summaryrefslogtreecommitdiffhomepage
path: root/vendor/golang.org/x/tools/go/ssa/builder.go
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/golang.org/x/tools/go/ssa/builder.go')
-rw-r--r--vendor/golang.org/x/tools/go/ssa/builder.go3276
1 files changed, 0 insertions, 3276 deletions
diff --git a/vendor/golang.org/x/tools/go/ssa/builder.go b/vendor/golang.org/x/tools/go/ssa/builder.go
deleted file mode 100644
index 55943e4..0000000
--- a/vendor/golang.org/x/tools/go/ssa/builder.go
+++ /dev/null
@@ -1,3276 +0,0 @@
-// Copyright 2013 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-package ssa
-
-// This file defines the builder, which builds SSA-form IR for function bodies.
-//
-// SSA construction has two phases, "create" and "build". First, one
-// or more packages are created in any order by a sequence of calls to
-// CreatePackage, either from syntax or from mere type information.
-// Each created package has a complete set of Members (const, var,
-// type, func) that can be accessed through methods like
-// Program.FuncValue.
-//
-// It is not necessary to call CreatePackage for all dependencies of
-// each syntax package, only for its direct imports. (In future
-// perhaps even this restriction may be lifted.)
-//
-// Second, packages created from syntax are built, by one or more
-// calls to Package.Build, which may be concurrent; or by a call to
-// Program.Build, which builds all packages in parallel. Building
-// traverses the type-annotated syntax tree of each function body and
-// creates SSA-form IR, a control-flow graph of instructions,
-// populating fields such as Function.Body, .Params, and others.
-//
-// Building may create additional methods, including:
-// - wrapper methods (e.g. for embeddding, or implicit &recv)
-// - bound method closures (e.g. for use(recv.f))
-// - thunks (e.g. for use(I.f) or use(T.f))
-// - generic instances (e.g. to produce f[int] from f[any]).
-// As these methods are created, they are added to the build queue,
-// and then processed in turn, until a fixed point is reached,
-// Since these methods might belong to packages that were not
-// created (by a call to CreatePackage), their Pkg field is unset.
-//
-// Instances of generic functions may be either instantiated (f[int]
-// is a copy of f[T] with substitutions) or wrapped (f[int] delegates
-// to f[T]), depending on the availability of generic syntax and the
-// InstantiateGenerics mode flag.
-//
-// Each package has an initializer function named "init" that calls
-// the initializer functions of each direct import, computes and
-// assigns the initial value of each global variable, and calls each
-// source-level function named "init". (These generate SSA functions
-// named "init#1", "init#2", etc.)
-//
-// Runtime types
-//
-// Each MakeInterface operation is a conversion from a non-interface
-// type to an interface type. The semantics of this operation requires
-// a runtime type descriptor, which is the type portion of an
-// interface, and the value abstracted by reflect.Type.
-//
-// The program accumulates all non-parameterized types that are
-// encountered as MakeInterface operands, along with all types that
-// may be derived from them using reflection. This set is available as
-// Program.RuntimeTypes, and the methods of these types may be
-// reachable via interface calls or reflection even if they are never
-// referenced from the SSA IR. (In practice, algorithms such as RTA
-// that compute reachability from package main perform their own
-// tracking of runtime types at a finer grain, so this feature is not
-// very useful.)
-//
-// Function literals
-//
-// Anonymous functions must be built as soon as they are encountered,
-// as it may affect locals of the enclosing function, but they are not
-// marked 'built' until the end of the outermost enclosing function.
-// (Among other things, this causes them to be logged in top-down order.)
-//
-// The Function.build fields determines the algorithm for building the
-// function body. It is cleared to mark that building is complete.
-
-import (
- "fmt"
- "go/ast"
- "go/constant"
- "go/token"
- "go/types"
- "os"
- "runtime"
- "sync"
-
- "golang.org/x/tools/internal/aliases"
- "golang.org/x/tools/internal/typeparams"
- "golang.org/x/tools/internal/versions"
-)
-
-type opaqueType struct{ name string }
-
-func (t *opaqueType) String() string { return t.name }
-func (t *opaqueType) Underlying() types.Type { return t }
-
-var (
- varOk = newVar("ok", tBool)
- varIndex = newVar("index", tInt)
-
- // Type constants.
- tBool = types.Typ[types.Bool]
- tByte = types.Typ[types.Byte]
- tInt = types.Typ[types.Int]
- tInvalid = types.Typ[types.Invalid]
- tString = types.Typ[types.String]
- tUntypedNil = types.Typ[types.UntypedNil]
-
- tRangeIter = &opaqueType{"iter"} // the type of all "range" iterators
- tDeferStack = types.NewPointer(&opaqueType{"deferStack"}) // the type of a "deferStack" from ssa:deferstack()
- tEface = types.NewInterfaceType(nil, nil).Complete()
-
- // SSA Value constants.
- vZero = intConst(0)
- vOne = intConst(1)
- vTrue = NewConst(constant.MakeBool(true), tBool)
- vFalse = NewConst(constant.MakeBool(false), tBool)
-
- jReady = intConst(0) // range-over-func jump is READY
- jBusy = intConst(-1) // range-over-func jump is BUSY
- jDone = intConst(-2) // range-over-func jump is DONE
-
- // The ssa:deferstack intrinsic returns the current function's defer stack.
- vDeferStack = &Builtin{
- name: "ssa:deferstack",
- sig: types.NewSignatureType(nil, nil, nil, nil, types.NewTuple(anonVar(tDeferStack)), false),
- }
-)
-
-// builder holds state associated with the package currently being built.
-// Its methods contain all the logic for AST-to-SSA conversion.
-//
-// All Functions belong to the same Program.
-//
-// builders are not thread-safe.
-type builder struct {
- fns []*Function // Functions that have finished their CREATE phases.
-
- finished int // finished is the length of the prefix of fns containing built functions.
-
- // The task of building shared functions within the builder.
- // Shared functions are ones the the builder may either create or lookup.
- // These may be built by other builders in parallel.
- // The task is done when the builder has finished iterating, and it
- // waits for all shared functions to finish building.
- // nil implies there are no hared functions to wait on.
- buildshared *task
-}
-
-// shared is done when the builder has built all of the
-// enqueued functions to a fixed-point.
-func (b *builder) shared() *task {
- if b.buildshared == nil { // lazily-initialize
- b.buildshared = &task{done: make(chan unit)}
- }
- return b.buildshared
-}
-
-// enqueue fn to be built by the builder.
-func (b *builder) enqueue(fn *Function) {
- b.fns = append(b.fns, fn)
-}
-
-// waitForSharedFunction indicates that the builder should wait until
-// the potentially shared function fn has finished building.
-//
-// This should include any functions that may be built by other
-// builders.
-func (b *builder) waitForSharedFunction(fn *Function) {
- if fn.buildshared != nil { // maybe need to wait?
- s := b.shared()
- s.addEdge(fn.buildshared)
- }
-}
-
-// cond emits to fn code to evaluate boolean condition e and jump
-// to t or f depending on its value, performing various simplifications.
-//
-// Postcondition: fn.currentBlock is nil.
-func (b *builder) cond(fn *Function, e ast.Expr, t, f *BasicBlock) {
- switch e := e.(type) {
- case *ast.ParenExpr:
- b.cond(fn, e.X, t, f)
- return
-
- case *ast.BinaryExpr:
- switch e.Op {
- case token.LAND:
- ltrue := fn.newBasicBlock("cond.true")
- b.cond(fn, e.X, ltrue, f)
- fn.currentBlock = ltrue
- b.cond(fn, e.Y, t, f)
- return
-
- case token.LOR:
- lfalse := fn.newBasicBlock("cond.false")
- b.cond(fn, e.X, t, lfalse)
- fn.currentBlock = lfalse
- b.cond(fn, e.Y, t, f)
- return
- }
-
- case *ast.UnaryExpr:
- if e.Op == token.NOT {
- b.cond(fn, e.X, f, t)
- return
- }
- }
-
- // A traditional compiler would simplify "if false" (etc) here
- // but we do not, for better fidelity to the source code.
- //
- // The value of a constant condition may be platform-specific,
- // and may cause blocks that are reachable in some configuration
- // to be hidden from subsequent analyses such as bug-finding tools.
- emitIf(fn, b.expr(fn, e), t, f)
-}
-
-// logicalBinop emits code to fn to evaluate e, a &&- or
-// ||-expression whose reified boolean value is wanted.
-// The value is returned.
-func (b *builder) logicalBinop(fn *Function, e *ast.BinaryExpr) Value {
- rhs := fn.newBasicBlock("binop.rhs")
- done := fn.newBasicBlock("binop.done")
-
- // T(e) = T(e.X) = T(e.Y) after untyped constants have been
- // eliminated.
- // TODO(adonovan): not true; MyBool==MyBool yields UntypedBool.
- t := fn.typeOf(e)
-
- var short Value // value of the short-circuit path
- switch e.Op {
- case token.LAND:
- b.cond(fn, e.X, rhs, done)
- short = NewConst(constant.MakeBool(false), t)
-
- case token.LOR:
- b.cond(fn, e.X, done, rhs)
- short = NewConst(constant.MakeBool(true), t)
- }
-
- // Is rhs unreachable?
- if rhs.Preds == nil {
- // Simplify false&&y to false, true||y to true.
- fn.currentBlock = done
- return short
- }
-
- // Is done unreachable?
- if done.Preds == nil {
- // Simplify true&&y (or false||y) to y.
- fn.currentBlock = rhs
- return b.expr(fn, e.Y)
- }
-
- // All edges from e.X to done carry the short-circuit value.
- var edges []Value
- for range done.Preds {
- edges = append(edges, short)
- }
-
- // The edge from e.Y to done carries the value of e.Y.
- fn.currentBlock = rhs
- edges = append(edges, b.expr(fn, e.Y))
- emitJump(fn, done)
- fn.currentBlock = done
-
- phi := &Phi{Edges: edges, Comment: e.Op.String()}
- phi.pos = e.OpPos
- phi.typ = t
- return done.emit(phi)
-}
-
-// exprN lowers a multi-result expression e to SSA form, emitting code
-// to fn and returning a single Value whose type is a *types.Tuple.
-// The caller must access the components via Extract.
-//
-// Multi-result expressions include CallExprs in a multi-value
-// assignment or return statement, and "value,ok" uses of
-// TypeAssertExpr, IndexExpr (when X is a map), and UnaryExpr (when Op
-// is token.ARROW).
-func (b *builder) exprN(fn *Function, e ast.Expr) Value {
- typ := fn.typeOf(e).(*types.Tuple)
- switch e := e.(type) {
- case *ast.ParenExpr:
- return b.exprN(fn, e.X)
-
- case *ast.CallExpr:
- // Currently, no built-in function nor type conversion
- // has multiple results, so we can avoid some of the
- // cases for single-valued CallExpr.
- var c Call
- b.setCall(fn, e, &c.Call)
- c.typ = typ
- return fn.emit(&c)
-
- case *ast.IndexExpr:
- mapt := typeparams.CoreType(fn.typeOf(e.X)).(*types.Map) // ,ok must be a map.
- lookup := &Lookup{
- X: b.expr(fn, e.X),
- Index: emitConv(fn, b.expr(fn, e.Index), mapt.Key()),
- CommaOk: true,
- }
- lookup.setType(typ)
- lookup.setPos(e.Lbrack)
- return fn.emit(lookup)
-
- case *ast.TypeAssertExpr:
- return emitTypeTest(fn, b.expr(fn, e.X), typ.At(0).Type(), e.Lparen)
-
- case *ast.UnaryExpr: // must be receive <-
- unop := &UnOp{
- Op: token.ARROW,
- X: b.expr(fn, e.X),
- CommaOk: true,
- }
- unop.setType(typ)
- unop.setPos(e.OpPos)
- return fn.emit(unop)
- }
- panic(fmt.Sprintf("exprN(%T) in %s", e, fn))
-}
-
-// builtin emits to fn SSA instructions to implement a call to the
-// built-in function obj with the specified arguments
-// and return type. It returns the value defined by the result.
-//
-// The result is nil if no special handling was required; in this case
-// the caller should treat this like an ordinary library function
-// call.
-func (b *builder) builtin(fn *Function, obj *types.Builtin, args []ast.Expr, typ types.Type, pos token.Pos) Value {
- typ = fn.typ(typ)
- switch obj.Name() {
- case "make":
- switch ct := typeparams.CoreType(typ).(type) {
- case *types.Slice:
- n := b.expr(fn, args[1])
- m := n
- if len(args) == 3 {
- m = b.expr(fn, args[2])
- }
- if m, ok := m.(*Const); ok {
- // treat make([]T, n, m) as new([m]T)[:n]
- cap := m.Int64()
- at := types.NewArray(ct.Elem(), cap)
- v := &Slice{
- X: emitNew(fn, at, pos, "makeslice"),
- High: n,
- }
- v.setPos(pos)
- v.setType(typ)
- return fn.emit(v)
- }
- v := &MakeSlice{
- Len: n,
- Cap: m,
- }
- v.setPos(pos)
- v.setType(typ)
- return fn.emit(v)
-
- case *types.Map:
- var res Value
- if len(args) == 2 {
- res = b.expr(fn, args[1])
- }
- v := &MakeMap{Reserve: res}
- v.setPos(pos)
- v.setType(typ)
- return fn.emit(v)
-
- case *types.Chan:
- var sz Value = vZero
- if len(args) == 2 {
- sz = b.expr(fn, args[1])
- }
- v := &MakeChan{Size: sz}
- v.setPos(pos)
- v.setType(typ)
- return fn.emit(v)
- }
-
- case "new":
- return emitNew(fn, typeparams.MustDeref(typ), pos, "new")
-
- case "len", "cap":
- // Special case: len or cap of an array or *array is
- // based on the type, not the value which may be nil.
