1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
|
/* mpn_sqrtrem -- square root and remainder
Contributed to the GNU project by Paul Zimmermann (most code),
Torbjorn Granlund (mpn_sqrtrem1) and Marco Bodrato (mpn_dc_sqrt).
THE FUNCTIONS IN THIS FILE EXCEPT mpn_sqrtrem ARE INTERNAL WITH MUTABLE
INTERFACES. IT IS ONLY SAFE TO REACH THEM THROUGH DOCUMENTED INTERFACES.
IN FACT, IT IS ALMOST GUARANTEED THAT THEY WILL CHANGE OR DISAPPEAR IN A
FUTURE GMP RELEASE.
Copyright 1999-2002, 2004, 2005, 2008, 2010, 2012, 2015, 2017 Free Software
Foundation, Inc.
This file is part of the GNU MP Library.
The GNU MP Library is free software; you can redistribute it and/or modify
it under the terms of either:
* the GNU Lesser General Public License as published by the Free
Software Foundation; either version 3 of the License, or (at your
option) any later version.
or
* the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any
later version.
or both in parallel, as here.
The GNU MP Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received copies of the GNU General Public License and the
GNU Lesser General Public License along with the GNU MP Library. If not,
see https://www.gnu.org/licenses/. */
/* See "Karatsuba Square Root", reference in gmp.texi. */
#include <stdio.h>
#include <stdlib.h>
#include "gmp-impl.h"
#include "longlong.h"
#define USE_DIVAPPR_Q 1
#define TRACE(x)
static const unsigned char invsqrttab[384] = /* The common 0x100 was removed */
{
0xff,0xfd,0xfb,0xf9,0xf7,0xf5,0xf3,0xf2, /* sqrt(1/80)..sqrt(1/87) */
0xf0,0xee,0xec,0xea,0xe9,0xe7,0xe5,0xe4, /* sqrt(1/88)..sqrt(1/8f) */
0xe2,0xe0,0xdf,0xdd,0xdb,0xda,0xd8,0xd7, /* sqrt(1/90)..sqrt(1/97) */
0xd5,0xd4,0xd2,0xd1,0xcf,0xce,0xcc,0xcb, /* sqrt(1/98)..sqrt(1/9f) */
0xc9,0xc8,0xc6,0xc5,0xc4,0xc2,0xc1,0xc0, /* sqrt(1/a0)..sqrt(1/a7) */
0xbe,0xbd,0xbc,0xba,0xb9,0xb8,0xb7,0xb5, /* sqrt(1/a8)..sqrt(1/af) */
0xb4,0xb3,0xb2,0xb0,0xaf,0xae,0xad,0xac, /* sqrt(1/b0)..sqrt(1/b7) */
0xaa,0xa9,0xa8,0xa7,0xa6,0xa5,0xa4,0xa3, /* sqrt(1/b8)..sqrt(1/bf) */
0xa2,0xa0,0x9f,0x9e,0x9d,0x9c,0x9b,0x9a, /* sqrt(1/c0)..sqrt(1/c7) */
0x99,0x98,0x97,0x96,0x95,0x94,0x93,0x92, /* sqrt(1/c8)..sqrt(1/cf) */
0x91,0x90,0x8f,0x8e,0x8d,0x8c,0x8c,0x8b, /* sqrt(1/d0)..sqrt(1/d7) */
0x8a,0x89,0x88,0x87,0x86,0x85,0x84,0x83, /* sqrt(1/d8)..sqrt(1/df) */
0x83,0x82,0x81,0x80,0x7f,0x7e,0x7e,0x7d, /* sqrt(1/e0)..sqrt(1/e7) */
