1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
|
/* mpn_get_str -- Convert {UP,USIZE} to a base BASE string in STR.
Contributed to the GNU project by Torbjorn Granlund.
THE FUNCTIONS IN THIS FILE, EXCEPT mpn_get_str, ARE INTERNAL WITH MUTABLE
INTERFACES. IT IS ONLY SAFE TO REACH THEM THROUGH DOCUMENTED INTERFACES.
IN FACT, IT IS ALMOST GUARANTEED THAT THEY WILL CHANGE OR DISAPPEAR IN A
FUTURE GNU MP RELEASE.
Copyright 1991-2017 Free Software Foundation, Inc.
This file is part of the GNU MP Library.
The GNU MP Library is free software; you can redistribute it and/or modify
it under the terms of either:
* the GNU Lesser General Public License as published by the Free
Software Foundation; either version 3 of the License, or (at your
option) any later version.
or
* the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any
later version.
or both in parallel, as here.
The GNU MP Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received copies of the GNU General Public License and the
GNU Lesser General Public License along with the GNU MP Library. If not,
see https://www.gnu.org/licenses/. */
#include "gmp-impl.h"
#include "longlong.h"
/* Conversion of U {up,un} to a string in base b. Internally, we convert to
base B = b^m, the largest power of b that fits a limb. Basic algorithms:
A) Divide U repeatedly by B, generating a quotient and remainder, until the
quotient becomes zero. The remainders hold the converted digits. Digits
come out from right to left. (Used in mpn_bc_get_str.)
B) Divide U by b^g, for g such that 1/b <= U/b^g < 1, generating a fraction.
Then develop digits by multiplying the fraction repeatedly by b. Digits
come out from left to right. (Currently not used herein, except for in
code for converting single limbs to individual digits.)
C) Compute B^1, B^2, B^4, ..., B^s, for s such that B^s is just above
sqrt(U). Then divide U by B^s, generating quotient and remainder.
Recursively convert the quotient, then the remainder, using the
precomputed powers. Digits come out from left to right. (Used in
mpn_dc_get_str.)
When using algorithm C, algorithm B might be suitable for basecase code,
since the required b^g power will be readily accessible.
Optimization ideas:
1. The recursive function of (C) could use less temporary memory. The powtab
allocation could be trimmed with some computation, and the tmp area could
be reduced, or perhaps eliminated if up is reused for both quotient and
remainder (it is currently used just for remainder).
2. Store the powers of (C) in normalized form, with the normalization count.
Quotients will usually need to be left-shifted before each divide, and
remainders will either need to be left-shifted of right-shifted.
3. In the code for developing digits from a single limb, we could avoid using
a full umul_ppmm except for the first (or first few) digits, provided base
is even. Subsequent digits can be developed using plain multiplication.
(This saves on register-starved machines (read x86) and on all machines
that generate the upper product half using a separate instruction (alpha,
powerpc, IA-64) or lacks such support altogether (sparc64, hppa64).
4. Separate mpn_dc_get_str basecase code from code for small conversions. The
former code will have the exact right power readily available in the
powtab parameter for dividing the current number into a fraction. Convert
that using algorithm B.
5. Completely avoid division. Compute the inverses of the powers now in
powtab instead of the actual powers.
6. Decrease powtab allocation for even bases. E.g. for base 10 we could save
about 30% (1-log(5)/log(10)).
Basic structure of (C):
mpn_get_str:
if POW2_P (n)
...
else
if (un < GET_STR_PRECOMPUTE_THRESHOLD)
mpn_bx_get_str (str, base, up, un);
else
precompute_power_tables
mpn_dc_get_str
mpn_dc_get_str:
mpn_tdiv_qr
if (qn < GET_STR_DC_THRESHOLD)
mpn_bc_get_str
else
mpn_dc_get_str
if (rn < GET_STR_DC_THRESHOLD)
mpn_bc_get_str
else
mpn_dc_get_str
The reason for the two threshold values is the cost of
precompute_power_tables. GET_STR_PRECOMPUTE_THRESHOLD will be
considerably larger than GET_STR_DC_THRESHOLD. */
/* The x86s and m68020 have a quotient and remainder "div" instruction and
gcc recognises an adjacent "/" and "%" can be combined using that.
