1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
|
#include <assert.h>
#include <errno.h>
#include <inttypes.h>
#include <limits.h>
#include <stdalign.h>
#include <stdbool.h>
#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include "alloc.h"
#include "errors.h"
#include "lexer.h"
#include "unicode.h"
#define LEXEMES_DFLT_CAP (2048)
#define SIZE_WDTH (sizeof(size_t) * CHAR_BIT)
static bool skip_comment(const uchar **, const uchar *);
static struct lexemes mklexemes(void);
static void lexemesresz(struct lexemes *);
static const bool is_numeric_lookup[UCHAR_MAX + 1] = {
['0'] = true, ['1'] = true, ['2'] = true, ['3'] = true,
['4'] = true, ['5'] = true, ['6'] = true, ['7'] = true,
['8'] = true, ['9'] = true, ['\''] = true,
};
struct lexemes
lexstring(const uchar *code, size_t codesz)
{
#if ORYX_SIMD
if (!utf8_validate_simd(code, codesz)) {
#endif
size_t loc = utf8_validate_off(code, codesz);
if (loc != 0) {
err("Invalid byte ‘0x%02" PRIx8 "’ in UTF-8 input at byte %zu",
code[loc - 1], loc);
}
#if ORYX_SIMD
}
#endif
struct lexemes data = mklexemes();
const uchar *start = code, *end = start + codesz;
while (likely(code < end)) {
const uchar *spnbeg = code, *spnend;
rune ch = utf8_decode(&code);
switch (ch) {
/* Single-byte literals */
case '&': case '(': case ')': case '*': case '+':
case '-': case ':': case ';': case '=': case '[':
case ']': case '{': case '|': case '}': case '~':
data.kinds[data.len++] = ch;
break;
/* Single- or double-byte literals */
case '/':
if (code < end && code[0] == '*') {
if (!skip_comment(&code, end))
err("Unterminated comment at byte %td", code - start);
continue;
}
data.kinds[data.len++] = ch;
break;
case '<':
case '>':
data.kinds[data.len++] = ch;
/* See the comment in lexer.h for where 193 comes from */
if (code < end && code[0] == ch) {
code++;
data.kinds[data.len - 1] += 193;
}
break;
case '0': case '1': case '2': case '3': case '4':
case '5': case '6': case '7': case '8': case '9':
data.kinds[data.len] = LEXNUM;
data.strs[data.len].p = spnbeg;
while (likely(code < end) && is_numeric_lookup[code[0]]) {
if (unlikely(code[0] == '\'' && code[-1] == '\'')) {
err("Adjacent numeric separators at byte %td",
code - start);
}
code++;
}
if (unlikely(code < end && code[-1] == '\'')) {
err("Numeric literal ends with numeric separator at byte %td",
code - start);
}
data.strs[data.len++].len = code - spnbeg;
break;
default:
if (!rune_is_xids(ch))
continue;
data.kinds[data.len] = LEXIDENT;
data.strs[data.len].p = spnbeg;
spnend = code;
while (likely(code < end) && rune_is_xidc(ch)) {
spnend = code;
ch = utf8_decode(&code);
}
if (likely(code < end))
code = spnend;
data.strs[data.len++].len = spnend - spnbeg;
}
if (unlikely(data.len == data.cap))
lexemesresz(&data);
}
if (unlikely(data.len == data.cap))
lexemesresz(&data);
data.kinds[data.len++] = LEXEOF;
return data;
}
bool
skip_comment(const uchar **ptr, const uchar *end)
{
int nst = 1;
const uchar *p = *ptr;
for (p++; likely(p < end); p++) {
if (p + 1 < end) {
if (p[0] == '*' && p[1] == '/') {
p++;
if (--nst == 0)
goto out;
} else if (p[0] == '/' && p[1] == '*') {
p++;
nst++;
}
}
}
return false;
out:
*ptr = ++p;
return true;
}
struct lexemes
mklexemes(void)
{
struct lexemes soa;
static_assert(offsetof(struct lexemes, kinds)
< offsetof(struct lexemes, strs),
"KINDS is not the first field before STRS");
static_assert(LEXEMES_DFLT_CAP * sizeof(*soa.kinds) % alignof(*soa.strs)
== 0,
"Additional padding is required to properly align STRS");
soa.len = 0;
soa.cap = LEXEMES_DFLT_CAP;
soa.kinds = bufalloc(NULL, soa.cap, LEXEMES_BLKSZ);
soa.strs = (void *)((char *)soa.kinds + soa.cap * sizeof(*soa.kinds));
return soa;
}
void
lexemesresz(struct lexemes *soa)
{
static_assert(offsetof(struct lexemes, kinds)
< offsetof(struct lexemes, strs),
"KINDS is not the first field before STRS");
size_t ncap, pad, newsz;
ptrdiff_t off = (char *)soa->strs - (char *)soa->kinds;
/* The capacity is always going to be a power of 2, so checking for overflow
becomes pretty trivial */
if ((soa->cap >> (SIZE_WDTH - 1)) != 0) {
errno = EOVERFLOW;
err("%s:", __func__);
}
ncap = soa->cap << 1;
/* Ensure that soa->strs is properly aligned */
pad = alignof(*soa->strs)
- ncap * sizeof(*soa->kinds) % alignof(*soa->strs);
if (pad == alignof(*soa->strs))
pad = 0;
newsz = ncap * LEXEMES_BLKSZ + pad;
soa->kinds = bufalloc(soa->kinds, newsz, 1);
soa->strs = (void *)((char *)soa->kinds + ncap * sizeof(*soa->kinds) + pad);
memmove(soa->strs, (char *)soa->kinds + off, soa->len * sizeof(*soa->strs));
soa->cap = ncap;
}
|