1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
|
/* mpn_gcdext -- Extended Greatest Common Divisor.
Copyright 1996, 1998, 2000-2005, 2008, 2009, 2012 Free Software Foundation,
Inc.
This file is part of the GNU MP Library.
The GNU MP Library is free software; you can redistribute it and/or modify
it under the terms of either:
* the GNU Lesser General Public License as published by the Free
Software Foundation; either version 3 of the License, or (at your
option) any later version.
or
* the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any
later version.
or both in parallel, as here.
The GNU MP Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received copies of the GNU General Public License and the
GNU Lesser General Public License along with the GNU MP Library. If not,
see https://www.gnu.org/licenses/. */
#include "gmp-impl.h"
#include "longlong.h"
/* Computes (r;b) = (a; b) M. Result is of size n + M->n +/- 1, and
the size is returned (if inputs are non-normalized, result may be
non-normalized too). Temporary space needed is M->n + n.
*/
static size_t
hgcd_mul_matrix_vector (struct hgcd_matrix *M,
mp_ptr rp, mp_srcptr ap, mp_ptr bp, mp_size_t n, mp_ptr tp)
{
mp_limb_t ah, bh;
/* Compute (r,b) <-- (u00 a + u10 b, u01 a + u11 b) as
t = u00 * a
r = u10 * b
r += t;
t = u11 * b
b = u01 * a
b += t;
*/
if (M->n >= n)
{
mpn_mul (tp, M->p[0][0], M->n, ap, n);
mpn_mul (rp, M->p[1][0], M->n, bp, n);
}
else
{
mpn_mul (tp, ap, n, M->p[0][0], M->n);
mpn_mul (rp, bp, n, M->p[1][0], M->n);
}
ah = mpn_add_n (rp, rp, tp, n + M->n);
if (M->n >= n)
{
mpn_mul (tp, M->p[1][1], M->n, bp, n);
mpn_mul (bp, M->p[0][1], M->n, ap, n);
}
else
{
mpn_mul (tp, bp, n, M->p[1][1], M->n);
mpn_mul (bp, ap, n, M->p[0][1], M->n);
}
bh = mpn_add_n (bp, bp, tp, n + M->n);
n += M->n;
if ( (ah | bh) > 0)
{
rp[n] = ah;
bp[n] = bh;
n++;
}
else
{
/* Normalize */
while ( (rp[n-1] | bp[n-1]) == 0)
n--;
}
return n;
}
#define COMPUTE_V_ITCH(n) (2*(n))
/* Computes |v| = |(g - u a)| / b, where u may be positive or
negative, and v is of the opposite sign. max(a, b) is of size n, u and
v at most size n, and v must have space for n+1 limbs. */
static mp_size_t
compute_v (mp_ptr vp,
mp_srcptr ap, mp_srcptr bp, mp_size_t n,
mp_srcptr gp, mp_size_t gn,
mp_srcptr up, mp_size_t usize,
mp_ptr tp)
{
mp_size_t size;
mp_size_t an;
mp_size_t bn;
mp_size_t vn;
ASSERT (n > 0);
ASSERT (gn > 0);
ASSERT (usize != 0);
size = ABS (usize);
ASSERT (size <= n);
ASSERT (up[size-1] > 0);
an = n;
MPN_NORMALIZE (ap, an);
ASSERT (gn <= an);
if (an >= size)
mpn_mul (tp, ap, an, up, size);
else
mpn_mul (tp, up, size, ap, an);
size += an;
if (usize > 0)
{
/* |v| = -v = (u a - g) / b */
ASSERT_NOCARRY (mpn_sub (tp, tp, size, gp, gn));
MPN_NORMALIZE (tp, size);
if (size == 0)
return 0;
}
else
{ /* |v| = v = (g - u a) / b = (g + |u| a) / b. Since g <= a,
(g + |u| a) always fits in (|usize| + an) limbs. */
ASSERT_NOCARRY (mpn_add (tp, tp, size, gp, gn));
size -= (tp[size - 1] == 0);
}
/* Now divide t / b. There must be no remainder */
bn = n;
MPN_NORMALIZE (bp, bn);
ASSERT (size >= bn);
vn = size + 1 - bn;
ASSERT (vn <= n + 1);
mpn_divexact (vp, tp, size, bp, bn);
vn -= (vp[vn-1] == 0);
return vn;
}
/* Temporary storage:
Initial division: Quotient of at most an - n + 1 <= an limbs.
