1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
|
dnl AMD64 mpn_copyd optimised for CPUs with fast SSE copying and SSSE3.
dnl Copyright 2012, 2015 Free Software Foundation, Inc.
dnl Contributed to the GNU project by Torbjorn Granlund.
dnl This file is part of the GNU MP Library.
dnl
dnl The GNU MP Library is free software; you can redistribute it and/or modify
dnl it under the terms of either:
dnl
dnl * the GNU Lesser General Public License as published by the Free
dnl Software Foundation; either version 3 of the License, or (at your
dnl option) any later version.
dnl
dnl or
dnl
dnl * the GNU General Public License as published by the Free Software
dnl Foundation; either version 2 of the License, or (at your option) any
dnl later version.
dnl
dnl or both in parallel, as here.
dnl
dnl The GNU MP Library is distributed in the hope that it will be useful, but
dnl WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
dnl or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
dnl for more details.
dnl
dnl You should have received copies of the GNU General Public License and the
dnl GNU Lesser General Public License along with the GNU MP Library. If not,
dnl see https://www.gnu.org/licenses/.
include(`../config.m4')
C cycles/limb cycles/limb cycles/limb good
C aligned unaligned best seen for cpu?
C AMD K8,K9 2.0 illop 1.0/1.0 N
C AMD K10 0.85 illop Y/N
C AMD bull 0.70 0.70 Y
C AMD pile 0.68 0.68 Y
C AMD steam
C AMD excavator
C AMD bobcat 1.97 8.24 1.5/1.5 N
C AMD jaguar 0.77 0.89 0.65/opt N/Y
C Intel P4 2.26 illop Y/N
C Intel core 0.52 0.80 opt/opt Y
C Intel NHM 0.52 0.64 opt/opt Y
C Intel SBR 0.51 0.51 opt/opt Y
C Intel IBR 0.50 0.50 opt/opt Y
C Intel HWL 0.50 0.51 opt/opt Y
C Intel BWL 0.55 0.55 opt/opt Y
C Intel atom 1.16 1.66 opt/opt Y
C Intel SLM 1.02 1.04 opt/opt Y
C VIA nano 1.08 1.06 opt/opt Y
C We use only 16-byte operations, except for unaligned top-most and bottom-most
C limbs. We use the SSSE3 palignr instruction when rp - up = 8 (mod 16).
C
C For operands of < COPYD_SSE_THRESHOLD limbs, we use a plain 64-bit loop,
C taken from the x86_64 default code.
C INPUT PARAMETERS
define(`rp', `%rdi')
define(`up', `%rsi')
define(`n', `%rdx')
C There are three instructions for loading an aligned 128-bit quantity. We use
C movaps, since it has the shortest coding.
define(`movdqa', ``movaps'')
ifdef(`COPYD_SSE_THRESHOLD',`',`define(`COPYD_SSE_THRESHOLD', 7)')
ASM_START()
TEXT
ALIGN(64)
PROLOGUE(mpn_copyd)
FUNC_ENTRY(3)
lea -8(up,n,8), up
lea -8(rp,n,8), rp
cmp $COPYD_SSE_THRESHOLD, n
jbe L(bc)
test $8, R8(rp) C is rp 16-byte aligned?
