1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
|
/* mpn_rootrem(rootp,remp,ap,an,nth) -- Compute the nth root of {ap,an}, and
store the truncated integer part at rootp and the remainder at remp.
Contributed by Paul Zimmermann (algorithm) and
Paul Zimmermann and Torbjorn Granlund (implementation).
Marco Bodrato wrote logbased_root to seed the loop.
THE FUNCTIONS IN THIS FILE ARE INTERNAL, AND HAVE MUTABLE INTERFACES. IT'S
ONLY SAFE TO REACH THEM THROUGH DOCUMENTED INTERFACES. IN FACT, IT'S ALMOST
GUARANTEED THAT THEY'LL CHANGE OR DISAPPEAR IN A FUTURE GNU MP RELEASE.
Copyright 2002, 2005, 2009-2012, 2015 Free Software Foundation, Inc.
This file is part of the GNU MP Library.
The GNU MP Library is free software; you can redistribute it and/or modify
it under the terms of either:
* the GNU Lesser General Public License as published by the Free
Software Foundation; either version 3 of the License, or (at your
option) any later version.
or
* the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any
later version.
or both in parallel, as here.
The GNU MP Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received copies of the GNU General Public License and the
GNU Lesser General Public License along with the GNU MP Library. If not,
see https://www.gnu.org/licenses/. */
/* FIXME:
This implementation is not optimal when remp == NULL, since the complexity
is M(n), whereas it should be M(n/k) on average.
*/
#include <stdio.h> /* for NULL */
#include "gmp-impl.h"
#include "longlong.h"
static mp_size_t mpn_rootrem_internal (mp_ptr, mp_ptr, mp_srcptr, mp_size_t,
mp_limb_t, int);
#define MPN_RSHIFT(rp,up,un,cnt) \
do { \
if ((cnt) != 0) \
mpn_rshift (rp, up, un, cnt); \
else \
{ \
MPN_COPY_INCR (rp, up, un); \
} \
} while (0)
#define MPN_LSHIFT(cy,rp,up,un,cnt) \
do { \
if ((cnt) != 0) \
cy = mpn_lshift (rp, up, un, cnt); \
else \
{ \
MPN_COPY_DECR (rp, up, un); \
cy = 0; \
} \
} while (0)
/* Put in {rootp, ceil(un/k)} the kth root of {up, un}, rounded toward zero.
If remp <> NULL, put in {remp, un} the remainder.
Return the size (in limbs) of the remainder if remp <> NULL,
or a non-zero value iff the remainder is non-zero when remp = NULL.
Assumes:
(a) up[un-1] is not zero
(b) rootp has at least space for ceil(un/k) limbs
(c) remp has at least space for un limbs (in case remp <> NULL)
(d) the operands do not overlap.
The auxiliary memory usage is 3*un+2 if remp = NULL,
and 2*un+2 if remp <> NULL. FIXME: This is an incorrect comment.
*/
mp_size_t
mpn_rootrem (mp_ptr rootp, mp_ptr remp,
mp_srcptr up, mp_size_t un, mp_limb_t k)
{
ASSERT (un > 0);
ASSERT (up[un - 1] != 0);
ASSERT (k > 1);
if (UNLIKELY (k == 2))
return mpn_sqrtrem (rootp, remp, up, un);
/* (un-1)/k > 2 <=> un > 3k <=> (un + 2)/3 > k */
if (remp == NULL && (un + 2) / 3 > k)
/* Pad {up,un} with k zero limbs. This will produce an approximate root
with one more limb, allowing us to compute the exact integral result. */
{
mp_ptr sp, wp;
mp_size_t rn, sn, wn;
TMP_DECL;
TMP_MARK;
wn = un + k;
sn = (un - 1) / k + 2; /* ceil(un/k) + 1 */
TMP_ALLOC_LIMBS_2 (wp, wn, /* will contain the padded input */
sp, sn); /* approximate root of padded input */
MPN_COPY (wp + k, up, un);
MPN_FILL (wp, k, 0);
rn = mpn_rootrem_internal (sp, NULL, wp, wn, k, 1);
/* The approximate root S = {sp,sn} is either the correct root of
{sp,sn}, or 1 too large. Thus unless the least significant limb of
S is 0 or 1, we can deduce the root of {up,un} is S truncated by one
limb. (In case sp[0]=1, we can deduce the root, but not decide
whether it is exact or not.) */
MPN_COPY (rootp, sp + 1, sn - 1);
TMP_FREE;
return rn;
}
else
{
return mpn_rootrem_internal (rootp, remp, up, un, k, 0);
}
}
#define LOGROOT_USED_BITS 8
#define LOGROOT_NEEDS_TWO_CORRECTIONS 1
#define LOGROOT_RETURNED_BITS (LOGROOT_USED_BITS + LOGROOT_NEEDS_TWO_CORRECTIONS)
/* Puts in *rootp some bits of the k^nt root of the number
2^bitn * 1.op ; where op represents the "fractional" bits.
