summaryrefslogtreecommitdiffhomepage
path: root/vendor/golang.org/x/tools/go/ssa/ssa.go
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/golang.org/x/tools/go/ssa/ssa.go')
-rw-r--r--vendor/golang.org/x/tools/go/ssa/ssa.go1871
1 files changed, 0 insertions, 1871 deletions
diff --git a/vendor/golang.org/x/tools/go/ssa/ssa.go b/vendor/golang.org/x/tools/go/ssa/ssa.go
deleted file mode 100644
index 1231afd..0000000
--- a/vendor/golang.org/x/tools/go/ssa/ssa.go
+++ /dev/null
@@ -1,1871 +0,0 @@
-// Copyright 2013 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-package ssa
-
-// This package defines a high-level intermediate representation for
-// Go programs using static single-assignment (SSA) form.
-
-import (
- "fmt"
- "go/ast"
- "go/constant"
- "go/token"
- "go/types"
- "sync"
-
- "golang.org/x/tools/go/types/typeutil"
- "golang.org/x/tools/internal/typeparams"
-)
-
-// A Program is a partial or complete Go program converted to SSA form.
-type Program struct {
- Fset *token.FileSet // position information for the files of this Program
- imported map[string]*Package // all importable Packages, keyed by import path
- packages map[*types.Package]*Package // all created Packages
- mode BuilderMode // set of mode bits for SSA construction
- MethodSets typeutil.MethodSetCache // cache of type-checker's method-sets
-
- canon *canonizer // type canonicalization map
- ctxt *types.Context // cache for type checking instantiations
-
- methodsMu sync.Mutex
- methodSets typeutil.Map // maps type to its concrete *methodSet
-
- // memoization of whether a type refers to type parameters
- hasParamsMu sync.Mutex
- hasParams typeparams.Free
-
- runtimeTypesMu sync.Mutex
- runtimeTypes typeutil.Map // set of runtime types (from MakeInterface)
-
- // objectMethods is a memoization of objectMethod
- // to avoid creation of duplicate methods from type information.
- objectMethodsMu sync.Mutex
- objectMethods map[*types.Func]*Function
-}
-
-// A Package is a single analyzed Go package containing Members for
-// all package-level functions, variables, constants and types it
-// declares. These may be accessed directly via Members, or via the
-// type-specific accessor methods Func, Type, Var and Const.
-//
-// Members also contains entries for "init" (the synthetic package
-// initializer) and "init#%d", the nth declared init function,
-// and unspecified other things too.
-type Package struct {
- Prog *Program // the owning program
- Pkg *types.Package // the corresponding go/types.Package
- Members map[string]Member // all package members keyed by name (incl. init and init#%d)
- objects map[types.Object]Member // mapping of package objects to members (incl. methods). Contains *NamedConst, *Global, *Function (values but not types)
- init *Function // Func("init"); the package's init function
- debug bool // include full debug info in this package
- syntax bool // package was loaded from syntax
-
- // The following fields are set transiently, then cleared
- // after building.
- buildOnce sync.Once // ensures package building occurs once
- ninit int32 // number of init functions
- info *types.Info // package type information
- files []*ast.File // package ASTs
- created []*Function // members created as a result of building this package (includes declared functions, wrappers)
- initVersion map[ast.Expr]string // goversion to use for each global var init expr
-}
-
-// A Member is a member of a Go package, implemented by *NamedConst,
-// *Global, *Function, or *Type; they are created by package-level
-// const, var, func and type declarations respectively.
-type Member interface {
- Name() string // declared name of the package member
- String() string // package-qualified name of the package member
- RelString(*types.Package) string // like String, but relative refs are unqualified
- Object() types.Object // typechecker's object for this member, if any
- Pos() token.Pos // position of member's declaration, if known
- Type() types.Type // type of the package member
- Token() token.Token // token.{VAR,FUNC,CONST,TYPE}
- Package() *Package // the containing package
-}
-
-// A Type is a Member of a Package representing a package-level named type.
-type Type struct {
- object *types.TypeName
- pkg *Package
-}
-
-// A NamedConst is a Member of a Package representing a package-level
-// named constant.
-//
-// Pos() returns the position of the declaring ast.ValueSpec.Names[*]
-// identifier.
-//
-// NB: a NamedConst is not a Value; it contains a constant Value, which
-// it augments with the name and position of its 'const' declaration.
-type NamedConst struct {
- object *types.Const
- Value *Const
- pkg *Package
-}
-
-// A Value is an SSA value that can be referenced by an instruction.
-type Value interface {
- // Name returns the name of this value, and determines how
- // this Value appears when used as an operand of an
- // Instruction.
- //
- // This is the same as the source name for Parameters,
- // Builtins, Functions, FreeVars, Globals.
- // For constants, it is a representation of the constant's value
- // and type. For all other Values this is the name of the
- // virtual register defined by the instruction.
- //
- // The name of an SSA Value is not semantically significant,
- // and may not even be unique within a function.
- Name() string
-
- // If this value is an Instruction, String returns its
- // disassembled form; otherwise it returns unspecified
- // human-readable information about the Value, such as its
- // kind, name and type.
- String() string
-
- // Type returns the type of this value. Many instructions
- // (e.g. IndexAddr) change their behaviour depending on the
- // types of their operands.
- Type() types.Type
-
- // Parent returns the function to which this Value belongs.
- // It returns nil for named Functions, Builtin, Const and Global.
- Parent() *Function
-
- // Referrers returns the list of instructions that have this
- // value as one of their operands; it may contain duplicates
- // if an instruction has a repeated operand.
- //
- // Referrers actually returns a pointer through which the
- // caller may perform mutations to the object's state.
- //
- // Referrers is currently only defined if Parent()!=nil,
- // i.e. for the function-local values FreeVar, Parameter,
- // Functions (iff anonymous) and all value-defining instructions.
- // It returns nil for named Functions, Builtin, Const and Global.
- //
- // Instruction.Operands contains the inverse of this relation.
- Referrers() *[]Instruction
-
- // Pos returns the location of the AST token most closely
- // associated with the operation that gave rise to this value,
- // or token.NoPos if it was not explicit in the source.