0x7c,0x7b,0x7a,0x79,0x79,0x78,0x77,0x76, /* sqrt(1/e8)..sqrt(1/ef) */
0x76,0x75,0x74,0x73,0x72,0x72,0x71,0x70, /* sqrt(1/f0)..sqrt(1/f7) */
0x6f,0x6f,0x6e,0x6d,0x6d,0x6c,0x6b,0x6a, /* sqrt(1/f8)..sqrt(1/ff) */
0x6a,0x69,0x68,0x68,0x67,0x66,0x66,0x65, /* sqrt(1/100)..sqrt(1/107) */
0x64,0x64,0x63,0x62,0x62,0x61,0x60,0x60, /* sqrt(1/108)..sqrt(1/10f) */
0x5f,0x5e,0x5e,0x5d,0x5c,0x5c,0x5b,0x5a, /* sqrt(1/110)..sqrt(1/117) */
0x5a,0x59,0x59,0x58,0x57,0x57,0x56,0x56, /* sqrt(1/118)..sqrt(1/11f) */
0x55,0x54,0x54,0x53,0x53,0x52,0x52,0x51, /* sqrt(1/120)..sqrt(1/127) */
0x50,0x50,0x4f,0x4f,0x4e,0x4e,0x4d,0x4d, /* sqrt(1/128)..sqrt(1/12f) */
0x4c,0x4b,0x4b,0x4a,0x4a,0x49,0x49,0x48, /* sqrt(1/130)..sqrt(1/137) */
0x48,0x47,0x47,0x46,0x46,0x45,0x45,0x44, /* sqrt(1/138)..sqrt(1/13f) */
0x44,0x43,0x43,0x42,0x42,0x41,0x41,0x40, /* sqrt(1/140)..sqrt(1/147) */
0x40,0x3f,0x3f,0x3e,0x3e,0x3d,0x3d,0x3c, /* sqrt(1/148)..sqrt(1/14f) */
0x3c,0x3b,0x3b,0x3a,0x3a,0x39,0x39,0x39, /* sqrt(1/150)..sqrt(1/157) */
0x38,0x38,0x37,0x37,0x36,0x36,0x35,0x35, /* sqrt(1/158)..sqrt(1/15f) */
0x35,0x34,0x34,0x33,0x33,0x32,0x32,0x32, /* sqrt(1/160)..sqrt(1/167) */
0x31,0x31,0x30,0x30,0x2f,0x2f,0x2f,0x2e, /* sqrt(1/168)..sqrt(1/16f) */
0x2e,0x2d,0x2d,0x2d,0x2c,0x2c,0x2b,0x2b, /* sqrt(1/170)..sqrt(1/177) */
0x2b,0x2a,0x2a,0x29,0x29,0x29,0x28,0x28, /* sqrt(1/178)..sqrt(1/17f) */
0x27,0x27,0x27,0x26,0x26,0x26,0x25,0x25, /* sqrt(1/180)..sqrt(1/187) */
0x24,0x24,0x24,0x23,0x23,0x23,0x22,0x22, /* sqrt(1/188)..sqrt(1/18f) */
0x21,0x21,0x21,0x20,0x20,0x20,0x1f,0x1f, /* sqrt(1/190)..sqrt(1/197) */
0x1f,0x1e,0x1e,0x1e,0x1d,0x1d,0x1d,0x1c, /* sqrt(1/198)..sqrt(1/19f) */
0x1c,0x1b,0x1b,0x1b,0x1a,0x1a,0x1a,0x19, /* sqrt(1/1a0)..sqrt(1/1a7) */
0x19,0x19,0x18,0x18,0x18,0x18,0x17,0x17, /* sqrt(1/1a8)..sqrt(1/1af) */
0x17,0x16,0x16,0x16,0x15,0x15,0x15,0x14, /* sqrt(1/1b0)..sqrt(1/1b7) */
0x14,0x14,0x13,0x13,0x13,0x12,0x12,0x12, /* sqrt(1/1b8)..sqrt(1/1bf) */
0x12,0x11,0x11,0x11,0x10,0x10,0x10,0x0f, /* sqrt(1/1c0)..sqrt(1/1c7) */
0x0f,0x0f,0x0f,0x0e,0x0e,0x0e,0x0d,0x0d, /* sqrt(1/1c8)..sqrt(1/1cf) */
0x0d,0x0c,0x0c,0x0c,0x0c,0x0b,0x0b,0x0b, /* sqrt(1/1d0)..sqrt(1/1d7) */
0x0a,0x0a,0x0a,0x0a,0x09,0x09,0x09,0x09, /* sqrt(1/1d8)..sqrt(1/1df) */
0x08,0x08,0x08,0x07,0x07,0x07,0x07,0x06, /* sqrt(1/1e0)..sqrt(1/1e7) */
0x06,0x06,0x06,0x05,0x05,0x05,0x04,0x04, /* sqrt(1/1e8)..sqrt(1/1ef) */
0x04,0x04,0x03,0x03,0x03,0x03,0x02,0x02, /* sqrt(1/1f0)..sqrt(1/1f7) */