The returned value is the number of bits of the root minus one;
i.e. an approximation of the root will be
(*rootp) * 2^(retval-LOGROOT_RETURNED_BITS+1).
Currently, only LOGROOT_USED_BITS bits of op are used (the implicit
one is not counted).
*/
static unsigned
logbased_root (mp_ptr rootp, mp_limb_t op, mp_bitcnt_t bitn, mp_limb_t k)
{
/* vlog=vector(256,i,floor((log(256+i)/log(2)-8)*256)-(i>255)) */
static const
unsigned char vlog[] = {1, 2, 4, 5, 7, 8, 9, 11, 12, 14, 15, 16, 18, 19, 21, 22,
23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 42, 43,
44, 46, 47, 48, 49, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63,
64, 65, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 80, 81, 82,
83, 84, 85, 87, 88, 89, 90, 91, 92, 93, 94, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117,
118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 131, 132, 133, 134,
135, 136, 137, 138, 139, 140, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149,
150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 162, 163, 164,
165, 166, 167, 168, 169, 170, 171, 172, 173, 173, 174, 175, 176, 177, 178, 179,
180, 181, 181, 182, 183, 184, 185, 186, 187, 188, 188, 189, 190, 191, 192, 193,
194, 194, 195, 196, 197, 198, 199, 200, 200, 201, 202, 203, 204, 205, 205, 206,
207, 208, 209, 209, 210, 211, 212, 213, 214, 214, 215, 216, 217, 218, 218, 219,
220, 221, 222, 222, 223, 224, 225, 225, 226, 227, 228, 229, 229, 230, 231, 232,
232, 233, 234, 235, 235, 236, 237, 238, 239, 239, 240, 241, 242, 242, 243, 244,
245, 245, 246, 247, 247, 248, 249, 250, 250, 251, 252, 253, 253, 254, 255, 255};
/* vexp=vector(256,i,floor(2^(8+i/256)-256)-(i>255)) */
static const
unsigned char vexp[] = {0, 1, 2, 2, 3, 4, 4, 5, 6, 7, 7, 8, 9, 9, 10, 11,
12, 12, 13, 14, 14, 15, 16, 17, 17, 18, 19, 20, 20, 21, 22, 23,
23, 24, 25, 26, 26, 27, 28, 29, 30, 30, 31, 32, 33, 33, 34, 35,
36, 37, 37, 38, 39, 40, 41, 41, 42, 43, 44, 45, 45, 46, 47, 48,
49, 50, 50, 51, 52, 53, 54, 55, 55, 56, 57, 58, 59, 60, 61, 61,
62, 63, 64, 65, 66, 67, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75,
76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 86, 87, 88, 89, 90,
91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106,
107, 108, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 119, 120, 121, 122,
123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138,
139, 140, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 154, 155, 156,
157, 158, 159, 160, 161, 163, 164, 165, 166, 167, 168, 169, 171, 172, 173, 174,
175, 176, 178, 179, 180, 181, 182, 183, 185, 186, 187, 188, 189, 191, 192, 193,
194, 196, 197, 198, 199, 200, 202, 203, 204, 205, 207, 208, 209, 210, 212, 213,
214, 216, 217, 218, 219, 221, 222, 223, 225, 226, 227, 229, 230, 231, 232, 234,
235, 236, 238, 239, 240, 242, 243, 245, 246, 247, 249, 250, 251, 253, 254, 255};
mp_bitcnt_t retval;
if (UNLIKELY (bitn > (~ (mp_bitcnt_t) 0) >> LOGROOT_USED_BITS))
{
/* In the unlikely case, we use two divisions and a modulo. */
retval = bitn / k;
bitn %= k;
bitn = (bitn << LOGROOT_USED_BITS |
vlog[op >> (GMP_NUMB_BITS - LOGROOT_USED_BITS)]) / k;
}
else
{
bitn = (bitn << LOGROOT_USED_BITS |
vlog[op >> (GMP_NUMB_BITS - LOGROOT_USED_BITS)]) / k;