Elsewhere "/" and "%" are either separate instructions, or separate
libgcc calls (which unfortunately gcc as of version 3.0 doesn't combine).
A multiply and subtract should be faster than a "%" in those cases. */
#if HAVE_HOST_CPU_FAMILY_x86 \
|| HAVE_HOST_CPU_m68020 \
|| HAVE_HOST_CPU_m68030 \
|| HAVE_HOST_CPU_m68040 \
|| HAVE_HOST_CPU_m68060 \
|| HAVE_HOST_CPU_m68360 /* CPU32 */
#define udiv_qrnd_unnorm(q,r,n,d) \
do { \
mp_limb_t __q = (n) / (d); \
mp_limb_t __r = (n) % (d); \
(q) = __q; \
(r) = __r; \
} while (0)
#else
#define udiv_qrnd_unnorm(q,r,n,d) \
do { \
mp_limb_t __q = (n) / (d); \
mp_limb_t __r = (n) - __q*(d); \
(q) = __q; \
(r) = __r; \
} while (0)
#endif
^L
/* Convert {up,un} to a string in base base, and put the result in str.
Generate len characters, possibly padding with zeros to the left. If len is
zero, generate as many characters as required. Return a pointer immediately
after the last digit of the result string. Complexity is O(un^2); intended
for small conversions. */
static unsigned char *
mpn_bc_get_str (unsigned char *str, size_t len,
mp_ptr up, mp_size_t un, int base)
{
mp_limb_t rl, ul;
unsigned char *s;
size_t l;
/* Allocate memory for largest possible string, given that we only get here
for operands with un < GET_STR_PRECOMPUTE_THRESHOLD and that the smallest
base is 3. 7/11 is an approximation to 1/log2(3). */
#if TUNE_PROGRAM_BUILD
#define BUF_ALLOC (GET_STR_THRESHOLD_LIMIT * GMP_LIMB_BITS * 7 / 11)
#else
#define BUF_ALLOC (GET_STR_PRECOMPUTE_THRESHOLD * GMP_LIMB_BITS * 7 / 11)
#endif
unsigned char buf[BUF_ALLOC];
#if TUNE_PROGRAM_BUILD
mp_limb_t rp[GET_STR_THRESHOLD_LIMIT];
#else
mp_limb_t rp[GET_STR_PRECOMPUTE_THRESHOLD];
#endif
if (base == 10)
{
/* Special case code for base==10 so that the compiler has a chance to
optimize things. */
MPN_COPY (rp + 1, up, un);
s = buf + BUF_ALLOC;
while (un > 1)
{
int i;
mp_limb_t frac, digit;
MPN_DIVREM_OR_PREINV_DIVREM_1 (rp, (mp_size_t) 1, rp + 1, un,
MP_BASES_BIG_BASE_10,
MP_BASES_BIG_BASE_INVERTED_10,
MP_BASES_NORMALIZATION_STEPS_10);
un -= rp[un] == 0;
frac = (rp[0] + 1) << GMP_NAIL_BITS;
s -= MP_BASES_CHARS_PER_LIMB_10;
#if HAVE_HOST_CPU_FAMILY_x86
/* The code below turns out to be a bit slower for x86 using gcc.
Use plain code. */
i = MP_BASES_CHARS_PER_LIMB_10;
do
{
umul_ppmm (digit, frac, frac, 10);
*s++ = digit;
}
while (--i);
#else
/* Use the fact that 10 in binary is 1010, with the lowest bit 0.