0x02,0x02,0x01,0x01,0x01,0x01,0x00,0x00 /* sqrt(1/1f8)..sqrt(1/1ff) */
};
/* Compute s = floor(sqrt(a0)), and *rp = a0 - s^2. */
#if GMP_NUMB_BITS > 32
#define MAGIC CNST_LIMB(0x10000000000) /* 0xffe7debbfc < MAGIC < 0x232b1850f410 */
#else
#define MAGIC CNST_LIMB(0x100000) /* 0xfee6f < MAGIC < 0x29cbc8 */
#endif
static mp_limb_t
mpn_sqrtrem1 (mp_ptr rp, mp_limb_t a0)
{
#if GMP_NUMB_BITS > 32
mp_limb_t a1;
#endif
mp_limb_t x0, t2, t, x2;
unsigned abits;
ASSERT_ALWAYS (GMP_NAIL_BITS == 0);
ASSERT_ALWAYS (GMP_LIMB_BITS == 32 || GMP_LIMB_BITS == 64);
ASSERT (a0 >= GMP_NUMB_HIGHBIT / 2);
/* Use Newton iterations for approximating 1/sqrt(a) instead of sqrt(a),
since we can do the former without division. As part of the last
iteration convert from 1/sqrt(a) to sqrt(a). */
abits = a0 >> (GMP_LIMB_BITS - 1 - 8); /* extract bits for table lookup */
x0 = 0x100 | invsqrttab[abits - 0x80]; /* initial 1/sqrt(a) */
/* x0 is now an 8 bits approximation of 1/sqrt(a0) */
#if GMP_NUMB_BITS > 32
a1 = a0 >> (GMP_LIMB_BITS - 1 - 32);
t = (mp_limb_signed_t) (CNST_LIMB(0x2000000000000) - 0x30000 - a1 * x0 * x0) >> 16;
x0 = (x0 << 16) + ((mp_limb_signed_t) (x0 * t) >> (16+2));
/* x0 is now a 16 bits approximation of 1/sqrt(a0) */
t2 = x0 * (a0 >> (32-8));
t = t2 >> 25;
t = ((mp_limb_signed_t) ((a0 << 14) - t * t - MAGIC) >> (32-8));
x0 = t2 + ((mp_limb_signed_t) (x0 * t) >> 15);
x0 >>= 32;
#else
t2 = x0 * (a0 >> (16-8));
t = t2 >> 13;
t = ((mp_limb_signed_t) ((a0 << 6) - t * t - MAGIC) >> (16-8));
x0 = t2 + ((mp_limb_signed_t) (x0 * t) >> 7);
x0 >>= 16;
#endif
/* x0 is now a full limb approximation of sqrt(a0) */
x2 = x0 * x0;
if (x2 + 2*x0 <= a0 - 1)
{
x2 += 2*x0 + 1;
x0++;
}
*rp = a0 - x2;
return x0;
}
#define Prec (GMP_NUMB_BITS >> 1)
#if ! defined(SQRTREM2_INPLACE)
#define SQRTREM2_INPLACE 0
#endif
/* same as mpn_sqrtrem, but for size=2 and {np, 2} normalized
return cc such that {np, 2} = sp[0]^2 + cc*2^GMP_NUMB_BITS + rp[0] */
#if SQRTREM2_INPLACE
#define CALL_SQRTREM2_INPLACE(sp,rp) mpn_sqrtrem2 (sp, rp)
static mp_limb_t
mpn_sqrtrem2 (mp_ptr sp, mp_ptr rp)
{
mp_srcptr np = rp;
#else
#define CALL_SQRTREM2_INPLACE(sp,rp) mpn_sqrtrem2 (sp, rp, rp)
static mp_limb_t
mpn_sqrtrem2 (mp_ptr sp, mp_ptr rp, mp_srcptr np)
{
#endif
mp_limb_t q, u, np0, sp0, rp0, q2;
int cc;
ASSERT (np[1] >= GMP_NUMB_HIGHBIT / 2);
np0 = np[0];
sp0 = mpn_sqrtrem1 (rp, np[1]);
rp0 = rp[0];
