mankin, A., Wessels, D.,
and P. Hoffman, "Specification for DNS over Transport
Layer Security (TLS)", RFC 7858, DOI 10.17487/RFC7858, May
2016, <https://www.rfc-editor.org/info/rfc7858>.
[RFC8094] Reddy, T., Wing, D., and P. Patil, "DNS over Datagram
Transport Layer Security (DTLS)", RFC 8094,
DOI 10.17487/RFC8094, February 2017,
<https://www.rfc-editor.org/info/rfc8094>.
[RFC8109] Koch, P., Larson, M., and P. Hoffman, "Initializing a DNS
Resolver with Priming Queries", BCP 209, RFC 8109,
DOI 10.17487/RFC8109, March 2017,
<https://www.rfc-editor.org/info/rfc8109>.
[RFC8484] Hoffman, P. and P. McManus, "DNS Queries over HTTPS
(DoH)", RFC 8484, DOI 10.17487/RFC8484, October 2018,
<https://www.rfc-editor.org/info/rfc8484>.
[RFC9103] Toorop, W., Dickinson, S., Sahib, S., Aras, P., and A.
Mankin, "DNS Zone Transfer over TLS", RFC 9103,
DOI 10.17487/RFC9103, August 2021,
<https://www.rfc-editor.org/info/rfc9103>.
[RSSAC026] Root Server System Advisory Committee (RSSAC), "RSSAC0226
RSSAC Lexicon", 2017,
<https://www.icann.org/en/system/files/files/rssac-
026-14mar17-en.pdf>.
Appendix A. Definitions Updated by This Document
The following definitions from RFCs are updated by this document:
* Forwarder in [RFC2308]
* QNAME in [RFC2308]
* Secure Entry Point (SEP) in [RFC3757]; note, however, that this
RFC is already obsolete (see [RFC4033], [RFC4034], [RFC4035]).
Appendix B. Definitions First Defined in This Document
The following definitions are first defined in this document:
* "Alias" in Section 2
* "Apex" in Section 7
* "arpa" in Section 7
* "Authoritative DoT (ADot)" in Section 6
* "Bailiwick" in Section 7
* "Class independent" in Section 5
* "Classic DNS" in Section 6
* "Delegation-centric zone" in Section 7
* "Delegation" in Section 7
* "DNS operator" in Section 9
* "DNSSEC-aware" in Section 10
* "DNSSEC-unaware" in Section 10
* "Forwarding" in Section 6
* "Full resolver" in Section 6
* "Fully Qualified Domain Name" in Section 2
* "Global DNS" in Section 2
* "Hardware Security Module (HSM)" in Section 10
* "Host name" in Section 2
* "IDN" in Section 2
* "In-domain" in Section 7
* "Iterative resolution" in Section 6
* "Label" in Section 2
* "Locally served DNS zone" in Section 2
* "Naming system" in Section 2
* "Negative response" in Section 3
* "Non-recursive query" in Section 6
* "Open resolver" in Section 6
* "Passive DNS" in Section 6
* "Policy-implementing resolver" in Section 6
* "Presentation format" in Section 5
* "Priming" in Section 6
* "Private DNS" in Section 2
* "Recursive DoT (RDot)" in Section 6
* "Recursive resolver" in Section 6
* "Referrals" in Section 4
* "Registrant" in Section 9
* "Registrar" in Section 9
* "Registry" in Section 9
* "Root zone" in Section 7
* "Secure Entry Point (SEP)" in Section 10
* "Sibling domain" in Section 7
* "Signing software" in Section 10
* "Split DNS" in Section 6
* "Stub resolver" in Section 6
* "Subordinate" in Section 8
* "Superordinate" in Section 8
* "TLD" in Section 2
* "Validating resolver" in Section 10
* "Validation" in Section 10
* "View" in Section 6
* "Zone transfer" in Section 6
Acknowledgements
[RFC8499] and its predecessor, [RFC7719], were co-authored by Andrew
Sullivan. The current document, which is a small update to
[RFC8499], has just two authors. Andrew's work on the earlier
documents is greatly appreciated.
Numerous people made significant contributions to [RFC8499] and
[RFC7719]. Please see the acknowledgements sections in those two
documents for the extensive list of contributors.
Even though the current document is a small revision, many people in
the DNSOP Working Group have contributed to it, and their work is
greatly appreciated.