- // We must still evaluate the value, though. (If it
- // was side-effect free, the whole call would have
- // been constant-folded.)
- t := typeparams.Deref(fn.typeOf(args[0]))
- if at, ok := typeparams.CoreType(t).(*types.Array); ok {
- b.expr(fn, args[0]) // for effects only
- return intConst(at.Len())
- }
- // Otherwise treat as normal.
-
- case "panic":
- fn.emit(&Panic{
- X: emitConv(fn, b.expr(fn, args[0]), tEface),
- pos: pos,
- })
- fn.currentBlock = fn.newBasicBlock("unreachable")
- return vTrue // any non-nil Value will do
- }
- return nil // treat all others as a regular function call
-}
-
-// addr lowers a single-result addressable expression e to SSA form,
-// emitting code to fn and returning the location (an lvalue) defined
-// by the expression.
-//
-// If escaping is true, addr marks the base variable of the
-// addressable expression e as being a potentially escaping pointer
-// value. For example, in this code:
-//
-// a := A{
-// b: [1]B{B{c: 1}}
-// }
-// return &a.b[0].c
-//
-// the application of & causes a.b[0].c to have its address taken,
-// which means that ultimately the local variable a must be
-// heap-allocated. This is a simple but very conservative escape
-// analysis.
-//
-// Operations forming potentially escaping pointers include:
-// - &x, including when implicit in method call or composite literals.
-// - a[:] iff a is an array (not *array)
-// - references to variables in lexically enclosing functions.
-func (b *builder) addr(fn *Function, e ast.Expr, escaping bool) lvalue {
- switch e := e.(type) {
- case *ast.Ident:
- if isBlankIdent(e) {
- return blank{}
- }
- obj := fn.objectOf(e).(*types.Var)
- var v Value
- if g := fn.Prog.packageLevelMember(obj); g != nil {
- v = g.(*Global) // var (address)
- } else {
- v = fn.lookup(obj, escaping)
- }
- return &address{addr: v, pos: e.Pos(), expr: e}
-
- case *ast.CompositeLit:
- typ := typeparams.Deref(fn.typeOf(e))
- var v *Alloc
- if escaping {
- v = emitNew(fn, typ, e.Lbrace, "complit")
- } else {
- v = emitLocal(fn, typ, e.Lbrace, "complit")
- }
- var sb storebuf
- b.compLit(fn, v, e, true, &sb)
- sb.emit(fn)
- return &address{addr: v, pos: e.Lbrace, expr: e}
-
- case *ast.ParenExpr:
- return b.addr(fn, e.X, escaping)
-
- case *ast.SelectorExpr:
- sel := fn.selection(e)
- if sel == nil {
- // qualified identifier
- return b.addr(fn, e.Sel, escaping)
- }
- if sel.kind != types.FieldVal {
- panic(sel)
- }
- wantAddr := true
- v := b.receiver(fn, e.X, wantAddr, escaping, sel)
- index := sel.index[len(sel.index)-1]
- fld := fieldOf(typeparams.MustDeref(v.Type()), index) // v is an addr.
-
- // Due to the two phases of resolving AssignStmt, a panic from x.f = p()
- // when x is nil is required to come after the side-effects of
- // evaluating x and p().
- emit := func(fn *Function) Value {
- return emitFieldSelection(fn, v, index, true, e.Sel)
- }
- return &lazyAddress{addr: emit, t: fld.Type(), pos: e.Sel.Pos(), expr: e.Sel}
-
- case *ast.IndexExpr:
- xt := fn.typeOf(e.X)
- elem, mode := indexType(xt)
- var x Value
- var et types.Type
- switch mode {
- case ixArrVar: // array, array|slice, array|*array, or array|*array|slice.
- x = b.addr(fn, e.X, escaping).address(fn)
- et = types.NewPointer(elem)
- case ixVar: // *array, slice, *array|slice
- x = b.expr(fn, e.X)
- et = types.NewPointer(elem)
- case ixMap:
- mt := typeparams.CoreType(xt).(*types.Map)
- return &element{
- m: b.expr(fn, e.X),
- k: emitConv(fn, b.expr(fn, e.Index), mt.Key()),
- t: mt.Elem(),
- pos: e.Lbrack,
- }
- default:
- panic("unexpected container type in IndexExpr: " + xt.String())
- }
- index := b.expr(fn, e.Index)
- if isUntyped(index.Type()) {
- index = emitConv(fn, index, tInt)
- }
- // Due to the two phases of resolving AssignStmt, a panic from x[i] = p()
- // when x is nil or i is out-of-bounds is required to come after the
- // side-effects of evaluating x, i and p().
- emit := func(fn *Function) Value {
- v := &IndexAddr{
- X: x,
- Index: index,
- }
- v.setPos(e.Lbrack)
- v.setType(et)
- return fn.emit(v)
- }
- return &lazyAddress{addr: emit, t: typeparams.MustDeref(et), pos: e.Lbrack, expr: e}
-
- case *ast.StarExpr:
- return &address{addr: b.expr(fn, e.X), pos: e.Star, expr: e}
- }
-
- panic(fmt.Sprintf("unexpected address expression: %T", e))
-}
-
-type store struct {
- lhs lvalue
- rhs Value
-}
-
-type storebuf struct{ stores []store }
-
-func (sb *storebuf) store(lhs lvalue, rhs Value) {
- sb.stores = append(sb.stores, store{lhs, rhs})
-}
-
-func (sb *storebuf) emit(fn *Function) {
- for _, s := range sb.stores {
- s.lhs.store(fn, s.rhs)
- }
-}
-
-// assign emits to fn code to initialize the lvalue loc with the value
-// of expression e. If isZero is true, assign assumes that loc holds
-// the zero value for its type.
-//
-// This is equivalent to loc.store(fn, b.expr(fn, e)), but may generate
-// better code in some cases, e.g., for composite literals in an
-// addressable location.
-//
-// If sb is not nil, assign generates code to evaluate expression e, but
-// not to update loc. Instead, the necessary stores are appended to the
-// storebuf sb so that they can be executed later. This allows correct
-// in-place update of existing variables when the RHS is a composite
-// literal that may reference parts of the LHS.
-func (b *builder) assign(fn *Function, loc lvalue, e ast.Expr, isZero bool, sb *storebuf) {
- // Can we initialize it in place?
- if e, ok := unparen(e).(*ast.CompositeLit); ok {
- // A CompositeLit never evaluates to a pointer,
- // so if the type of the location is a pointer,
- // an &-operation is implied.
- if !is[blank](loc) && isPointerCore(loc.typ()) { // avoid calling blank.typ()
- ptr := b.addr(fn, e, true).address(fn)
- // copy address
- if sb != nil {
- sb.store(loc, ptr)
- } else {
- loc.store(fn, ptr)
- }
- return
- }
-
- if _, ok := loc.(*address); ok {
- if isNonTypeParamInterface(loc.typ()) {
- // e.g. var x interface{} = T{...}
- // Can't in-place initialize an interface value.
- // Fall back to copying.
- } else {
- // x = T{...} or x := T{...}
- addr := loc.address(fn)
- if sb != nil {
- b.compLit(fn, addr, e, isZero, sb)
- } else {
- var sb storebuf
- b.compLit(fn, addr, e, isZero, &sb)
- sb.emit(fn)
- }
-
- // Subtle: emit debug ref for aggregate types only;
- // slice and map are handled by store ops in compLit.
- switch typeparams.CoreType(loc.typ()).(type) {
- case *types.Struct, *types.Array:
- emitDebugRef(fn, e, addr, true)
- }
-
- return
- }
- }
- }
-
- // simple case: just copy
- rhs := b.expr(fn, e)
- if sb != nil {
- sb.store(loc, rhs)
- } else {
- loc.store(fn, rhs)
- }
-}
-
-// expr lowers a single-result expression e to SSA form, emitting code
-// to fn and returning the Value defined by the expression.
-func (b *builder) expr(fn *Function, e ast.Expr) Value {
- e = unparen(e)
-
- tv := fn.info.Types[e]
-
- // Is expression a constant?
- if tv.Value != nil {
- return NewConst(tv.Value, fn.typ(tv.Type))
- }
-
- var v Value
- if tv.Addressable() {
- // Prefer pointer arithmetic ({Index,Field}Addr) followed
- // by Load over subelement extraction (e.g. Index, Field),
- // to avoid large copies.
- v = b.addr(fn, e, false).load(fn)
- } else {
- v = b.expr0(fn, e, tv)
- }
- if fn.debugInfo() {
- emitDebugRef(fn, e, v, false)
- }
- return v
-}
-
-func (b *builder) expr0(fn *Function, e ast.Expr, tv types.TypeAndValue) Value {
- switch e := e.(type) {
- case *ast.BasicLit:
- panic("non-constant BasicLit") // unreachable
-
- case *ast.FuncLit:
- /* function literal */
- anon := &Function{
- name: fmt.Sprintf("%s$%d", fn.Name(), 1+len(fn.AnonFuncs)),
- Signature: fn.typeOf(e.Type).(*types.Signature),
- pos: e.Type.Func,
- parent: fn,
- anonIdx: int32(len(fn.AnonFuncs)),
- Pkg: fn.Pkg,
- Prog: fn.Prog,
- syntax: e,
- info: fn.info,
- goversion: fn.goversion,
- build: (*builder).buildFromSyntax,
- topLevelOrigin: nil, // use anonIdx to lookup an anon instance's origin.
- typeparams: fn.typeparams, // share the parent's type parameters.
- typeargs: fn.typeargs, // share the parent's type arguments.
- subst: fn.subst, // share the parent's type substitutions.
- uniq: fn.uniq, // start from parent's unique values
- }
- fn.AnonFuncs = append(fn.AnonFuncs, anon)
- // Build anon immediately, as it may cause fn's locals to escape.
- // (It is not marked 'built' until the end of the enclosing FuncDecl.)
- anon.build(b, anon)
- fn.uniq = anon.uniq // resume after anon's unique values
- if anon.FreeVars == nil {
- return anon
- }
- v := &MakeClosure{Fn: anon}
- v.setType(fn.typ(tv.Type))
- for _, fv := range anon.FreeVars {
- v.Bindings = append(v.Bindings, fv.outer)
- fv.outer = nil
- }
- return fn.emit(v)
-
- case *ast.TypeAssertExpr: // single-result form only
- return emitTypeAssert(fn, b.expr(fn, e.X), fn.typ(tv.Type), e.Lparen)
-
- case *ast.CallExpr:
- if fn.info.Types[e.Fun].IsType() {
- // Explicit type conversion, e.g. string(x) or big.Int(x)
- x := b.expr(fn, e.Args[0])
- y := emitConv(fn, x, fn.typ(tv.Type))
- if y != x {
- switch y := y.(type) {
- case *Convert:
- y.pos = e.Lparen
- case *ChangeType:
- y.pos = e.Lparen
- case *MakeInterface:
- y.pos = e.Lparen
- case *SliceToArrayPointer:
- y.pos = e.Lparen
- case *UnOp: // conversion from slice to array.
- y.pos = e.Lparen
- }
- }
- return y
- }
- // Call to "intrinsic" built-ins, e.g. new, make, panic.
- if id, ok := unparen(e.Fun).(*ast.Ident); ok {
- if obj, ok := fn.info.Uses[id].(*types.Builtin); ok {
- if v := b.builtin(fn, obj, e.Args, fn.typ(tv.Type), e.Lparen); v != nil {
- return v
- }
- }
- }
- // Regular function call.
- var v Call
- b.setCall(fn, e, &v.Call)
- v.setType(fn.typ(tv.Type))
- return fn.emit(&v)
-
- case *ast.UnaryExpr:
- switch e.Op {
- case token.AND: // &X --- potentially escaping.
- addr := b.addr(fn, e.X, true)
- if _, ok := unparen(e.X).(*ast.StarExpr); ok {
- // &*p must panic if p is nil (http://golang.org/s/go12nil).
- // For simplicity, we'll just (suboptimally) rely
- // on the side effects of a load.
- // TODO(adonovan): emit dedicated nilcheck.
- addr.load(fn)
- }
- return addr.address(fn)
- case token.ADD:
- return b.expr(fn, e.X)
- case token.NOT, token.ARROW, token.SUB, token.XOR: // ! <- - ^
- v := &UnOp{
- Op: e.Op,
- X: b.expr(fn, e.X),
- }
- v.setPos(e.OpPos)
- v.setType(fn.typ(tv.Type))
- return fn.emit(v)
- default:
- panic(e.Op)
- }
-
- case *ast.BinaryExpr:
- switch e.Op {
- case token.LAND, token.LOR:
- return b.logicalBinop(fn, e)
- case token.SHL, token.SHR:
- fallthrough
- case token.ADD, token.SUB, token.MUL, token.QUO, token.REM, token.AND, token.OR, token.XOR, token.AND_NOT:
- return emitArith(fn, e.Op, b.expr(fn, e.X), b.expr(fn, e.Y), fn.typ(tv.Type), e.OpPos)
-
- case token.EQL, token.NEQ, token.GTR, token.LSS, token.LEQ, token.GEQ:
- cmp := emitCompare(fn, e.Op, b.expr(fn, e.X), b.expr(fn, e.Y), e.OpPos)
- // The type of x==y may be UntypedBool.
- return emitConv(fn, cmp, types.Default(fn.typ(tv.Type)))
- default:
- panic("illegal op in BinaryExpr: " + e.Op.String())
- }
-
- case *ast.SliceExpr:
- var low, high, max Value
- var x Value
- xtyp := fn.typeOf(e.X)
- switch typeparams.CoreType(xtyp).(type) {
- case *types.Array:
- // Potentially escaping.
- x = b.addr(fn, e.X, true).address(fn)
- case *types.Basic, *types.Slice, *types.Pointer: // *array
- x = b.expr(fn, e.X)
- default:
- // core type exception?
