1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
|
Internet Engineering Task Force (IETF) R. Gandhi, Ed.
Request for Comments: 9503 C. Filsfils
Category: Standards Track Cisco Systems, Inc.
ISSN: 2070-1721 M. Chen
Huawei
B. Janssens
Colt
R. Foote
Nokia
October 2023
Simple Two-Way Active Measurement Protocol (STAMP) Extensions for
Segment Routing Networks
Abstract
Segment Routing (SR) leverages the source routing paradigm. SR is
applicable to both Multiprotocol Label Switching (SR-MPLS) and IPv6
(SRv6) forwarding planes. This document specifies Simple Two-Way
Active Measurement Protocol (STAMP) extensions (as described in RFC
8762) for SR networks, for both the SR-MPLS and SRv6 forwarding
planes, by augmenting the optional extensions defined in RFC 8972.
Status of This Memo
This is an Internet Standards Track document.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in Section 2 of RFC 7841.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
https://www.rfc-editor.org/info/rfc9503.
Copyright Notice
Copyright (c) 2023 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Revised BSD License text as described in Section 4.e of the
Trust Legal Provisions and are provided without warranty as described
in the Revised BSD License.
Table of Contents
1. Introduction
2. Conventions Used in This Document
2.1. Requirements Language
2.2. Abbreviations
2.3. Reference Topology
3. Destination Node Address TLV
4. Return Path TLV
4.1. Return Path Sub-TLVs
4.1.1. Return Path Control Code Sub-TLV
4.1.2. Return Address Sub-TLVs
4.1.3. Return Path Segment List Sub-TLVs
5. Interoperability with TWAMP Light
6. Security Considerations
7. IANA Considerations
8. References
8.1. Normative References
8.2. Informative References
Appendix A. Destination Node Address TLV Use-Case Example
Acknowledgments
Contributors
Authors' Addresses
1. Introduction
Segment Routing (SR) leverages the source routing paradigm for
Software-Defined Networks (SDNs). SR is applicable to both
Multiprotocol Label Switching (SR-MPLS) and IPv6 (SRv6) forwarding
planes [RFC8402]. SR Policies as defined in [RFC9256] are used to
steer traffic through specific, user-defined paths using a stack of
Segments. A comprehensive SR Performance Measurement (PM) toolset is
one of the essential requirements to measure network performance to
provide Service Level Agreements (SLAs).
The Simple Two-Way Active Measurement Protocol (STAMP) provides
capabilities for the measurement of various performance metrics in IP
networks [RFC8762] without the use of a control channel to pre-signal
session parameters. [RFC8972] defines optional extensions, in the
form of TLVs, for STAMP. Note that the YANG data model defined in
[IPPM-STAMP-YANG] can be used to provision the STAMP Session-Sender
and STAMP Session-Reflector.
STAMP test packets are transmitted along an IP path between a
Session-Sender and a Session-Reflector to measure performance delay
and packet loss along that IP path. In SR networks, it may be
desired that the same path (same set of links and nodes) between the
Session-Sender and Session-Reflector be used for the STAMP test
packets in both directions. This is achieved by using the STAMP
[RFC8762] extensions for SR-MPLS and SRv6 networks as specified in
this document by augmenting the optional extensions defined in
[RFC8972].
2. Conventions Used in This Document
2.1. Requirements Language
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in
BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
capitals, as shown here.
2.2. Abbreviations
MPLS: Multiprotocol Label Switching
SID: Segment Identifier
SR: Segment Routing
SR-MPLS: Segment Routing over MPLS
SRv6: Segment Routing over IPv6
SSID: STAMP Session Identifier
STAMP: Simple Two-Way Active Measurement Protocol
2.3. Reference Topology
In the reference topology shown below, the STAMP Session-Sender S1
initiates a STAMP test packet and the STAMP Session-Reflector R1
transmits a reply STAMP test packet. The reply test packet may be
transmitted to the Session-Sender S1 on the same path (same set of
links and nodes) or a different path in the reverse direction from
the path taken towards the Session-Reflector R1.
