aboutsummaryrefslogtreecommitdiff
path: root/vendor/gmp-6.3.0/mpn/x86_64/zen3/mul_1.asm
blob: 6f1e28668b315abc8375c01fb4b11de0c5aee4ff (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
dnl  AMD64 mpn_mul_1 optimised for Intel Broadwell.

dnl  Copyright 2015, 2017, 2020 Free Software Foundation, Inc.

dnl  This file is part of the GNU MP Library.
dnl
dnl  The GNU MP Library is free software; you can redistribute it and/or modify
dnl  it under the terms of either:
dnl
dnl    * the GNU Lesser General Public License as published by the Free
dnl      Software Foundation; either version 3 of the License, or (at your
dnl      option) any later version.
dnl
dnl  or
dnl
dnl    * the GNU General Public License as published by the Free Software
dnl      Foundation; either version 2 of the License, or (at your option) any
dnl      later version.
dnl
dnl  or both in parallel, as here.
dnl
dnl  The GNU MP Library is distributed in the hope that it will be useful, but
dnl  WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
dnl  or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
dnl  for more details.
dnl
dnl  You should have received copies of the GNU General Public License and the
dnl  GNU Lesser General Public License along with the GNU MP Library.  If not,
dnl  see https://www.gnu.org/licenses/.

include(`../config.m4')

C	     cycles/limb
C AMD K8,K9	n/a
C AMD K10	n/a
C AMD bd1	n/a
C AMD bd2	n/a
C AMD bd3	n/a
C AMD bd4	 ?
C AMD zn1	 ?
C AMD zn2	 1.6
C AMD zn3	 1.5
C AMD bt1	n/a
C AMD bt2	n/a
C Intel P4	n/a
C Intel PNR	n/a
C Intel NHM	n/a
C Intel WSM	n/a
C Intel SBR	n/a
C Intel IBR	n/a
C Intel HWL	n/a
C Intel BWL	 ?
C Intel SKL	 ?
C Intel atom	n/a
C Intel SLM	n/a
C Intel GLM	n/a
C VIA nano	n/a

C The loop of this code is the result of running a code generation and
C optimisation tool suite written by David Harvey and Torbjorn Granlund.

C TODO
C  * Put an initial mulx before switching, targeting some free registers.
C  * Tune feed-in code.

define(`rp',      `%rdi')   C rcx
define(`up',      `%rsi')   C rdx
define(`n_param', `%rdx')   C r8
define(`v0_param',`%rcx')   C r9
define(`ci',      `%r8')    C stack

define(`n',       `%rcx')

ABI_SUPPORT(DOS64)
ABI_SUPPORT(STD64)

dnl IFDOS(`	define(`up', ``%rsi'')	') dnl
dnl IFDOS(`	define(`rp', ``%rcx'')	') dnl
dnl IFDOS(`	define(`vl', ``%r9'')	') dnl
dnl IFDOS(`	define(`r9', ``rdi'')	') dnl
dnl IFDOS(`	define(`n',  ``%r8'')	') dnl
dnl IFDOS(`	define(`r8', ``r11'')	') dnl

ASM_START()
	TEXT
	ALIGN(32)
PROLOGUE(mpn_mul_1c)
	FUNC_ENTRY(4)
IFDOS(`	mov	56(%rsp), %r11	')
IFSTD(`	mov	%r8, %r11	')
	jmp	L(com)
EPILOGUE()

PROLOGUE(mpn_mul_1)
	FUNC_ENTRY(4)
	xor	R32(%r11), R32(%r11)
L(com):
	mov	v0_param, %r10
	mov	n_param, n
	mov	R32(n_param), R32(%rax)
	shr	$3, n
	and	$7, R32(%rax)		C clear OF, CF as side-effect
	mov	%r10, %rdx
	lea	L(tab)(%rip), %r10
ifdef(`PIC',
`	movslq	(%r10,%rax,4), %rax
	lea	(%rax, %r10), %r10
	jmp	*%r10
',`
	jmp	*(%r10,%rax,8)
')
	JUMPTABSECT
	ALIGN(8)
L(tab):	JMPENT(	L(f0), L(tab))
	JMPENT(	L(f1), L(tab))
	JMPENT(	L(f2), L(tab))
	JMPENT(	L(f3), L(tab))
	JMPENT(	L(f4), L(tab))
	JMPENT(	L(f5), L(tab))
	JMPENT(	L(f6), L(tab))
	JMPENT(	L(f7), L(tab))
	TEXT

L(f0):	mulx(	(up), %r10, %r8)
	lea	-8(up), up
	lea	-8(rp), rp
	lea	-1(n), n
	adc	%r11, %r10
	jmp	L(b0)

L(f3):	mulx(	(up), %r9, %rax)
	lea	16(up), up
	lea	-48(rp), rp
	adc	%r11, %r9
	jmp	L(b3)

L(f4):	mulx(	(up), %r10, %r8)
	lea	24(up), up
	lea	-40(rp), rp
	adc	%r11, %r10
	jmp	L(b4)

L(f5):	mulx(	(up), %r9, %rax)
	lea	32(up), up
	lea	-32(rp), rp
	adc	%r11, %r9
	jmp	L(b5)

L(f6):	mulx(	(up), %r10, %r8)
	lea	40(up), up
	lea	-24(rp), rp
	adc	%r11, %r10
	jmp	L(b6)

L(f1):	mulx(	(up), %r9, %rax)
	adc	%r11, %r9	
	jrcxz	L(end)
	jmp	L(b1)

L(end):	mov	%r9, (rp)
	adc	%rcx, %rax		C relies on rcx = 0
	FUNC_EXIT()
	ret

L(f2):	mulx(	(up), %r10, %r8)
	lea	8(up), up
	lea	8(rp), rp
	mulx(	(up), %r9, %rax)
	adc	%r11, %r10

	ALIGN(32)
L(top):	adcx(	%r8, %r9)
	mov	%r10, -8(rp)
	jrcxz	L(end)
L(b1):	mulx(	8,(up), %r10, %r8)
	lea	-1(n), n
	mov	%r9, (rp)
	adcx(	%rax, %r10)
L(b0):	mulx(	16,(up), %r9, %rax)
	adcx(	%r8, %r9)
	mov	%r10, 8(rp)
L(b7):	mulx(	24,(up), %r10, %r8)
	lea	64(up), up
	adcx(	%rax, %r10)
	mov	%r9, 16(rp)
L(b6):	mulx(	-32,(up), %r9, %rax)
	adcx(	%r8, %r9)
	mov	%r10, 24(rp)
L(b5):	mulx(	-24,(up), %r10, %r8)
	adcx(	%rax, %r10)
	mov	%r9, 32(rp)
L(b4):	mulx(	-16,(up), %r9, %rax)
	adcx(	%r8, %r9)
	mov	%r10, 40(rp)
L(b3):	mulx(	-8,(up), %r10, %r8)
	mov	%r9, 48(rp)
	lea	64(rp), rp
	adcx(	%rax, %r10)
	mulx(	(up), %r9, %rax)
	jmp	L(top)

L(f7):	mulx(	(up), %r9, %rax)
	lea	-16(up), up
	lea	-16(rp), rp
	adc	%r11, %r9
	jmp	L(b7)
EPILOGUE()
ASM_END()