- if isBytestring(xtyp) {
- x = b.expr(fn, e.X) // bytestring is handled as string and []byte.
- } else {
- panic("unexpected sequence type in SliceExpr")
- }
- }
- if e.Low != nil {
- low = b.expr(fn, e.Low)
- }
- if e.High != nil {
- high = b.expr(fn, e.High)
- }
- if e.Slice3 {
- max = b.expr(fn, e.Max)
- }
- v := &Slice{
- X: x,
- Low: low,
- High: high,
- Max: max,
- }
- v.setPos(e.Lbrack)
- v.setType(fn.typ(tv.Type))
- return fn.emit(v)
-
- case *ast.Ident:
- obj := fn.info.Uses[e]
- // Universal built-in or nil?
- switch obj := obj.(type) {
- case *types.Builtin:
- return &Builtin{name: obj.Name(), sig: fn.instanceType(e).(*types.Signature)}
- case *types.Nil:
- return zeroConst(fn.instanceType(e))
- }
-
- // Package-level func or var?
- // (obj must belong to same package or a direct import.)
- if v := fn.Prog.packageLevelMember(obj); v != nil {
- if g, ok := v.(*Global); ok {
- return emitLoad(fn, g) // var (address)
- }
- callee := v.(*Function) // (func)
- if callee.typeparams.Len() > 0 {
- targs := fn.subst.types(instanceArgs(fn.info, e))
- callee = callee.instance(targs, b)
- }
- return callee
- }
- // Local var.
- return emitLoad(fn, fn.lookup(obj.(*types.Var), false)) // var (address)
-
- case *ast.SelectorExpr:
- sel := fn.selection(e)
- if sel == nil {
- // builtin unsafe.{Add,Slice}
- if obj, ok := fn.info.Uses[e.Sel].(*types.Builtin); ok {
- return &Builtin{name: obj.Name(), sig: fn.typ(tv.Type).(*types.Signature)}
- }
- // qualified identifier
- return b.expr(fn, e.Sel)
- }
- switch sel.kind {
- case types.MethodExpr:
- // (*T).f or T.f, the method f from the method-set of type T.
- // The result is a "thunk".
- thunk := createThunk(fn.Prog, sel)
- b.enqueue(thunk)
- return emitConv(fn, thunk, fn.typ(tv.Type))
-
- case types.MethodVal:
- // e.f where e is an expression and f is a method.
- // The result is a "bound".
- obj := sel.obj.(*types.Func)
- rt := fn.typ(recvType(obj))
- wantAddr := isPointer(rt)
- escaping := true
- v := b.receiver(fn, e.X, wantAddr, escaping, sel)
-
- if types.IsInterface(rt) {
- // If v may be an interface type I (after instantiating),
- // we must emit a check that v is non-nil.
- if recv, ok := aliases.Unalias(sel.recv).(*types.TypeParam); ok {
- // Emit a nil check if any possible instantiation of the
- // type parameter is an interface type.
- if typeSetOf(recv).Len() > 0 {
- // recv has a concrete term its typeset.
- // So it cannot be instantiated as an interface.
- //
- // Example:
- // func _[T interface{~int; Foo()}] () {
- // var v T
- // _ = v.Foo // <-- MethodVal
- // }
- } else {
- // rt may be instantiated as an interface.
- // Emit nil check: typeassert (any(v)).(any).
- emitTypeAssert(fn, emitConv(fn, v, tEface), tEface, token.NoPos)
- }
- } else {
- // non-type param interface
- // Emit nil check: typeassert v.(I).
- emitTypeAssert(fn, v, rt, e.Sel.Pos())
- }
- }
- if targs := receiverTypeArgs(obj); len(targs) > 0 {
- // obj is generic.
- obj = fn.Prog.canon.instantiateMethod(obj, fn.subst.types(targs), fn.Prog.ctxt)
- }
- bound := createBound(fn.Prog, obj)
- b.enqueue(bound)
-
- c := &MakeClosure{
- Fn: bound,
- Bindings: []Value{v},
- }
- c.setPos(e.Sel.Pos())
- c.setType(fn.typ(tv.Type))
- return fn.emit(c)
-
- case types.FieldVal:
- indices := sel.index
- last := len(indices) - 1
- v := b.expr(fn, e.X)
- v = emitImplicitSelections(fn, v, indices[:last], e.Pos())
- v = emitFieldSelection(fn, v, indices[last], false, e.Sel)
- return v
- }
-
- panic("unexpected expression-relative selector")
-
- case *ast.IndexListExpr:
- // f[X, Y] must be a generic function
- if !instance(fn.info, e.X) {
- panic("unexpected expression-could not match index list to instantiation")
- }
- return b.expr(fn, e.X) // Handle instantiation within the *Ident or *SelectorExpr cases.
-
- case *ast.IndexExpr:
- if instance(fn.info, e.X) {
- return b.expr(fn, e.X) // Handle instantiation within the *Ident or *SelectorExpr cases.
- }
- // not a generic instantiation.
- xt := fn.typeOf(e.X)
- switch et, mode := indexType(xt); mode {
- case ixVar:
- // Addressable slice/array; use IndexAddr and Load.
- return b.addr(fn, e, false).load(fn)
-
- case ixArrVar, ixValue:
- // An array in a register, a string or a combined type that contains
- // either an [_]array (ixArrVar) or string (ixValue).
-
- // Note: for ixArrVar and CoreType(xt)==nil can be IndexAddr and Load.
- index := b.expr(fn, e.Index)
- if isUntyped(index.Type()) {
- index = emitConv(fn, index, tInt)
- }
- v := &Index{
- X: b.expr(fn, e.X),
- Index: index,
- }
- v.setPos(e.Lbrack)
- v.setType(et)
- return fn.emit(v)
-
- case ixMap:
- ct := typeparams.CoreType(xt).(*types.Map)
- v := &Lookup{
- X: b.expr(fn, e.X),
- Index: emitConv(fn, b.expr(fn, e.Index), ct.Key()),
- }
- v.setPos(e.Lbrack)
- v.setType(ct.Elem())
- return fn.emit(v)
- default:
- panic("unexpected container type in IndexExpr: " + xt.String())
- }
-
- case *ast.CompositeLit, *ast.StarExpr:
- // Addressable types (lvalues)
- return b.addr(fn, e, false).load(fn)
- }
-
- panic(fmt.Sprintf("unexpected expr: %T", e))
-}
-
-// stmtList emits to fn code for all statements in list.
-func (b *builder) stmtList(fn *Function, list []ast.Stmt) {
- for _, s := range list {
- b.stmt(fn, s)
- }
-}
-
-// receiver emits to fn code for expression e in the "receiver"
-// position of selection e.f (where f may be a field or a method) and
-// returns the effective receiver after applying the implicit field
-// selections of sel.
-//
-// wantAddr requests that the result is an address. If
-// !sel.indirect, this may require that e be built in addr() mode; it
-// must thus be addressable.
-//
-// escaping is defined as per builder.addr().
-func (b *builder) receiver(fn *Function, e ast.Expr, wantAddr, escaping bool, sel *selection) Value {
- var v Value
- if wantAddr && !sel.indirect && !isPointerCore(fn.typeOf(e)) {
- v = b.addr(fn, e, escaping).address(fn)
- } else {
- v = b.expr(fn, e)
- }
-
- last := len(sel.index) - 1
- // The position of implicit selection is the position of the inducing receiver expression.
- v = emitImplicitSelections(fn, v, sel.index[:last], e.Pos())
- if types.IsInterface(v.Type()) {
- // When v is an interface, sel.Kind()==MethodValue and v.f is invoked.
- // So v is not loaded, even if v has a pointer core type.
- } else if !wantAddr && isPointerCore(v.Type()) {
- v = emitLoad(fn, v)
- }
- return v
-}
-
-// setCallFunc populates the function parts of a CallCommon structure
-// (Func, Method, Recv, Args[0]) based on the kind of invocation
-// occurring in e.
-func (b *builder) setCallFunc(fn *Function, e *ast.CallExpr, c *CallCommon) {
- c.pos = e.Lparen
-
- // Is this a method call?
- if selector, ok := unparen(e.Fun).(*ast.SelectorExpr); ok {
- sel := fn.selection(selector)
- if sel != nil && sel.kind == types.MethodVal {
- obj := sel.obj.(*types.Func)
- recv := recvType(obj)
-
- wantAddr := isPointer(recv)
- escaping := true
- v := b.receiver(fn, selector.X, wantAddr, escaping, sel)
- if types.IsInterface(recv) {
- // Invoke-mode call.
- c.Value = v // possibly type param
- c.Method = obj
- } else {
- // "Call"-mode call.
- c.Value = fn.Prog.objectMethod(obj, b)
- c.Args = append(c.Args, v)
- }
- return
- }
-
- // sel.kind==MethodExpr indicates T.f() or (*T).f():
- // a statically dispatched call to the method f in the
- // method-set of T or *T. T may be an interface.
- //
- // e.Fun would evaluate to a concrete method, interface
- // wrapper function, or promotion wrapper.
- //
- // For now, we evaluate it in the usual way.
- //
- // TODO(adonovan): opt: inline expr() here, to make the
- // call static and to avoid generation of wrappers.
- // It's somewhat tricky as it may consume the first
- // actual parameter if the call is "invoke" mode.
- //
- // Examples:
- // type T struct{}; func (T) f() {} // "call" mode
- // type T interface { f() } // "invoke" mode
- //
- // type S struct{ T }
- //
- // var s S
- // S.f(s)
- // (*S).f(&s)
- //
- // Suggested approach:
- // - consume the first actual parameter expression
- // and build it with b.expr().
- // - apply implicit field selections.
- // - use MethodVal logic to populate fields of c.
- }
-
- // Evaluate the function operand in the usual way.
- c.Value = b.expr(fn, e.Fun)
-}
-
-// emitCallArgs emits to f code for the actual parameters of call e to
-// a (possibly built-in) function of effective type sig.
-// The argument values are appended to args, which is then returned.
-func (b *builder) emitCallArgs(fn *Function, sig *types.Signature, e *ast.CallExpr, args []Value) []Value {
- // f(x, y, z...): pass slice z straight through.
- if e.Ellipsis != 0 {
- for i, arg := range e.Args {
- v := emitConv(fn, b.expr(fn, arg), sig.Params().At(i).Type())
- args = append(args, v)
- }
- return args
- }
-
- offset := len(args) // 1 if call has receiver, 0 otherwise
-
- // Evaluate actual parameter expressions.
- //
- // If this is a chained call of the form f(g()) where g has
- // multiple return values (MRV), they are flattened out into
- // args; a suffix of them may end up in a varargs slice.
- for _, arg := range e.Args {
- v := b.expr(fn, arg)
- if ttuple, ok := v.Type().(*types.Tuple); ok { // MRV chain
- for i, n := 0, ttuple.Len(); i < n; i++ {
- args = append(args, emitExtract(fn, v, i))
- }
- } else {
- args = append(args, v)
- }
- }
-
- // Actual->formal assignability conversions for normal parameters.
- np := sig.Params().Len() // number of normal parameters
- if sig.Variadic() {
- np--
- }
- for i := 0; i < np; i++ {
- args[offset+i] = emitConv(fn, args[offset+i], sig.Params().At(i).Type())
- }
-
- // Actual->formal assignability conversions for variadic parameter,
- // and construction of slice.
- if sig.Variadic() {
- varargs := args[offset+np:]
- st := sig.Params().At(np).Type().(*types.Slice)
- vt := st.Elem()
- if len(varargs) == 0 {
- args = append(args, zeroConst(st))
- } else {
- // Replace a suffix of args with a slice containing it.
- at := types.NewArray(vt, int64(len(varargs)))
- a := emitNew(fn, at, token.NoPos, "varargs")
- a.setPos(e.Rparen)
- for i, arg := range varargs {
- iaddr := &IndexAddr{
- X: a,
- Index: intConst(int64(i)),
- }
- iaddr.setType(types.NewPointer(vt))
- fn.emit(iaddr)
- emitStore(fn, iaddr, arg, arg.Pos())
- }
- s := &Slice{X: a}
- s.setType(st)
- args[offset+np] = fn.emit(s)
- args = args[:offset+np+1]
- }
- }
- return args
-}
-
-// setCall emits to fn code to evaluate all the parameters of a function
-// call e, and populates *c with those values.
-func (b *builder) setCall(fn *Function, e *ast.CallExpr, c *CallCommon) {
- // First deal with the f(...) part and optional receiver.
- b.setCallFunc(fn, e, c)
-
- // Then append the other actual parameters.
- sig, _ := typeparams.CoreType(fn.typeOf(e.Fun)).(*types.Signature)
- if sig == nil {
- panic(fmt.Sprintf("no signature for call of %s", e.Fun))
- }
- c.Args = b.emitCallArgs(fn, sig, e, c.Args)
-}
-
-// assignOp emits to fn code to perform loc <op>= val.
-func (b *builder) assignOp(fn *Function, loc lvalue, val Value, op token.Token, pos token.Pos) {
- loc.store(fn, emitArith(fn, op, loc.load(fn), val, loc.typ(), pos))
-}
-
-// localValueSpec emits to fn code to define all of the vars in the
-// function-local ValueSpec, spec.
-func (b *builder) localValueSpec(fn *Function, spec *ast.ValueSpec) {
- switch {
- case len(spec.Values) == len(spec.Names):
- // e.g. var x, y = 0, 1
- // 1:1 assignment
- for i, id := range spec.Names {
- if !isBlankIdent(id) {
- emitLocalVar(fn, identVar(fn, id))
- }
- lval := b.addr(fn, id, false) // non-escaping
- b.assign(fn, lval, spec.Values[i], true, nil)
- }
-
- case len(spec.Values) == 0:
- // e.g. var x, y int
- // Locals are implicitly zero-initialized.