/* rp0 <= 2*sp0 < 2^(Prec + 1) */
rp0 = (rp0 << (Prec - 1)) + (np0 >> (Prec + 1));
q = rp0 / sp0;
/* q <= 2^Prec, if q = 2^Prec, reduce the overestimate. */
q -= q >> Prec;
/* now we have q < 2^Prec */
u = rp0 - q * sp0;
/* now we have (rp[0]<<Prec + np0>>Prec)/2 = q * sp0 + u */
sp0 = (sp0 << Prec) | q;
cc = u >> (Prec - 1);
rp0 = ((u << (Prec + 1)) & GMP_NUMB_MASK) + (np0 & ((CNST_LIMB (1) << (Prec + 1)) - 1));
/* subtract q * q from rp */
q2 = q * q;
cc -= rp0 < q2;
rp0 -= q2;
if (cc < 0)
{
rp0 += sp0;
cc += rp0 < sp0;
--sp0;
rp0 += sp0;
cc += rp0 < sp0;
}
rp[0] = rp0;
sp[0] = sp0;
return cc;
}
/* writes in {sp, n} the square root (rounded towards zero) of {np, 2n},
and in {np, n} the low n limbs of the remainder, returns the high
limb of the remainder (which is 0 or 1).
Assumes {np, 2n} is normalized, i.e. np[2n-1] >= B/4
where B=2^GMP_NUMB_BITS.
Needs a scratch of n/2+1 limbs. */
static mp_limb_t
mpn_dc_sqrtrem (mp_ptr sp, mp_ptr np, mp_size_t n, mp_limb_t approx, mp_ptr scratch)
{
mp_limb_t q; /* carry out of {sp, n} */
int c, b; /* carry out of remainder */
mp_size_t l, h;
ASSERT (n > 1);
ASSERT (np[2 * n - 1] >= GMP_NUMB_HIGHBIT / 2);
l = n / 2;
h = n - l;
if (h == 1)
q = CALL_SQRTREM2_INPLACE (sp + l, np + 2 * l);
else
q = mpn_dc_sqrtrem (sp + l, np + 2 * l, h, 0, scratch);
if (q != 0)
ASSERT_CARRY (mpn_sub_n (np + 2 * l, np + 2 * l, sp + l, h));
TRACE(printf("tdiv_qr(,,,,%u,,%u) -> %u\n", (unsigned) n, (unsigned) h, (unsigned) (n - h + 1)));
mpn_tdiv_qr (scratch, np + l, 0, np + l, n, sp + l, h);
q += scratch[l];
c = scratch[0] & 1;
mpn_rshift (sp, scratch, l, 1);
sp[l - 1] |= (q << (GMP_NUMB_BITS - 1)) & GMP_NUMB_MASK;
if (UNLIKELY ((sp[0] & approx) != 0)) /* (sp[0] & mask) > 1 */
return 1; /* Remainder is non-zero */
q >>= 1;
if (c != 0)
c = mpn_add_n (np + l, np + l, sp + l, h);
TRACE(printf("sqr(,,%u)\n", (unsigned) l));
mpn_sqr (np + n, sp, l);
b = q + mpn_sub_n (np, np, np + n, 2 * l);
c -= (l == h) ? b : mpn_sub_1 (np + 2 * l, np + 2 * l, 1, (mp_limb_t) b);
if (c < 0)
{
q = mpn_add_1 (sp + l, sp + l, h, q);
#if HAVE_NATIVE_mpn_addlsh1_n_ip1 || HAVE_NATIVE_mpn_addlsh1_n
c += mpn_addlsh1_n_ip1 (np, sp, n) + 2 * q;
#else
c += mpn_addmul_1 (np, sp, n, CNST_LIMB(2)) + 2 * q;
#endif
c -= mpn_sub_1 (np, np, n, CNST_LIMB(1));
q -= mpn_sub_1 (sp, sp, n, CNST_LIMB(1));
}
return c;
}
#if USE_DIVAPPR_Q
static void