T1 is a transmit timestamp, and T4 is a receive timestamp added by
node S1. T2 is a receive timestamp, and T3 is a transmit timestamp
added by node R1.
The nodes S1 and R1 may be connected via a link or an SR path
[RFC8402]. The link may be a physical interface, virtual link, Link
Aggregation Group (LAG) [IEEE802.1AX], or LAG member. The SR path
may be an SR Policy [RFC9256] on node S1 (called "head-end") with a
destination to node R1 (called "tail-end").
T1 T2
/ \
+-------+ Test Packet +-------+
| | - - - - - - - - - ->| |
| S1 |=====================| R1 |
| |<- - - - - - - - - - | |
+-------+ Reply Test Packet +-------+
\ /
T4 T3
STAMP Session-Sender STAMP Session-Reflector
Figure 1: Reference Topology
3. Destination Node Address TLV
The Session-Sender may need to transmit test packets to the Session-
Reflector with a Destination Address that is not a routable address
(i.e., not suitable for use as the Source Address of the reply test
packet) of the Session-Reflector. This can be facilitated, for
example, by encapsulating the STAMP packet by a tunneling protocol;
see Appendix A for an example.
[RFC8972] defines STAMP Session-Sender and Session-Reflector test
packets that can include one or more optional TLVs. In this
document, the TLV Type (value 9 for IPv4 and IPv6) is defined for the
Destination Node Address TLV for the STAMP test packet [RFC8972].
The formats of the Destination Node Address TLVs are shown in
Figure 2:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|STAMP TLV Flags| Type=9 | Length=4 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| IPv4 Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|STAMP TLV Flags| Type=9 | Length=16 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
| IPv6 Address |
| |
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 2: Destination Node Address TLV Formats
The TLV fields are defined as follows:
STAMP TLV Flags: The STAMP TLV Flags follow the procedures described
in [RFC8972] and this document.
Type: Type (value 9) for the IPv4 Destination Node Address TLV or
IPv6 Destination Node Address TLV.
Length: A 2-octet field equal to the length of the Address field in
octets. The length is 4 octets for an IPv4 address and 16 octets
for an IPv6 address.
The Destination Node Address TLV indicates an address of the intended
Session-Reflector node of the test packet. If the received
Destination Node Address is one of the addresses of the Session-
Reflector, it SHOULD be used as the Source Address in the IP header
of the reply test packet. If the Destination Node Address TLV is
sent, the SSID MUST also be sent.
A Session-Reflector that recognizes this TLV MUST set the U flag
[RFC8972] in the reply test packet to 1 if the Session-Reflector
determined that it is not the intended destination as identified in
the Destination Node Address TLV. In this case, the Session-
Reflector does not use the received Destination Node Address as the
Source Address in the IP header of the reply test packet. Otherwise,
the Session-Reflector MUST set the U flag in the Destination Node
Address TLV in the reply test packet to 0.
4. Return Path TLV
For end-to-end SR paths, the Session-Reflector may need to transmit
the reply test packet on a specific Return Path. The Session-Sender
can request this in the test packet to the Session-Reflector using a
Return Path TLV. With this TLV carried in the Session-Sender test
packet, signaling and maintaining dynamic SR network state for the
STAMP sessions on the Session-Reflector are avoided.
There are two modes defined for the behaviors on the Session-
Reflector in Section 4 of [RFC8762]: Stateless and Stateful. A
Stateful Session-Reflector requires configuration that must match all
Session-Sender parameters, including the Source Address, Destination
Address, Source UDP Port, Destination UDP Port, and possibly SSID
(assuming the SSID is configurable and not auto-generated). In this
case, a local policy can be used to direct the test packet by
creating additional states for the STAMP sessions on the Session-
Reflector. In the case of promiscuous operation, the Stateless
Session-Reflector will require an indication of how to return the
test packet on a specific path, for example, for measurement in an
ECMP environment.
For links, the Session-Reflector may need to transmit the reply test
packet on the same incoming link in the reverse direction. The
Session-Sender can request this in the test packet to the Session-
Reflector using a Return Path TLV.