- for _, id := range spec.Names {
- if !isBlankIdent(id) {
- lhs := emitLocalVar(fn, identVar(fn, id))
- if fn.debugInfo() {
- emitDebugRef(fn, id, lhs, true)
- }
- }
- }
-
- default:
- // e.g. var x, y = pos()
- tuple := b.exprN(fn, spec.Values[0])
- for i, id := range spec.Names {
- if !isBlankIdent(id) {
- emitLocalVar(fn, identVar(fn, id))
- lhs := b.addr(fn, id, false) // non-escaping
- lhs.store(fn, emitExtract(fn, tuple, i))
- }
- }
- }
-}
-
-// assignStmt emits code to fn for a parallel assignment of rhss to lhss.
-// isDef is true if this is a short variable declaration (:=).
-//
-// Note the similarity with localValueSpec.
-func (b *builder) assignStmt(fn *Function, lhss, rhss []ast.Expr, isDef bool) {
- // Side effects of all LHSs and RHSs must occur in left-to-right order.
- lvals := make([]lvalue, len(lhss))
- isZero := make([]bool, len(lhss))
- for i, lhs := range lhss {
- var lval lvalue = blank{}
- if !isBlankIdent(lhs) {
- if isDef {
- if obj, ok := fn.info.Defs[lhs.(*ast.Ident)].(*types.Var); ok {
- emitLocalVar(fn, obj)
- isZero[i] = true
- }
- }
- lval = b.addr(fn, lhs, false) // non-escaping
- }
- lvals[i] = lval
- }
- if len(lhss) == len(rhss) {
- // Simple assignment: x = f() (!isDef)
- // Parallel assignment: x, y = f(), g() (!isDef)
- // or short var decl: x, y := f(), g() (isDef)
- //
- // In all cases, the RHSs may refer to the LHSs,
- // so we need a storebuf.
- var sb storebuf
- for i := range rhss {
- b.assign(fn, lvals[i], rhss[i], isZero[i], &sb)
- }
- sb.emit(fn)
- } else {
- // e.g. x, y = pos()
- tuple := b.exprN(fn, rhss[0])
- emitDebugRef(fn, rhss[0], tuple, false)
- for i, lval := range lvals {
- lval.store(fn, emitExtract(fn, tuple, i))
- }
- }
-}
-
-// arrayLen returns the length of the array whose composite literal elements are elts.
-func (b *builder) arrayLen(fn *Function, elts []ast.Expr) int64 {
- var max int64 = -1
- var i int64 = -1
- for _, e := range elts {
- if kv, ok := e.(*ast.KeyValueExpr); ok {
- i = b.expr(fn, kv.Key).(*Const).Int64()
- } else {
- i++
- }
- if i > max {
- max = i
- }
- }
- return max + 1
-}
-
-// compLit emits to fn code to initialize a composite literal e at
-// address addr with type typ.
-//
-// Nested composite literals are recursively initialized in place
-// where possible. If isZero is true, compLit assumes that addr
-// holds the zero value for typ.
-//
-// Because the elements of a composite literal may refer to the
-// variables being updated, as in the second line below,
-//
-// x := T{a: 1}
-// x = T{a: x.a}
-//
-// all the reads must occur before all the writes. Thus all stores to
-// loc are emitted to the storebuf sb for later execution.
-//
-// A CompositeLit may have pointer type only in the recursive (nested)
-// case when the type name is implicit. e.g. in []*T{{}}, the inner
-// literal has type *T behaves like &T{}.
-// In that case, addr must hold a T, not a *T.
-func (b *builder) compLit(fn *Function, addr Value, e *ast.CompositeLit, isZero bool, sb *storebuf) {
- typ := typeparams.Deref(fn.typeOf(e)) // retain the named/alias/param type, if any
- switch t := typeparams.CoreType(typ).(type) {
- case *types.Struct:
- if !isZero && len(e.Elts) != t.NumFields() {
- // memclear
- zt := typeparams.MustDeref(addr.Type())
- sb.store(&address{addr, e.Lbrace, nil}, zeroConst(zt))
- isZero = true
- }
- for i, e := range e.Elts {
- fieldIndex := i
- pos := e.Pos()
- if kv, ok := e.(*ast.KeyValueExpr); ok {
- fname := kv.Key.(*ast.Ident).Name
- for i, n := 0, t.NumFields(); i < n; i++ {
- sf := t.Field(i)
- if sf.Name() == fname {
- fieldIndex = i
- pos = kv.Colon
- e = kv.Value
- break
- }
- }
- }
- sf := t.Field(fieldIndex)
- faddr := &FieldAddr{
- X: addr,
- Field: fieldIndex,
- }
- faddr.setPos(pos)
- faddr.setType(types.NewPointer(sf.Type()))
- fn.emit(faddr)
- b.assign(fn, &address{addr: faddr, pos: pos, expr: e}, e, isZero, sb)
- }
-
- case *types.Array, *types.Slice:
- var at *types.Array
- var array Value
- switch t := t.(type) {
- case *types.Slice:
- at = types.NewArray(t.Elem(), b.arrayLen(fn, e.Elts))
- array = emitNew(fn, at, e.Lbrace, "slicelit")
- case *types.Array:
- at = t
- array = addr
-
- if !isZero && int64(len(e.Elts)) != at.Len() {
- // memclear
- zt := typeparams.MustDeref(array.Type())
- sb.store(&address{array, e.Lbrace, nil}, zeroConst(zt))
- }
- }
-
- var idx *Const
- for _, e := range e.Elts {
- pos := e.Pos()
- if kv, ok := e.(*ast.KeyValueExpr); ok {
- idx = b.expr(fn, kv.Key).(*Const)
- pos = kv.Colon
- e = kv.Value
- } else {
- var idxval int64
- if idx != nil {
- idxval = idx.Int64() + 1
- }
- idx = intConst(idxval)
- }
- iaddr := &IndexAddr{
- X: array,
- Index: idx,
- }
- iaddr.setType(types.NewPointer(at.Elem()))
- fn.emit(iaddr)
- if t != at { // slice
- // backing array is unaliased => storebuf not needed.
- b.assign(fn, &address{addr: iaddr, pos: pos, expr: e}, e, true, nil)
- } else {
- b.assign(fn, &address{addr: iaddr, pos: pos, expr: e}, e, true, sb)
- }
- }
-
- if t != at { // slice
- s := &Slice{X: array}
- s.setPos(e.Lbrace)
- s.setType(typ)
- sb.store(&address{addr: addr, pos: e.Lbrace, expr: e}, fn.emit(s))
- }
-
- case *types.Map:
- m := &MakeMap{Reserve: intConst(int64(len(e.Elts)))}
- m.setPos(e.Lbrace)
- m.setType(typ)
- fn.emit(m)
- for _, e := range e.Elts {
- e := e.(*ast.KeyValueExpr)
-
- // If a key expression in a map literal is itself a
- // composite literal, the type may be omitted.
- // For example:
- // map[*struct{}]bool{{}: true}
- // An &-operation may be implied:
- // map[*struct{}]bool{&struct{}{}: true}
- wantAddr := false
- if _, ok := unparen(e.Key).(*ast.CompositeLit); ok {
- wantAddr = isPointerCore(t.Key())
- }
-
- var key Value
- if wantAddr {
- // A CompositeLit never evaluates to a pointer,
- // so if the type of the location is a pointer,
- // an &-operation is implied.
- key = b.addr(fn, e.Key, true).address(fn)
- } else {
- key = b.expr(fn, e.Key)
- }
-
- loc := element{
- m: m,
- k: emitConv(fn, key, t.Key()),
- t: t.Elem(),
- pos: e.Colon,
- }
-
- // We call assign() only because it takes care
- // of any &-operation required in the recursive
- // case, e.g.,
- // map[int]*struct{}{0: {}} implies &struct{}{}.
- // In-place update is of course impossible,
- // and no storebuf is needed.
- b.assign(fn, &loc, e.Value, true, nil)
- }
- sb.store(&address{addr: addr, pos: e.Lbrace, expr: e}, m)
-
- default:
- panic("unexpected CompositeLit type: " + typ.String())
- }
-}
-
-// switchStmt emits to fn code for the switch statement s, optionally
-// labelled by label.
-func (b *builder) switchStmt(fn *Function, s *ast.SwitchStmt, label *lblock) {
- // We treat SwitchStmt like a sequential if-else chain.
- // Multiway dispatch can be recovered later by ssautil.Switches()
- // to those cases that are free of side effects.
- if s.Init != nil {
- b.stmt(fn, s.Init)
- }
- var tag Value = vTrue
- if s.Tag != nil {
- tag = b.expr(fn, s.Tag)
- }
- done := fn.newBasicBlock("switch.done")
- if label != nil {
- label._break = done
- }
- // We pull the default case (if present) down to the end.
- // But each fallthrough label must point to the next
- // body block in source order, so we preallocate a
- // body block (fallthru) for the next case.
- // Unfortunately this makes for a confusing block order.
- var dfltBody *[]ast.Stmt
- var dfltFallthrough *BasicBlock
- var fallthru, dfltBlock *BasicBlock
- ncases := len(s.Body.List)
- for i, clause := range s.Body.List {
- body := fallthru
- if body == nil {
- body = fn.newBasicBlock("switch.body") // first case only
- }
-
- // Preallocate body block for the next case.
- fallthru = done
- if i+1 < ncases {
- fallthru = fn.newBasicBlock("switch.body")
- }
-
- cc := clause.(*ast.CaseClause)
- if cc.List == nil {
- // Default case.
- dfltBody = &cc.Body
- dfltFallthrough = fallthru
- dfltBlock = body
- continue
- }
-
- var nextCond *BasicBlock
- for _, cond := range cc.List {
- nextCond = fn.newBasicBlock("switch.next")
- // TODO(adonovan): opt: when tag==vTrue, we'd
- // get better code if we use b.cond(cond)
- // instead of BinOp(EQL, tag, b.expr(cond))
- // followed by If. Don't forget conversions
- // though.
- cond := emitCompare(fn, token.EQL, tag, b.expr(fn, cond), cond.Pos())
- emitIf(fn, cond, body, nextCond)
- fn.currentBlock = nextCond
- }
- fn.currentBlock = body
- fn.targets = &targets{
- tail: fn.targets,
- _break: done,
- _fallthrough: fallthru,
- }
- b.stmtList(fn, cc.Body)
- fn.targets = fn.targets.tail
- emitJump(fn, done)
- fn.currentBlock = nextCond
- }
- if dfltBlock != nil {
- emitJump(fn, dfltBlock)
- fn.currentBlock = dfltBlock
- fn.targets = &targets{
- tail: fn.targets,
- _break: done,
- _fallthrough: dfltFallthrough,
- }
- b.stmtList(fn, *dfltBody)
- fn.targets = fn.targets.tail
- }
- emitJump(fn, done)
- fn.currentBlock = done
-}
-
-// typeSwitchStmt emits to fn code for the type switch statement s, optionally
-// labelled by label.
-func (b *builder) typeSwitchStmt(fn *Function, s *ast.TypeSwitchStmt, label *lblock) {
- // We treat TypeSwitchStmt like a sequential if-else chain.
- // Multiway dispatch can be recovered later by ssautil.Switches().
-
- // Typeswitch lowering:
- //
- // var x X
- // switch y := x.(type) {
- // case T1, T2: S1 // >1 (y := x)
- // case nil: SN // nil (y := x)
- // default: SD // 0 types (y := x)
- // case T3: S3 // 1 type (y := x.(T3))
- // }
- //
- // ...s.Init...
- // x := eval x
- // .caseT1:
- // t1, ok1 := typeswitch,ok x <T1>
- // if ok1 then goto S1 else goto .caseT2
- // .caseT2:
- // t2, ok2 := typeswitch,ok x <T2>
- // if ok2 then goto S1 else goto .caseNil
- // .S1:
- // y := x
- // ...S1...
- // goto done
- // .caseNil:
- // if t2, ok2 := typeswitch,ok x <T2>
- // if x == nil then goto SN else goto .caseT3
- // .SN:
- // y := x
- // ...SN...
- // goto done
- // .caseT3:
- // t3, ok3 := typeswitch,ok x <T3>
- // if ok3 then goto S3 else goto default
- // .S3:
- // y := t3
- // ...S3...
- // goto done
- // .default:
- // y := x
- // ...SD...
- // goto done
- // .done:
- if s.Init != nil {
- b.stmt(fn, s.Init)
- }
-
- var x Value
- switch ass := s.Assign.(type) {
- case *ast.ExprStmt: // x.(type)
- x = b.expr(fn, unparen(ass.X).(*ast.TypeAssertExpr).X)
- case *ast.AssignStmt: // y := x.(type)
- x = b.expr(fn, unparen(ass.Rhs[0]).(*ast.TypeAssertExpr).X)
- }
-
- done := fn.newBasicBlock("typeswitch.done")
- if label != nil {
- label._break = done
- }
- var default_ *ast.CaseClause
- for _, clause := range s.Body.List {
- cc := clause.(*ast.CaseClause)
- if cc.List == nil {
- default_ = cc
- continue
- }
- body := fn.newBasicBlock("typeswitch.body")
- var next *BasicBlock
- var casetype types.Type
- var ti Value // ti, ok := typeassert,ok x <Ti>
- for _, cond := range cc.List {
- next = fn.newBasicBlock("typeswitch.next")
- casetype = fn.typeOf(cond)
- var condv Value
- if casetype == tUntypedNil {
- condv = emitCompare(fn, token.EQL, x, zeroConst(x.Type()), cond.Pos())
- ti = x
- } else {
- yok := emitTypeTest(fn, x, casetype, cc.Case)
- ti = emitExtract(fn, yok, 0)
- condv = emitExtract(fn, yok, 1)
- }
- emitIf(fn, condv, body, next)
- fn.currentBlock = next
- }
- if len(cc.List) != 1 {
- ti = x
- }
- fn.currentBlock = body
- b.typeCaseBody(fn, cc, ti, done)
- fn.currentBlock = next
- }
- if default_ != nil {
- b.typeCaseBody(fn, default_, x, done)
- } else {
- emitJump(fn, done)
- }
- fn.currentBlock = done
-}
-
-func (b *builder) typeCaseBody(fn *Function, cc *ast.CaseClause, x Value, done *BasicBlock) {
- if obj, ok := fn.info.Implicits[cc].(*types.Var); ok {
- // In a switch y := x.(type), each case clause
- // implicitly declares a distinct object y.