- //
- // For each ast.Node type, a particular token is designated as
- // the closest location for the expression, e.g. the Lparen
- // for an *ast.CallExpr. This permits a compact but
- // approximate mapping from Values to source positions for use
- // in diagnostic messages, for example.
- //
- // (Do not use this position to determine which Value
- // corresponds to an ast.Expr; use Function.ValueForExpr
- // instead. NB: it requires that the function was built with
- // debug information.)
- Pos() token.Pos
-}
-
-// An Instruction is an SSA instruction that computes a new Value or
-// has some effect.
-//
-// An Instruction that defines a value (e.g. BinOp) also implements
-// the Value interface; an Instruction that only has an effect (e.g. Store)
-// does not.
-type Instruction interface {
- // String returns the disassembled form of this value.
- //
- // Examples of Instructions that are Values:
- // "x + y" (BinOp)
- // "len([])" (Call)
- // Note that the name of the Value is not printed.
- //
- // Examples of Instructions that are not Values:
- // "return x" (Return)
- // "*y = x" (Store)
- //
- // (The separation Value.Name() from Value.String() is useful
- // for some analyses which distinguish the operation from the
- // value it defines, e.g., 'y = local int' is both an allocation
- // of memory 'local int' and a definition of a pointer y.)
- String() string
-
- // Parent returns the function to which this instruction
- // belongs.
- Parent() *Function
-
- // Block returns the basic block to which this instruction
- // belongs.
- Block() *BasicBlock
-
- // setBlock sets the basic block to which this instruction belongs.
- setBlock(*BasicBlock)
-
- // Operands returns the operands of this instruction: the
- // set of Values it references.
- //
- // Specifically, it appends their addresses to rands, a
- // user-provided slice, and returns the resulting slice,
- // permitting avoidance of memory allocation.
- //
- // The operands are appended in undefined order, but the order
- // is consistent for a given Instruction; the addresses are
- // always non-nil but may point to a nil Value. Clients may
- // store through the pointers, e.g. to effect a value
- // renaming.
- //
- // Value.Referrers is a subset of the inverse of this
- // relation. (Referrers are not tracked for all types of
- // Values.)
- Operands(rands []*Value) []*Value
-
- // Pos returns the location of the AST token most closely
- // associated with the operation that gave rise to this
- // instruction, or token.NoPos if it was not explicit in the
- // source.
- //
- // For each ast.Node type, a particular token is designated as
- // the closest location for the expression, e.g. the Go token
- // for an *ast.GoStmt. This permits a compact but approximate
- // mapping from Instructions to source positions for use in
- // diagnostic messages, for example.
- //
- // (Do not use this position to determine which Instruction
- // corresponds to an ast.Expr; see the notes for Value.Pos.
- // This position may be used to determine which non-Value
- // Instruction corresponds to some ast.Stmts, but not all: If
- // and Jump instructions have no Pos(), for example.)
- Pos() token.Pos
-}
-
-// A Node is a node in the SSA value graph. Every concrete type that
-// implements Node is also either a Value, an Instruction, or both.
-//
-// Node contains the methods common to Value and Instruction, plus the
-// Operands and Referrers methods generalized to return nil for
-// non-Instructions and non-Values, respectively.
-//
-// Node is provided to simplify SSA graph algorithms. Clients should
-// use the more specific and informative Value or Instruction
-// interfaces where appropriate.
-type Node interface {
- // Common methods:
- String() string
- Pos() token.Pos
- Parent() *Function
-
- // Partial methods:
- Operands(rands []*Value) []*Value // nil for non-Instructions
- Referrers() *[]Instruction // nil for non-Values
-}
-
-// Function represents the parameters, results, and code of a function
-// or method.
-//
-// If Blocks is nil, this indicates an external function for which no
-// Go source code is available. In this case, FreeVars, Locals, and
-// Params are nil too. Clients performing whole-program analysis must
-// handle external functions specially.
-//
-// Blocks contains the function's control-flow graph (CFG).
-// Blocks[0] is the function entry point; block order is not otherwise
-// semantically significant, though it may affect the readability of
-// the disassembly.
-// To iterate over the blocks in dominance order, use DomPreorder().
-//
-// Recover is an optional second entry point to which control resumes
-// after a recovered panic. The Recover block may contain only a return
-// statement, preceded by a load of the function's named return
-// parameters, if any.
-//
-// A nested function (Parent()!=nil) that refers to one or more
-// lexically enclosing local variables ("free variables") has FreeVars.
-// Such functions cannot be called directly but require a
-// value created by MakeClosure which, via its Bindings, supplies
-// values for these parameters.
-//
-// If the function is a method (Signature.Recv() != nil) then the first
-// element of Params is the receiver parameter.
-//
-// A Go package may declare many functions called "init".
-// For each one, Object().Name() returns "init" but Name() returns
-// "init#1", etc, in declaration order.
-//
-// Pos() returns the declaring ast.FuncLit.Type.Func or the position
-// of the ast.FuncDecl.Name, if the function was explicit in the
-// source. Synthetic wrappers, for which Synthetic != "", may share
-// the same position as the function they wrap.
-// Syntax.Pos() always returns the position of the declaring "func" token.
-//
-// When the operand of a range statement is an iterator function,
-// the loop body is transformed into a synthetic anonymous function
-// that is passed as the yield argument in a call to the iterator.
-// In that case, Function.Pos is the position of the "range" token,
-// and Function.Syntax is the ast.RangeStmt.
-//
-// Synthetic functions, for which Synthetic != "", are functions
-// that do not appear in the source AST. These include:
-// - method wrappers,
-// - thunks,
-// - bound functions,
-// - empty functions built from loaded type information,
-// - yield functions created from range-over-func loops,
-// - package init functions, and
-// - instantiations of generic functions.
-//
-// Synthetic wrapper functions may share the same position
-// as the function they wrap.
-//
-// Type() returns the function's Signature.
