1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
|
dnl Intel P6 mpn_sqr_basecase -- square an mpn number.
dnl Copyright 1999, 2000, 2002 Free Software Foundation, Inc.
dnl This file is part of the GNU MP Library.
dnl
dnl The GNU MP Library is free software; you can redistribute it and/or modify
dnl it under the terms of either:
dnl
dnl * the GNU Lesser General Public License as published by the Free
dnl Software Foundation; either version 3 of the License, or (at your
dnl option) any later version.
dnl
dnl or
dnl
dnl * the GNU General Public License as published by the Free Software
dnl Foundation; either version 2 of the License, or (at your option) any
dnl later version.
dnl
dnl or both in parallel, as here.
dnl
dnl The GNU MP Library is distributed in the hope that it will be useful, but
dnl WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
dnl or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
dnl for more details.
dnl
dnl You should have received copies of the GNU General Public License and the
dnl GNU Lesser General Public License along with the GNU MP Library. If not,
dnl see https://www.gnu.org/licenses/.
include(`../config.m4')
C P6: approx 4.0 cycles per cross product, or 7.75 cycles per triangular
C product (measured on the speed difference between 20 and 40 limbs,
C which is the Karatsuba recursing range).
dnl These are the same as in mpn/x86/k6/sqr_basecase.asm, see that file for
dnl a description. The only difference here is that UNROLL_COUNT can go up
dnl to 64 (not 63) making SQR_TOOM2_THRESHOLD_MAX 67.
deflit(SQR_TOOM2_THRESHOLD_MAX, 67)
ifdef(`SQR_TOOM2_THRESHOLD_OVERRIDE',
`define(`SQR_TOOM2_THRESHOLD',SQR_TOOM2_THRESHOLD_OVERRIDE)')
m4_config_gmp_mparam(`SQR_TOOM2_THRESHOLD')
deflit(UNROLL_COUNT, eval(SQR_TOOM2_THRESHOLD-3))
C void mpn_sqr_basecase (mp_ptr dst, mp_srcptr src, mp_size_t size);
C
C The algorithm is basically the same as mpn/generic/sqr_basecase.c, but a
C lot of function call overheads are avoided, especially when the given size
C is small.
C
C The code size might look a bit excessive, but not all of it is executed so
C it won't all get into the code cache. The 1x1, 2x2 and 3x3 special cases
C clearly apply only to those sizes; mid sizes like 10x10 only need part of
C the unrolled addmul; and big sizes like 40x40 that do use the full
C unrolling will least be making good use of it, because 40x40 will take
C something like 7000 cycles.
defframe(PARAM_SIZE,12)
defframe(PARAM_SRC, 8)
defframe(PARAM_DST, 4)
TEXT
ALIGN(32)
PROLOGUE(mpn_sqr_basecase)
deflit(`FRAME',0)
movl PARAM_SIZE, %edx
movl PARAM_SRC, %eax
cmpl $2, %edx
movl PARAM_DST, %ecx
je L(two_limbs)
movl (%eax), %eax
ja L(three_or_more)
C -----------------------------------------------------------------------------
C one limb only
C eax src limb
C ebx
C ecx dst
C edx
mull %eax
movl %eax, (%ecx)
movl %edx, 4(%ecx)
ret
C -----------------------------------------------------------------------------
L(two_limbs):
C eax src
C ebx
C ecx dst
C edx
defframe(SAVE_ESI, -4)
