1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
|
dnl AMD64 mpn_mul_basecase.
dnl Contributed to the GNU project by Torbjorn Granlund and David Harvey.
dnl Copyright 2008, 2012 Free Software Foundation, Inc.
dnl This file is part of the GNU MP Library.
dnl
dnl The GNU MP Library is free software; you can redistribute it and/or modify
dnl it under the terms of either:
dnl
dnl * the GNU Lesser General Public License as published by the Free
dnl Software Foundation; either version 3 of the License, or (at your
dnl option) any later version.
dnl
dnl or
dnl
dnl * the GNU General Public License as published by the Free Software
dnl Foundation; either version 2 of the License, or (at your option) any
dnl later version.
dnl
dnl or both in parallel, as here.
dnl
dnl The GNU MP Library is distributed in the hope that it will be useful, but
dnl WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
dnl or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
dnl for more details.
dnl
dnl You should have received copies of the GNU General Public License and the
dnl GNU Lesser General Public License along with the GNU MP Library. If not,
dnl see https://www.gnu.org/licenses/.
include(`../config.m4')
C cycles/limb
C AMD K8,K9 2.375
C AMD K10 2.375
C Intel P4 15-16
C Intel core2 4.45
C Intel corei 4.35
C Intel atom ?
C VIA nano 4.5
C The inner loops of this code are the result of running a code generation and
C optimization tool suite written by David Harvey and Torbjorn Granlund.
C TODO
C * Use fewer registers. (how??? I can't see it -- david)
C * Avoid some "mov $0,r" and instead use "xor r,r".
C * Can the top of each L(addmul_outer_n) prologue be folded into the
C mul_1/mul_2 prologues, saving a LEA (%rip)? It would slow down the
C case where vn = 1 or 2; is it worth it?
C INPUT PARAMETERS
define(`rp', `%rdi')
define(`up', `%rsi')
define(`un_param',`%rdx')
define(`vp', `%rcx')
define(`vn', `%r8')
define(`v0', `%r12')
define(`v1', `%r9')
define(`w0', `%rbx')
define(`w1', `%r15')
define(`w2', `%rbp')
define(`w3', `%r10')
define(`n', `%r11')
define(`outer_addr', `%r14')
define(`un', `%r13')
ABI_SUPPORT(DOS64)
ABI_SUPPORT(STD64)
ASM_START()
TEXT
ALIGN(16)
PROLOGUE(mpn_mul_basecase)
FUNC_ENTRY(4)
IFDOS(` mov 56(%rsp), %r8d ')
push %rbx
push %rbp
push %r12
push %r13
push %r14
push %r15
xor R32(un), R32(un)
mov (up), %rax
mov (vp), v0
sub un_param, un C rdx used by mul
mov un, n
mov R32(un_param), R32(w0)
lea (rp,un_param,8), rp
lea (up,un_param,8), up
mul v0
test $1, R8(vn)
jz L(mul_2)
C ===========================================================
C mul_1 for vp[0] if vn is odd
L(mul_1):
and $3, R32(w0)
jz L(mul_1_prologue_0)
cmp $2, R32(w0)
jc L(mul_1_prologue_1)
jz L(mul_1_prologue_2)
L(mul_1_prologue_3):