- // In a single-type case, y has that type.
- // In multi-type cases, 'case nil' and default,
- // y has the same type as the interface operand.
- emitStore(fn, emitLocalVar(fn, obj), x, obj.Pos())
- }
- fn.targets = &targets{
- tail: fn.targets,
- _break: done,
- }
- b.stmtList(fn, cc.Body)
- fn.targets = fn.targets.tail
- emitJump(fn, done)
-}
-
-// selectStmt emits to fn code for the select statement s, optionally
-// labelled by label.
-func (b *builder) selectStmt(fn *Function, s *ast.SelectStmt, label *lblock) {
- // A blocking select of a single case degenerates to a
- // simple send or receive.
- // TODO(adonovan): opt: is this optimization worth its weight?
- if len(s.Body.List) == 1 {
- clause := s.Body.List[0].(*ast.CommClause)
- if clause.Comm != nil {
- b.stmt(fn, clause.Comm)
- done := fn.newBasicBlock("select.done")
- if label != nil {
- label._break = done
- }
- fn.targets = &targets{
- tail: fn.targets,
- _break: done,
- }
- b.stmtList(fn, clause.Body)
- fn.targets = fn.targets.tail
- emitJump(fn, done)
- fn.currentBlock = done
- return
- }
- }
-
- // First evaluate all channels in all cases, and find
- // the directions of each state.
- var states []*SelectState
- blocking := true
- debugInfo := fn.debugInfo()
- for _, clause := range s.Body.List {
- var st *SelectState
- switch comm := clause.(*ast.CommClause).Comm.(type) {
- case nil: // default case
- blocking = false
- continue
-
- case *ast.SendStmt: // ch<- i
- ch := b.expr(fn, comm.Chan)
- chtyp := typeparams.CoreType(fn.typ(ch.Type())).(*types.Chan)
- st = &SelectState{
- Dir: types.SendOnly,
- Chan: ch,
- Send: emitConv(fn, b.expr(fn, comm.Value), chtyp.Elem()),
- Pos: comm.Arrow,
- }
- if debugInfo {
- st.DebugNode = comm
- }
-
- case *ast.AssignStmt: // x := <-ch
- recv := unparen(comm.Rhs[0]).(*ast.UnaryExpr)
- st = &SelectState{
- Dir: types.RecvOnly,
- Chan: b.expr(fn, recv.X),
- Pos: recv.OpPos,
- }
- if debugInfo {
- st.DebugNode = recv
- }
-
- case *ast.ExprStmt: // <-ch
- recv := unparen(comm.X).(*ast.UnaryExpr)
- st = &SelectState{
- Dir: types.RecvOnly,
- Chan: b.expr(fn, recv.X),
- Pos: recv.OpPos,
- }
- if debugInfo {
- st.DebugNode = recv
- }
- }
- states = append(states, st)
- }
-
- // We dispatch on the (fair) result of Select using a
- // sequential if-else chain, in effect:
- //
- // idx, recvOk, r0...r_n-1 := select(...)
- // if idx == 0 { // receive on channel 0 (first receive => r0)
- // x, ok := r0, recvOk
- // ...state0...
- // } else if v == 1 { // send on channel 1
- // ...state1...
- // } else {
- // ...default...
- // }
- sel := &Select{
- States: states,
- Blocking: blocking,
- }
- sel.setPos(s.Select)
- var vars []*types.Var
- vars = append(vars, varIndex, varOk)
- for _, st := range states {
- if st.Dir == types.RecvOnly {
- chtyp := typeparams.CoreType(fn.typ(st.Chan.Type())).(*types.Chan)
- vars = append(vars, anonVar(chtyp.Elem()))
- }
- }
- sel.setType(types.NewTuple(vars...))
-
- fn.emit(sel)
- idx := emitExtract(fn, sel, 0)
-
- done := fn.newBasicBlock("select.done")
- if label != nil {
- label._break = done
- }
-
- var defaultBody *[]ast.Stmt
- state := 0
- r := 2 // index in 'sel' tuple of value; increments if st.Dir==RECV
- for _, cc := range s.Body.List {
- clause := cc.(*ast.CommClause)
- if clause.Comm == nil {
- defaultBody = &clause.Body
- continue
- }
- body := fn.newBasicBlock("select.body")
- next := fn.newBasicBlock("select.next")
- emitIf(fn, emitCompare(fn, token.EQL, idx, intConst(int64(state)), token.NoPos), body, next)
- fn.currentBlock = body
- fn.targets = &targets{
- tail: fn.targets,
- _break: done,
- }
- switch comm := clause.Comm.(type) {
- case *ast.ExprStmt: // <-ch
- if debugInfo {
- v := emitExtract(fn, sel, r)
- emitDebugRef(fn, states[state].DebugNode.(ast.Expr), v, false)
- }
- r++
-
- case *ast.AssignStmt: // x := <-states[state].Chan
- if comm.Tok == token.DEFINE {
- emitLocalVar(fn, identVar(fn, comm.Lhs[0].(*ast.Ident)))
- }
- x := b.addr(fn, comm.Lhs[0], false) // non-escaping
- v := emitExtract(fn, sel, r)
- if debugInfo {
- emitDebugRef(fn, states[state].DebugNode.(ast.Expr), v, false)
- }
- x.store(fn, v)
-
- if len(comm.Lhs) == 2 { // x, ok := ...
- if comm.Tok == token.DEFINE {
- emitLocalVar(fn, identVar(fn, comm.Lhs[1].(*ast.Ident)))
- }
- ok := b.addr(fn, comm.Lhs[1], false) // non-escaping
- ok.store(fn, emitExtract(fn, sel, 1))
- }
- r++
- }
- b.stmtList(fn, clause.Body)
- fn.targets = fn.targets.tail
- emitJump(fn, done)
- fn.currentBlock = next
- state++
- }
- if defaultBody != nil {
- fn.targets = &targets{
- tail: fn.targets,
- _break: done,
- }
- b.stmtList(fn, *defaultBody)
- fn.targets = fn.targets.tail
- } else {
- // A blocking select must match some case.
- // (This should really be a runtime.errorString, not a string.)
- fn.emit(&Panic{
- X: emitConv(fn, stringConst("blocking select matched no case"), tEface),
- })
- fn.currentBlock = fn.newBasicBlock("unreachable")
- }
- emitJump(fn, done)
- fn.currentBlock = done
-}
-
-// forStmt emits to fn code for the for statement s, optionally
-// labelled by label.
-func (b *builder) forStmt(fn *Function, s *ast.ForStmt, label *lblock) {
- // Use forStmtGo122 instead if it applies.
- if s.Init != nil {
- if assign, ok := s.Init.(*ast.AssignStmt); ok && assign.Tok == token.DEFINE {
- if versions.AtLeast(fn.goversion, versions.Go1_22) {
- b.forStmtGo122(fn, s, label)
- return
- }
- }
- }
-
- // ...init...
- // jump loop
- // loop:
- // if cond goto body else done
- // body:
- // ...body...
- // jump post
- // post: (target of continue)
- // ...post...
- // jump loop
- // done: (target of break)
- if s.Init != nil {
- b.stmt(fn, s.Init)
- }
-
- body := fn.newBasicBlock("for.body")
- done := fn.newBasicBlock("for.done") // target of 'break'
- loop := body // target of back-edge
- if s.Cond != nil {
- loop = fn.newBasicBlock("for.loop")
- }
- cont := loop // target of 'continue'
- if s.Post != nil {
- cont = fn.newBasicBlock("for.post")
- }
- if label != nil {
- label._break = done
- label._continue = cont
- }
- emitJump(fn, loop)
- fn.currentBlock = loop
- if loop != body {
- b.cond(fn, s.Cond, body, done)
- fn.currentBlock = body
- }
- fn.targets = &targets{
- tail: fn.targets,
- _break: done,
- _continue: cont,
- }
- b.stmt(fn, s.Body)
- fn.targets = fn.targets.tail
- emitJump(fn, cont)
-
- if s.Post != nil {
- fn.currentBlock = cont
- b.stmt(fn, s.Post)
- emitJump(fn, loop) // back-edge
- }
- fn.currentBlock = done
-}
-
-// forStmtGo122 emits to fn code for the for statement s, optionally
-// labelled by label. s must define its variables.
-//
-// This allocates once per loop iteration. This is only correct in
-// GoVersions >= go1.22.
-func (b *builder) forStmtGo122(fn *Function, s *ast.ForStmt, label *lblock) {
- // i_outer = alloc[T]
- // *i_outer = ...init... // under objects[i] = i_outer
- // jump loop
- // loop:
- // i = phi [head: i_outer, loop: i_next]
- // ...cond... // under objects[i] = i
- // if cond goto body else done
- // body:
- // ...body... // under objects[i] = i (same as loop)
- // jump post
- // post:
- // tmp = *i
- // i_next = alloc[T]
- // *i_next = tmp
- // ...post... // under objects[i] = i_next
- // goto loop
- // done:
-
- init := s.Init.(*ast.AssignStmt)
- startingBlocks := len(fn.Blocks)
-
- pre := fn.currentBlock // current block before starting
- loop := fn.newBasicBlock("for.loop") // target of back-edge
- body := fn.newBasicBlock("for.body")
- post := fn.newBasicBlock("for.post") // target of 'continue'
- done := fn.newBasicBlock("for.done") // target of 'break'
-
- // For each of the n loop variables, we create five SSA values,
- // outer, phi, next, load, and store in pre, loop, and post.
- // There is no limit on n.
- type loopVar struct {
- obj *types.Var
- outer *Alloc
- phi *Phi
- load *UnOp
- next *Alloc
- store *Store
- }
- vars := make([]loopVar, len(init.Lhs))
- for i, lhs := range init.Lhs {
- v := identVar(fn, lhs.(*ast.Ident))
- typ := fn.typ(v.Type())
-
- fn.currentBlock = pre
- outer := emitLocal(fn, typ, v.Pos(), v.Name())
-
- fn.currentBlock = loop
- phi := &Phi{Comment: v.Name()}
- phi.pos = v.Pos()
- phi.typ = outer.Type()
- fn.emit(phi)
-
- fn.currentBlock = post
- // If next is local, it reuses the address and zeroes the old value so
- // load before allocating next.
- load := emitLoad(fn, phi)
- next := emitLocal(fn, typ, v.Pos(), v.Name())
- store := emitStore(fn, next, load, token.NoPos)
-
- phi.Edges = []Value{outer, next} // pre edge is emitted before post edge.
-
- vars[i] = loopVar{v, outer, phi, load, next, store}
- }
-
- // ...init... under fn.objects[v] = i_outer
- fn.currentBlock = pre
- for _, v := range vars {
- fn.vars[v.obj] = v.outer
- }
- const isDef = false // assign to already-allocated outers
- b.assignStmt(fn, init.Lhs, init.Rhs, isDef)
- if label != nil {
- label._break = done
- label._continue = post
- }
- emitJump(fn, loop)
-
- // ...cond... under fn.objects[v] = i
- fn.currentBlock = loop
- for _, v := range vars {
- fn.vars[v.obj] = v.phi
- }
- if s.Cond != nil {
- b.cond(fn, s.Cond, body, done)
- } else {
- emitJump(fn, body)
- }
-
- // ...body... under fn.objects[v] = i
- fn.currentBlock = body
- fn.targets = &targets{
- tail: fn.targets,
- _break: done,
- _continue: post,
- }
- b.stmt(fn, s.Body)
- fn.targets = fn.targets.tail
- emitJump(fn, post)
-
- // ...post... under fn.objects[v] = i_next
- for _, v := range vars {
- fn.vars[v.obj] = v.next
- }
- fn.currentBlock = post
- if s.Post != nil {
- b.stmt(fn, s.Post)
- }
- emitJump(fn, loop) // back-edge
- fn.currentBlock = done
-
- // For each loop variable that does not escape,
- // (the common case), fuse its next cells into its
- // (local) outer cell as they have disjoint live ranges.
- //
- // It is sufficient to test whether i_next escapes,
- // because its Heap flag will be marked true if either
- // the cond or post expression causes i to escape
- // (because escape distributes over phi).
- var nlocals int
- for _, v := range vars {
- if !v.next.Heap {
- nlocals++
- }
- }
- if nlocals > 0 {
- replace := make(map[Value]Value, 2*nlocals)
- dead := make(map[Instruction]bool, 4*nlocals)
- for _, v := range vars {
- if !v.next.Heap {
- replace[v.next] = v.outer
- replace[v.phi] = v.outer
- dead[v.phi], dead[v.next], dead[v.load], dead[v.store] = true, true, true, true
- }
- }
-
- // Replace all uses of i_next and phi with i_outer.
- // Referrers have not been built for fn yet so only update Instruction operands.
- // We need only look within the blocks added by the loop.
- var operands []*Value // recycle storage
- for _, b := range fn.Blocks[startingBlocks:] {
- for _, instr := range b.Instrs {
- operands = instr.Operands(operands[:0])
- for _, ptr := range operands {
- k := *ptr
- if v := replace[k]; v != nil {
- *ptr = v
- }
- }
- }
- }
-
- // Remove instructions for phi, load, and store.