defframe(SAVE_EBX, -8)
defframe(SAVE_EDI, -12)
defframe(SAVE_EBP, -16)
deflit(`STACK_SPACE',16)
subl $STACK_SPACE, %esp
deflit(`FRAME',STACK_SPACE)
movl %esi, SAVE_ESI
movl %eax, %esi
movl (%eax), %eax
mull %eax C src[0]^2
movl %eax, (%ecx) C dst[0]
movl 4(%esi), %eax
movl %ebx, SAVE_EBX
movl %edx, %ebx C dst[1]
mull %eax C src[1]^2
movl %edi, SAVE_EDI
movl %eax, %edi C dst[2]
movl (%esi), %eax
movl %ebp, SAVE_EBP
movl %edx, %ebp C dst[3]
mull 4(%esi) C src[0]*src[1]
addl %eax, %ebx
movl SAVE_ESI, %esi
adcl %edx, %edi
adcl $0, %ebp
addl %ebx, %eax
movl SAVE_EBX, %ebx
adcl %edi, %edx
movl SAVE_EDI, %edi
adcl $0, %ebp
movl %eax, 4(%ecx)
movl %ebp, 12(%ecx)
movl SAVE_EBP, %ebp
movl %edx, 8(%ecx)
addl $FRAME, %esp
ret
C -----------------------------------------------------------------------------
L(three_or_more):
C eax src low limb
C ebx
C ecx dst
C edx size
deflit(`FRAME',0)
pushl %esi defframe_pushl(`SAVE_ESI')
cmpl $4, %edx
movl PARAM_SRC, %esi
jae L(four_or_more)
C -----------------------------------------------------------------------------
C three limbs
C eax src low limb
C ebx
C ecx dst
C edx
C esi src
C edi
C ebp
pushl %ebp defframe_pushl(`SAVE_EBP')
pushl %edi defframe_pushl(`SAVE_EDI')
mull %eax C src[0] ^ 2
movl %eax, (%ecx)
movl %edx, 4(%ecx)
movl 4(%esi), %eax
xorl %ebp, %ebp
mull %eax C src[1] ^ 2
movl %eax, 8(%ecx)
movl %edx, 12(%ecx)
movl 8(%esi), %eax
pushl %ebx defframe_pushl(`SAVE_EBX')
mull %eax C src[2] ^ 2
movl %eax, 16(%ecx)
movl %edx, 20(%ecx)
movl (%esi), %eax
mull 4(%esi) C src[0] * src[1]
movl %eax, %ebx
movl %edx, %edi
movl (%esi), %eax
mull 8(%esi) C src[0] * src[2]
addl %eax, %edi
movl %edx, %ebp
adcl $0, %ebp
movl 4(%esi), %eax
mull 8(%esi) C src[1] * src[2]
xorl %esi, %esi
addl %eax, %ebp
C eax
C ebx dst[1]
C ecx dst
C edx dst[4]
C esi zero, will be dst[5]
C edi dst[2]
C ebp dst[3]
adcl $0, %edx
addl %ebx, %ebx
adcl %edi, %edi
adcl %ebp, %ebp
adcl %edx, %edx
movl 4(%ecx), %eax
adcl $0, %esi
addl %ebx, %eax
movl %eax, 4(%ecx)
movl 8(%ecx), %eax
adcl %edi, %eax
movl 12(%ecx), %ebx
adcl %ebp, %ebx
movl 16(%ecx), %edi
movl %eax, 8(%ecx)
movl SAVE_EBP, %ebp
movl %ebx, 12(%ecx)
movl SAVE_EBX, %ebx
adcl %edx, %edi
movl 20(%ecx), %eax
movl %edi, 16(%ecx)
movl SAVE_EDI, %edi
adcl %esi, %eax C no carry out of this
movl SAVE_ESI, %esi
movl %eax, 20(%ecx)
addl $FRAME, %esp
ret
C -----------------------------------------------------------------------------
defframe(VAR_COUNTER,-20)
defframe(VAR_JMP, -24)
deflit(`STACK_SPACE',24)
L(four_or_more):
C eax src low limb
C ebx
C ecx
C edx size
C esi src
C edi
C ebp
deflit(`FRAME',4) dnl %esi already pushed
C First multiply src[0]*src[1..size-1] and store at dst[1..size].
subl $STACK_SPACE-FRAME, %esp
deflit(`FRAME',STACK_SPACE)
movl $1, %ecx
movl %edi, SAVE_EDI
movl PARAM_DST, %edi
movl %ebx, SAVE_EBX
subl %edx, %ecx C -(size-1)
movl %ebp, SAVE_EBP
movl $0, %ebx C initial carry
leal (%esi,%edx,4), %esi C &src[size]
movl %eax, %ebp C multiplier
leal -4(%edi,%edx,4), %edi C &dst[size-1]
C This loop runs at just over 6 c/l.