[RFC8972] defines STAMP test packets that can include one or more
optional TLVs. In this document, the TLV Type (value 10) is defined
for the Return Path TLV that carries the Return Path for the Session-
Sender test packet. The format of the Return Path TLV is shown in
Figure 3:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|STAMP TLV Flags| Type=10 | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Return Path Sub-TLVs |
. .
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 3: Return Path TLV Format
The TLV fields are defined as follows:
STAMP TLV Flags: The STAMP TLV Flags follow the procedures described
in [RFC8972] and this document.
Type: Type (value 10) for the Return Path TLV.
Length: A 2-octet field equal to the length of the Return Path Sub-
TLVs field in octets.
Return Path Sub-TLVs: As defined in Section 4.1.
A Session-Sender MUST NOT insert more than one Return Path TLV in the
STAMP test packet. A Session-Reflector that supports this TLV MUST
only process the first Return Path TLV in the test packet and ignore
other Return Path TLVs if present. A Session-Reflector that supports
this TLV MUST reply using the Return Path received in the Session-
Sender test packet, if no error was encountered while processing the
TLV.
A Session-Reflector that recognizes this TLV MUST set the U flag
[RFC8972] in the reply test packet to 1 if the Session-Reflector
determined that it cannot use the Return Path in the test packet to
transmit the reply test packet. Otherwise, the Session-Reflector
MUST set the U flag in the reply test packet to 0.
4.1. Return Path Sub-TLVs
The Return Path TLV contains one or more Sub-TLVs to carry the
information for the requested Return Path. A Return Path Sub-TLV can
carry a Return Path Control Code, Return Path IP Address, or Return
Path Segment List.
The STAMP Sub-TLV Flags are set using the procedures described in
[RFC8972].
A Return Path TLV MUST NOT contain more than one Control Code Sub-
TLV, Return Address Sub-TLV, or Return Path Segment List Sub-TLV in a
Session-Sender test packet.
A Return Path TLV MUST NOT contain both a Control Code Sub-TLV and a
Return Address or Return Path Segment List Sub-TLV in a Session-
Sender test packet.
A Return Path TLV MAY contain both a Return Address and a Return Path
Segment List Sub-TLV in a Session-Sender test packet.
4.1.1. Return Path Control Code Sub-TLV
The format of the Control Code Sub-TLV in the Return Path TLV is
shown in Figure 4.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|STAMP TLV Flags| Type=1 | Length=4 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Control Code Flags |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 4: Format of the Control Code Sub-TLV in the Return Path TLV
The TLV fields are defined as follows:
Type: Type (value 1) for the Return Path Control Code. The Session-
Sender can request the Session-Reflector to transmit the reply
test packet based on the flags defined in the Control Code Flags
field.
STAMP TLV Flags: The STAMP TLV Flags follow the procedures described
in [RFC8972] and this document.
Length: A 2-octet field equal to the length of the Control Code
flags, which is 4 octets.
Control Code Flags (32 bits): Reply Request Flag at bit 31 (least
significant bit) is defined as follows.
0x0: No Reply Requested
0x1: Reply Requested on the Same Link
All other bits are reserved and must be transmitted as 0 and ignored
by the receiver.
When Control Code flag for Reply Request is set to 0x0 in the
Session-Sender test packet, the Session-Reflector does not transmit a
reply test packet to the Session-Sender and terminates the STAMP test
packet. Only the one-way measurement is applicable in this case.
Optionally, the Session-Reflector may locally stream performance
metrics via telemetry using the information from the received test
packet. All other Return Path Sub-TLVs MUST be ignored in this case.
When Control Code flag for Reply Request is set to 0x1 in the
Session-Sender test packet, the Session-Reflector transmits the reply
test packet over the same incoming link where the test packet is
received in the reverse direction towards the Session-Sender. The
link may be a physical interface, virtual link, LAG [IEEE802.1AX], or
LAG member. All other Return Path Sub-TLVs MUST be ignored in this
case. When using LAG member links, the STAMP extension for the
Micro-Session ID TLV defined in [STAMP-ON-LAG] can be used to
identify the link.