After a few umul_ppmm, we will have accumulated enough low zeros
to use a plain multiply. */
if (MP_BASES_NORMALIZATION_STEPS_10 == 0)
{
umul_ppmm (digit, frac, frac, 10);
*s++ = digit;
}
if (MP_BASES_NORMALIZATION_STEPS_10 <= 1)
{
umul_ppmm (digit, frac, frac, 10);
*s++ = digit;
}
if (MP_BASES_NORMALIZATION_STEPS_10 <= 2)
{
umul_ppmm (digit, frac, frac, 10);
*s++ = digit;
}
if (MP_BASES_NORMALIZATION_STEPS_10 <= 3)
{
umul_ppmm (digit, frac, frac, 10);
*s++ = digit;
}
i = (MP_BASES_CHARS_PER_LIMB_10 - ((MP_BASES_NORMALIZATION_STEPS_10 < 4)
? (4-MP_BASES_NORMALIZATION_STEPS_10)
: 0));
frac = (frac + 0xf) >> 4;
do
{
frac *= 10;
digit = frac >> (GMP_LIMB_BITS - 4);
*s++ = digit;
frac &= (~(mp_limb_t) 0) >> 4;
}
while (--i);
#endif
s -= MP_BASES_CHARS_PER_LIMB_10;
}
ul = rp[1];
while (ul != 0)
{
udiv_qrnd_unnorm (ul, rl, ul, 10);
*--s = rl;
}
}
else /* not base 10 */
{
unsigned chars_per_limb;
mp_limb_t big_base, big_base_inverted;
unsigned normalization_steps;
chars_per_limb = mp_bases[base].chars_per_limb;
big_base = mp_bases[base].big_base;
big_base_inverted = mp_bases[base].big_base_inverted;
count_leading_zeros (normalization_steps, big_base);
MPN_COPY (rp + 1, up, un);
s = buf + BUF_ALLOC;
while (un > 1)
{
int i;
mp_limb_t frac;
MPN_DIVREM_OR_PREINV_DIVREM_1 (rp, (mp_size_t) 1, rp + 1, un,
big_base, big_base_inverted,
normalization_steps);
un -= rp[un] == 0;
frac = (rp[0] + 1) << GMP_NAIL_BITS;
s -= chars_per_limb;
i = chars_per_limb;
do
{
mp_limb_t digit;
umul_ppmm (digit, frac, frac, base);
*s++ = digit;
}
while (--i);
s -= chars_per_limb;
}
ul = rp[1];
while (ul != 0)
{
udiv_qrnd_unnorm (ul, rl, ul, base);
*--s = rl;
}
}
l = buf + BUF_ALLOC - s;
while (l < len)
{
*str++ = 0;
len--;
}
while (l != 0)
{
*str++ = *s++;
l--;
}
return str;
}
^L
/* Convert {UP,UN} to a string with a base as represented in POWTAB, and put
the string in STR. Generate LEN characters, possibly padding with zeros to
the left. If LEN is zero, generate as many characters as required.
Return a pointer immediately after the last digit of the result string.