L(mul_1):
C eax scratch
C ebx carry
C ecx counter, limbs, negative, -(size-1) to -1
C edx scratch
C esi &src[size]
C edi &dst[size-1]
C ebp multiplier
movl %ebp, %eax
mull (%esi,%ecx,4)
addl %ebx, %eax
movl $0, %ebx
adcl %edx, %ebx
movl %eax, 4(%edi,%ecx,4)
incl %ecx
jnz L(mul_1)
movl %ebx, 4(%edi)
C Addmul src[n]*src[n+1..size-1] at dst[2*n-1...], for each n=1..size-2.
C
C The last two addmuls, which are the bottom right corner of the product
C triangle, are left to the end. These are src[size-3]*src[size-2,size-1]
C and src[size-2]*src[size-1]. If size is 4 then it's only these corner
C cases that need to be done.
C
C The unrolled code is the same as mpn_addmul_1(), see that routine for some
C comments.
C
C VAR_COUNTER is the outer loop, running from -(size-4) to -1, inclusive.
C
C VAR_JMP is the computed jump into the unrolled code, stepped by one code
C chunk each outer loop.
dnl This is also hard-coded in the address calculation below.
deflit(CODE_BYTES_PER_LIMB, 15)
dnl With &src[size] and &dst[size-1] pointers, the displacements in the
dnl unrolled code fit in a byte for UNROLL_COUNT values up to 32, but above
dnl that an offset must be added to them.
deflit(OFFSET,
ifelse(eval(UNROLL_COUNT>32),1,
eval((UNROLL_COUNT-32)*4),
0))
C eax
C ebx carry
C ecx
C edx
C esi &src[size]
C edi &dst[size-1]
C ebp
movl PARAM_SIZE, %ecx
subl $4, %ecx
jz L(corner)
movl %ecx, %edx
negl %ecx
shll $4, %ecx
ifelse(OFFSET,0,,`subl $OFFSET, %esi')
ifdef(`PIC',`
call L(pic_calc)
L(here):
',`
leal L(unroll_inner_end)-eval(2*CODE_BYTES_PER_LIMB)(%ecx,%edx), %ecx
')
negl %edx
ifelse(OFFSET,0,,`subl $OFFSET, %edi')
C The calculated jump mustn't be before the start of the available
C code. This is the limit that UNROLL_COUNT puts on the src operand
C size, but checked here using the jump address directly.
ASSERT(ae,
`movl_text_address( L(unroll_inner_start), %eax)
cmpl %eax, %ecx')
C -----------------------------------------------------------------------------
ALIGN(16)
L(unroll_outer_top):
C eax
C ebx high limb to store
C ecx VAR_JMP
C edx VAR_COUNTER, limbs, negative
C esi &src[size], constant
C edi dst ptr, second highest limb of last addmul
C ebp
movl -12+OFFSET(%esi,%edx,4), %ebp C multiplier
movl %edx, VAR_COUNTER
movl -8+OFFSET(%esi,%edx,4), %eax C first limb of multiplicand
mull %ebp
define(cmovX,`ifelse(eval(UNROLL_COUNT%2),1,`cmovz($@)',`cmovnz($@)')')
testb $1, %cl
movl %edx, %ebx C high carry
leal 4(%edi), %edi
movl %ecx, %edx C jump
movl %eax, %ecx C low carry
leal CODE_BYTES_PER_LIMB(%edx), %edx
cmovX( %ebx, %ecx) C high carry reverse
cmovX( %eax, %ebx) C low carry reverse
movl %edx, VAR_JMP
jmp *%edx
C Must be on an even address here so the low bit of the jump address
C will indicate which way around ecx/ebx should start.