4.1.2. Return Address Sub-TLVs
The STAMP reply test packet may be transmitted to the Session-Sender
to the specified Return Address in the Return Address Sub-TLV instead
of transmitting to the Source Address in the Session-Sender test
packet.
The formats of the IPv4 and IPv6 Return Address Sub-TLVs in the
Return Path TLV are shown in Figure 5.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|STAMP TLV Flags| Type=2 | Length=4 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Return IPv4 Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|STAMP TLV Flags| Type=2 | Length=16 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
| Return IPv6 Address |
| |
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 5: Formats of the Return Address Sub-TLVs in the Return
Path TLV
The TLV fields are defined as follows:
Type: Type (value 2) for the Return IPv4 Address or Return IPv6
Address.
The Return Address requests that the Session-Reflector reply test
packet be sent to the specified address rather than to the Source
Address in the Session-Sender test packet.
STAMP TLV Flags: The STAMP TLV Flags follow the procedures described
in [RFC8972] and this document.
Length: A 2-octet field equal to the length of the Return Address
field in octets. The length is 4 octets for an IPv4 address and
16 octets for an IPv6 address.
4.1.3. Return Path Segment List Sub-TLVs
The format of the Segment List Sub-TLVs in the Return Path TLV is
shown in Figures 6 and 7. The Segments carried in Segment List Sub-
TLVs are described in [RFC8402]. The segment entries MUST be in
network order.
The Session-Sender MUST only insert one Return Path Segment List Sub-
TLV in the test packet, and the Segment List MUST contain at least
one Segment. The Session-Reflector MUST only process the first
Return Path Segment List Sub-TLV in the test packet and ignore other
Return Path Segment List Sub-TLVs if present.
The TLV fields are defined as follows:
The Return Path Segment List Sub-TLV can be one of the following
Types:
Type (value 3): SR-MPLS Label Stack of the Return Path
Type (value 4): SRv6 Segment List of the Return Path
STAMP TLV Flags: The STAMP TLV Flags follow the procedures described
in [RFC8972] and this document.
Length: A 2-octet field equal to the length of the Segment List
field in octets. The length MUST NOT be 0.
4.1.3.1. Return Path SR-MPLS Label Stack Sub-TLV
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|STAMP TLV Flags| Type=3 | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Segment(1) | TC |S| TTL |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
. .
. .
. .
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Segment(n) (bottom of stack) | TC |S| TTL |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 6: Format of the SR-MPLS Label Stack Sub-TLV in the Return
Path TLV
The SR-MPLS Label Stack contains a list of 32-bit Label Stack Entries
(LSEs) that includes a 20-bit label value, an 8-bit Time-To-Live
(TTL) value, a 3-bit Traffic Class (TC) value, and a 1-bit End-of-
Stack (S) field. The length of the Sub-TLV modulo 4 MUST be 0.
As an example, an SR-MPLS Label Stack Sub-TLV could carry only the
Binding SID Label [PCE-BINDING-LABEL-SID] of the Return SR-MPLS
Policy. The Binding SID Label of the Return SR-MPLS Policy is local
to the Session-Reflector. The mechanism to signal the Binding SID
Label to the Session-Sender is outside the scope of this document.
As another example, an SR-MPLS Label Stack Sub-TLV could include the
Path Segment Identifier Label of the Return SR-MPLS Policy in the
Segment List of the SR-MPLS Policy.
4.1.3.2. Return Path SRv6 Segment List Sub-TLV
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|STAMP TLV Flags| Type=4 | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
| Segment(1) (128-bit IPv6 Address) |
| |
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
. .
. .
. .
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
| Segment(n) (128-bit IPv6 Address) (bottom of stack) |
| |
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 7: Format of the SRv6 Segment List Sub-TLV in the Return
Path TLV
The SRv6 Segment List contains a list of 128-bit IPv6 addresses
representing the SRv6 SIDs. The length of the Sub-TLV modulo 16 MUST
be 0.