mpn_divappr_q (mp_ptr qp, mp_srcptr np, mp_size_t nn, mp_srcptr dp, mp_size_t dn, mp_ptr scratch)
{
gmp_pi1_t inv;
mp_limb_t qh;
ASSERT (dn > 2);
ASSERT (nn >= dn);
ASSERT ((dp[dn-1] & GMP_NUMB_HIGHBIT) != 0);
MPN_COPY (scratch, np, nn);
invert_pi1 (inv, dp[dn-1], dp[dn-2]);
if (BELOW_THRESHOLD (dn, DC_DIVAPPR_Q_THRESHOLD))
qh = mpn_sbpi1_divappr_q (qp, scratch, nn, dp, dn, inv.inv32);
else if (BELOW_THRESHOLD (dn, MU_DIVAPPR_Q_THRESHOLD))
qh = mpn_dcpi1_divappr_q (qp, scratch, nn, dp, dn, &inv);
else
{
mp_size_t itch = mpn_mu_divappr_q_itch (nn, dn, 0);
TMP_DECL;
TMP_MARK;
/* Sadly, scratch is too small. */
qh = mpn_mu_divappr_q (qp, np, nn, dp, dn, TMP_ALLOC_LIMBS (itch));
TMP_FREE;
}
qp [nn - dn] = qh;
}
#endif
/* writes in {sp, n} the square root (rounded towards zero) of {np, 2n-odd},
returns zero if the operand was a perfect square, one otherwise.
Assumes {np, 2n-odd}*4^nsh is normalized, i.e. B > np[2n-1-odd]*4^nsh >= B/4
where B=2^GMP_NUMB_BITS.
THINK: In the odd case, three more (dummy) limbs are taken into account,
when nsh is maximal, two limbs are discarded from the result of the
division. Too much? Is a single dummy limb enough? */
static int
mpn_dc_sqrt (mp_ptr sp, mp_srcptr np, mp_size_t n, unsigned nsh, unsigned odd)
{
mp_limb_t q; /* carry out of {sp, n} */
int c; /* carry out of remainder */
mp_size_t l, h;
mp_ptr qp, tp, scratch;
TMP_DECL;
TMP_MARK;
ASSERT (np[2 * n - 1 - odd] != 0);
ASSERT (n > 4);
ASSERT (nsh < GMP_NUMB_BITS / 2);
l = (n - 1) / 2;
h = n - l;
ASSERT (n >= l + 2 && l + 2 >= h && h > l && l >= 1 + odd);
scratch = TMP_ALLOC_LIMBS (l + 2 * n + 5 - USE_DIVAPPR_Q); /* n + 2-USE_DIVAPPR_Q */
tp = scratch + n + 2 - USE_DIVAPPR_Q; /* n + h + 1, but tp [-1] is writable */
if (nsh != 0)
{
/* o is used to exactly set the lowest bits of the dividend, is it needed? */
int o = l > (1 + odd);
ASSERT_NOCARRY (mpn_lshift (tp - o, np + l - 1 - o - odd, n + h + 1 + o, 2 * nsh));
}
else
MPN_COPY (tp, np + l - 1 - odd, n + h + 1);
q = mpn_dc_sqrtrem (sp + l, tp + l + 1, h, 0, scratch);
if (q != 0)
ASSERT_CARRY (mpn_sub_n (tp + l + 1, tp + l + 1, sp + l, h));
qp = tp + n + 1; /* l + 2 */
TRACE(printf("div(appr)_q(,,%u,,%u) -> %u \n", (unsigned) n+1, (unsigned) h, (unsigned) (n + 1 - h + 1)));
#if USE_DIVAPPR_Q
mpn_divappr_q (qp, tp, n + 1, sp + l, h, scratch);
#else
mpn_div_q (qp, tp, n + 1, sp + l, h, scratch);
#endif
q += qp [l + 1];
c = 1;
if (q > 1)
{
