1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
|
/* mpn_mu_div_qr, mpn_preinv_mu_div_qr.
Compute Q = floor(N / D) and R = N-QD. N is nn limbs and D is dn limbs and
must be normalized, and Q must be nn-dn limbs. The requirement that Q is
nn-dn limbs (and not nn-dn+1 limbs) was put in place in order to allow us to
let N be unmodified during the operation.
Contributed to the GNU project by Torbjorn Granlund.
THE FUNCTIONS IN THIS FILE ARE INTERNAL WITH MUTABLE INTERFACES. IT IS ONLY
SAFE TO REACH THEM THROUGH DOCUMENTED INTERFACES. IN FACT, IT IS ALMOST
GUARANTEED THAT THEY WILL CHANGE OR DISAPPEAR IN A FUTURE GMP RELEASE.
Copyright 2005-2007, 2009, 2010 Free Software Foundation, Inc.
This file is part of the GNU MP Library.
The GNU MP Library is free software; you can redistribute it and/or modify
it under the terms of either:
* the GNU Lesser General Public License as published by the Free
Software Foundation; either version 3 of the License, or (at your
option) any later version.
or
* the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any
later version.
or both in parallel, as here.
The GNU MP Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received copies of the GNU General Public License and the
GNU Lesser General Public License along with the GNU MP Library. If not,
see https://www.gnu.org/licenses/. */
/*
The idea of the algorithm used herein is to compute a smaller inverted value
than used in the standard Barrett algorithm, and thus save time in the
Newton iterations, and pay just a small price when using the inverted value
for developing quotient bits. This algorithm was presented at ICMS 2006.
*/
/* CAUTION: This code and the code in mu_divappr_q.c should be edited in sync.
Things to work on:
* This isn't optimal when the quotient isn't needed, as it might take a lot
of space. The computation is always needed, though, so there is no time to
save with special code.
* The itch/scratch scheme isn't perhaps such a good idea as it once seemed,
demonstrated by the fact that the mpn_invertappr function's scratch needs
mean that we need to keep a large allocation long after it is needed.
Things are worse as mpn_mul_fft does not accept any scratch parameter,
which means we'll have a large memory hole while in mpn_mul_fft. In
general, a peak scratch need in the beginning of a function isn't
well-handled by the itch/scratch scheme.
*/
#ifdef STAT
#undef STAT
#define STAT(x) x
#else
#define STAT(x)
#endif
#include <stdlib.h> /* for NULL */
#include "gmp-impl.h"
/* FIXME: The MU_DIV_QR_SKEW_THRESHOLD was not analysed properly. It gives a
speedup according to old measurements, but does the decision mechanism
really make sense? It seem like the quotient between dn and qn might be
what we really should be checking. */
#ifndef MU_DIV_QR_SKEW_THRESHOLD
#define MU_DIV_QR_SKEW_THRESHOLD 100
#endif
#ifdef CHECK /* FIXME: Enable in minithres */
#undef MU_DIV_QR_SKEW_THRESHOLD
#define MU_DIV_QR_SKEW_THRESHOLD 1
#endif
static mp_limb_t mpn_mu_div_qr2 (mp_ptr, mp_ptr, mp_srcptr, mp_size_t, mp_srcptr, mp_size_t, mp_ptr);
static mp_size_t mpn_mu_div_qr_choose_in (mp_size_t, mp_size_t, int);
mp_limb_t
mpn_mu_div_qr (mp_ptr qp,
mp_ptr rp,
mp_srcptr np,
mp_size_t nn,
mp_srcptr dp,
mp_size_t dn,
mp_ptr scratch)
{
mp_size_t qn;
mp_limb_t cy, qh;
qn = nn - dn;
if (qn + MU_DIV_QR_SKEW_THRESHOLD < dn)
{
