aboutsummaryrefslogtreecommitdiff
path: root/vendor/gmp-6.3.0/mpn/x86/k7/dive_1.asm
blob: 458bd02539554d0d1596b751382ba9c49e8a9548 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
dnl  AMD K7 mpn_divexact_1 -- mpn by limb exact division.

dnl  Copyright 2001, 2002, 2004, 2007 Free Software Foundation, Inc.

dnl  This file is part of the GNU MP Library.
dnl
dnl  The GNU MP Library is free software; you can redistribute it and/or modify
dnl  it under the terms of either:
dnl
dnl    * the GNU Lesser General Public License as published by the Free
dnl      Software Foundation; either version 3 of the License, or (at your
dnl      option) any later version.
dnl
dnl  or
dnl
dnl    * the GNU General Public License as published by the Free Software
dnl      Foundation; either version 2 of the License, or (at your option) any
dnl      later version.
dnl
dnl  or both in parallel, as here.
dnl
dnl  The GNU MP Library is distributed in the hope that it will be useful, but
dnl  WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
dnl  or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
dnl  for more details.
dnl
dnl  You should have received copies of the GNU General Public License and the
dnl  GNU Lesser General Public License along with the GNU MP Library.  If not,
dnl  see https://www.gnu.org/licenses/.

include(`../config.m4')


C          cycles/limb
C Athlon:     11.0
C Hammer:      9.0


C void mpn_divexact_1 (mp_ptr dst, mp_srcptr src, mp_size_t size,
C                      mp_limb_t divisor);
C
C The dependent chain is mul+imul+sub for 11 cycles and that speed is
C achieved with no special effort.  The load and shrld latencies are hidden
C by out of order execution.
C
C It's a touch faster on size==1 to use the mul-by-inverse than divl.

defframe(PARAM_DIVISOR,16)
defframe(PARAM_SIZE,   12)
defframe(PARAM_SRC,    8)
defframe(PARAM_DST,    4)

defframe(SAVE_EBX,     -4)
defframe(SAVE_ESI,     -8)
defframe(SAVE_EDI,    -12)
defframe(SAVE_EBP,    -16)
defframe(VAR_INVERSE, -20)
defframe(VAR_DST_END, -24)

deflit(STACK_SPACE, 24)

	TEXT

	ALIGN(16)
PROLOGUE(mpn_divexact_1)
deflit(`FRAME',0)

	movl	PARAM_DIVISOR, %eax
	subl	$STACK_SPACE, %esp	deflit(`FRAME',STACK_SPACE)
	movl	$-1, %ecx		C shift count

	movl	%ebp, SAVE_EBP
	movl	PARAM_SIZE, %ebp

	movl	%esi, SAVE_ESI
	movl	%edi, SAVE_EDI

	C If there's usually only one or two trailing zero bits then this
	C should be faster than bsfl.
L(strip_twos):
	incl	%ecx
	shrl	%eax
	jnc	L(strip_twos)

	movl	%ebx, SAVE_EBX
	leal	1(%eax,%eax), %ebx	C d without twos
	andl	$127, %eax		C d/2, 7 bits

ifdef(`PIC',`
	LEA(	binvert_limb_table, %edx)
	movzbl	(%eax,%edx), %eax		C inv 8 bits
',`
	movzbl	binvert_limb_table(%eax), %eax	C inv 8 bits
')

	leal	(%eax,%eax), %edx	C 2*inv
	movl	%ebx, PARAM_DIVISOR	C d without twos

	imull	%eax, %eax		C inv*inv

	movl	PARAM_SRC, %esi
	movl	PARAM_DST, %edi

	imull	%ebx, %eax		C inv*inv*d

	subl	%eax, %edx		C inv = 2*inv - inv*inv*d
	leal	(%edx,%edx), %eax	C 2*inv

	imull	%edx, %edx		C inv*inv

	leal	(%esi,%ebp,4), %esi	C src end
	leal	(%edi,%ebp,4), %edi	C dst end
	negl	%ebp			C -size

	imull	%ebx, %edx		C inv*inv*d

	subl	%edx, %eax		C inv = 2*inv - inv*inv*d

	ASSERT(e,`	C expect d*inv == 1 mod 2^GMP_LIMB_BITS
	pushl	%eax	FRAME_pushl()
	imull	PARAM_DIVISOR, %eax
	cmpl	$1, %eax
	popl	%eax	FRAME_popl()')

	movl	%eax, VAR_INVERSE
	movl	(%esi,%ebp,4), %eax	C src[0]

	incl	%ebp
	jz	L(one)

	movl	(%esi,%ebp,4), %edx	C src[1]

	shrdl(	%cl, %edx, %eax)

	movl	%edi, VAR_DST_END
	xorl	%ebx, %ebx
	jmp	L(entry)

	ALIGN(8)
L(top):
	C eax	q
	C ebx	carry bit, 0 or 1
	C ecx	shift
	C edx
	C esi	src end
	C edi	dst end
	C ebp	counter, limbs, negative

	mull	PARAM_DIVISOR		C carry limb in edx

	movl	-4(%esi,%ebp,4), %eax
	movl	(%esi,%ebp,4), %edi

	shrdl(	%cl, %edi, %eax)

	subl	%ebx, %eax		C apply carry bit
	setc	%bl
	movl	VAR_DST_END, %edi

	subl	%edx, %eax		C apply carry limb
	adcl	$0, %ebx

L(entry):
	imull	VAR_INVERSE, %eax

	movl	%eax, -4(%edi,%ebp,4)
	incl	%ebp
	jnz	L(top)


	mull	PARAM_DIVISOR		C carry limb in edx

	movl	-4(%esi), %eax		C src high limb
	shrl	%cl, %eax
	movl	SAVE_ESI, %esi

	subl	%ebx, %eax		C apply carry bit
	movl	SAVE_EBX, %ebx
	movl	SAVE_EBP, %ebp

	subl	%edx, %eax		C apply carry limb

	imull	VAR_INVERSE, %eax

	movl	%eax, -4(%edi)
	movl	SAVE_EDI, %edi
	addl	$STACK_SPACE, %esp

	ret


L(one):
	shrl	%cl, %eax
	movl	SAVE_ESI, %esi
	movl	SAVE_EBX, %ebx

	imull	VAR_INVERSE, %eax

	movl	SAVE_EBP, %ebp
	movl	%eax, -4(%edi)

	movl	SAVE_EDI, %edi
	addl	$STACK_SPACE, %esp

	ret

EPILOGUE()
ASM_END()