- // lift() will remove the unused i_next *Alloc.
- isDead := func(i Instruction) bool { return dead[i] }
- loop.Instrs = removeInstrsIf(loop.Instrs, isDead)
- post.Instrs = removeInstrsIf(post.Instrs, isDead)
- }
-}
-
-// rangeIndexed emits to fn the header for an integer-indexed loop
-// over array, *array or slice value x.
-// The v result is defined only if tv is non-nil.
-// forPos is the position of the "for" token.
-func (b *builder) rangeIndexed(fn *Function, x Value, tv types.Type, pos token.Pos) (k, v Value, loop, done *BasicBlock) {
- //
- // length = len(x)
- // index = -1
- // loop: (target of continue)
- // index++
- // if index < length goto body else done
- // body:
- // k = index
- // v = x[index]
- // ...body...
- // jump loop
- // done: (target of break)
-
- // Determine number of iterations.
- var length Value
- dt := typeparams.Deref(x.Type())
- if arr, ok := typeparams.CoreType(dt).(*types.Array); ok {
- // For array or *array, the number of iterations is
- // known statically thanks to the type. We avoid a
- // data dependence upon x, permitting later dead-code
- // elimination if x is pure, static unrolling, etc.
- // Ranging over a nil *array may have >0 iterations.
- // We still generate code for x, in case it has effects.
- length = intConst(arr.Len())
- } else {
- // length = len(x).
- var c Call
- c.Call.Value = makeLen(x.Type())
- c.Call.Args = []Value{x}
- c.setType(tInt)
- length = fn.emit(&c)
- }
-
- index := emitLocal(fn, tInt, token.NoPos, "rangeindex")
- emitStore(fn, index, intConst(-1), pos)
-
- loop = fn.newBasicBlock("rangeindex.loop")
- emitJump(fn, loop)
- fn.currentBlock = loop
-
- incr := &BinOp{
- Op: token.ADD,
- X: emitLoad(fn, index),
- Y: vOne,
- }
- incr.setType(tInt)
- emitStore(fn, index, fn.emit(incr), pos)
-
- body := fn.newBasicBlock("rangeindex.body")
- done = fn.newBasicBlock("rangeindex.done")
- emitIf(fn, emitCompare(fn, token.LSS, incr, length, token.NoPos), body, done)
- fn.currentBlock = body
-
- k = emitLoad(fn, index)
- if tv != nil {
- switch t := typeparams.CoreType(x.Type()).(type) {
- case *types.Array:
- instr := &Index{
- X: x,
- Index: k,
- }
- instr.setType(t.Elem())
- instr.setPos(x.Pos())
- v = fn.emit(instr)
-
- case *types.Pointer: // *array
- instr := &IndexAddr{
- X: x,
- Index: k,
- }
- instr.setType(types.NewPointer(t.Elem().Underlying().(*types.Array).Elem()))
- instr.setPos(x.Pos())
- v = emitLoad(fn, fn.emit(instr))
-
- case *types.Slice:
- instr := &IndexAddr{
- X: x,
- Index: k,
- }
- instr.setType(types.NewPointer(t.Elem()))
- instr.setPos(x.Pos())
- v = emitLoad(fn, fn.emit(instr))
-
- default:
- panic("rangeIndexed x:" + t.String())
- }
- }
- return
-}
-
-// rangeIter emits to fn the header for a loop using
-// Range/Next/Extract to iterate over map or string value x.
-// tk and tv are the types of the key/value results k and v, or nil
-// if the respective component is not wanted.
-func (b *builder) rangeIter(fn *Function, x Value, tk, tv types.Type, pos token.Pos) (k, v Value, loop, done *BasicBlock) {
- //
- // it = range x
- // loop: (target of continue)
- // okv = next it (ok, key, value)
- // ok = extract okv #0
- // if ok goto body else done
- // body:
- // k = extract okv #1
- // v = extract okv #2
- // ...body...
- // jump loop
- // done: (target of break)
- //
-
- if tk == nil {
- tk = tInvalid
- }
- if tv == nil {
- tv = tInvalid
- }
-
- rng := &Range{X: x}
- rng.setPos(pos)
- rng.setType(tRangeIter)
- it := fn.emit(rng)
-
- loop = fn.newBasicBlock("rangeiter.loop")
- emitJump(fn, loop)
- fn.currentBlock = loop
-
- okv := &Next{
- Iter: it,
- IsString: isBasic(typeparams.CoreType(x.Type())),
- }
- okv.setType(types.NewTuple(
- varOk,
- newVar("k", tk),
- newVar("v", tv),
- ))
- fn.emit(okv)
-
- body := fn.newBasicBlock("rangeiter.body")
- done = fn.newBasicBlock("rangeiter.done")
- emitIf(fn, emitExtract(fn, okv, 0), body, done)
- fn.currentBlock = body
-
- if tk != tInvalid {
- k = emitExtract(fn, okv, 1)
- }
- if tv != tInvalid {
- v = emitExtract(fn, okv, 2)
- }
- return
-}
-
-// rangeChan emits to fn the header for a loop that receives from
-// channel x until it fails.
-// tk is the channel's element type, or nil if the k result is
-// not wanted
-// pos is the position of the '=' or ':=' token.
-func (b *builder) rangeChan(fn *Function, x Value, tk types.Type, pos token.Pos) (k Value, loop, done *BasicBlock) {
- //
- // loop: (target of continue)
- // ko = <-x (key, ok)
- // ok = extract ko #1
- // if ok goto body else done
- // body:
- // k = extract ko #0
- // ...body...
- // goto loop
- // done: (target of break)
-
- loop = fn.newBasicBlock("rangechan.loop")
- emitJump(fn, loop)
- fn.currentBlock = loop
- recv := &UnOp{
- Op: token.ARROW,
- X: x,
- CommaOk: true,
- }
- recv.setPos(pos)
- recv.setType(types.NewTuple(
- newVar("k", typeparams.CoreType(x.Type()).(*types.Chan).Elem()),
- varOk,
- ))
- ko := fn.emit(recv)
- body := fn.newBasicBlock("rangechan.body")
- done = fn.newBasicBlock("rangechan.done")
- emitIf(fn, emitExtract(fn, ko, 1), body, done)
- fn.currentBlock = body
- if tk != nil {
- k = emitExtract(fn, ko, 0)
- }
- return
-}
-
-// rangeInt emits to fn the header for a range loop with an integer operand.
-// tk is the key value's type, or nil if the k result is not wanted.
-// pos is the position of the "for" token.
-func (b *builder) rangeInt(fn *Function, x Value, tk types.Type, pos token.Pos) (k Value, loop, done *BasicBlock) {
- //
- // iter = 0
- // if 0 < x goto body else done
- // loop: (target of continue)
- // iter++
- // if iter < x goto body else done
- // body:
- // k = x
- // ...body...
- // jump loop
- // done: (target of break)
-
- if isUntyped(x.Type()) {
- x = emitConv(fn, x, tInt)
- }
-
- T := x.Type()
- iter := emitLocal(fn, T, token.NoPos, "rangeint.iter")
- // x may be unsigned. Avoid initializing x to -1.
-
- body := fn.newBasicBlock("rangeint.body")
- done = fn.newBasicBlock("rangeint.done")
- emitIf(fn, emitCompare(fn, token.LSS, zeroConst(T), x, token.NoPos), body, done)
-
- loop = fn.newBasicBlock("rangeint.loop")
- fn.currentBlock = loop
-
- incr := &BinOp{
- Op: token.ADD,
- X: emitLoad(fn, iter),
- Y: emitConv(fn, vOne, T),
- }
- incr.setType(T)
- emitStore(fn, iter, fn.emit(incr), pos)
- emitIf(fn, emitCompare(fn, token.LSS, incr, x, token.NoPos), body, done)
- fn.currentBlock = body
-
- if tk != nil {
- // Integer types (int, uint8, etc.) are named and
- // we know that k is assignable to x when tk != nil.
- // This implies tk and T are identical so no conversion is needed.
- k = emitLoad(fn, iter)
- }
-
- return
-}
-
-// rangeStmt emits to fn code for the range statement s, optionally
-// labelled by label.
-func (b *builder) rangeStmt(fn *Function, s *ast.RangeStmt, label *lblock) {
- var tk, tv types.Type
- if s.Key != nil && !isBlankIdent(s.Key) {
- tk = fn.typeOf(s.Key)
- }
- if s.Value != nil && !isBlankIdent(s.Value) {
- tv = fn.typeOf(s.Value)
- }
-
- // create locals for s.Key and s.Value.
- createVars := func() {
- // Unlike a short variable declaration, a RangeStmt
- // using := never redeclares an existing variable; it
- // always creates a new one.
- if tk != nil {
- emitLocalVar(fn, identVar(fn, s.Key.(*ast.Ident)))
- }
- if tv != nil {
- emitLocalVar(fn, identVar(fn, s.Value.(*ast.Ident)))
- }
- }
-
- afterGo122 := versions.AtLeast(fn.goversion, versions.Go1_22)
- if s.Tok == token.DEFINE && !afterGo122 {
- // pre-go1.22: If iteration variables are defined (:=), this
- // occurs once outside the loop.
- createVars()
- }
-
- x := b.expr(fn, s.X)
-
- var k, v Value
- var loop, done *BasicBlock
- switch rt := typeparams.CoreType(x.Type()).(type) {
- case *types.Slice, *types.Array, *types.Pointer: // *array
- k, v, loop, done = b.rangeIndexed(fn, x, tv, s.For)
-
- case *types.Chan:
- k, loop, done = b.rangeChan(fn, x, tk, s.For)
-
- case *types.Map:
- k, v, loop, done = b.rangeIter(fn, x, tk, tv, s.For)
-
- case *types.Basic:
- switch {
- case rt.Info()&types.IsString != 0:
- k, v, loop, done = b.rangeIter(fn, x, tk, tv, s.For)
-
- case rt.Info()&types.IsInteger != 0:
- k, loop, done = b.rangeInt(fn, x, tk, s.For)
-
- default:
- panic("Cannot range over basic type: " + rt.String())
- }
-
- case *types.Signature:
- // Special case rewrite (fn.goversion >= go1.23):
- // for x := range f { ... }
- // into
- // f(func(x T) bool { ... })
- b.rangeFunc(fn, x, tk, tv, s, label)
- return
-
- default:
- panic("Cannot range over: " + rt.String())
- }
-
- if s.Tok == token.DEFINE && afterGo122 {
- // go1.22: If iteration variables are defined (:=), this occurs inside the loop.
- createVars()
- }
-
- // Evaluate both LHS expressions before we update either.
- var kl, vl lvalue
- if tk != nil {
- kl = b.addr(fn, s.Key, false) // non-escaping
- }
- if tv != nil {
- vl = b.addr(fn, s.Value, false) // non-escaping
- }
- if tk != nil {
- kl.store(fn, k)
- }
- if tv != nil {
- vl.store(fn, v)
- }
-
- if label != nil {
- label._break = done
- label._continue = loop
- }
-
- fn.targets = &targets{
- tail: fn.targets,
- _break: done,
- _continue: loop,
- }
- b.stmt(fn, s.Body)
- fn.targets = fn.targets.tail
- emitJump(fn, loop) // back-edge
- fn.currentBlock = done
-}
-
-// rangeFunc emits to fn code for the range-over-func rng.Body of the iterator
-// function x, optionally labelled by label. It creates a new anonymous function
-// yield for rng and builds the function.
-func (b *builder) rangeFunc(fn *Function, x Value, tk, tv types.Type, rng *ast.RangeStmt, label *lblock) {
- // Consider the SSA code for the outermost range-over-func in fn:
- //
- // func fn(...) (ret R) {
- // ...
- // for k, v = range x {
- // ...
- // }
- // ...
- // }
- //
- // The code emitted into fn will look something like this.
- //
- // loop:
- // jump := READY
- // y := make closure yield [ret, deferstack, jump, k, v]
- // x(y)
- // switch jump {
- // [see resuming execution]
- // }
- // goto done
- // done:
- // ...
- //
- // where yield is a new synthetic yield function:
- //
- // func yield(_k tk, _v tv) bool
- // free variables: [ret, stack, jump, k, v]
- // {
- // entry:
- // if jump != READY then goto invalid else valid
- // invalid:
- // panic("iterator called when it is not in a ready state")
- // valid:
- // jump = BUSY
- // k = _k
- // v = _v
- // ...
- // cont:
- // jump = READY
- // return true
- // }
- //
- // Yield state:
- //
- // Each range loop has an associated jump variable that records
- // the state of the iterator. A yield function is initially
- // in a READY (0) and callable state. If the yield function is called
- // and is not in READY state, it panics. When it is called in a callable
- // state, it becomes BUSY. When execution reaches the end of the body
- // of the loop (or a continue statement targeting the loop is executed),
- // the yield function returns true and resumes being in a READY state.
- // After the iterator function x(y) returns, then if the yield function
- // is in a READY state, the yield enters the DONE state.
- //
- // Each lowered control statement (break X, continue X, goto Z, or return)
- // that exits the loop sets the variable to a unique positive EXIT value,
- // before returning false from the yield function.
- //
- // If the yield function returns abruptly due to a panic or GoExit,
- // it remains in a BUSY state. The generated code asserts that, after
- // the iterator call x(y) returns normally, the jump variable state
- // is DONE.
- //
- // Resuming execution:
- //
- // The code generated for the range statement checks the jump
- // variable to determine how to resume execution.
- //
- // switch jump {
- // case BUSY: panic("...")
- // case DONE: goto done
- // case READY: state = DONE; goto done
- // case 123: ... // action for exit 123.
- // case 456: ... // action for exit 456.
- // ...