As an example, a Return Path SRv6 Segment List Sub-TLV could carry
only the SRv6 Binding SID [PCE-BINDING-LABEL-SID] of the Return SRv6
Policy. The SRv6 Binding SID of the Return SRv6 Policy is local to
the Session-Reflector. The mechanism to signal the SRv6 Binding SID
to the Session-Sender is outside the scope of this document.
As another example, a Return Path SRv6 Segment List Sub-TLV could
include the SRv6 Path Segment Identifier of the Return SRv6 Policy in
the Segment List of the SRv6 Policy.
5. Interoperability with TWAMP Light
This document does not introduce any additional considerations for
interoperability with the Two-Way Active Measurement Protocol (TWAMP)
Light than those described in Section 4.6 of [RFC8762].
As described in [RFC8762], there are two possible combinations for
such an interoperability use case:
* STAMP Session-Sender with TWAMP Light Session-Reflector
* TWAMP Light Session-Sender with STAMP Session-Reflector
If any of the STAMP extensions defined in this document are used by
STAMP Session-Sender, the TWAMP Light Session-Reflector will view
them as the Packet Padding field.
6. Security Considerations
The security considerations specified in [RFC8762] and [RFC8972] also
apply to the extensions defined in this document. Specifically, the
authenticated mode and the message integrity protection using Hashed
Message Authentication Code (HMAC), as defined in Section 4.4 of
[RFC8762], also apply to the procedures described in this document.
STAMP uses the well-known UDP port number that could become a target
of denial of service (DoS) or could be used to aid on-path attacks.
Thus, the security considerations and measures to mitigate the risk
of the attack documented in Section 6 of [RFC8545] equally apply to
the STAMP extensions in this document.
If desired, attacks can be mitigated by performing basic validation
checks of the timestamp fields (such as T2 is later than T1 in the
reference topology in Section 2.3) in received reply test packets at
the Session-Sender. The minimal state associated with these
protocols also limit the extent of measurement disruption that can be
caused by a corrupt or invalid test packet to a single test cycle.
The usage of STAMP extensions defined in this document is intended
for deployment in a single network administrative domain. As such,
the Session-Sender address, Session-Reflector address, and Return
Path are provisioned by the operator for the STAMP session. It is
assumed that the operator has verified the integrity of the Return
Path and identity of the far-end Session-Reflector.
The STAMP extensions defined in this document may be used for
potential address spoofing. For example, a Session-Sender may
specify a Return Path IP Address that is different from the Session-
Sender address. The Session-Reflector MAY drop the Session-Sender
test packet when it cannot determine whether the Return Path IP
Address is local on the Session-Sender. To help the Session-
Reflector to make that determination, the Return Path IP Address may
also be provisioned by the operator, for example, in an access
control list.
7. IANA Considerations
IANA has allocated a value for the Destination Address TLV Type and a
value for the Return Path TLV Type from the IETF Review TLV range in
the "STAMP TLV Types" registry [RFC8972] as follows.
+=======+=======================================+===========+
| Value | Description | Reference |
+=======+=======================================+===========+
| 9 | Destination Node IPv4 or IPv6 Address | RFC 9503 |
+-------+---------------------------------------+-----------+
| 10 | Return Path | RFC 9503 |
+-------+---------------------------------------+-----------+
Table 1: STAMP TLV Types
IANA has created the "Return Path Sub-TLV Types" registry. All code
points in the range 1 through 175 in this registry shall be allocated
according to the "IETF Review" procedure as specified in [RFC8126].
Code points in the range 176 through 239 shall be allocated according
to the "First Come First Served" procedure as specified in [RFC8126].
Remaining code points shall be allocated according to Table 2:
+=========+=========================+
| Range | Registration Procedures |
+=========+=========================+
| 1-175 | IETF Review |
+---------+-------------------------+
| 176-239 | First Come First Served |
+---------+-------------------------+
| 240-251 | Experimental Use |
+---------+-------------------------+
| 252-254 | Private Use |
+---------+-------------------------+
Table 2: Return Path Sub-TLV
Types Registry
IANA has allocated values for the following Sub-TLV Types in the
"Return Path Sub-TLV Types" registry.