/* FIXME: if s!=0 we will shift later, a noop on this area. */
MPN_FILL (sp, l, GMP_NUMB_MAX);
}
else
{
/* FIXME: if s!=0 we will shift again later, shift just once. */
mpn_rshift (sp, qp + 1, l, 1);
sp[l - 1] |= q << (GMP_NUMB_BITS - 1);
if (((qp[0] >> (2 + USE_DIVAPPR_Q)) | /* < 3 + 4*USE_DIVAPPR_Q */
(qp[1] & (GMP_NUMB_MASK >> ((GMP_NUMB_BITS >> odd)- nsh - 1)))) == 0)
{
mp_limb_t cy;
/* Approximation is not good enough, the extra limb(+ nsh bits)
is smaller than needed to absorb the possible error. */
/* {qp + 1, l + 1} equals 2*{sp, l} */
/* FIXME: use mullo or wrap-around, or directly evaluate
remainder with a single sqrmod_bnm1. */
TRACE(printf("mul(,,%u,,%u)\n", (unsigned) h, (unsigned) (l+1)));
ASSERT_NOCARRY (mpn_mul (scratch, sp + l, h, qp + 1, l + 1));
/* Compute the remainder of the previous mpn_div(appr)_q. */
cy = mpn_sub_n (tp + 1, tp + 1, scratch, h);
#if USE_DIVAPPR_Q || WANT_ASSERT
MPN_DECR_U (tp + 1 + h, l, cy);
#if USE_DIVAPPR_Q
ASSERT (mpn_cmp (tp + 1 + h, scratch + h, l) <= 0);
if (mpn_cmp (tp + 1 + h, scratch + h, l) < 0)
{
/* May happen only if div result was not exact. */
#if HAVE_NATIVE_mpn_addlsh1_n_ip1 || HAVE_NATIVE_mpn_addlsh1_n
cy = mpn_addlsh1_n_ip1 (tp + 1, sp + l, h);
#else
cy = mpn_addmul_1 (tp + 1, sp + l, h, CNST_LIMB(2));
#endif
ASSERT_NOCARRY (mpn_add_1 (tp + 1 + h, tp + 1 + h, l, cy));
MPN_DECR_U (sp, l, 1);
}
/* Can the root be exact when a correction was needed? We
did not find an example, but it depends on divappr
internals, and we can not assume it true in general...*/
/* else */
#else /* WANT_ASSERT */
ASSERT (mpn_cmp (tp + 1 + h, scratch + h, l) == 0);
#endif
#endif
if (mpn_zero_p (tp + l + 1, h - l))
{
TRACE(printf("sqr(,,%u)\n", (unsigned) l));
mpn_sqr (scratch, sp, l);
c = mpn_cmp (tp + 1, scratch + l, l);
if (c == 0)
{
if (nsh != 0)
{
mpn_lshift (tp, np, l, 2 * nsh);
np = tp;
}
c = mpn_cmp (np, scratch + odd, l - odd);
}
if (c < 0)
{
MPN_DECR_U (sp, l, 1);
c = 1;
}
}
}
}
TMP_FREE;
if ((odd | nsh) != 0)
mpn_rshift (sp, sp, n, nsh + (odd ? GMP_NUMB_BITS / 2 : 0));
return c;
}
mp_size_t
mpn_sqrtrem (mp_ptr sp, mp_ptr rp, mp_srcptr np, mp_size_t nn)
{
mp_limb_t cc, high, rl;
int c;
mp_size_t rn, tn;
TMP_DECL;
ASSERT (nn > 0);
ASSERT_MPN (np, nn);
ASSERT (np[nn - 1] != 0);
ASSERT (rp == NULL || MPN_SAME_OR_SEPARATE_P (np, rp, nn));
ASSERT (rp == NULL || ! MPN_OVERLAP_P (sp, (nn + 1) / 2, rp, nn));
ASSERT (! MPN_OVERLAP_P (sp, (nn + 1) / 2, np, nn));