Index
A B C D E F G H I K L M N O P Q R S T U V W X Z
A
Address and Routing Parameter Area Domain (arpa)
Section 7
Address records
Section 5
ADoT
Section 6
Alias
Section 2
Anycast
Section 6
Apex
Section 7
Asterisk label
Section 8
Authoritative data
Section 7
Authoritative server
Section 6
Authoritative-only server
Section 6
AXoT
Section 6
B
Bailiwick
Section 7
C
Canonical name
Section 2
Child
Section 7
Class
Section 4
Class independent
Section 5
Classic DNS
Section 6
Closest encloser
Section 8
Closest provable encloser
Section 8
CNAME
Section 2
Combined signing key (CSK)
Section 10
D
Delegation
Section 7
Delegation-centric zone
Section 7
DNS operator
Section 9
DNS-over-HTTPS
Section 6
DNS-over-QUIC
Section 6
DNS-over-TLS
Section 6
DNSSEC Policy (DP)
Section 10
DNSSEC Practice Statement (DPS)
Section 10
DNSSEC-aware and DNSSEC-unaware
Section 10
DoH
Section 6
Domain name
Section 2
DoQ
Section 6
DoT
Section 6
E
EDNS
Section 5
Empty non-terminals (ENTs)
Section 7
EPP
Section 9
F
Fast flux DNS
Section 7
FORMERR
Section 3
Forward lookup
Section 7
Forwarder
Section 6
Forwarding
Section 6
Full resolver
Section 6
Full-service resolver
Section 6
Fully Qualified Domain Name (FQDN)
Section 2
G
Global DNS
Section 2
Glue records
Section 7
H
Hardware security module (HSM)
Section 10
Hidden master
Section 6
Host name
Section 2
I
IDN
Section 2
In-bailiwick
Section 7
In-domain
Section 7
Insecure delegation
Section 10
Instance
Section 6
Internationalized Domain Name
Section 2
Iterative mode
Section 6
Iterative resolution
Section 6
IXoT
Section 6
K
Key signing key (KSK)
Section 10
L
Label
Section 2
Lame delegation
Section 7
Locally served DNS zone
Section 2
M
Master file
Section 5
Master server
Section 6
mDNS
Section 2
Multicast DNS
Section 2
N
Naming system
Section 2, Paragraph 1.2.1
Negative caching
Section 6
Negative response
Section 3
Next closer name
Section 8
NODATA
Section 3
NOERROR
Section 3
Non-recursive query
Section 6
NOTIMP
Section 3
NS
Section 6
NSEC
Section 10
NSEC3
Section 10
NXDOMAIN
Section 3
O
Occluded name
Section 7
on-line signing
Section 10
online signing
Section 10
Open resolver
Section 6
OPT
Section 5
Opt-out
Section 10
Origin
Section 7
Out-of-bailiwick
Section 7
Owner
Section 5
P
Parent
Section 7
Passive DNS
Section 6
Policy-implementing resolver
Section 6
Presentation format
Section 5
Primary master
Section 6
Primary server
Section 6
Priming
Section 6
Privacy-enabling DNS server
Section 6
Private DNS
Section 2
Public suffix
Section 9
Q
QNAME
Section 4
R
RDAP
Section 9
RDoT
Section 6
Recursive DoT
Section 6
Recursive mode
Section 6, Paragraph 4.10.1
Recursive query
Section 6
Recursive resolver
Section 6
Referrals
Section 4
REFUSED
Section 3
Registrant
Section 9
Registrar
Section 9
Registry
Section 9
Resolver
Section 6
Reverse DNS, reverse lookup
Section 7
Root hints
Section 6
Root zone
Section 7
RR
Section 5
RRset
Section 5
S
Secondary server
Section 6
Secure Entry Point (SEP)
Section 10
SERVFAIL
Section 3
Service name
Section 7
Sibling domain
Section 7
Signed zone
Section 10
Signing software
Section 10
Slave server
Section 6
SOA
Section 5
SOA field names
Section 5
Source of Synthesis
Section 8, Paragraph 1.14.1
Split DNS
Section 6
Split-horizon DNS
Section 6
Stealth server
Section 6
Stub resolver
Section 6
Subdomain
Section 2
Subordinate
Section 9
Superordinate
Section 9
T
TLD
Section 2
Trust anchor
Section 10
TTL
Section 5
U
Unsigned zone
Section 10
V
Validating resolver
Section 10
Validation
Section 10, Paragraph 2.26.1
View
Section 6
W
WHOIS
Section 9
Wildcard
Section 8
Wildcard domain name
Section 8
X
XoT
Section 6
Z
Zone
Section 7
Zone cut
Section 7
Zone enumeration
Section 10
Zone signing key (ZSK)
Section 10
Zone transfer
Section 6
Authors' Addresses
Paul Hoffman
ICANN
Email: paul.hoffman@icann.org
Kazunori Fujiwara
Japan Registry Services Co., Ltd.
Email: fujiwara@jprs.co.jp
|