aboutsummaryrefslogtreecommitdiff
path: root/c/sha1/sha1-x86.c
blob: fb0f3ef91314a0ec2afc190e9b4709e2592691ed (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
#include <endian.h>
#include <errno.h>
#include <immintrin.h>
#include <string.h>

#include "sha1.h"

#define lengthof(xs) (sizeof(xs) / sizeof(*(xs)))
#define MIN(x, y)    ((x) < (y) ? (x) : (y))

static void sha1hashblk(sha1_t *, const uint8_t *);

void
sha1init(sha1_t *s)
{
	static const uint32_t H[] = {
		0x67452301,
		0xEFCDAB89,
		0x98BADCFE,
		0x10325476,
		0xC3D2E1F0,
	};
	memcpy(s->dgst, H, sizeof(H));
	s->msgsz = s->bufsz = 0;
}

int
sha1hash(sha1_t *s, const uint8_t *msg, size_t msgsz)
{
	if (s->msgsz + (msgsz * 8) < s->msgsz)
		return EOVERFLOW;

	s->msgsz += msgsz * 8;

	while (msgsz != 0) {
		size_t free_space = SHA1BLKSZ - s->bufsz;
		size_t ncpy = MIN(msgsz, free_space);
		memcpy(s->buf + s->bufsz, msg, ncpy);
		s->bufsz += ncpy;
		msg += ncpy;
		msgsz -= ncpy;

		if (s->bufsz == SHA1BLKSZ) {
			sha1hashblk(s, s->buf);
			s->bufsz = 0;
		}
	}

	return 0;
}

void
sha1end(sha1_t *s, uint8_t dgst[SHA1DGSTSZ])
{
	s->buf[s->bufsz++] = 0x80;

	if (s->bufsz > SHA1BLKSZ - sizeof(uint64_t)) {
		while (s->bufsz < SHA1BLKSZ)
			s->buf[s->bufsz++] = 0;
		sha1hashblk(s, s->buf);
		s->bufsz = 0;
	}

	while (s->bufsz < 56)
		s->buf[s->bufsz++] = 0;
	((uint64_t *)s->buf)[SHA1BLKSZ/8 - 1] = htobe64(s->msgsz);

	sha1hashblk(s, s->buf);

	for (int i = 0; i < lengthof(s->dgst); i++)
		((uint32_t *)dgst)[i] = htobe32(s->dgst[i]);
}

#define R(mi, mj, mk, ml, ei, ej, f)                                           \
	do {                                                                       \
		ei = _mm_sha1nexte_epu32(ei, mi);                                      \
		ej = abcd;                                                             \
		mj = _mm_sha1msg2_epu32(mj, mi);                                       \
		abcd = _mm_sha1rnds4_epu32(abcd, ei, f);                               \
		ml = _mm_sha1msg1_epu32(ml, mi);                                       \
		mk = _mm_xor_si128(mk, mi);                                            \
	} while (0)

static void
sha1hashblk(sha1_t *s, const uint8_t *blk)
{
    __m128i abcd, e0, e1;
	__m128i abcd_save, e_save;
    __m128i msg0, msg1, msg2, msg3;

	/* Masks for swapping endianness.  We make BSWAPDMSK a macro to
	   please the compiler (it wants immediate values). */
#define bswapdmsk 0x1B  /* 0b00'01'10'11 */
    const __m128i bswapbmsk = _mm_set_epi64x(
		0x0001020304050607ULL,
		0x08090a0b0c0d0e0fULL
	);

	const __m128i *blkx = (const __m128i *)blk;

	abcd = _mm_shuffle_epi32(_mm_loadu_si128((__m128i *)s->dgst), bswapdmsk);
    e0 = _mm_set_epi32(s->dgst[4], 0, 0, 0);

	abcd_save = abcd;
	e_save = e0;