/* |______________|_ign_first__| dividend nn
|_______|_ign_first__| divisor dn
|______| quotient (prel) qn
|___________________| quotient * ignored-divisor-part dn-1
*/
/* Compute a preliminary quotient and a partial remainder by dividing the
most significant limbs of each operand. */
qh = mpn_mu_div_qr2 (qp, rp + nn - (2 * qn + 1),
np + nn - (2 * qn + 1), 2 * qn + 1,
dp + dn - (qn + 1), qn + 1,
scratch);
/* Multiply the quotient by the divisor limbs ignored above. */
if (dn - (qn + 1) > qn)
mpn_mul (scratch, dp, dn - (qn + 1), qp, qn); /* prod is dn-1 limbs */
else
mpn_mul (scratch, qp, qn, dp, dn - (qn + 1)); /* prod is dn-1 limbs */
if (qh)
cy = mpn_add_n (scratch + qn, scratch + qn, dp, dn - (qn + 1));
else
cy = 0;
scratch[dn - 1] = cy;
cy = mpn_sub_n (rp, np, scratch, nn - (2 * qn + 1));
cy = mpn_sub_nc (rp + nn - (2 * qn + 1),
rp + nn - (2 * qn + 1),
scratch + nn - (2 * qn + 1),
qn + 1, cy);
if (cy)
{
qh -= mpn_sub_1 (qp, qp, qn, 1);
mpn_add_n (rp, rp, dp, dn);
}
}
else
{
qh = mpn_mu_div_qr2 (qp, rp, np, nn, dp, dn, scratch);
}
return qh;
}
static mp_limb_t
mpn_mu_div_qr2 (mp_ptr qp,
mp_ptr rp,
mp_srcptr np,
mp_size_t nn,
mp_srcptr dp,
mp_size_t dn,
mp_ptr scratch)
{
mp_size_t qn, in;
mp_limb_t cy, qh;
mp_ptr ip, tp;
ASSERT (dn > 1);
qn = nn - dn;
/* Compute the inverse size. */
in = mpn_mu_div_qr_choose_in (qn, dn, 0);
ASSERT (in <= dn);
#if 1
/* This alternative inverse computation method gets slightly more accurate
results. FIXMEs: (1) Temp allocation needs not analysed (2) itch function
not adapted (3) mpn_invertappr scratch needs not met. */
ip = scratch;
tp = scratch + in + 1;
/* compute an approximate inverse on (in+1) limbs */
if (dn == in)
{
MPN_COPY (tp + 1, dp, in);
tp[0] = 1;
mpn_invertappr (ip, tp, in + 1, tp + in + 1);
MPN_COPY_INCR (ip, ip + 1, in);
}
else
{
cy = mpn_add_1 (tp, dp + dn - (in + 1), in + 1, 1);
if (UNLIKELY (cy != 0))
MPN_ZERO (ip, in);
else
{
mpn_invertappr (ip, tp, in + 1, tp + in + 1);
MPN_COPY_INCR (ip, ip + 1, in);
}
}
#else
/* This older inverse computation method gets slightly worse results than the
one above. */
ip = scratch;
tp = scratch + in;
/* Compute inverse of D to in+1 limbs, then round to 'in' limbs. Ideally the
inversion function should do this automatically. */
if (dn == in)
{
tp[in + 1] = 0;
MPN_COPY (tp + in + 2, dp, in);
mpn_invertappr (tp, tp + in + 1, in + 1, NULL);
}
else
{
mpn_invertappr (tp, dp + dn - (in + 1), in + 1, NULL);
}
cy = mpn_sub_1 (tp, tp, in + 1, GMP_NUMB_HIGHBIT);
if (UNLIKELY (cy != 0))
MPN_ZERO (tp + 1, in);
MPN_COPY (ip, tp + 1, in);
#endif
qh = mpn_preinv_mu_div_qr (qp, rp, np, nn, dp, dn, ip, in, scratch + in);
return qh;
}
mp_limb_t
mpn_preinv_mu_div_qr (mp_ptr qp,
mp_ptr rp,
mp_srcptr np,
mp_size_t nn,
mp_srcptr dp,
mp_size_t dn,
mp_srcptr ip,
mp_size_t in,
mp_ptr scratch)
{
mp_size_t qn;
mp_limb_t cy, cx, qh;
mp_limb_t r;
mp_size_t tn, wn;
#define tp scratch
#define scratch_out (scratch + tn)
qn = nn - dn;
np += qn;
qp += qn;
qh = mpn_cmp (np, dp, dn) >= 0;
if (qh != 0)
mpn_sub_n (rp, np, dp, dn);
else
MPN_COPY_INCR (rp, np, dn);
/* if (qn == 0) */ /* The while below handles this case */
/* return qh; */ /* Degenerate use. Should we allow this? */
while (qn > 0)
{
if (qn < in)
{
ip += in - qn;
in = qn;
}
np -= in;
qp -= in;
/* Compute the next block of quotient limbs by multiplying the inverse I
by the upper part of the partial remainder R. */