ALIGN(2)
L(unroll_inner_start):
C eax scratch
C ebx carry high
C ecx carry low
C edx scratch
C esi src pointer
C edi dst pointer
C ebp multiplier
C
C 15 code bytes each limb
C ecx/ebx reversed on each chunk
forloop(`i', UNROLL_COUNT, 1, `
deflit(`disp_src', eval(-i*4 + OFFSET))
deflit(`disp_dst', eval(disp_src))
m4_assert(`disp_src>=-128 && disp_src<128')
m4_assert(`disp_dst>=-128 && disp_dst<128')
ifelse(eval(i%2),0,`
Zdisp( movl, disp_src,(%esi), %eax)
mull %ebp
Zdisp( addl, %ebx, disp_dst,(%edi))
adcl %eax, %ecx
movl %edx, %ebx
adcl $0, %ebx
',`
dnl this one comes out last
Zdisp( movl, disp_src,(%esi), %eax)
mull %ebp
Zdisp( addl, %ecx, disp_dst,(%edi))
adcl %eax, %ebx
movl %edx, %ecx
adcl $0, %ecx
')
')
L(unroll_inner_end):
addl %ebx, m4_empty_if_zero(OFFSET)(%edi)
movl VAR_COUNTER, %edx
adcl $0, %ecx
movl %ecx, m4_empty_if_zero(OFFSET+4)(%edi)
movl VAR_JMP, %ecx
incl %edx
jnz L(unroll_outer_top)
ifelse(OFFSET,0,,`
addl $OFFSET, %esi
addl $OFFSET, %edi
')
C -----------------------------------------------------------------------------
ALIGN(16)
L(corner):
C eax
C ebx
C ecx
C edx
C esi &src[size]
C edi &dst[2*size-5]
C ebp
movl -12(%esi), %eax
mull -8(%esi)
addl %eax, (%edi)
movl -12(%esi), %eax
movl $0, %ebx
adcl %edx, %ebx
mull -4(%esi)
addl %eax, %ebx
movl -8(%esi), %eax
adcl $0, %edx
addl %ebx, 4(%edi)
movl $0, %ebx
adcl %edx, %ebx
mull -4(%esi)
movl PARAM_SIZE, %ecx
addl %ebx, %eax
adcl $0, %edx
movl %eax, 8(%edi)
movl %edx, 12(%edi)
movl PARAM_DST, %edi
C Left shift of dst[1..2*size-2], the bit shifted out becomes dst[2*size-1].
subl $1, %ecx C size-1
xorl %eax, %eax C ready for final adcl, and clear carry
movl %ecx, %edx
movl PARAM_SRC, %esi
L(lshift):
C eax
C ebx
C ecx counter, size-1 to 1
C edx size-1 (for later use)
C esi src (for later use)
C edi dst, incrementing
C ebp
rcll 4(%edi)
rcll 8(%edi)
leal 8(%edi), %edi
decl %ecx
jnz L(lshift)
adcl %eax, %eax
movl %eax, 4(%edi) C dst most significant limb
movl (%esi), %eax C src[0]
leal 4(%esi,%edx,4), %esi C &src[size]
subl %edx, %ecx C -(size-1)
C Now add in the squares on the diagonal, src[0]^2, src[1]^2, ...,
C src[size-1]^2. dst[0] hasn't yet been set at all yet, and just gets the
C low limb of src[0]^2.
mull %eax
movl %eax, (%edi,%ecx,8) C dst[0]
L(diag):
C eax scratch
C ebx scratch
C ecx counter, negative
C edx carry
C esi &src[size]
C edi dst[2*size-2]
C ebp
movl (%esi,%ecx,4), %eax
movl %edx, %ebx
mull %eax
addl %ebx, 4(%edi,%ecx,8)
adcl %eax, 8(%edi,%ecx,8)
adcl $0, %edx
incl %ecx
jnz L(diag)
movl SAVE_ESI, %esi
movl SAVE_EBX, %ebx
addl %edx, 4(%edi) C dst most significant limb
movl SAVE_EDI, %edi
movl SAVE_EBP, %ebp
addl $FRAME, %esp
ret
C -----------------------------------------------------------------------------
ifdef(`PIC',`
L(pic_calc):
addl (%esp), %ecx
addl $L(unroll_inner_end)-L(here)-eval(2*CODE_BYTES_PER_LIMB), %ecx
addl %edx, %ecx
ret_internal
')
EPILOGUE()
|