-//
-// A generic function is a function or method that has uninstantiated type
-// parameters (TypeParams() != nil). Consider a hypothetical generic
-// method, (*Map[K,V]).Get. It may be instantiated with all
-// non-parameterized types as (*Map[string,int]).Get or with
-// parameterized types as (*Map[string,U]).Get, where U is a type parameter.
-// In both instantiations, Origin() refers to the instantiated generic
-// method, (*Map[K,V]).Get, TypeParams() refers to the parameters [K,V] of
-// the generic method. TypeArgs() refers to [string,U] or [string,int],
-// respectively, and is nil in the generic method.
-type Function struct {
- name string
- object *types.Func // symbol for declared function (nil for FuncLit or synthetic init)
- method *selection // info about provenance of synthetic methods; thunk => non-nil
- Signature *types.Signature
- pos token.Pos
-
- // source information
- Synthetic string // provenance of synthetic function; "" for true source functions
- syntax ast.Node // *ast.Func{Decl,Lit}, if from syntax (incl. generic instances) or (*ast.RangeStmt if a yield function)
- info *types.Info // type annotations (iff syntax != nil)
- goversion string // Go version of syntax (NB: init is special)
-
- parent *Function // enclosing function if anon; nil if global
- Pkg *Package // enclosing package; nil for shared funcs (wrappers and error.Error)
- Prog *Program // enclosing program
-
- buildshared *task // wait for a shared function to be done building (may be nil if <=1 builder ever needs to wait)
-
- // These fields are populated only when the function body is built:
-
- Params []*Parameter // function parameters; for methods, includes receiver
- FreeVars []*FreeVar // free variables whose values must be supplied by closure
- Locals []*Alloc // frame-allocated variables of this function
- Blocks []*BasicBlock // basic blocks of the function; nil => external
- Recover *BasicBlock // optional; control transfers here after recovered panic
- AnonFuncs []*Function // anonymous functions (from FuncLit,RangeStmt) directly beneath this one
- referrers []Instruction // referring instructions (iff Parent() != nil)
- anonIdx int32 // position of a nested function in parent's AnonFuncs. fn.Parent()!=nil => fn.Parent().AnonFunc[fn.anonIdx] == fn.
-
- typeparams *types.TypeParamList // type parameters of this function. typeparams.Len() > 0 => generic or instance of generic function
- typeargs []types.Type // type arguments that instantiated typeparams. len(typeargs) > 0 => instance of generic function
- topLevelOrigin *Function // the origin function if this is an instance of a source function. nil if Parent()!=nil.
- generic *generic // instances of this function, if generic
-
- // The following fields are cleared after building.
- build buildFunc // algorithm to build function body (nil => built)
- currentBlock *BasicBlock // where to emit code
- vars map[*types.Var]Value // addresses of local variables
- results []*Alloc // result allocations of the current function
- returnVars []*types.Var // variables for a return statement. Either results or for range-over-func a parent's results
- targets *targets // linked stack of branch targets
- lblocks map[*types.Label]*lblock // labelled blocks
- subst *subster // type parameter substitutions (if non-nil)
- jump *types.Var // synthetic variable for the yield state (non-nil => range-over-func)
- deferstack *types.Var // synthetic variable holding enclosing ssa:deferstack()
- source *Function // nearest enclosing source function
- exits []*exit // exits of the function that need to be resolved
- uniq int64 // source of unique ints within the source tree while building
-}
-
-// BasicBlock represents an SSA basic block.
-//
-// The final element of Instrs is always an explicit transfer of
-// control (If, Jump, Return, or Panic).
-//
-// A block may contain no Instructions only if it is unreachable,
-// i.e., Preds is nil. Empty blocks are typically pruned.
-//
-// BasicBlocks and their Preds/Succs relation form a (possibly cyclic)
-// graph independent of the SSA Value graph: the control-flow graph or
-// CFG. It is illegal for multiple edges to exist between the same
-// pair of blocks.
-//
-// Each BasicBlock is also a node in the dominator tree of the CFG.
-// The tree may be navigated using Idom()/Dominees() and queried using
-// Dominates().
-//
-// The order of Preds and Succs is significant (to Phi and If
-// instructions, respectively).
-type BasicBlock struct {
- Index int // index of this block within Parent().Blocks
- Comment string // optional label; no semantic significance
- parent *Function // parent function
- Instrs []Instruction // instructions in order
- Preds, Succs []*BasicBlock // predecessors and successors
- succs2 [2]*BasicBlock // initial space for Succs
- dom domInfo // dominator tree info
- gaps int // number of nil Instrs (transient)
- rundefers int // number of rundefers (transient)
-}
-
-// Pure values ----------------------------------------
-
-// A FreeVar represents a free variable of the function to which it
-// belongs.
-//
-// FreeVars are used to implement anonymous functions, whose free
-// variables are lexically captured in a closure formed by
-// MakeClosure. The value of such a free var is an Alloc or another
-// FreeVar and is considered a potentially escaping heap address, with
-// pointer type.
-//
-// FreeVars are also used to implement bound method closures. Such a
-// free var represents the receiver value and may be of any type that
-// has concrete methods.
-//
-// Pos() returns the position of the value that was captured, which
-// belongs to an enclosing function.
-type FreeVar struct {
- name string
- typ types.Type
- pos token.Pos
- parent *Function
- referrers []Instruction
-
- // Transiently needed during building.
- outer Value // the Value captured from the enclosing context.
-}
-
-// A Parameter represents an input parameter of a function.
-type Parameter struct {
- name string
- object *types.Var // non-nil
- typ types.Type
- parent *Function
- referrers []Instruction
-}
-
-// A Const represents a value known at build time.
-//
-// Consts include true constants of boolean, numeric, and string types, as
-// defined by the Go spec; these are represented by a non-nil Value field.
-//
-// Consts also include the "zero" value of any type, of which the nil values
-// of various pointer-like types are a special case; these are represented
-// by a nil Value field.
-//
-// Pos() returns token.NoPos.