high = np[nn - 1];
if (high & (GMP_NUMB_HIGHBIT | (GMP_NUMB_HIGHBIT / 2)))
c = 0;
else
{
count_leading_zeros (c, high);
c -= GMP_NAIL_BITS;
c = c / 2; /* we have to shift left by 2c bits to normalize {np, nn} */
}
if (nn == 1) {
if (c == 0)
{
sp[0] = mpn_sqrtrem1 (&rl, high);
if (rp != NULL)
rp[0] = rl;
}
else
{
cc = mpn_sqrtrem1 (&rl, high << (2*c)) >> c;
sp[0] = cc;
if (rp != NULL)
rp[0] = rl = high - cc*cc;
}
return rl != 0;
}
if (nn == 2) {
mp_limb_t tp [2];
if (rp == NULL) rp = tp;
if (c == 0)
{
#if SQRTREM2_INPLACE
rp[1] = high;
rp[0] = np[0];
cc = CALL_SQRTREM2_INPLACE (sp, rp);
#else
cc = mpn_sqrtrem2 (sp, rp, np);
#endif
rp[1] = cc;
return ((rp[0] | cc) != 0) + cc;
}
else
{
rl = np[0];
rp[1] = (high << (2*c)) | (rl >> (GMP_NUMB_BITS - 2*c));
rp[0] = rl << (2*c);
CALL_SQRTREM2_INPLACE (sp, rp);
cc = sp[0] >>= c; /* c != 0, the highest bit of the root cc is 0. */
rp[0] = rl -= cc*cc; /* Computed modulo 2^GMP_LIMB_BITS, because it's smaller. */
return rl != 0;
}
}
tn = (nn + 1) / 2; /* 2*tn is the smallest even integer >= nn */
if ((rp == NULL) && (nn > 8))
return mpn_dc_sqrt (sp, np, tn, c, nn & 1);
TMP_MARK;
if (((nn & 1) | c) != 0)
{
mp_limb_t s0[1], mask;
mp_ptr tp, scratch;
TMP_ALLOC_LIMBS_2 (tp, 2 * tn, scratch, tn / 2 + 1);
tp[0] = 0; /* needed only when 2*tn > nn, but saves a test */
if (c != 0)
mpn_lshift (tp + (nn & 1), np, nn, 2 * c);
else
MPN_COPY (tp + (nn & 1), np, nn);
c += (nn & 1) ? GMP_NUMB_BITS / 2 : 0; /* c now represents k */
mask = (CNST_LIMB (1) << c) - 1;
rl = mpn_dc_sqrtrem (sp, tp, tn, (rp == NULL) ? mask - 1 : 0, scratch);
/* We have 2^(2k)*N = S^2 + R where k = c + (2tn-nn)*GMP_NUMB_BITS/2,
thus 2^(2k)*N = (S-s0)^2 + 2*S*s0 - s0^2 + R where s0=S mod 2^k */
s0[0] = sp[0] & mask; /* S mod 2^k */
rl += mpn_addmul_1 (tp, sp, tn, 2 * s0[0]); /* R = R + 2*s0*S */
cc = mpn_submul_1 (tp, s0, 1, s0[0]);
rl -= (tn > 1) ? mpn_sub_1 (tp + 1, tp + 1, tn - 1, cc) : cc;
mpn_rshift (sp, sp, tn, c);
tp[tn] = rl;
if (rp == NULL)
rp = tp;
c = c << 1;
if (c < GMP_NUMB_BITS)
tn++;
else
{
tp++;
c -= GMP_NUMB_BITS;
}
if (c != 0)
mpn_rshift (rp, tp, tn, c);
else
MPN_COPY_INCR (rp, tp, tn);
rn = tn;
}
else
{
if (rp != np)
{
if (rp == NULL) /* nn <= 8 */
rp = TMP_SALLOC_LIMBS (nn);
MPN_COPY (rp, np, nn);
}
rn = tn + (rp[tn] = mpn_dc_sqrtrem (sp, rp, tn, 0, TMP_ALLOC_LIMBS(tn / 2 + 1)));
}
MPN_NORMALIZE (rp, rn);
TMP_FREE;
return rn;
}
|