Storage for u0 and u1: 2(n+1).
Storage for hgcd matrix M, with input ceil(n/2): 5 * ceil(n/4)
Storage for hgcd, input (n + 1)/2: 9 n/4 plus some.
When hgcd succeeds: 1 + floor(3n/2) for adjusting a and b, and 2(n+1) for the cofactors.
When hgcd fails: 2n + 1 for mpn_gcdext_subdiv_step, which is less.
For the lehmer call after the loop, Let T denote
GCDEXT_DC_THRESHOLD. For the gcdext_lehmer call, we need T each for
u, a and b, and 4T+3 scratch space. Next, for compute_v, we need T
for u, T+1 for v and 2T scratch space. In all, 7T + 3 is
sufficient for both operations.
*/
/* Optimal choice of p seems difficult. In each iteration the division
* of work between hgcd and the updates of u0 and u1 depends on the
* current size of the u. It may be desirable to use a different
* choice of p in each iteration. Also the input size seems to matter;
* choosing p = n / 3 in the first iteration seems to improve
* performance slightly for input size just above the threshold, but
* degrade performance for larger inputs. */
#define CHOOSE_P_1(n) ((n) / 2)
#define CHOOSE_P_2(n) ((n) / 3)
mp_size_t
mpn_gcdext (mp_ptr gp, mp_ptr up, mp_size_t *usizep,
mp_ptr ap, mp_size_t an, mp_ptr bp, mp_size_t n)
{
mp_size_t talloc;
mp_size_t scratch;
mp_size_t matrix_scratch;
mp_size_t ualloc = n + 1;
struct gcdext_ctx ctx;
mp_size_t un;
mp_ptr u0;
mp_ptr u1;
mp_ptr tp;
TMP_DECL;
ASSERT (an >= n);
ASSERT (n > 0);
ASSERT (bp[n-1] > 0);
TMP_MARK;
/* FIXME: Check for small sizes first, before setting up temporary
storage etc. */
talloc = MPN_GCDEXT_LEHMER_N_ITCH(n);
/* For initial division */
scratch = an - n + 1;
if (scratch > talloc)
talloc = scratch;
if (ABOVE_THRESHOLD (n, GCDEXT_DC_THRESHOLD))
{
/* For hgcd loop. */
mp_size_t hgcd_scratch;
mp_size_t update_scratch;
mp_size_t p1 = CHOOSE_P_1 (n);
mp_size_t p2 = CHOOSE_P_2 (n);
mp_size_t min_p = MIN(p1, p2);
mp_size_t max_p = MAX(p1, p2);
matrix_scratch = MPN_HGCD_MATRIX_INIT_ITCH (n - min_p);
hgcd_scratch = mpn_hgcd_itch (n - min_p);
update_scratch = max_p + n - 1;
scratch = matrix_scratch + MAX(hgcd_scratch, update_scratch);
if (scratch > talloc)
talloc = scratch;
/* Final mpn_gcdext_lehmer_n call. Need space for u and for
copies of a and b. */
scratch = MPN_GCDEXT_LEHMER_N_ITCH (GCDEXT_DC_THRESHOLD)
+ 3*GCDEXT_DC_THRESHOLD;
if (scratch > talloc)
talloc = scratch;
/* Cofactors u0 and u1 */
talloc += 2*(n+1);
}
tp = TMP_ALLOC_LIMBS(talloc);
if (an > n)
{
mpn_tdiv_qr (tp, ap, 0, ap, an, bp, n);
if (mpn_zero_p (ap, n))
{
MPN_COPY (gp, bp, n);
*usizep = 0;
TMP_FREE;
return n;
}
}
if (BELOW_THRESHOLD (n, GCDEXT_DC_THRESHOLD))
{
mp_size_t gn = mpn_gcdext_lehmer_n(gp, up, usizep, ap, bp, n, tp);
TMP_FREE;
return gn;
}
MPN_ZERO (tp, 2*ualloc);
u0 = tp; tp += ualloc;