- // }
- //
- // Forward goto statements within a yield are jumps to labels that
- // have not yet been traversed in fn. They may be in the Body of the
- // function. What we emit for these is:
- //
- // goto target
- // target:
- // ...
- //
- // We leave an unresolved exit in yield.exits to check at the end
- // of building yield if it encountered target in the body. If it
- // encountered target, no additional work is required. Otherwise,
- // the yield emits a new early exit in the basic block for target.
- // We expect that blockopt will fuse the early exit into the case
- // block later. The unresolved exit is then added to yield.parent.exits.
-
- loop := fn.newBasicBlock("rangefunc.loop")
- done := fn.newBasicBlock("rangefunc.done")
-
- // These are targets within y.
- fn.targets = &targets{
- tail: fn.targets,
- _break: done,
- // _continue is within y.
- }
- if label != nil {
- label._break = done
- // _continue is within y
- }
-
- emitJump(fn, loop)
- fn.currentBlock = loop
-
- // loop:
- // jump := READY
-
- anonIdx := len(fn.AnonFuncs)
-
- jump := newVar(fmt.Sprintf("jump$%d", anonIdx+1), tInt)
- emitLocalVar(fn, jump) // zero value is READY
-
- xsig := typeparams.CoreType(x.Type()).(*types.Signature)
- ysig := typeparams.CoreType(xsig.Params().At(0).Type()).(*types.Signature)
-
- /* synthetic yield function for body of range-over-func loop */
- y := &Function{
- name: fmt.Sprintf("%s$%d", fn.Name(), anonIdx+1),
- Signature: ysig,
- Synthetic: "range-over-func yield",
- pos: rangePosition(rng),
- parent: fn,
- anonIdx: int32(len(fn.AnonFuncs)),
- Pkg: fn.Pkg,
- Prog: fn.Prog,
- syntax: rng,
- info: fn.info,
- goversion: fn.goversion,
- build: (*builder).buildYieldFunc,
- topLevelOrigin: nil,
- typeparams: fn.typeparams,
- typeargs: fn.typeargs,
- subst: fn.subst,
- jump: jump,
- deferstack: fn.deferstack,
- returnVars: fn.returnVars, // use the parent's return variables
- uniq: fn.uniq, // start from parent's unique values
- }
-
- // If the RangeStmt has a label, this is how it is passed to buildYieldFunc.
- if label != nil {
- y.lblocks = map[*types.Label]*lblock{label.label: nil}
- }
- fn.AnonFuncs = append(fn.AnonFuncs, y)
-
- // Build y immediately. It may:
- // * cause fn's locals to escape, and
- // * create new exit nodes in exits.
- // (y is not marked 'built' until the end of the enclosing FuncDecl.)
- unresolved := len(fn.exits)
- y.build(b, y)
- fn.uniq = y.uniq // resume after y's unique values
-
- // Emit the call of y.
- // c := MakeClosure y
- // x(c)
- c := &MakeClosure{Fn: y}
- c.setType(ysig)
- for _, fv := range y.FreeVars {
- c.Bindings = append(c.Bindings, fv.outer)
- fv.outer = nil
- }
- fn.emit(c)
- call := Call{
- Call: CallCommon{
- Value: x,
- Args: []Value{c},
- pos: token.NoPos,
- },
- }
- call.setType(xsig.Results())
- fn.emit(&call)
-
- exits := fn.exits[unresolved:]
- b.buildYieldResume(fn, jump, exits, done)
-
- emitJump(fn, done)
- fn.currentBlock = done
-}
-
-// buildYieldResume emits to fn code for how to resume execution once a call to
-// the iterator function over the yield function returns x(y). It does this by building
-// a switch over the value of jump for when it is READY, BUSY, or EXIT(id).
-func (b *builder) buildYieldResume(fn *Function, jump *types.Var, exits []*exit, done *BasicBlock) {
- // v := *jump
- // switch v {
- // case BUSY: panic("...")
- // case READY: jump = DONE; goto done
- // case EXIT(a): ...
- // case EXIT(b): ...
- // ...
- // }
- v := emitLoad(fn, fn.lookup(jump, false))
-
- // case BUSY: panic("...")
- isbusy := fn.newBasicBlock("rangefunc.resume.busy")
- ifready := fn.newBasicBlock("rangefunc.resume.ready.check")
- emitIf(fn, emitCompare(fn, token.EQL, v, jBusy, token.NoPos), isbusy, ifready)
- fn.currentBlock = isbusy
- fn.emit(&Panic{
- X: emitConv(fn, stringConst("iterator call did not preserve panic"), tEface),
- })
- fn.currentBlock = ifready
-
- // case READY: jump = DONE; goto done
- isready := fn.newBasicBlock("rangefunc.resume.ready")
- ifexit := fn.newBasicBlock("rangefunc.resume.exits")
- emitIf(fn, emitCompare(fn, token.EQL, v, jReady, token.NoPos), isready, ifexit)
- fn.currentBlock = isready
- storeVar(fn, jump, jDone, token.NoPos)
- emitJump(fn, done)
- fn.currentBlock = ifexit
-
- for _, e := range exits {
- id := intConst(e.id)
-
- // case EXIT(id): { /* do e */ }
- cond := emitCompare(fn, token.EQL, v, id, e.pos)
- matchb := fn.newBasicBlock("rangefunc.resume.match")
- cndb := fn.newBasicBlock("rangefunc.resume.cnd")
- emitIf(fn, cond, matchb, cndb)
- fn.currentBlock = matchb
-
- // Cases to fill in the { /* do e */ } bit.
- switch {
- case e.label != nil: // forward goto?
- // case EXIT(id): goto lb // label
- lb := fn.lblockOf(e.label)
- // Do not mark lb as resolved.
- // If fn does not contain label, lb remains unresolved and
- // fn must itself be a range-over-func function. lb will be:
- // lb:
- // fn.jump = id
- // return false
- emitJump(fn, lb._goto)
-
- case e.to != fn: // e jumps to an ancestor of fn?
- // case EXIT(id): { fn.jump = id; return false }
- // fn is a range-over-func function.
- storeVar(fn, fn.jump, id, token.NoPos)
- fn.emit(&Return{Results: []Value{vFalse}, pos: e.pos})
-
- case e.block == nil && e.label == nil: // return from fn?
- // case EXIT(id): { return ... }
- fn.emit(new(RunDefers))
- results := make([]Value, len(fn.results))
- for i, r := range fn.results {
- results[i] = emitLoad(fn, r)
- }
- fn.emit(&Return{Results: results, pos: e.pos})
-
- case e.block != nil:
- // case EXIT(id): goto block
- emitJump(fn, e.block)
-
- default:
- panic("unreachable")
- }
- fn.currentBlock = cndb
- }
-}
-
-// stmt lowers statement s to SSA form, emitting code to fn.
-func (b *builder) stmt(fn *Function, _s ast.Stmt) {
- // The label of the current statement. If non-nil, its _goto
- // target is always set; its _break and _continue are set only
- // within the body of switch/typeswitch/select/for/range.
- // It is effectively an additional default-nil parameter of stmt().
- var label *lblock
-start:
- switch s := _s.(type) {
- case *ast.EmptyStmt:
- // ignore. (Usually removed by gofmt.)
-
- case *ast.DeclStmt: // Con, Var or Typ
- d := s.Decl.(*ast.GenDecl)
- if d.Tok == token.VAR {
- for _, spec := range d.Specs {
- if vs, ok := spec.(*ast.ValueSpec); ok {
- b.localValueSpec(fn, vs)
- }
- }
- }
-
- case *ast.LabeledStmt:
- if s.Label.Name == "_" {
- // Blank labels can't be the target of a goto, break,
- // or continue statement, so we don't need a new block.
- _s = s.Stmt
- goto start
- }
- label = fn.lblockOf(fn.label(s.Label))
- label.resolved = true
- emitJump(fn, label._goto)
- fn.currentBlock = label._goto
- _s = s.Stmt
- goto start // effectively: tailcall stmt(fn, s.Stmt, label)
-
- case *ast.ExprStmt:
- b.expr(fn, s.X)
-
- case *ast.SendStmt:
- chtyp := typeparams.CoreType(fn.typeOf(s.Chan)).(*types.Chan)
- fn.emit(&Send{
- Chan: b.expr(fn, s.Chan),
- X: emitConv(fn, b.expr(fn, s.Value), chtyp.Elem()),
- pos: s.Arrow,
- })
-
- case *ast.IncDecStmt:
- op := token.ADD
- if s.Tok == token.DEC {
- op = token.SUB
- }
- loc := b.addr(fn, s.X, false)
- b.assignOp(fn, loc, NewConst(constant.MakeInt64(1), loc.typ()), op, s.Pos())
-
- case *ast.AssignStmt:
- switch s.Tok {
- case token.ASSIGN, token.DEFINE:
- b.assignStmt(fn, s.Lhs, s.Rhs, s.Tok == token.DEFINE)
-
- default: // +=, etc.
- op := s.Tok + token.ADD - token.ADD_ASSIGN
- b.assignOp(fn, b.addr(fn, s.Lhs[0], false), b.expr(fn, s.Rhs[0]), op, s.Pos())
- }
-
- case *ast.GoStmt:
- // The "intrinsics" new/make/len/cap are forbidden here.
- // panic is treated like an ordinary function call.
- v := Go{pos: s.Go}
- b.setCall(fn, s.Call, &v.Call)
- fn.emit(&v)
-
- case *ast.DeferStmt:
- // The "intrinsics" new/make/len/cap are forbidden here.
- // panic is treated like an ordinary function call.
- deferstack := emitLoad(fn, fn.lookup(fn.deferstack, false))
- v := Defer{pos: s.Defer, DeferStack: deferstack}
- b.setCall(fn, s.Call, &v.Call)
- fn.emit(&v)
-
- // A deferred call can cause recovery from panic,
- // and control resumes at the Recover block.
- createRecoverBlock(fn.source)
-
- case *ast.ReturnStmt:
- b.returnStmt(fn, s)
-
- case *ast.BranchStmt:
- b.branchStmt(fn, s)
-
- case *ast.BlockStmt:
- b.stmtList(fn, s.List)
-
- case *ast.IfStmt:
- if s.Init != nil {
- b.stmt(fn, s.Init)
- }
- then := fn.newBasicBlock("if.then")
- done := fn.newBasicBlock("if.done")
- els := done
- if s.Else != nil {
- els = fn.newBasicBlock("if.else")
- }
- b.cond(fn, s.Cond, then, els)
- fn.currentBlock = then
- b.stmt(fn, s.Body)
- emitJump(fn, done)
-
- if s.Else != nil {
- fn.currentBlock = els
- b.stmt(fn, s.Else)
- emitJump(fn, done)
- }
-
- fn.currentBlock = done
-
- case *ast.SwitchStmt:
- b.switchStmt(fn, s, label)
-
- case *ast.TypeSwitchStmt:
- b.typeSwitchStmt(fn, s, label)
-
- case *ast.SelectStmt:
- b.selectStmt(fn, s, label)
-
- case *ast.ForStmt:
- b.forStmt(fn, s, label)
-
- case *ast.RangeStmt:
- b.rangeStmt(fn, s, label)
-
- default:
- panic(fmt.Sprintf("unexpected statement kind: %T", s))
- }
-}
-
-func (b *builder) branchStmt(fn *Function, s *ast.BranchStmt) {
- var block *BasicBlock
- if s.Label == nil {
- block = targetedBlock(fn, s.Tok)
- } else {
- target := fn.label(s.Label)
- block = labelledBlock(fn, target, s.Tok)
- if block == nil { // forward goto
- lb := fn.lblockOf(target)
- block = lb._goto // jump to lb._goto
- if fn.jump != nil {
- // fn is a range-over-func and the goto may exit fn.
- // Create an exit and resolve it at the end of
- // builder.buildYieldFunc.
- labelExit(fn, target, s.Pos())
- }
- }
- }
- to := block.parent
-
- if to == fn {
- emitJump(fn, block)
- } else { // break outside of fn.
- // fn must be a range-over-func
- e := blockExit(fn, block, s.Pos())
- storeVar(fn, fn.jump, intConst(e.id), e.pos)
- fn.emit(&Return{Results: []Value{vFalse}, pos: e.pos})
- }
- fn.currentBlock = fn.newBasicBlock("unreachable")
-}
-
-func (b *builder) returnStmt(fn *Function, s *ast.ReturnStmt) {
- var results []Value
-
- sig := fn.source.Signature // signature of the enclosing source function
-
- // Convert return operands to result type.
- if len(s.Results) == 1 && sig.Results().Len() > 1 {
- // Return of one expression in a multi-valued function.
- tuple := b.exprN(fn, s.Results[0])
- ttuple := tuple.Type().(*types.Tuple)
- for i, n := 0, ttuple.Len(); i < n; i++ {
- results = append(results,
- emitConv(fn, emitExtract(fn, tuple, i),
- sig.Results().At(i).Type()))
- }
- } else {
- // 1:1 return, or no-arg return in non-void function.
- for i, r := range s.Results {
- v := emitConv(fn, b.expr(fn, r), sig.Results().At(i).Type())
- results = append(results, v)
- }
- }
-
- // Store the results.
- for i, r := range results {
- var result Value // fn.source.result[i] conceptually
- if fn == fn.source {
- result = fn.results[i]
- } else { // lookup needed?
- result = fn.lookup(fn.returnVars[i], false)
- }
- emitStore(fn, result, r, s.Return)
- }
-
- if fn.jump != nil {
- // Return from body of a range-over-func.
- // The return statement is syntactically within the loop,
- // but the generated code is in the 'switch jump {...}' after it.
- e := returnExit(fn, s.Pos())
- storeVar(fn, fn.jump, intConst(e.id), e.pos)
- fn.emit(&Return{Results: []Value{vFalse}, pos: e.pos})
- fn.currentBlock = fn.newBasicBlock("unreachable")
- return
- }
-
- // Run function calls deferred in this
- // function when explicitly returning from it.
