1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
|
/* mpn_dcpi1_bdiv_qr -- divide-and-conquer Hensel division with precomputed
inverse, returning quotient and remainder.
Contributed to the GNU project by Niels Möller and Torbjorn Granlund.
THE FUNCTIONS IN THIS FILE ARE INTERNAL WITH MUTABLE INTERFACES. IT IS ONLY
SAFE TO REACH THEM THROUGH DOCUMENTED INTERFACES. IN FACT, IT IS ALMOST
GUARANTEED THAT THEY WILL CHANGE OR DISAPPEAR IN A FUTURE GMP RELEASE.
Copyright 2006, 2007, 2009, 2010, 2017 Free Software Foundation, Inc.
This file is part of the GNU MP Library.
The GNU MP Library is free software; you can redistribute it and/or modify
it under the terms of either:
* the GNU Lesser General Public License as published by the Free
Software Foundation; either version 3 of the License, or (at your
option) any later version.
or
* the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any
later version.
or both in parallel, as here.
The GNU MP Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received copies of the GNU General Public License and the
GNU Lesser General Public License along with the GNU MP Library. If not,
see https://www.gnu.org/licenses/. */
#include "gmp-impl.h"
/* Computes Hensel binary division of {np, 2*n} by {dp, n}.
Output:
q = -n * d^{-1} mod 2^{qn * GMP_NUMB_BITS},
r = (n + q * d) * 2^{-qn * GMP_NUMB_BITS}
Stores q at qp. Stores the n least significant limbs of r at the high half
of np, and returns the carry from the addition n + q*d.
d must be odd. dinv is (-d)^-1 mod 2^GMP_NUMB_BITS. */
mp_size_t
mpn_dcpi1_bdiv_qr_n_itch (mp_size_t n)
{
return n;
}
mp_limb_t
mpn_dcpi1_bdiv_qr_n (mp_ptr qp, mp_ptr np, mp_srcptr dp, mp_size_t n,
mp_limb_t dinv, mp_ptr tp)
{
mp_size_t lo, hi;
mp_limb_t cy;
mp_limb_t rh;
lo = n >> 1; /* floor(n/2) */
hi = n - lo; /* ceil(n/2) */
if (BELOW_THRESHOLD (lo, DC_BDIV_QR_THRESHOLD))
cy = mpn_sbpi1_bdiv_qr (qp, np, 2 * lo, dp, lo, dinv);
else
cy = mpn_dcpi1_bdiv_qr_n (qp, np, dp, lo, dinv, tp);
mpn_mul (tp, dp + lo, hi, qp, lo);
mpn_incr_u (tp + lo, cy);
rh = mpn_add (np + lo, np + lo, n + hi, tp, n);
if (BELOW_THRESHOLD (hi, DC_BDIV_QR_THRESHOLD))
cy = mpn_sbpi1_bdiv_qr (qp + lo, np + lo, 2 * hi, dp, hi, dinv);
else
cy = mpn_dcpi1_bdiv_qr_n (qp + lo, np + lo, dp, hi, dinv, tp);
mpn_mul (tp, qp + lo, hi, dp + hi, lo);
mpn_incr_u (tp + hi, cy);
rh += mpn_add_n (np + n, np + n, tp, n);
return rh;
}
mp_limb_t
mpn_dcpi1_bdiv_qr (mp_ptr qp, mp_ptr np, mp_size_t nn,
mp_srcptr dp, mp_size_t dn, mp_limb_t dinv)
{
mp_size_t qn;
mp_limb_t rr, cy;
mp_ptr tp;
TMP_DECL;
TMP_MARK;
ASSERT (dn >= 2); /* to adhere to mpn_sbpi1_div_qr's limits */
ASSERT (nn - dn >= 1); /* to adhere to mpn_sbpi1_div_qr's limits */
ASSERT (dp[0] & 1);
tp = TMP_SALLOC_LIMBS (dn);
qn = nn - dn;
if (qn > dn)
{
/* Reduce qn mod dn without division, optimizing small operations. */
do
qn -= dn;
while (qn > dn);
/* Perform the typically smaller block first. */
if (BELOW_THRESHOLD (qn, DC_BDIV_QR_THRESHOLD))
cy = mpn_sbpi1_bdiv_qr (qp, np, 2 * qn, dp, qn, dinv);
else
cy = mpn_dcpi1_bdiv_qr_n (qp, np, dp, qn, dinv, tp);
rr = 0;
if (qn != dn)
{
if (qn > dn - qn)
mpn_mul (tp, qp, qn, dp + qn, dn - qn);
else
mpn_mul (tp, dp + qn, dn - qn, qp, qn);
mpn_incr_u (tp + qn, cy);
rr = mpn_add (np + qn, np + qn, nn - qn, tp, dn);
cy = 0;
}
np += qn;
qp += qn;
qn = nn - dn - qn;
do
{
rr += mpn_add_1 (np + dn, np + dn, qn, cy);
cy = mpn_dcpi1_bdiv_qr_n (qp, np, dp, dn, dinv, tp);
qp += dn;
np += dn;
qn -= dn;
}
while (qn > 0);
TMP_FREE;
return rr + cy;
}
if (BELOW_THRESHOLD (qn, DC_BDIV_QR_THRESHOLD))
cy = mpn_sbpi1_bdiv_qr (qp, np, 2 * qn, dp, qn, dinv);
else
cy = mpn_dcpi1_bdiv_qr_n (qp, np, dp, qn, dinv, tp);
rr = 0;
if (qn != dn)
{
if (qn > dn - qn)
mpn_mul (tp, qp, qn, dp + qn, dn - qn);
else
mpn_mul (tp, dp + qn, dn - qn, qp, qn);
mpn_incr_u (tp + qn, cy);
rr = mpn_add (np + qn, np + qn, nn - qn, tp, dn);
cy = 0;
}
TMP_FREE;
return rr + cy;
}
|