retval = bitn >> LOGROOT_USED_BITS;
bitn &= (CNST_LIMB (1) << LOGROOT_USED_BITS) - 1;
}
ASSERT(bitn < CNST_LIMB (1) << LOGROOT_USED_BITS);
*rootp = CNST_LIMB(1) << (LOGROOT_USED_BITS - ! LOGROOT_NEEDS_TWO_CORRECTIONS)
| vexp[bitn] >> ! LOGROOT_NEEDS_TWO_CORRECTIONS;
return retval;
}
/* if approx is non-zero, does not compute the final remainder */
static mp_size_t
mpn_rootrem_internal (mp_ptr rootp, mp_ptr remp, mp_srcptr up, mp_size_t un,
mp_limb_t k, int approx)
{
mp_ptr qp, rp, sp, wp, scratch;
mp_size_t qn, rn, sn, wn, nl, bn;
mp_limb_t save, save2, cy, uh;
mp_bitcnt_t unb; /* number of significant bits of {up,un} */
mp_bitcnt_t xnb; /* number of significant bits of the result */
mp_bitcnt_t b, kk;
mp_bitcnt_t sizes[GMP_NUMB_BITS + 1];
int ni;
int perf_pow;
unsigned ulz, snb, c, logk;
TMP_DECL;
/* MPN_SIZEINBASE_2EXP(unb, up, un, 1); --unb; */
uh = up[un - 1];
count_leading_zeros (ulz, uh);
ulz = ulz - GMP_NAIL_BITS + 1; /* Ignore the first 1. */
unb = (mp_bitcnt_t) un * GMP_NUMB_BITS - ulz;
/* unb is the (truncated) logarithm of the input U in base 2*/
if (unb < k) /* root is 1 */
{
rootp[0] = 1;
if (remp == NULL)
un -= (*up == CNST_LIMB (1)); /* Non-zero iif {up,un} > 1 */
else
{
mpn_sub_1 (remp, up, un, CNST_LIMB (1));
un -= (remp [un - 1] == 0); /* There should be at most one zero limb,
if we demand u to be normalized */
}
return un;
}
/* if (unb - k < k/2 + k/16) // root is 2 */
if (ulz == GMP_NUMB_BITS)
uh = up[un - 2];
else
uh = (uh << ulz & GMP_NUMB_MASK) | up[un - 1 - (un != 1)] >> (GMP_NUMB_BITS - ulz);
ASSERT (un != 1 || up[un - 1 - (un != 1)] >> (GMP_NUMB_BITS - ulz) == 1);
xnb = logbased_root (rootp, uh, unb, k);
snb = LOGROOT_RETURNED_BITS - 1;
/* xnb+1 is the number of bits of the root R */
/* snb+1 is the number of bits of the current approximation S */
kk = k * xnb; /* number of truncated bits in the input */
/* FIXME: Should we skip the next two loops when xnb <= snb ? */
for (uh = (k - 1) / 2, logk = 3; (uh >>= 1) != 0; ++logk )
;
/* logk = ceil(log(k)/log(2)) + 1 */
/* xnb is the number of remaining bits to determine in the kth root */
for (ni = 0; (sizes[ni] = xnb) > snb; ++ni)
{
/* invariant: here we want xnb+1 total bits for the kth root */
/* if c is the new value of xnb, this means that we'll go from a
root of c+1 bits (say s') to a root of xnb+1 bits.
It is proved in the book "Modern Computer Arithmetic" by Brent
and Zimmermann, Chapter 1, that
if s' >= k*beta, then at most one correction is necessary.
Here beta = 2^(xnb-c), and s' >= 2^c, thus it suffices that
c >= ceil((xnb + log2(k))/2). */
if (xnb > logk)
xnb = (xnb + logk) / 2;
else
--xnb; /* add just one bit at a time */
}
*rootp >>= snb - xnb;
kk -= xnb;
ASSERT_ALWAYS (ni < GMP_NUMB_BITS + 1);
/* We have sizes[0] = b > sizes[1] > ... > sizes[ni] = 0 with
sizes[i] <= 2 * sizes[i+1].
Newton iteration will first compute sizes[ni-1] extra bits,
then sizes[ni-2], ..., then sizes[0] = b. */
TMP_MARK;
/* qp and wp need enough space to store S'^k where S' is an approximate
root. Since S' can be as large as S+2, the worst case is when S=2 and
S'=4. But then since we know the number of bits of S in advance, S'
can only be 3 at most. Similarly for S=4, then S' can be 6 at most.