- fn.emit(new(RunDefers))
- // Reload (potentially) named result variables to form the result tuple.
- results = results[:0]
- for _, nr := range fn.results {
- results = append(results, emitLoad(fn, nr))
- }
- fn.emit(&Return{Results: results, pos: s.Return})
- fn.currentBlock = fn.newBasicBlock("unreachable")
-}
-
-// A buildFunc is a strategy for building the SSA body for a function.
-type buildFunc = func(*builder, *Function)
-
-// iterate causes all created but unbuilt functions to be built. As
-// this may create new methods, the process is iterated until it
-// converges.
-//
-// Waits for any dependencies to finish building.
-func (b *builder) iterate() {
- for ; b.finished < len(b.fns); b.finished++ {
- fn := b.fns[b.finished]
- b.buildFunction(fn)
- }
-
- b.buildshared.markDone()
- b.buildshared.wait()
-}
-
-// buildFunction builds SSA code for the body of function fn. Idempotent.
-func (b *builder) buildFunction(fn *Function) {
- if fn.build != nil {
- assert(fn.parent == nil, "anonymous functions should not be built by buildFunction()")
-
- if fn.Prog.mode&LogSource != 0 {
- defer logStack("build %s @ %s", fn, fn.Prog.Fset.Position(fn.pos))()
- }
- fn.build(b, fn)
- fn.done()
- }
-}
-
-// buildParamsOnly builds fn.Params from fn.Signature, but does not build fn.Body.
-func (b *builder) buildParamsOnly(fn *Function) {
- // For external (C, asm) functions or functions loaded from
- // export data, we must set fn.Params even though there is no
- // body code to reference them.
- if recv := fn.Signature.Recv(); recv != nil {
- fn.addParamVar(recv)
- }
- params := fn.Signature.Params()
- for i, n := 0, params.Len(); i < n; i++ {
- fn.addParamVar(params.At(i))
- }
-}
-
-// buildFromSyntax builds fn.Body from fn.syntax, which must be non-nil.
-func (b *builder) buildFromSyntax(fn *Function) {
- var (
- recvField *ast.FieldList
- body *ast.BlockStmt
- functype *ast.FuncType
- )
- switch syntax := fn.syntax.(type) {
- case *ast.FuncDecl:
- functype = syntax.Type
- recvField = syntax.Recv
- body = syntax.Body
- if body == nil {
- b.buildParamsOnly(fn) // no body (non-Go function)
- return
- }
- case *ast.FuncLit:
- functype = syntax.Type
- body = syntax.Body
- case nil:
- panic("no syntax")
- default:
- panic(syntax) // unexpected syntax
- }
- fn.source = fn
- fn.startBody()
- fn.createSyntacticParams(recvField, functype)
- fn.createDeferStack()
- b.stmt(fn, body)
- if cb := fn.currentBlock; cb != nil && (cb == fn.Blocks[0] || cb == fn.Recover || cb.Preds != nil) {
- // Control fell off the end of the function's body block.
- //
- // Block optimizations eliminate the current block, if
- // unreachable. It is a builder invariant that
- // if this no-arg return is ill-typed for
- // fn.Signature.Results, this block must be
- // unreachable. The sanity checker checks this.
- fn.emit(new(RunDefers))
- fn.emit(new(Return))
- }
- fn.finishBody()
-}
-
-// buildYieldFunc builds the body of the yield function created
-// from a range-over-func *ast.RangeStmt.
-func (b *builder) buildYieldFunc(fn *Function) {
- // See builder.rangeFunc for detailed documentation on how fn is set up.
- //
- // In psuedo-Go this roughly builds:
- // func yield(_k tk, _v tv) bool {
- // if jump != READY { panic("yield function called after range loop exit") }
- // jump = BUSY
- // k, v = _k, _v // assign the iterator variable (if needed)
- // ... // rng.Body
- // continue:
- // jump = READY
- // return true
- // }
- s := fn.syntax.(*ast.RangeStmt)
- fn.source = fn.parent.source
- fn.startBody()
- params := fn.Signature.Params()
- for i := 0; i < params.Len(); i++ {
- fn.addParamVar(params.At(i))
- }
-
- // Initial targets
- ycont := fn.newBasicBlock("yield-continue")
- // lblocks is either {} or is {label: nil} where label is the label of syntax.
- for label := range fn.lblocks {
- fn.lblocks[label] = &lblock{
- label: label,
- resolved: true,
- _goto: ycont,
- _continue: ycont,
- // `break label` statement targets fn.parent.targets._break
- }
- }
- fn.targets = &targets{
- _continue: ycont,
- // `break` statement targets fn.parent.targets._break.
- }
-
- // continue:
- // jump = READY
- // return true
- saved := fn.currentBlock
- fn.currentBlock = ycont
- storeVar(fn, fn.jump, jReady, s.Body.Rbrace)
- // A yield function's own deferstack is always empty, so rundefers is not needed.
- fn.emit(&Return{Results: []Value{vTrue}, pos: token.NoPos})
-
- // Emit header:
- //
- // if jump != READY { panic("yield iterator accessed after exit") }
- // jump = BUSY
- // k, v = _k, _v
- fn.currentBlock = saved
- yloop := fn.newBasicBlock("yield-loop")
- invalid := fn.newBasicBlock("yield-invalid")
-
- jumpVal := emitLoad(fn, fn.lookup(fn.jump, true))
- emitIf(fn, emitCompare(fn, token.EQL, jumpVal, jReady, token.NoPos), yloop, invalid)
- fn.currentBlock = invalid
- fn.emit(&Panic{
- X: emitConv(fn, stringConst("yield function called after range loop exit"), tEface),
- })
-
- fn.currentBlock = yloop
- storeVar(fn, fn.jump, jBusy, s.Body.Rbrace)
-
- // Initialize k and v from params.
- var tk, tv types.Type
- if s.Key != nil && !isBlankIdent(s.Key) {
- tk = fn.typeOf(s.Key) // fn.parent.typeOf is identical
- }
- if s.Value != nil && !isBlankIdent(s.Value) {
- tv = fn.typeOf(s.Value)
- }
- if s.Tok == token.DEFINE {
- if tk != nil {
- emitLocalVar(fn, identVar(fn, s.Key.(*ast.Ident)))
- }
- if tv != nil {
- emitLocalVar(fn, identVar(fn, s.Value.(*ast.Ident)))
- }
- }
- var k, v Value
- if len(fn.Params) > 0 {
- k = fn.Params[0]
- }
- if len(fn.Params) > 1 {
- v = fn.Params[1]
- }
- var kl, vl lvalue
- if tk != nil {
- kl = b.addr(fn, s.Key, false) // non-escaping
- }
- if tv != nil {
- vl = b.addr(fn, s.Value, false) // non-escaping
- }
- if tk != nil {
- kl.store(fn, k)
- }
- if tv != nil {
- vl.store(fn, v)
- }
-
- // Build the body of the range loop.
- b.stmt(fn, s.Body)
- if cb := fn.currentBlock; cb != nil && (cb == fn.Blocks[0] || cb == fn.Recover || cb.Preds != nil) {
- // Control fell off the end of the function's body block.
- // Block optimizations eliminate the current block, if
- // unreachable.
- emitJump(fn, ycont)
- }
-
- // Clean up exits and promote any unresolved exits to fn.parent.
- for _, e := range fn.exits {
- if e.label != nil {
- lb := fn.lblocks[e.label]
- if lb.resolved {
- // label was resolved. Do not turn lb into an exit.
- // e does not need to be handled by the parent.
- continue
- }
-
- // _goto becomes an exit.
- // _goto:
- // jump = id
- // return false
- fn.currentBlock = lb._goto
- id := intConst(e.id)
- storeVar(fn, fn.jump, id, e.pos)
- fn.emit(&Return{Results: []Value{vFalse}, pos: e.pos})
- }
-
- if e.to != fn { // e needs to be handled by the parent too.
- fn.parent.exits = append(fn.parent.exits, e)
- }
- }
-
- fn.finishBody()
-}
-
-// addRuntimeType records t as a runtime type,
-// along with all types derivable from it using reflection.
-//
-// Acquires prog.runtimeTypesMu.
-func addRuntimeType(prog *Program, t types.Type) {
- prog.runtimeTypesMu.Lock()
- defer prog.runtimeTypesMu.Unlock()
- forEachReachable(&prog.MethodSets, t, func(t types.Type) bool {
- prev, _ := prog.runtimeTypes.Set(t, true).(bool)
- return !prev // already seen?
- })
-}
-
-// Build calls Package.Build for each package in prog.
-// Building occurs in parallel unless the BuildSerially mode flag was set.
-//
-// Build is intended for whole-program analysis; a typical compiler
-// need only build a single package.
-//
-// Build is idempotent and thread-safe.
-func (prog *Program) Build() {
- var wg sync.WaitGroup
- for _, p := range prog.packages {
- if prog.mode&BuildSerially != 0 {
- p.Build()
- } else {
- wg.Add(1)
- cpuLimit <- unit{} // acquire a token
- go func(p *Package) {
- p.Build()
- wg.Done()
- <-cpuLimit // release a token
- }(p)
- }
- }
- wg.Wait()
-}
-
-// cpuLimit is a counting semaphore to limit CPU parallelism.
-var cpuLimit = make(chan unit, runtime.GOMAXPROCS(0))
-
-// Build builds SSA code for all functions and vars in package p.
-//
-// CreatePackage must have been called for all of p's direct imports
-// (and hence its direct imports must have been error-free). It is not
-// necessary to call CreatePackage for indirect dependencies.
-// Functions will be created for all necessary methods in those
-// packages on demand.
-//
-// Build is idempotent and thread-safe.
-func (p *Package) Build() { p.buildOnce.Do(p.build) }
-
-func (p *Package) build() {
- if p.info == nil {
- return // synthetic package, e.g. "testmain"
- }
- if p.Prog.mode&LogSource != 0 {
- defer logStack("build %s", p)()
- }
-
- b := builder{fns: p.created}
- b.iterate()
-
- // We no longer need transient information: ASTs or go/types deductions.
- p.info = nil
- p.created = nil
- p.files = nil
- p.initVersion = nil
-
- if p.Prog.mode&SanityCheckFunctions != 0 {
- sanityCheckPackage(p)
- }
-}
-
-// buildPackageInit builds fn.Body for the synthetic package initializer.
-func (b *builder) buildPackageInit(fn *Function) {
- p := fn.Pkg
- fn.startBody()
-
- var done *BasicBlock
-
- if p.Prog.mode&BareInits == 0 {
- // Make init() skip if package is already initialized.
- initguard := p.Var("init$guard")
- doinit := fn.newBasicBlock("init.start")
- done = fn.newBasicBlock("init.done")
- emitIf(fn, emitLoad(fn, initguard), done, doinit)
- fn.currentBlock = doinit
- emitStore(fn, initguard, vTrue, token.NoPos)
-
- // Call the init() function of each package we import.
- for _, pkg := range p.Pkg.Imports() {
- prereq := p.Prog.packages[pkg]
- if prereq == nil {
- panic(fmt.Sprintf("Package(%q).Build(): unsatisfied import: Program.CreatePackage(%q) was not called", p.Pkg.Path(), pkg.Path()))
- }
- var v Call
- v.Call.Value = prereq.init
- v.Call.pos = fn.pos
- v.setType(types.NewTuple())
- fn.emit(&v)
- }
- }
-
- // Initialize package-level vars in correct order.
- if len(p.info.InitOrder) > 0 && len(p.files) == 0 {
- panic("no source files provided for package. cannot initialize globals")
- }
-
- for _, varinit := range p.info.InitOrder {
- if fn.Prog.mode&LogSource != 0 {
- fmt.Fprintf(os.Stderr, "build global initializer %v @ %s\n",
- varinit.Lhs, p.Prog.Fset.Position(varinit.Rhs.Pos()))
- }
- // Initializers for global vars are evaluated in dependency
- // order, but may come from arbitrary files of the package
- // with different versions, so we transiently update
- // fn.goversion for each one. (Since init is a synthetic
- // function it has no syntax of its own that needs a version.)
- fn.goversion = p.initVersion[varinit.Rhs]
- if len(varinit.Lhs) == 1 {
- // 1:1 initialization: var x, y = a(), b()
- var lval lvalue
- if v := varinit.Lhs[0]; v.Name() != "_" {
- lval = &address{addr: p.objects[v].(*Global), pos: v.Pos()}
- } else {
- lval = blank{}
- }
- b.assign(fn, lval, varinit.Rhs, true, nil)
- } else {
- // n:1 initialization: var x, y := f()
- tuple := b.exprN(fn, varinit.Rhs)
- for i, v := range varinit.Lhs {
- if v.Name() == "_" {
- continue
- }
- emitStore(fn, p.objects[v].(*Global), emitExtract(fn, tuple, i), v.Pos())
- }
- }
- }
-
- // The rest of the init function is synthetic:
- // no syntax, info, goversion.
- fn.info = nil
- fn.goversion = ""
-
- // Call all of the declared init() functions in source order.
- for _, file := range p.files {
- for _, decl := range file.Decls {
- if decl, ok := decl.(*ast.FuncDecl); ok {
- id := decl.Name
- if !isBlankIdent(id) && id.Name == "init" && decl.Recv == nil {
- declaredInit := p.objects[p.info.Defs[id]].(*Function)
- var v Call
- v.Call.Value = declaredInit
- v.setType(types.NewTuple())
- p.init.emit(&v)
- }
- }
- }
- }
-
- // Finish up init().
- if p.Prog.mode&BareInits == 0 {
- emitJump(fn, done)
- fn.currentBlock = done
- }
- fn.emit(new(Return))
- fn.finishBody()
-}