-//
-// Example printed forms:
-//
-// 42:int
-// "hello":untyped string
-// 3+4i:MyComplex
-// nil:*int
-// nil:[]string
-// [3]int{}:[3]int
-// struct{x string}{}:struct{x string}
-// 0:interface{int|int64}
-// nil:interface{bool|int} // no go/constant representation
-type Const struct {
- typ types.Type
- Value constant.Value
-}
-
-// A Global is a named Value holding the address of a package-level
-// variable.
-//
-// Pos() returns the position of the ast.ValueSpec.Names[*]
-// identifier.
-type Global struct {
- name string
- object types.Object // a *types.Var; may be nil for synthetics e.g. init$guard
- typ types.Type
- pos token.Pos
-
- Pkg *Package
-}
-
-// A Builtin represents a specific use of a built-in function, e.g. len.
-//
-// Builtins are immutable values. Builtins do not have addresses.
-// Builtins can only appear in CallCommon.Value.
-//
-// Name() indicates the function: one of the built-in functions from the
-// Go spec (excluding "make" and "new") or one of these ssa-defined
-// intrinsics:
-//
-// // wrapnilchk returns ptr if non-nil, panics otherwise.
-// // (For use in indirection wrappers.)
-// func ssa:wrapnilchk(ptr *T, recvType, methodName string) *T
-//
-// Object() returns a *types.Builtin for built-ins defined by the spec,
-// nil for others.
-//
-// Type() returns a *types.Signature representing the effective
-// signature of the built-in for this call.
-type Builtin struct {
- name string
- sig *types.Signature
-}
-
-// Value-defining instructions ----------------------------------------
-
-// The Alloc instruction reserves space for a variable of the given type,
-// zero-initializes it, and yields its address.
-//
-// Alloc values are always addresses, and have pointer types, so the
-// type of the allocated variable is actually
-// Type().Underlying().(*types.Pointer).Elem().
-//
-// If Heap is false, Alloc zero-initializes the same local variable in
-// the call frame and returns its address; in this case the Alloc must
-// be present in Function.Locals. We call this a "local" alloc.
-//
-// If Heap is true, Alloc allocates a new zero-initialized variable
-// each time the instruction is executed. We call this a "new" alloc.
-//
-// When Alloc is applied to a channel, map or slice type, it returns
-// the address of an uninitialized (nil) reference of that kind; store
-// the result of MakeSlice, MakeMap or MakeChan in that location to
-// instantiate these types.
-//
-// Pos() returns the ast.CompositeLit.Lbrace for a composite literal,
-// or the ast.CallExpr.Rparen for a call to new() or for a call that
-// allocates a varargs slice.
-//
-// Example printed form:
-//
-// t0 = local int
-// t1 = new int
-type Alloc struct {
- register
- Comment string
- Heap bool
- index int // dense numbering; for lifting
-}
-
-// The Phi instruction represents an SSA φ-node, which combines values
-// that differ across incoming control-flow edges and yields a new
-// value. Within a block, all φ-nodes must appear before all non-φ
-// nodes.
-//
-// Pos() returns the position of the && or || for short-circuit
-// control-flow joins, or that of the *Alloc for φ-nodes inserted
-// during SSA renaming.
-//
-// Example printed form:
-//
-// t2 = phi [0: t0, 1: t1]
-type Phi struct {
- register
- Comment string // a hint as to its purpose
- Edges []Value // Edges[i] is value for Block().Preds[i]
-}
-
-// The Call instruction represents a function or method call.
-//
-// The Call instruction yields the function result if there is exactly
-// one. Otherwise it returns a tuple, the components of which are
-// accessed via Extract.
-//
-// See CallCommon for generic function call documentation.
-//
-// Pos() returns the ast.CallExpr.Lparen, if explicit in the source.
-//
-// Example printed form:
-//
-// t2 = println(t0, t1)
-// t4 = t3()
-// t7 = invoke t5.Println(...t6)
-type Call struct {
- register
- Call CallCommon
-}
-
-// The BinOp instruction yields the result of binary operation X Op Y.
-//
-// Pos() returns the ast.BinaryExpr.OpPos, if explicit in the source.
-//
-// Example printed form:
-//
-// t1 = t0 + 1:int
-type BinOp struct {
- register
- // One of:
- // ADD SUB MUL QUO REM + - * / %
- // AND OR XOR SHL SHR AND_NOT & | ^ << >> &^
- // EQL NEQ LSS LEQ GTR GEQ == != < <= < >=
- Op token.Token
- X, Y Value
-}
-
-// The UnOp instruction yields the result of Op X.
-// ARROW is channel receive.
-// MUL is pointer indirection (load).
-// XOR is bitwise complement.
-// SUB is negation.
-// NOT is logical negation.
-//
-// If CommaOk and Op=ARROW, the result is a 2-tuple of the value above
-// and a boolean indicating the success of the receive. The
-// components of the tuple are accessed using Extract.
-//
-// Pos() returns the ast.UnaryExpr.OpPos, if explicit in the source.
-// For receive operations (ARROW) implicit in ranging over a channel,
-// Pos() returns the ast.RangeStmt.For.
-// For implicit memory loads (STAR), Pos() returns the position of the
-// most closely associated source-level construct; the details are not
-// specified.
-//
-// Example printed form:
-//
-// t0 = *x
-// t2 = <-t1,ok
-type UnOp struct {
- register
- Op token.Token // One of: NOT SUB ARROW MUL XOR ! - <- * ^
- X Value
- CommaOk bool
-}
-
-// The ChangeType instruction applies to X a value-preserving type
-// change to Type().
-//
-// Type changes are permitted:
-// - between a named type and its underlying type.
-// - between two named types of the same underlying type.
-// - between (possibly named) pointers to identical base types.
-// - from a bidirectional channel to a read- or write-channel,
-// optionally adding/removing a name.
-// - between a type (t) and an instance of the type (tσ), i.e.
-// Type() == σ(X.Type()) (or X.Type()== σ(Type())) where
-// σ is the type substitution of Parent().TypeParams by
-// Parent().TypeArgs.
-//
-// This operation cannot fail dynamically.
-//
-// Type changes may to be to or from a type parameter (or both). All
-// types in the type set of X.Type() have a value-preserving type
-// change to all types in the type set of Type().