So the worst case is S'/S=3/2, thus S'^k <= (3/2)^k * S^k. Since S^k
fits in un limbs, the number of extra limbs needed is bounded by
ceil(k*log2(3/2)/GMP_NUMB_BITS). */
/* THINK: with the use of logbased_root, maybe the constant is
258/256 instead of 3/2 ? log2(258/256) < 1/89 < 1/64 */
#define EXTRA 2 + (mp_size_t) (0.585 * (double) k / (double) GMP_NUMB_BITS)
TMP_ALLOC_LIMBS_3 (scratch, un + 1, /* used by mpn_div_q */
qp, un + EXTRA, /* will contain quotient and remainder
of R/(k*S^(k-1)), and S^k */
wp, un + EXTRA); /* will contain S^(k-1), k*S^(k-1),
and temporary for mpn_pow_1 */
if (remp == NULL)
rp = scratch; /* will contain the remainder */
else
rp = remp;
sp = rootp;
sn = 1; /* Initial approximation has one limb */
for (b = xnb; ni != 0; --ni)
{
/* 1: loop invariant:
{sp, sn} is the current approximation of the root, which has
exactly 1 + sizes[ni] bits.
{rp, rn} is the current remainder
{wp, wn} = {sp, sn}^(k-1)
kk = number of truncated bits of the input
*/
/* Since each iteration treats b bits from the root and thus k*b bits
from the input, and we already considered b bits from the input,
we now have to take another (k-1)*b bits from the input. */
kk -= (k - 1) * b; /* remaining input bits */
/* {rp, rn} = floor({up, un} / 2^kk) */
rn = un - kk / GMP_NUMB_BITS;
MPN_RSHIFT (rp, up + kk / GMP_NUMB_BITS, rn, kk % GMP_NUMB_BITS);
rn -= rp[rn - 1] == 0;
/* 9: current buffers: {sp,sn}, {rp,rn} */
for (c = 0;; c++)
{
/* Compute S^k in {qp,qn}. */
/* W <- S^(k-1) for the next iteration,
and S^k = W * S. */
wn = mpn_pow_1 (wp, sp, sn, k - 1, qp);
mpn_mul (qp, wp, wn, sp, sn);
qn = wn + sn;
qn -= qp[qn - 1] == 0;
perf_pow = 1;
/* if S^k > floor(U/2^kk), the root approximation was too large */
if (qn > rn || (qn == rn && (perf_pow=mpn_cmp (qp, rp, rn)) > 0))
MPN_DECR_U (sp, sn, 1);
else
break;
}
/* 10: current buffers: {sp,sn}, {rp,rn}, {qp,qn}, {wp,wn} */
/* sometimes two corrections are needed with logbased_root*/
ASSERT (c <= 1 + LOGROOT_NEEDS_TWO_CORRECTIONS);
ASSERT_ALWAYS (rn >= qn);
b = sizes[ni - 1] - sizes[ni]; /* number of bits to compute in the
next iteration */
bn = b / GMP_NUMB_BITS; /* lowest limb from high part of rp[], after shift */
kk = kk - b;
/* nl is the number of limbs in U which contain bits [kk,kk+b-1] */
nl = 1 + (kk + b - 1) / GMP_NUMB_BITS - (kk / GMP_NUMB_BITS);
/* nl = 1 + floor((kk + b - 1) / GMP_NUMB_BITS)
- floor(kk / GMP_NUMB_BITS)
<= 1 + (kk + b - 1) / GMP_NUMB_BITS
- (kk - GMP_NUMB_BITS + 1) / GMP_NUMB_BITS
= 2 + (b - 2) / GMP_NUMB_BITS
thus since nl is an integer:
nl <= 2 + floor(b/GMP_NUMB_BITS) <= 2 + bn. */
/* 11: current buffers: {sp,sn}, {rp,rn}, {wp,wn} */
/* R = R - Q = floor(U/2^kk) - S^k */
if (perf_pow != 0)
{
mpn_sub (rp, rp, rn, qp, qn);
MPN_NORMALIZE_NOT_ZERO (rp, rn);
/* first multiply the remainder by 2^b */
MPN_LSHIFT (cy, rp + bn, rp, rn, b % GMP_NUMB_BITS);
rn = rn + bn;
if (cy != 0)
{
rp[rn] = cy;
rn++;
}
save = rp[bn];