u1 = tp; tp += ualloc;
ctx.gp = gp;
ctx.up = up;
ctx.usize = usizep;
{
/* For the first hgcd call, there are no u updates, and it makes
some sense to use a different choice for p. */
/* FIXME: We could trim use of temporary storage, since u0 and u1
are not used yet. For the hgcd call, we could swap in the u0
and u1 pointers for the relevant matrix elements. */
struct hgcd_matrix M;
mp_size_t p = CHOOSE_P_1 (n);
mp_size_t nn;
mpn_hgcd_matrix_init (&M, n - p, tp);
nn = mpn_hgcd (ap + p, bp + p, n - p, &M, tp + matrix_scratch);
if (nn > 0)
{
ASSERT (M.n <= (n - p - 1)/2);
ASSERT (M.n + p <= (p + n - 1) / 2);
/* Temporary storage 2 (p + M->n) <= p + n - 1 */
n = mpn_hgcd_matrix_adjust (&M, p + nn, ap, bp, p, tp + matrix_scratch);
MPN_COPY (u0, M.p[1][0], M.n);
MPN_COPY (u1, M.p[1][1], M.n);
un = M.n;
while ( (u0[un-1] | u1[un-1] ) == 0)
un--;
}
else
{
/* mpn_hgcd has failed. Then either one of a or b is very
small, or the difference is very small. Perform one
subtraction followed by one division. */
u1[0] = 1;
ctx.u0 = u0;
ctx.u1 = u1;
ctx.tp = tp + n; /* ualloc */
ctx.un = 1;
/* Temporary storage n */
n = mpn_gcd_subdiv_step (ap, bp, n, 0, mpn_gcdext_hook, &ctx, tp);
if (n == 0)
{
TMP_FREE;
return ctx.gn;
}
un = ctx.un;
ASSERT (un < ualloc);
}
}
while (ABOVE_THRESHOLD (n, GCDEXT_DC_THRESHOLD))
{
struct hgcd_matrix M;
mp_size_t p = CHOOSE_P_2 (n);
mp_size_t nn;
mpn_hgcd_matrix_init (&M, n - p, tp);
nn = mpn_hgcd (ap + p, bp + p, n - p, &M, tp + matrix_scratch);
if (nn > 0)
{
mp_ptr t0;
t0 = tp + matrix_scratch;
ASSERT (M.n <= (n - p - 1)/2);
ASSERT (M.n + p <= (p + n - 1) / 2);
/* Temporary storage 2 (p + M->n) <= p + n - 1 */
n = mpn_hgcd_matrix_adjust (&M, p + nn, ap, bp, p, t0);
/* By the same analysis as for mpn_hgcd_matrix_mul */
ASSERT (M.n + un <= ualloc);
/* FIXME: This copying could be avoided by some swapping of
* pointers. May need more temporary storage, though. */
MPN_COPY (t0, u0, un);
/* Temporary storage ualloc */
un = hgcd_mul_matrix_vector (&M, u0, t0, u1, un, t0 + un);
ASSERT (un < ualloc);
ASSERT ( (u0[un-1] | u1[un-1]) > 0);
}
else
{
/* mpn_hgcd has failed. Then either one of a or b is very
small, or the difference is very small. Perform one
subtraction followed by one division. */
ctx.u0 = u0;
ctx.u1 = u1;
ctx.tp = tp + n; /* ualloc */
ctx.un = un;
/* Temporary storage n */
n = mpn_gcd_subdiv_step (ap, bp, n, 0, mpn_gcdext_hook, &ctx, tp);
if (n == 0)
{
TMP_FREE;
return ctx.gn;
}
un = ctx.un;
ASSERT (un < ualloc);
}
}
/* We have A = ... a + ... b
B = u0 a + u1 b
a = u1 A + ... B
b = -u0 A + ... B
with bounds
|u0|, |u1| <= B / min(a, b)
We always have u1 > 0, and u0 == 0 is possible only if u1 == 1,
in which case the only reduction done so far is a = A - k B for
some k.