-//
-// Pos() returns the ast.CallExpr.Lparen, if the instruction arose
-// from an explicit conversion in the source.
-//
-// Example printed form:
-//
-// t1 = changetype *int <- IntPtr (t0)
-type ChangeType struct {
- register
- X Value
-}
-
-// The Convert instruction yields the conversion of value X to type
-// Type(). One or both of those types is basic (but possibly named).
-//
-// A conversion may change the value and representation of its operand.
-// Conversions are permitted:
-// - between real numeric types.
-// - between complex numeric types.
-// - between string and []byte or []rune.
-// - between pointers and unsafe.Pointer.
-// - between unsafe.Pointer and uintptr.
-// - from (Unicode) integer to (UTF-8) string.
-//
-// A conversion may imply a type name change also.
-//
-// Conversions may to be to or from a type parameter. All types in
-// the type set of X.Type() can be converted to all types in the type
-// set of Type().
-//
-// This operation cannot fail dynamically.
-//
-// Conversions of untyped string/number/bool constants to a specific
-// representation are eliminated during SSA construction.
-//
-// Pos() returns the ast.CallExpr.Lparen, if the instruction arose
-// from an explicit conversion in the source.
-//
-// Example printed form:
-//
-// t1 = convert []byte <- string (t0)
-type Convert struct {
- register
- X Value
-}
-
-// The MultiConvert instruction yields the conversion of value X to type
-// Type(). Either X.Type() or Type() must be a type parameter. Each
-// type in the type set of X.Type() can be converted to each type in the
-// type set of Type().
-//
-// See the documentation for Convert, ChangeType, and SliceToArrayPointer
-// for the conversions that are permitted. Additionally conversions of
-// slices to arrays are permitted.
-//
-// This operation can fail dynamically (see SliceToArrayPointer).
-//
-// Pos() returns the ast.CallExpr.Lparen, if the instruction arose
-// from an explicit conversion in the source.
-//
-// Example printed form:
-//
-// t1 = multiconvert D <- S (t0) [*[2]rune <- []rune | string <- []rune]
-type MultiConvert struct {
- register
- X Value
- from []*types.Term
- to []*types.Term
-}
-
-// ChangeInterface constructs a value of one interface type from a
-// value of another interface type known to be assignable to it.
-// This operation cannot fail.
-//
-// Pos() returns the ast.CallExpr.Lparen if the instruction arose from
-// an explicit T(e) conversion; the ast.TypeAssertExpr.Lparen if the
-// instruction arose from an explicit e.(T) operation; or token.NoPos
-// otherwise.
-//
-// Example printed form:
-//
-// t1 = change interface interface{} <- I (t0)
-type ChangeInterface struct {
- register
- X Value
-}
-
-// The SliceToArrayPointer instruction yields the conversion of slice X to
-// array pointer.
-//
-// Pos() returns the ast.CallExpr.Lparen, if the instruction arose
-// from an explicit conversion in the source.
-//
-// Conversion may to be to or from a type parameter. All types in
-// the type set of X.Type() must be a slice types that can be converted to
-// all types in the type set of Type() which must all be pointer to array
-// types.
-//
-// This operation can fail dynamically if the length of the slice is less
-// than the length of the array.
-//
-// Example printed form:
-//
-// t1 = slice to array pointer *[4]byte <- []byte (t0)
-type SliceToArrayPointer struct {
- register
- X Value
-}
-
-// MakeInterface constructs an instance of an interface type from a
-// value of a concrete type.
-//
-// Use Program.MethodSets.MethodSet(X.Type()) to find the method-set
-// of X, and Program.MethodValue(m) to find the implementation of a method.
-//
-// To construct the zero value of an interface type T, use:
-//
-// NewConst(constant.MakeNil(), T, pos)
-//
-// Pos() returns the ast.CallExpr.Lparen, if the instruction arose
-// from an explicit conversion in the source.
-//
-// Example printed form:
-//
-// t1 = make interface{} <- int (42:int)
-// t2 = make Stringer <- t0
-type MakeInterface struct {
- register
- X Value
-}
-
-// The MakeClosure instruction yields a closure value whose code is
-// Fn and whose free variables' values are supplied by Bindings.
-//
-// Type() returns a (possibly named) *types.Signature.
-//
-// Pos() returns the ast.FuncLit.Type.Func for a function literal
-// closure or the ast.SelectorExpr.Sel for a bound method closure.
-//
-// Example printed form:
-//
-// t0 = make closure anon@1.2 [x y z]
-// t1 = make closure bound$(main.I).add [i]
-type MakeClosure struct {
- register
- Fn Value // always a *Function
- Bindings []Value // values for each free variable in Fn.FreeVars
-}
-
-// The MakeMap instruction creates a new hash-table-based map object
-// and yields a value of kind map.
-//
-// Type() returns a (possibly named) *types.Map.
-//
-// Pos() returns the ast.CallExpr.Lparen, if created by make(map), or
-// the ast.CompositeLit.Lbrack if created by a literal.
-//
-// Example printed form:
-//
-// t1 = make map[string]int t0
-// t1 = make StringIntMap t0
-type MakeMap struct {
- register
- Reserve Value // initial space reservation; nil => default
-}
-
-// The MakeChan instruction creates a new channel object and yields a
-// value of kind chan.
-//
-// Type() returns a (possibly named) *types.Chan.
-//
-// Pos() returns the ast.CallExpr.Lparen for the make(chan) that
-// created it.
-//
-// Example printed form:
-//
-// t0 = make chan int 0
-// t0 = make IntChan 0
-type MakeChan struct {
- register
- Size Value // int; size of buffer; zero => synchronous.
-}
-
-// The MakeSlice instruction yields a slice of length Len backed by a
-// newly allocated array of length Cap.
-//
-// Both Len and Cap must be non-nil Values of integer type.
-//
-// (Alloc(types.Array) followed by Slice will not suffice because
-// Alloc can only create arrays of constant length.)
-//
-// Type() returns a (possibly named) *types.Slice.
-//
-// Pos() returns the ast.CallExpr.Lparen for the make([]T) that
-// created it.