This uses divide-and-conquer and is intended for large conversions. */
static unsigned char *
mpn_dc_get_str (unsigned char *str, size_t len,
mp_ptr up, mp_size_t un,
const powers_t *powtab, mp_ptr tmp)
{
if (BELOW_THRESHOLD (un, GET_STR_DC_THRESHOLD))
{
if (un != 0)
str = mpn_bc_get_str (str, len, up, un, powtab->base);
else
{
while (len != 0)
{
*str++ = 0;
len--;
}
}
}
else
{
mp_ptr pwp, qp, rp;
mp_size_t pwn, qn;
mp_size_t sn;
pwp = powtab->p;
pwn = powtab->n;
sn = powtab->shift;
if (un < pwn + sn || (un == pwn + sn && mpn_cmp (up + sn, pwp, un - sn) < 0))
{
str = mpn_dc_get_str (str, len, up, un, powtab - 1, tmp);
}
else
{
qp = tmp; /* (un - pwn + 1) limbs for qp */
rp = up; /* pwn limbs for rp; overwrite up area */
mpn_tdiv_qr (qp, rp + sn, 0L, up + sn, un - sn, pwp, pwn);
qn = un - sn - pwn; qn += qp[qn] != 0; /* quotient size */
ASSERT (qn < pwn + sn || (qn == pwn + sn && mpn_cmp (qp + sn, pwp, pwn) < 0));
if (len != 0)
len = len - powtab->digits_in_base;
str = mpn_dc_get_str (str, len, qp, qn, powtab - 1, tmp + qn);
str = mpn_dc_get_str (str, powtab->digits_in_base, rp, pwn + sn, powtab - 1, tmp);
}
}
return str;
}
/* There are no leading zeros on the digits generated at str, but that's not
currently a documented feature. The current mpz_out_str and mpz_get_str
rely on it. */
size_t
mpn_get_str (unsigned char *str, int base, mp_ptr up, mp_size_t un)
{
mp_ptr powtab_mem;
powers_t powtab[GMP_LIMB_BITS];
int pi;
size_t out_len;
mp_ptr tmp;
TMP_DECL;
/* Special case zero, as the code below doesn't handle it. */
if (un == 0)
{
str[0] = 0;
return 1;
}
if (POW2_P (base))
{
/* The base is a power of 2. Convert from most significant end. */
mp_limb_t n1, n0;
int bits_per_digit = mp_bases[base].big_base;
int cnt;
int bit_pos;
mp_size_t i;
unsigned char *s = str;
mp_bitcnt_t bits;
n1 = up[un - 1];
count_leading_zeros (cnt, n1);
/* BIT_POS should be R when input ends in least significant nibble,
R + bits_per_digit * n when input ends in nth least significant
nibble. */
bits = (mp_bitcnt_t) GMP_NUMB_BITS * un - cnt + GMP_NAIL_BITS;
cnt = bits % bits_per_digit;
if (cnt != 0)
bits += bits_per_digit - cnt;
bit_pos = bits - (mp_bitcnt_t) (un - 1) * GMP_NUMB_BITS;
/* Fast loop for bit output. */
i = un - 1;
for (;;)
{
bit_pos -= bits_per_digit;
while (bit_pos >= 0)
{
*s++ = (n1 >> bit_pos) & ((1 << bits_per_digit) - 1);
bit_pos -= bits_per_digit;
}
i--;
if (i < 0)
break;
n0 = (n1 << -bit_pos) & ((1 << bits_per_digit) - 1);
n1 = up[i];
bit_pos += GMP_NUMB_BITS;
*s++ = n0 | (n1 >> bit_pos);
}
return s - str;
}
/* General case. The base is not a power of 2. */
if (BELOW_THRESHOLD (un, GET_STR_PRECOMPUTE_THRESHOLD))
return mpn_bc_get_str (str, (size_t) 0, up, un, base) - str;
TMP_MARK;
/* Allocate one large block for the powers of big_base. */
powtab_mem = TMP_BALLOC_LIMBS (mpn_str_powtab_alloc (un));
/* Compute a table of powers, were the largest power is >= sqrt(U). */
size_t ndig;
mp_size_t xn;
DIGITS_IN_BASE_PER_LIMB (ndig, un, base);
xn = 1 + ndig / mp_bases[base].chars_per_limb; /* FIXME: scalar integer division */
pi = 1 + mpn_compute_powtab (powtab, powtab_mem, xn, base);
/* Using our precomputed powers, now in powtab[], convert our number. */
tmp = TMP_BALLOC_LIMBS (mpn_dc_get_str_itch (un));
out_len = mpn_dc_get_str (str, 0, up, un, powtab + (pi - 1), tmp) - str;
TMP_FREE;
return out_len;
}
|