/* we have to save rp[bn] up to rp[nl-1], i.e. 1 or 2 limbs */
if (nl - 1 > bn)
save2 = rp[bn + 1];
}
else
{
rn = bn;
save2 = save = 0;
}
/* 2: current buffers: {sp,sn}, {rp,rn}, {wp,wn} */
/* Now insert bits [kk,kk+b-1] from the input U */
MPN_RSHIFT (rp, up + kk / GMP_NUMB_BITS, nl, kk % GMP_NUMB_BITS);
/* set to zero high bits of rp[bn] */
rp[bn] &= (CNST_LIMB (1) << (b % GMP_NUMB_BITS)) - 1;
/* restore corresponding bits */
rp[bn] |= save;
if (nl - 1 > bn)
rp[bn + 1] = save2; /* the low b bits go in rp[0..bn] only, since
they start by bit 0 in rp[0], so they use
at most ceil(b/GMP_NUMB_BITS) limbs */
/* FIXME: Should we normalise {rp,rn} here ?*/
/* 3: current buffers: {sp,sn}, {rp,rn}, {wp,wn} */
/* compute {wp, wn} = k * {sp, sn}^(k-1) */
cy = mpn_mul_1 (wp, wp, wn, k);
wp[wn] = cy;
wn += cy != 0;
/* 6: current buffers: {sp,sn}, {qp,qn} */
/* multiply the root approximation by 2^b */
MPN_LSHIFT (cy, sp + b / GMP_NUMB_BITS, sp, sn, b % GMP_NUMB_BITS);
sn = sn + b / GMP_NUMB_BITS;
if (cy != 0)
{
sp[sn] = cy;
sn++;
}
save = sp[b / GMP_NUMB_BITS];
/* Number of limbs used by b bits, when least significant bit is
aligned to least limb */
bn = (b - 1) / GMP_NUMB_BITS + 1;
/* 4: current buffers: {sp,sn}, {rp,rn}, {wp,wn} */
/* now divide {rp, rn} by {wp, wn} to get the low part of the root */
if (UNLIKELY (rn < wn))
{
MPN_FILL (sp, bn, 0);
}
else
{
qn = rn - wn; /* expected quotient size */
if (qn <= bn) { /* Divide only if result is not too big. */
mpn_div_q (qp, rp, rn, wp, wn, scratch);
qn += qp[qn] != 0;
}
/* 5: current buffers: {sp,sn}, {qp,qn}.
Note: {rp,rn} is not needed any more since we'll compute it from
scratch at the end of the loop.
*/
/* the quotient should be smaller than 2^b, since the previous
approximation was correctly rounded toward zero */
if (qn > bn || (qn == bn && (b % GMP_NUMB_BITS != 0) &&
qp[qn - 1] >= (CNST_LIMB (1) << (b % GMP_NUMB_BITS))))
{
for (qn = 1; qn < bn; ++qn)
sp[qn - 1] = GMP_NUMB_MAX;
sp[qn - 1] = GMP_NUMB_MAX >> (GMP_NUMB_BITS - 1 - ((b - 1) % GMP_NUMB_BITS));
}
else
{
/* 7: current buffers: {sp,sn}, {qp,qn} */
/* Combine sB and q to form sB + q. */
MPN_COPY (sp, qp, qn);
MPN_ZERO (sp + qn, bn - qn);
}
}
sp[b / GMP_NUMB_BITS] |= save;
/* 8: current buffer: {sp,sn} */
}
/* otherwise we have rn > 0, thus the return value is ok */
if (!approx || sp[0] <= CNST_LIMB (1))
{
for (c = 0;; c++)
{
/* Compute S^k in {qp,qn}. */
/* Last iteration: we don't need W anymore. */
/* mpn_pow_1 requires that both qp and wp have enough
space to store the result {sp,sn}^k + 1 limb */
qn = mpn_pow_1 (qp, sp, sn, k, wp);
perf_pow = 1;
if (qn > un || (qn == un && (perf_pow=mpn_cmp (qp, up, un)) > 0))
MPN_DECR_U (sp, sn, 1);
else
break;
};
/* sometimes two corrections are needed with logbased_root*/
ASSERT (c <= 1 + LOGROOT_NEEDS_TWO_CORRECTIONS);
rn = perf_pow != 0;
if (rn != 0 && remp != NULL)
{
mpn_sub (remp, up, un, qp, qn);
rn = un;
MPN_NORMALIZE_NOT_ZERO (remp, rn);
}
}
TMP_FREE;
return rn;
}
|