-//
-// Example printed form:
-//
-// t1 = make []string 1:int t0
-// t1 = make StringSlice 1:int t0
-type MakeSlice struct {
- register
- Len Value
- Cap Value
-}
-
-// The Slice instruction yields a slice of an existing string, slice
-// or *array X between optional integer bounds Low and High.
-//
-// Dynamically, this instruction panics if X evaluates to a nil *array
-// pointer.
-//
-// Type() returns string if the type of X was string, otherwise a
-// *types.Slice with the same element type as X.
-//
-// Pos() returns the ast.SliceExpr.Lbrack if created by a x[:] slice
-// operation, the ast.CompositeLit.Lbrace if created by a literal, or
-// NoPos if not explicit in the source (e.g. a variadic argument slice).
-//
-// Example printed form:
-//
-// t1 = slice t0[1:]
-type Slice struct {
- register
- X Value // slice, string, or *array
- Low, High, Max Value // each may be nil
-}
-
-// The FieldAddr instruction yields the address of Field of *struct X.
-//
-// The field is identified by its index within the field list of the
-// struct type of X.
-//
-// Dynamically, this instruction panics if X evaluates to a nil
-// pointer.
-//
-// Type() returns a (possibly named) *types.Pointer.
-//
-// Pos() returns the position of the ast.SelectorExpr.Sel for the
-// field, if explicit in the source. For implicit selections, returns
-// the position of the inducing explicit selection. If produced for a
-// struct literal S{f: e}, it returns the position of the colon; for
-// S{e} it returns the start of expression e.
-//
-// Example printed form:
-//
-// t1 = &t0.name [#1]
-type FieldAddr struct {
- register
- X Value // *struct
- Field int // index into CoreType(CoreType(X.Type()).(*types.Pointer).Elem()).(*types.Struct).Fields
-}
-
-// The Field instruction yields the Field of struct X.
-//
-// The field is identified by its index within the field list of the
-// struct type of X; by using numeric indices we avoid ambiguity of
-// package-local identifiers and permit compact representations.
-//
-// Pos() returns the position of the ast.SelectorExpr.Sel for the
-// field, if explicit in the source. For implicit selections, returns
-// the position of the inducing explicit selection.
-
-// Example printed form:
-//
-// t1 = t0.name [#1]
-type Field struct {
- register
- X Value // struct
- Field int // index into CoreType(X.Type()).(*types.Struct).Fields
-}
-
-// The IndexAddr instruction yields the address of the element at
-// index Index of collection X. Index is an integer expression.
-//
-// The elements of maps and strings are not addressable; use Lookup (map),
-// Index (string), or MapUpdate instead.
-//
-// Dynamically, this instruction panics if X evaluates to a nil *array
-// pointer.
-//
-// Type() returns a (possibly named) *types.Pointer.
-//
-// Pos() returns the ast.IndexExpr.Lbrack for the index operation, if
-// explicit in the source.
-//
-// Example printed form:
-//
-// t2 = &t0[t1]
-type IndexAddr struct {
- register
- X Value // *array, slice or type parameter with types array, *array, or slice.
- Index Value // numeric index
-}
-
-// The Index instruction yields element Index of collection X, an array,
-// string or type parameter containing an array, a string, a pointer to an,
-// array or a slice.
-//
-// Pos() returns the ast.IndexExpr.Lbrack for the index operation, if
-// explicit in the source.
-//
-// Example printed form:
-//
-// t2 = t0[t1]
-type Index struct {
- register
- X Value // array, string or type parameter with types array, *array, slice, or string.
- Index Value // integer index
-}
-
-// The Lookup instruction yields element Index of collection map X.
-// Index is the appropriate key type.
-//
-// If CommaOk, the result is a 2-tuple of the value above and a
-// boolean indicating the result of a map membership test for the key.
-// The components of the tuple are accessed using Extract.
-//
-// Pos() returns the ast.IndexExpr.Lbrack, if explicit in the source.
-//
-// Example printed form:
-//
-// t2 = t0[t1]
-// t5 = t3[t4],ok
-type Lookup struct {
- register
- X Value // map
- Index Value // key-typed index
- CommaOk bool // return a value,ok pair
-}
-
-// SelectState is a helper for Select.
-// It represents one goal state and its corresponding communication.
-type SelectState struct {
- Dir types.ChanDir // direction of case (SendOnly or RecvOnly)
- Chan Value // channel to use (for send or receive)
- Send Value // value to send (for send)
- Pos token.Pos // position of token.ARROW
- DebugNode ast.Node // ast.SendStmt or ast.UnaryExpr(<-) [debug mode]
-}
-
-// The Select instruction tests whether (or blocks until) one
-// of the specified sent or received states is entered.
-//
-// Let n be the number of States for which Dir==RECV and T_i (0<=i<n)
-// be the element type of each such state's Chan.
-// Select returns an n+2-tuple
-//
-// (index int, recvOk bool, r_0 T_0, ... r_n-1 T_n-1)
-//
-// The tuple's components, described below, must be accessed via the
-// Extract instruction.
-//
-// If Blocking, select waits until exactly one state holds, i.e. a
-// channel becomes ready for the designated operation of sending or
-// receiving; select chooses one among the ready states
-// pseudorandomly, performs the send or receive operation, and sets
-// 'index' to the index of the chosen channel.
-//
-// If !Blocking, select doesn't block if no states hold; instead it
-// returns immediately with index equal to -1.
-//
-// If the chosen channel was used for a receive, the r_i component is
-// set to the received value, where i is the index of that state among
-// all n receive states; otherwise r_i has the zero value of type T_i.
-// Note that the receive index i is not the same as the state
-// index index.
-//
-// The second component of the triple, recvOk, is a boolean whose value
-// is true iff the selected operation was a receive and the receive
-// successfully yielded a value.
-//
-// Pos() returns the ast.SelectStmt.Select.
-//
-// Example printed form:
-//
-// t3 = select nonblocking [<-t0, t1<-t2]
-// t4 = select blocking []
-type Select struct {
- register
- States []*SelectState
- Blocking bool
-}
-
-// The Range instruction yields an iterator over the domain and range
-// of X, which must be a string or map.