add $-1, n
lea L(addmul_outer_3)(%rip), outer_addr
mov %rax, w3
mov %rdx, w0
jmp L(mul_1_entry_3)
L(mul_1_prologue_0):
mov %rax, w2
mov %rdx, w3 C note: already w0 == 0
lea L(addmul_outer_0)(%rip), outer_addr
jmp L(mul_1_entry_0)
L(mul_1_prologue_1):
cmp $-1, un
jne 2f
mov %rax, -8(rp)
mov %rdx, (rp)
jmp L(ret)
2: add $1, n
lea L(addmul_outer_1)(%rip), outer_addr
mov %rax, w1
mov %rdx, w2
xor R32(w3), R32(w3)
mov (up,n,8), %rax
jmp L(mul_1_entry_1)
L(mul_1_prologue_2):
add $-2, n
lea L(addmul_outer_2)(%rip), outer_addr
mov %rax, w0
mov %rdx, w1
mov 24(up,n,8), %rax
xor R32(w2), R32(w2)
xor R32(w3), R32(w3)
jmp L(mul_1_entry_2)
C this loop is 10 c/loop = 2.5 c/l on K8, for all up/rp alignments
ALIGN(16)
L(mul_1_top):
mov w0, -16(rp,n,8)
add %rax, w1
mov (up,n,8), %rax
adc %rdx, w2
L(mul_1_entry_1):
xor R32(w0), R32(w0)
mul v0
mov w1, -8(rp,n,8)
add %rax, w2
adc %rdx, w3
L(mul_1_entry_0):
mov 8(up,n,8), %rax
mul v0
mov w2, (rp,n,8)
add %rax, w3
adc %rdx, w0
L(mul_1_entry_3):
mov 16(up,n,8), %rax
mul v0
mov w3, 8(rp,n,8)
xor R32(w2), R32(w2) C zero
mov w2, w3 C zero
add %rax, w0
mov 24(up,n,8), %rax
mov w2, w1 C zero
adc %rdx, w1
L(mul_1_entry_2):
mul v0
add $4, n
js L(mul_1_top)
mov w0, -16(rp)
add %rax, w1
mov w1, -8(rp)
adc %rdx, w2
mov w2, (rp)
add $-1, vn C vn -= 1
jz L(ret)
mov 8(vp), v0
mov 16(vp), v1
lea 8(vp), vp C vp += 1
lea 8(rp), rp C rp += 1
jmp *outer_addr
C ===========================================================
C mul_2 for vp[0], vp[1] if vn is even
ALIGN(16)
L(mul_2):
mov 8(vp), v1
and $3, R32(w0)
jz L(mul_2_prologue_0)
cmp $2, R32(w0)
jz L(mul_2_prologue_2)
jc L(mul_2_prologue_1)
L(mul_2_prologue_3):
lea L(addmul_outer_3)(%rip), outer_addr
add $2, n
mov %rax, -16(rp,n,8)
mov %rdx, w2
xor R32(w3), R32(w3)
xor R32(w0), R32(w0)
mov -16(up,n,8), %rax
jmp L(mul_2_entry_3)
ALIGN(16)
L(mul_2_prologue_0):
add $3, n
mov %rax, w0
mov %rdx, w1
xor R32(w2), R32(w2)
mov -24(up,n,8), %rax
lea L(addmul_outer_0)(%rip), outer_addr
jmp L(mul_2_entry_0)
ALIGN(16)
L(mul_2_prologue_1):
mov %rax, w3
mov %rdx, w0
xor R32(w1), R32(w1)
lea L(addmul_outer_1)(%rip), outer_addr
jmp L(mul_2_entry_1)
ALIGN(16)
L(mul_2_prologue_2):
add $1, n
lea L(addmul_outer_2)(%rip), outer_addr
mov $0, R32(w0)
mov $0, R32(w1)
mov %rax, w2
mov -8(up,n,8), %rax
mov %rdx, w3
jmp L(mul_2_entry_2)
C this loop is 18 c/loop = 2.25 c/l on K8, for all up/rp alignments
ALIGN(16)
L(mul_2_top):
mov -32(up,n,8), %rax
mul v1
add %rax, w0
adc %rdx, w1
mov -24(up,n,8), %rax
xor R32(w2), R32(w2)
mul v0
add %rax, w0
mov -24(up,n,8), %rax
adc %rdx, w1
adc $0, R32(w2)
L(mul_2_entry_0):
mul v1
add %rax, w1
mov w0, -24(rp,n,8)
adc %rdx, w2
mov -16(up,n,8), %rax
mul v0
mov $0, R32(w3)
add %rax, w1
adc %rdx, w2
mov -16(up,n,8), %rax
adc $0, R32(w3)