mpn_mul_n (tp, rp + dn - in, ip, in); /* mulhi */
cy = mpn_add_n (qp, tp + in, rp + dn - in, in); /* I's msb implicit */
ASSERT_ALWAYS (cy == 0);
qn -= in;
/* Compute the product of the quotient block and the divisor D, to be
subtracted from the partial remainder combined with new limbs from the
dividend N. We only really need the low dn+1 limbs. */
if (BELOW_THRESHOLD (in, MUL_TO_MULMOD_BNM1_FOR_2NXN_THRESHOLD))
mpn_mul (tp, dp, dn, qp, in); /* dn+in limbs, high 'in' cancels */
else
{
tn = mpn_mulmod_bnm1_next_size (dn + 1);
mpn_mulmod_bnm1 (tp, tn, dp, dn, qp, in, scratch_out);
wn = dn + in - tn; /* number of wrapped limbs */
if (wn > 0)
{
cy = mpn_sub_n (tp, tp, rp + dn - wn, wn);
cy = mpn_sub_1 (tp + wn, tp + wn, tn - wn, cy);
cx = mpn_cmp (rp + dn - in, tp + dn, tn - dn) < 0;
ASSERT_ALWAYS (cx >= cy);
mpn_incr_u (tp, cx - cy);
}
}
r = rp[dn - in] - tp[dn];
/* Subtract the product from the partial remainder combined with new
limbs from the dividend N, generating a new partial remainder R. */
if (dn != in)
{
cy = mpn_sub_n (tp, np, tp, in); /* get next 'in' limbs from N */
cy = mpn_sub_nc (tp + in, rp, tp + in, dn - in, cy);
MPN_COPY (rp, tp, dn); /* FIXME: try to avoid this */
}
else
{
cy = mpn_sub_n (rp, np, tp, in); /* get next 'in' limbs from N */
}
STAT (int i; int err = 0;
static int errarr[5]; static int err_rec; static int tot);
/* Check the remainder R and adjust the quotient as needed. */
r -= cy;
while (r != 0)
{
/* We loop 0 times with about 69% probability, 1 time with about 31%
probability, 2 times with about 0.6% probability, if inverse is
computed as recommended. */
mpn_incr_u (qp, 1);
cy = mpn_sub_n (rp, rp, dp, dn);
r -= cy;
STAT (err++);
}
if (mpn_cmp (rp, dp, dn) >= 0)
{
/* This is executed with about 76% probability. */
mpn_incr_u (qp, 1);
cy = mpn_sub_n (rp, rp, dp, dn);
STAT (err++);
}
STAT (
tot++;
errarr[err]++;
if (err > err_rec)
err_rec = err;
if (tot % 0x10000 == 0)
{
for (i = 0; i <= err_rec; i++)
printf (" %d(%.1f%%)", errarr[i], 100.0*errarr[i]/tot);
printf ("\n");
}
);
}
return qh;
}
/* In case k=0 (automatic choice), we distinguish 3 cases:
(a) dn < qn: in = ceil(qn / ceil(qn/dn))
(b) dn/3 < qn <= dn: in = ceil(qn / 2)
(c) qn < dn/3: in = qn
In all cases we have in <= dn.
*/
static mp_size_t
mpn_mu_div_qr_choose_in (mp_size_t qn, mp_size_t dn, int k)
{
mp_size_t in;
if (k == 0)
{
mp_size_t b;
if (qn > dn)
{
/* Compute an inverse size that is a nice partition of the quotient. */
b = (qn - 1) / dn + 1; /* ceil(qn/dn), number of blocks */
in = (qn - 1) / b + 1; /* ceil(qn/b) = ceil(qn / ceil(qn/dn)) */
}
else if (3 * qn > dn)
{
in = (qn - 1) / 2 + 1; /* b = 2 */
}
else
{
in = (qn - 1) / 1 + 1; /* b = 1 */
}
}
else
{
mp_size_t xn;
xn = MIN (dn, qn);
in = (xn - 1) / k + 1;
}
return in;
}
mp_size_t
mpn_mu_div_qr_itch (mp_size_t nn, mp_size_t dn, int mua_k)
{
mp_size_t in = mpn_mu_div_qr_choose_in (nn - dn, dn, mua_k);
mp_size_t itch_preinv = mpn_preinv_mu_div_qr_itch (nn, dn, in);
mp_size_t itch_invapp = mpn_invertappr_itch (in + 1) + in + 2; /* 3in + 4 */
ASSERT (itch_preinv >= itch_invapp);
return in + MAX (itch_invapp, itch_preinv);
}
mp_size_t
mpn_preinv_mu_div_qr_itch (mp_size_t nn, mp_size_t dn, mp_size_t in)
{
mp_size_t itch_local = mpn_mulmod_bnm1_next_size (dn + 1);
mp_size_t itch_out = mpn_mulmod_bnm1_itch (itch_local, dn, in);
return itch_local + itch_out;
}
|