Compute g = u a + v b = (u u1 - v u0) A + (...) B
Here, u, v are bounded by
|u| <= b,
|v| <= a
*/
ASSERT ( (ap[n-1] | bp[n-1]) > 0);
if (UNLIKELY (mpn_cmp (ap, bp, n) == 0))
{
/* Must return the smallest cofactor, +u1 or -u0 */
int c;
MPN_COPY (gp, ap, n);
MPN_CMP (c, u0, u1, un);
/* c == 0 can happen only when A = (2k+1) G, B = 2 G. And in
this case we choose the cofactor + 1, corresponding to G = A
- k B, rather than -1, corresponding to G = - A + (k+1) B. */
ASSERT (c != 0 || (un == 1 && u0[0] == 1 && u1[0] == 1));
if (c < 0)
{
MPN_NORMALIZE (u0, un);
MPN_COPY (up, u0, un);
*usizep = -un;
}
else
{
MPN_NORMALIZE_NOT_ZERO (u1, un);
MPN_COPY (up, u1, un);
*usizep = un;
}
TMP_FREE;
return n;
}
else if (UNLIKELY (u0[0] == 0) && un == 1)
{
mp_size_t gn;
ASSERT (u1[0] == 1);
/* g = u a + v b = (u u1 - v u0) A + (...) B = u A + (...) B */
gn = mpn_gcdext_lehmer_n (gp, up, usizep, ap, bp, n, tp);
TMP_FREE;
return gn;
}
else
{
mp_size_t u0n;
mp_size_t u1n;
mp_size_t lehmer_un;
mp_size_t lehmer_vn;
mp_size_t gn;
mp_ptr lehmer_up;
mp_ptr lehmer_vp;
int negate;
lehmer_up = tp; tp += n;
/* Call mpn_gcdext_lehmer_n with copies of a and b. */
MPN_COPY (tp, ap, n);
MPN_COPY (tp + n, bp, n);
gn = mpn_gcdext_lehmer_n (gp, lehmer_up, &lehmer_un, tp, tp + n, n, tp + 2*n);
u0n = un;
MPN_NORMALIZE (u0, u0n);
ASSERT (u0n > 0);
if (lehmer_un == 0)
{
/* u == 0 ==> v = g / b == 1 ==> g = - u0 A + (...) B */
MPN_COPY (up, u0, u0n);
*usizep = -u0n;
TMP_FREE;
return gn;
}
lehmer_vp = tp;
/* Compute v = (g - u a) / b */
lehmer_vn = compute_v (lehmer_vp,
ap, bp, n, gp, gn, lehmer_up, lehmer_un, tp + n + 1);
if (lehmer_un > 0)
negate = 0;
else
{
lehmer_un = -lehmer_un;
negate = 1;
}
u1n = un;
MPN_NORMALIZE (u1, u1n);
ASSERT (u1n > 0);
ASSERT (lehmer_un + u1n <= ualloc);
ASSERT (lehmer_vn + u0n <= ualloc);
/* We may still have v == 0 */
/* Compute u u0 */
if (lehmer_un <= u1n)
/* Should be the common case */
mpn_mul (up, u1, u1n, lehmer_up, lehmer_un);
else
mpn_mul (up, lehmer_up, lehmer_un, u1, u1n);
un = u1n + lehmer_un;
un -= (up[un - 1] == 0);
if (lehmer_vn > 0)
{
mp_limb_t cy;
/* Overwrites old u1 value */
if (lehmer_vn <= u0n)
/* Should be the common case */
mpn_mul (u1, u0, u0n, lehmer_vp, lehmer_vn);
else
mpn_mul (u1, lehmer_vp, lehmer_vn, u0, u0n);
u1n = u0n + lehmer_vn;
u1n -= (u1[u1n - 1] == 0);
if (u1n <= un)
{
cy = mpn_add (up, up, un, u1, u1n);
}
else
{
cy = mpn_add (up, u1, u1n, up, un);
un = u1n;
}
up[un] = cy;
un += (cy != 0);
ASSERT (un < ualloc);
}
*usizep = negate ? -un : un;
TMP_FREE;
return gn;
}
}
|