+=======+========================================+===========+
| Value | Description | Reference |
+=======+========================================+===========+
| 0 | Reserved | RFC 9503 |
+-------+----------------------------------------+-----------+
| 1 | Return Path Control Code | RFC 9503 |
+-------+----------------------------------------+-----------+
| 2 | Return IPv4 or IPv6 Address | RFC 9503 |
+-------+----------------------------------------+-----------+
| 3 | SR-MPLS Label Stack of the Return Path | RFC 9503 |
+-------+----------------------------------------+-----------+
| 4 | SRv6 Segment List of the Return Path | RFC 9503 |
+-------+----------------------------------------+-----------+
| 255 | Reserved | RFC 9503 |
+-------+----------------------------------------+-----------+
Table 3: Return Path Sub-TLV Types
IANA has created the "Return Path Control Code Flags" registry for
Return Path Control Code Sub-TLVs. All code points in the bit
position 31 (counting from bit 31 as the least significant bit)
through 12 in this registry shall be allocated according to the "IETF
Review" procedure as specified in [RFC8126]. Code points in the bit
position 11 through 8 shall be allocated according to the "First Come
First Served" procedure as specified in [RFC8126]. Remaining code
points shall be allocated according to Table 4:
+=======+=========================+
| Range | Registration Procedures |
+=======+=========================+
| 31-12 | IETF Review |
+-------+-------------------------+
| 11-8 | First Come First Served |
+-------+-------------------------+
| 7-4 | Experimental Use |
+-------+-------------------------+
| 3-0 | Private Use |
+-------+-------------------------+
Table 4: Return Path Control
Code Flags Registry
IANA has allocated a value in the "Return Path Control Code Flags"
registry as follows.
+=======+===============+===========+
| Value | Description | Reference |
+=======+===============+===========+
| 31 | Reply Request | RFC 9503 |
+-------+---------------+-----------+
Table 5: Return Path Control Code
Flags
8. References
8.1. Normative References
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,
<https://www.rfc-editor.org/info/rfc2119>.
[RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
May 2017, <https://www.rfc-editor.org/info/rfc8174>.
[RFC8762] Mirsky, G., Jun, G., Nydell, H., and R. Foote, "Simple
Two-Way Active Measurement Protocol", RFC 8762,
DOI 10.17487/RFC8762, March 2020,
<https://www.rfc-editor.org/info/rfc8762>.
[RFC8972] Mirsky, G., Min, X., Nydell, H., Foote, R., Masputra, A.,
and E. Ruffini, "Simple Two-Way Active Measurement
Protocol Optional Extensions", RFC 8972,
DOI 10.17487/RFC8972, January 2021,
<https://www.rfc-editor.org/info/rfc8972>.
8.2. Informative References
[IEEE802.1AX]
IEEE, "IEEE Standard for Local and metropolitan area
networks -- Link Aggregation", IEEE Std 802.1AX-2014,
DOI 10.1109/IEEESTD.2014.7055197, December 2014,
<https://doi.org/10.1109/IEEESTD.2014.7055197>.
[IPPM-STAMP-YANG]
Mirsky, G., Min, X., and W. S. Luo, "Simple Two-way Active
Measurement Protocol (STAMP) Data Model", Work in
Progress, Internet-Draft, draft-ietf-ippm-stamp-yang-11,
13 March 2023, <https://datatracker.ietf.org/doc/html/
draft-ietf-ippm-stamp-yang-11>.
[PCE-BINDING-LABEL-SID]
Sivabalan, S., Filsfils, C., Tantsura, J., Previdi, S.,
and C. Li, Ed., "Carrying Binding Label/Segment Identifier
(SID) in PCE-based Networks.", Work in Progress, Internet-
Draft, draft-ietf-pce-binding-label-sid-16, 27 March 2023,
<https://datatracker.ietf.org/doc/html/draft-ietf-pce-
binding-label-sid-16>.
[RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
Writing an IANA Considerations Section in RFCs", BCP 26,
RFC 8126, DOI 10.17487/RFC8126, June 2017,
<https://www.rfc-editor.org/info/rfc8126>.
[RFC8402] Filsfils, C., Ed., Previdi, S., Ed., Ginsberg, L.,
Decraene, B., Litkowski, S., and R. Shakir, "Segment
Routing Architecture", RFC 8402, DOI 10.17487/RFC8402,
July 2018, <https://www.rfc-editor.org/info/rfc8402>.
[RFC8545] Morton, A., Ed. and G. Mirsky, Ed., "Well-Known Port
Assignments for the One-Way Active Measurement Protocol
(OWAMP) and the Two-Way Active Measurement Protocol
(TWAMP)", RFC 8545, DOI 10.17487/RFC8545, March 2019,
<https://www.rfc-editor.org/info/rfc8545>.
[RFC9256] Filsfils, C., Talaulikar, K., Ed., Voyer, D., Bogdanov,
A., and P. Mattes, "Segment Routing Policy Architecture",
RFC 9256, DOI 10.17487/RFC9256, July 2022,
<https://www.rfc-editor.org/info/rfc9256>.
[STAMP-ON-LAG]
Li, Z., Zhou, T., Guo, J., Mirsky, G., and R. Gandhi,
"Simple Two-Way Active Measurement Protocol Extensions for
Performance Measurement on LAG", Work in Progress,
Internet-Draft, draft-ietf-ippm-stamp-on-lag-05, 17
October 2023, <https://datatracker.ietf.org/doc/html/
draft-ietf-ippm-stamp-on-lag-05>.
Appendix A. Destination Node Address TLV Use-Case Example
STAMP test packets can be encapsulated with 1) an SR-MPLS Label Stack
and IPv4 header containing an IPv4 Destination Address from the 127/8
range or 2) an outer IPv6 header and a Segment Routing Header (SRH)
with an inner IPv6 header containing an IPv6 Destination Address from
the ::1/128 range.
In an ECMP environment, the hashing function in forwarding may decide
the outgoing path using the Source Address, Destination Address, UDP
ports, IPv6 flow-label, etc. from the packet. Hence, for IPv4, for
example, different values of an IPv4 Destination Address from the
127/8 range may be used in the IPv4 header of the STAMP test packets
to measure different ECMP paths. For IPv6, for example, different
values of flow-label may be used in the IPv6 header of the STAMP test
packets to measure different ECMP paths.
In those cases, the STAMP test packets may reach a node that is not
the Session-Reflector for this STAMP session in an error condition,
and this unintended node may transmit a reply test packet that can
result in the reporting of invalid measurement metrics. The intended
Session-Reflector address can be carried in the Destination Node
Address TLV to help detect this error.
Acknowledgments
The authors would like to thank Thierry Couture for the discussions
on the use cases for Performance Measurement in Segment Routing. The
authors would also like to thank Greg Mirsky, Mike Koldychev, Gyan
Mishra, Tianran Zhou, Al Morton, Reshad Rahman, Zhenqiang Li, Frank
Brockners, Henrik Nydell, and Cheng Li for providing comments and
suggestions. Thank you to Joel Halpern for the Gen-ART review,
Martin Duke for the AD review, and Kathleen Moriarty for the Security
review. The authors would also like to thank Robert Wilton, Éric
Vyncke, Paul Wouters, John Scudder, Roman Danyliw, Lars Eggert, Erik
Kline, Warren Kumari, and Jim Guichard for the IESG review.
Contributors
The following person has contributed substantially to this document:
Daniel Voyer
Bell Canada
Email: daniel.voyer@bell.ca
Authors' Addresses
Rakesh Gandhi (editor)
Cisco Systems, Inc.
Canada
Email: rgandhi@cisco.com
Clarence Filsfils
Cisco Systems, Inc.
Email: cfilsfil@cisco.com
Mach(Guoyi) Chen
Huawei
Email: mach.chen@huawei.com
Bart Janssens
Colt
Email: Bart.Janssens@colt.net
Richard Foote
Nokia
Email: footer.foote@nokia.com
|