-//
-// Elements are accessed via Next.
-//
-// Type() returns an opaque and degenerate "rangeIter" type.
-//
-// Pos() returns the ast.RangeStmt.For.
-//
-// Example printed form:
-//
-// t0 = range "hello":string
-type Range struct {
- register
- X Value // string or map
-}
-
-// The Next instruction reads and advances the (map or string)
-// iterator Iter and returns a 3-tuple value (ok, k, v). If the
-// iterator is not exhausted, ok is true and k and v are the next
-// elements of the domain and range, respectively. Otherwise ok is
-// false and k and v are undefined.
-//
-// Components of the tuple are accessed using Extract.
-//
-// The IsString field distinguishes iterators over strings from those
-// over maps, as the Type() alone is insufficient: consider
-// map[int]rune.
-//
-// Type() returns a *types.Tuple for the triple (ok, k, v).
-// The types of k and/or v may be types.Invalid.
-//
-// Example printed form:
-//
-// t1 = next t0
-type Next struct {
- register
- Iter Value
- IsString bool // true => string iterator; false => map iterator.
-}
-
-// The TypeAssert instruction tests whether interface value X has type
-// AssertedType.
-//
-// If !CommaOk, on success it returns v, the result of the conversion
-// (defined below); on failure it panics.
-//
-// If CommaOk: on success it returns a pair (v, true) where v is the
-// result of the conversion; on failure it returns (z, false) where z
-// is AssertedType's zero value. The components of the pair must be
-// accessed using the Extract instruction.
-//
-// If Underlying: tests whether interface value X has the underlying
-// type AssertedType.
-//
-// If AssertedType is a concrete type, TypeAssert checks whether the
-// dynamic type in interface X is equal to it, and if so, the result
-// of the conversion is a copy of the value in the interface.
-//
-// If AssertedType is an interface, TypeAssert checks whether the
-// dynamic type of the interface is assignable to it, and if so, the
-// result of the conversion is a copy of the interface value X.
-// If AssertedType is a superinterface of X.Type(), the operation will
-// fail iff the operand is nil. (Contrast with ChangeInterface, which
-// performs no nil-check.)
-//
-// Type() reflects the actual type of the result, possibly a
-// 2-types.Tuple; AssertedType is the asserted type.
-//
-// Depending on the TypeAssert's purpose, Pos may return:
-// - the ast.CallExpr.Lparen of an explicit T(e) conversion;
-// - the ast.TypeAssertExpr.Lparen of an explicit e.(T) operation;
-// - the ast.CaseClause.Case of a case of a type-switch statement;
-// - the Ident(m).NamePos of an interface method value i.m
-// (for which TypeAssert may be used to effect the nil check).
-//
-// Example printed form:
-//
-// t1 = typeassert t0.(int)
-// t3 = typeassert,ok t2.(T)
-type TypeAssert struct {
- register
- X Value
- AssertedType types.Type
- CommaOk bool
-}
-
-// The Extract instruction yields component Index of Tuple.
-//
-// This is used to access the results of instructions with multiple
-// return values, such as Call, TypeAssert, Next, UnOp(ARROW) and
-// IndexExpr(Map).
-//
-// Example printed form:
-//
-// t1 = extract t0 #1
-type Extract struct {
- register
- Tuple Value
- Index int
-}
-
-// Instructions executed for effect. They do not yield a value. --------------------
-
-// The Jump instruction transfers control to the sole successor of its
-// owning block.
-//
-// A Jump must be the last instruction of its containing BasicBlock.
-//
-// Pos() returns NoPos.
-//
-// Example printed form:
-//
-// jump done
-type Jump struct {
- anInstruction
-}
-
-// The If instruction transfers control to one of the two successors
-// of its owning block, depending on the boolean Cond: the first if
-// true, the second if false.
-//
-// An If instruction must be the last instruction of its containing
-// BasicBlock.
-//
-// Pos() returns NoPos.
-//
-// Example printed form:
-//
-// if t0 goto done else body
-type If struct {
- anInstruction
- Cond Value
-}
-
-// The Return instruction returns values and control back to the calling
-// function.
-//
-// len(Results) is always equal to the number of results in the
-// function's signature.
-//
-// If len(Results) > 1, Return returns a tuple value with the specified
-// components which the caller must access using Extract instructions.
-//
-// There is no instruction to return a ready-made tuple like those
-// returned by a "value,ok"-mode TypeAssert, Lookup or UnOp(ARROW) or
-// a tail-call to a function with multiple result parameters.
-//
-// Return must be the last instruction of its containing BasicBlock.
-// Such a block has no successors.
-//
-// Pos() returns the ast.ReturnStmt.Return, if explicit in the source.
-//
-// Example printed form:
-//
-// return
-// return nil:I, 2:int
-type Return struct {
- anInstruction
- Results []Value
- pos token.Pos
-}
-
-// The RunDefers instruction pops and invokes the entire stack of
-// procedure calls pushed by Defer instructions in this function.
-//
-// It is legal to encounter multiple 'rundefers' instructions in a
-// single control-flow path through a function; this is useful in
-// the combined init() function, for example.
-//
-// Pos() returns NoPos.
-//
-// Example printed form:
-//
-// rundefers
-type RunDefers struct {
- anInstruction
-}
-
-// The Panic instruction initiates a panic with value X.
-//
-// A Panic instruction must be the last instruction of its containing
-// BasicBlock, which must have no successors.
-//
-// NB: 'go panic(x)' and 'defer panic(x)' do not use this instruction;
-// they are treated as calls to a built-in function.
-//
-// Pos() returns the ast.CallExpr.Lparen if this panic was explicit
-// in the source.
-//
-// Example printed form:
-//
-// panic t0
-type Panic struct {
- anInstruction
- X Value // an interface{}
- pos token.Pos
-}
-
-// The Go instruction creates a new goroutine and calls the specified
-// function within it.
-//
-// See CallCommon for generic function call documentation.