	/* Rounds 0–3 */
	msg0 = _mm_shuffle_epi8(_mm_loadu_si128(blkx + 0), bswapbmsk);
	e0 = _mm_add_epi32(e0, msg0);
	e1 = abcd;
	abcd = _mm_sha1rnds4_epu32(abcd, e0, 0);

	/* Rounds 4–7 */
	msg1 = _mm_shuffle_epi8(_mm_loadu_si128(blkx + 1), bswapbmsk);
	e1 = _mm_sha1nexte_epu32(e1, msg1);
	e0 = abcd;
	abcd = _mm_sha1rnds4_epu32(abcd, e1, 0);
	msg0 = _mm_sha1msg1_epu32(msg0, msg1);

	/* Rounds 8–11 */
	msg2 = _mm_shuffle_epi8(_mm_loadu_si128(blkx + 2), bswapbmsk);
	e0 = _mm_sha1nexte_epu32(e0, msg2);
	e1 = abcd;
	abcd = _mm_sha1rnds4_epu32(abcd, e0, 0);
	msg1 = _mm_sha1msg1_epu32(msg1, msg2);
	msg0 = _mm_xor_si128(msg0, msg2);

	msg3 = _mm_shuffle_epi8(_mm_loadu_si128(blkx + 3), bswapbmsk);
	R(msg3, msg0, msg1, msg2, e1, e0, 0); /* Rounds 12–15 */
	R(msg0, msg1, msg2, msg3, e0, e1, 0); /* Rounds 16–19 */
	R(msg1, msg2, msg3, msg0, e1, e0, 1); /* Rounds 20–23 */
	R(msg2, msg3, msg0, msg1, e0, e1, 1); /* Rounds 24–27 */
	R(msg3, msg0, msg1, msg2, e1, e0, 1); /* Rounds 28–31 */
	R(msg0, msg1, msg2, msg3, e0, e1, 1); /* Rounds 32–35 */
	R(msg1, msg2, msg3, msg0, e1, e0, 1); /* Rounds 36–39 */
	R(msg2, msg3, msg0, msg1, e0, e1, 2); /* Rounds 40–43 */
	R(msg3, msg0, msg1, msg2, e1, e0, 2); /* Rounds 44–47 */
	R(msg0, msg1, msg2, msg3, e0, e1, 2); /* Rounds 48–51 */
	R(msg1, msg2, msg3, msg0, e1, e0, 2); /* Rounds 52–55 */
	R(msg2, msg3, msg0, msg1, e0, e1, 2); /* Rounds 56–59 */
	R(msg3, msg0, msg1, msg2, e1, e0, 3); /* Rounds 60–63 */
	R(msg0, msg1, msg2, msg3, e0, e1, 3); /* Rounds 64–67 */

	/* Rounds 68–71 */
	e1 = _mm_sha1nexte_epu32(e1, msg1);
	e0 = abcd;
	msg2 = _mm_sha1msg2_epu32(msg2, msg1);
	abcd = _mm_sha1rnds4_epu32(abcd, e1, 3);
	msg3 = _mm_xor_si128(msg3, msg1);

	/* Rounds 72–75 */
	e0 = _mm_sha1nexte_epu32(e0, msg2);
	e1 = abcd;
	msg3 = _mm_sha1msg2_epu32(msg3, msg2);
	abcd = _mm_sha1rnds4_epu32(abcd, e0, 3);

	/* Rounds 76–79 */
	e1 = _mm_sha1nexte_epu32(e1, msg3);
	e0 = abcd;
	abcd = _mm_sha1rnds4_epu32(abcd, e1, 3);

	e0 = _mm_sha1nexte_epu32(e0, e_save);
	abcd = _mm_add_epi32(abcd, abcd_save);

	_mm_storeu_si128((__m128i *)s->dgst, _mm_shuffle_epi32(abcd, bswapdmsk));
    s->dgst[4] = _mm_extract_epi32(e0, 3);
#undef bswapdmsk
}

#undef R