mov $0, R32(w0)
mov w1, -16(rp,n,8)
L(mul_2_entry_3):
mul v1
add %rax, w2
mov -8(up,n,8), %rax
adc %rdx, w3
mov $0, R32(w1)
mul v0
add %rax, w2
mov -8(up,n,8), %rax
adc %rdx, w3
adc R32(w1), R32(w0) C adc $0, w0
L(mul_2_entry_2):
mul v1
add %rax, w3
mov w2, -8(rp,n,8)
adc %rdx, w0
mov (up,n,8), %rax
mul v0
add %rax, w3
adc %rdx, w0
adc $0, R32(w1)
L(mul_2_entry_1):
add $4, n
mov w3, -32(rp,n,8)
js L(mul_2_top)
mov -32(up,n,8), %rax C FIXME: n is constant
mul v1
add %rax, w0
mov w0, (rp)
adc %rdx, w1
mov w1, 8(rp)
add $-2, vn C vn -= 2
jz L(ret)
mov 16(vp), v0
mov 24(vp), v1
lea 16(vp), vp C vp += 2
lea 16(rp), rp C rp += 2
jmp *outer_addr
C ===========================================================
C addmul_2 for remaining vp's
C in the following prologues, we reuse un to store the
C adjusted value of n that is reloaded on each iteration
L(addmul_outer_0):
add $3, un
lea 0(%rip), outer_addr
mov un, n
mov -24(up,un,8), %rax
mul v0
mov %rax, w0
mov -24(up,un,8), %rax
mov %rdx, w1
xor R32(w2), R32(w2)
jmp L(addmul_entry_0)
L(addmul_outer_1):
mov un, n
mov (up,un,8), %rax
mul v0
mov %rax, w3
mov (up,un,8), %rax
mov %rdx, w0
xor R32(w1), R32(w1)
jmp L(addmul_entry_1)
L(addmul_outer_2):
add $1, un
lea 0(%rip), outer_addr
mov un, n
mov -8(up,un,8), %rax
mul v0
xor R32(w0), R32(w0)
mov %rax, w2
xor R32(w1), R32(w1)
mov %rdx, w3
mov -8(up,un,8), %rax
jmp L(addmul_entry_2)
L(addmul_outer_3):
add $2, un
lea 0(%rip), outer_addr
mov un, n
mov -16(up,un,8), %rax
xor R32(w3), R32(w3)
mul v0
mov %rax, w1
mov -16(up,un,8), %rax
mov %rdx, w2
jmp L(addmul_entry_3)
C this loop is 19 c/loop = 2.375 c/l on K8, for all up/rp alignments
ALIGN(16)
L(addmul_top):
add w3, -32(rp,n,8)
adc %rax, w0
mov -24(up,n,8), %rax
adc %rdx, w1
xor R32(w2), R32(w2)
mul v0
add %rax, w0
mov -24(up,n,8), %rax
adc %rdx, w1
adc R32(w2), R32(w2) C adc $0, w2
L(addmul_entry_0):
mul v1
xor R32(w3), R32(w3)
add w0, -24(rp,n,8)
adc %rax, w1
mov -16(up,n,8), %rax
adc %rdx, w2
mul v0
add %rax, w1
mov -16(up,n,8), %rax
adc %rdx, w2
adc $0, R32(w3)
L(addmul_entry_3):
mul v1
add w1, -16(rp,n,8)
adc %rax, w2
mov -8(up,n,8), %rax
adc %rdx, w3
mul v0
xor R32(w0), R32(w0)
add %rax, w2
adc %rdx, w3
mov $0, R32(w1)
mov -8(up,n,8), %rax
adc R32(w1), R32(w0) C adc $0, w0
L(addmul_entry_2):
mul v1
add w2, -8(rp,n,8)
adc %rax, w3
adc %rdx, w0
mov (up,n,8), %rax
mul v0
add %rax, w3
mov (up,n,8), %rax
adc %rdx, w0
adc $0, R32(w1)
L(addmul_entry_1):
mul v1
add $4, n
js L(addmul_top)
add w3, -8(rp)
adc %rax, w0
mov w0, (rp)
adc %rdx, w1
mov w1, 8(rp)
add $-2, vn C vn -= 2
jz L(ret)
lea 16(rp), rp C rp += 2
lea 16(vp), vp C vp += 2
mov (vp), v0
mov 8(vp), v1
jmp *outer_addr
ALIGN(16)
L(ret): pop %r15
pop %r14
pop %r13
pop %r12
pop %rbp
pop %rbx
FUNC_EXIT()
ret
EPILOGUE()
|