jnz L(rp_aligned) C jump if rp aligned
mov (up), %rax C copy one limb
mov %rax, (rp)
lea -8(up), up
lea -8(rp), rp
dec n
L(rp_aligned):
test $8, R8(up)
jz L(uent)
ifelse(eval(COPYD_SSE_THRESHOLD >= 8),1,
` sub $8, n',
` jmp L(am)')
ALIGN(16)
L(atop):movdqa -8(up), %xmm0
movdqa -24(up), %xmm1
movdqa -40(up), %xmm2
movdqa -56(up), %xmm3
lea -64(up), up
movdqa %xmm0, -8(rp)
movdqa %xmm1, -24(rp)
movdqa %xmm2, -40(rp)
movdqa %xmm3, -56(rp)
lea -64(rp), rp
L(am): sub $8, n
jnc L(atop)
test $4, R8(n)
jz 1f
movdqa -8(up), %xmm0
movdqa -24(up), %xmm1
lea -32(up), up
movdqa %xmm0, -8(rp)
movdqa %xmm1, -24(rp)
lea -32(rp), rp
1: test $2, R8(n)
jz 1f
movdqa -8(up), %xmm0
lea -16(up), up
movdqa %xmm0, -8(rp)
lea -16(rp), rp
1: test $1, R8(n)
jz 1f
mov (up), %r8
mov %r8, (rp)
1: FUNC_EXIT()
ret
L(uent):sub $16, n
movdqa (up), %xmm0
jc L(uend)
ALIGN(16)
L(utop):sub $16, n
movdqa -16(up), %xmm1
palignr($8, %xmm1, %xmm0)
movdqa %xmm0, -8(rp)
movdqa -32(up), %xmm2
palignr($8, %xmm2, %xmm1)
movdqa %xmm1, -24(rp)
movdqa -48(up), %xmm3
palignr($8, %xmm3, %xmm2)
movdqa %xmm2, -40(rp)
movdqa -64(up), %xmm0
palignr($8, %xmm0, %xmm3)
movdqa %xmm3, -56(rp)
movdqa -80(up), %xmm1
palignr($8, %xmm1, %xmm0)
movdqa %xmm0, -72(rp)
movdqa -96(up), %xmm2
palignr($8, %xmm2, %xmm1)
movdqa %xmm1, -88(rp)
movdqa -112(up), %xmm3
palignr($8, %xmm3, %xmm2)
movdqa %xmm2, -104(rp)
movdqa -128(up), %xmm0
palignr($8, %xmm0, %xmm3)
movdqa %xmm3, -120(rp)
lea -128(up), up
lea -128(rp), rp
jnc L(utop)
L(uend):test $8, R8(n)
jz 1f
movdqa -16(up), %xmm1
palignr($8, %xmm1, %xmm0)
movdqa %xmm0, -8(rp)
movdqa -32(up), %xmm0
palignr($8, %xmm0, %xmm1)
movdqa %xmm1, -24(rp)
movdqa -48(up), %xmm1
palignr($8, %xmm1, %xmm0)
movdqa %xmm0, -40(rp)
movdqa -64(up), %xmm0
palignr($8, %xmm0, %xmm1)
movdqa %xmm1, -56(rp)
lea -64(up), up
lea -64(rp), rp
1: test $4, R8(n)
jz 1f
movdqa -16(up), %xmm1
palignr($8, %xmm1, %xmm0)
movdqa %xmm0, -8(rp)
movdqa -32(up), %xmm0
palignr($8, %xmm0, %xmm1)
movdqa %xmm1, -24(rp)
lea -32(up), up
lea -32(rp), rp
1: test $2, R8(n)
jz 1f
movdqa -16(up), %xmm1
palignr($8, %xmm1, %xmm0)
movdqa %xmm0, -8(rp)
lea -16(up), up
lea -16(rp), rp
1: test $1, R8(n)
jz 1f
mov (up), %r8
mov %r8, (rp)
1: FUNC_EXIT()
ret
C Basecase code. Needed for good small operands speed, not for
C correctness as the above code is currently written.
L(bc): sub $4, R32(n)
jc L(end)
ALIGN(16)
L(top): mov (up), %r8
mov -8(up), %r9
lea -32(rp), rp
mov -16(up), %r10
mov -24(up), %r11
lea -32(up), up
mov %r8, 32(rp)
mov %r9, 24(rp)
ifelse(eval(COPYD_SSE_THRESHOLD >= 8),1,
` sub $4, R32(n)')
mov %r10, 16(rp)
mov %r11, 8(rp)
ifelse(eval(COPYD_SSE_THRESHOLD >= 8),1,
` jnc L(top)')
L(end): test $1, R8(n)
jz 1f
mov (up), %r8
mov %r8, (rp)
lea -8(rp), rp
lea -8(up), up
1: test $2, R8(n)
jz 1f
mov (up), %r8
mov -8(up), %r9
mov %r8, (rp)
mov %r9, -8(rp)
1: FUNC_EXIT()
ret
EPILOGUE()
|