-//
-// Pos() returns the ast.GoStmt.Go.
-//
-// Example printed form:
-//
-// go println(t0, t1)
-// go t3()
-// go invoke t5.Println(...t6)
-type Go struct {
- anInstruction
- Call CallCommon
- pos token.Pos
-}
-
-// The Defer instruction pushes the specified call onto a stack of
-// functions to be called by a RunDefers instruction or by a panic.
-//
-// If DeferStack != nil, it indicates the defer list that the defer is
-// added to. Defer list values come from the Builtin function
-// ssa:deferstack. Calls to ssa:deferstack() produces the defer stack
-// of the current function frame. DeferStack allows for deferring into an
-// alternative function stack than the current function.
-//
-// See CallCommon for generic function call documentation.
-//
-// Pos() returns the ast.DeferStmt.Defer.
-//
-// Example printed form:
-//
-// defer println(t0, t1)
-// defer t3()
-// defer invoke t5.Println(...t6)
-type Defer struct {
- anInstruction
- Call CallCommon
- DeferStack Value // stack of deferred functions (from ssa:deferstack() intrinsic) onto which this function is pushed
- pos token.Pos
-}
-
-// The Send instruction sends X on channel Chan.
-//
-// Pos() returns the ast.SendStmt.Arrow, if explicit in the source.
-//
-// Example printed form:
-//
-// send t0 <- t1
-type Send struct {
- anInstruction
- Chan, X Value
- pos token.Pos
-}
-
-// The Store instruction stores Val at address Addr.
-// Stores can be of arbitrary types.
-//
-// Pos() returns the position of the source-level construct most closely
-// associated with the memory store operation.
-// Since implicit memory stores are numerous and varied and depend upon
-// implementation choices, the details are not specified.
-//
-// Example printed form:
-//
-// *x = y
-type Store struct {
- anInstruction
- Addr Value
- Val Value
- pos token.Pos
-}
-
-// The MapUpdate instruction updates the association of Map[Key] to
-// Value.
-//
-// Pos() returns the ast.KeyValueExpr.Colon or ast.IndexExpr.Lbrack,
-// if explicit in the source.
-//
-// Example printed form:
-//
-// t0[t1] = t2
-type MapUpdate struct {
- anInstruction
- Map Value
- Key Value
- Value Value
- pos token.Pos
-}
-
-// A DebugRef instruction maps a source-level expression Expr to the
-// SSA value X that represents the value (!IsAddr) or address (IsAddr)
-// of that expression.
-//
-// DebugRef is a pseudo-instruction: it has no dynamic effect.
-//
-// Pos() returns Expr.Pos(), the start position of the source-level
-// expression. This is not the same as the "designated" token as
-// documented at Value.Pos(). e.g. CallExpr.Pos() does not return the
-// position of the ("designated") Lparen token.
-//
-// If Expr is an *ast.Ident denoting a var or func, Object() returns
-// the object; though this information can be obtained from the type
-// checker, including it here greatly facilitates debugging.
-// For non-Ident expressions, Object() returns nil.
-//
-// DebugRefs are generated only for functions built with debugging
-// enabled; see Package.SetDebugMode() and the GlobalDebug builder
-// mode flag.
-//
-// DebugRefs are not emitted for ast.Idents referring to constants or
-// predeclared identifiers, since they are trivial and numerous.
-// Nor are they emitted for ast.ParenExprs.
-//
-// (By representing these as instructions, rather than out-of-band,
-// consistency is maintained during transformation passes by the
-// ordinary SSA renaming machinery.)
-//
-// Example printed form:
-//
-// ; *ast.CallExpr @ 102:9 is t5
-// ; var x float64 @ 109:72 is x
-// ; address of *ast.CompositeLit @ 216:10 is t0
-type DebugRef struct {
- // TODO(generics): Reconsider what DebugRefs are for generics.
- anInstruction
- Expr ast.Expr // the referring expression (never *ast.ParenExpr)
- object types.Object // the identity of the source var/func
- IsAddr bool // Expr is addressable and X is the address it denotes
- X Value // the value or address of Expr
-}
-
-// Embeddable mix-ins and helpers for common parts of other structs. -----------
-
-// register is a mix-in embedded by all SSA values that are also
-// instructions, i.e. virtual registers, and provides a uniform
-// implementation of most of the Value interface: Value.Name() is a
-// numbered register (e.g. "t0"); the other methods are field accessors.
-//
-// Temporary names are automatically assigned to each register on
-// completion of building a function in SSA form.
-//
-// Clients must not assume that the 'id' value (and the Name() derived
-// from it) is unique within a function. As always in this API,
-// semantics are determined only by identity; names exist only to
-// facilitate debugging.
-type register struct {
- anInstruction
- num int // "name" of virtual register, e.g. "t0". Not guaranteed unique.
- typ types.Type // type of virtual register
- pos token.Pos // position of source expression, or NoPos
- referrers []Instruction
-}
-
-// anInstruction is a mix-in embedded by all Instructions.
-// It provides the implementations of the Block and setBlock methods.
-type anInstruction struct {
- block *BasicBlock // the basic block of this instruction
-}
-
-// CallCommon is contained by Go, Defer and Call to hold the
-// common parts of a function or method call.
-//
-// Each CallCommon exists in one of two modes, function call and
-// interface method invocation, or "call" and "invoke" for short.
-//
-// 1. "call" mode: when Method is nil (!IsInvoke), a CallCommon
-// represents an ordinary function call of the value in Value,
-// which may be a *Builtin, a *Function or any other value of kind
-// 'func'.
-//
-// Value may be one of:
-//
-// (a) a *Function, indicating a statically dispatched call
-// to a package-level function, an anonymous function, or
-// a method of a named type.
-// (b) a *MakeClosure, indicating an immediately applied
-// function literal with free variables.
-// (c) a *Builtin, indicating a statically dispatched call
-// to a built-in function.
-// (d) any other value, indicating a dynamically dispatched
-// function call.
-//
-// StaticCallee returns the identity of the callee in cases
-// (a) and (b), nil otherwise.
-//
-// Args contains the arguments to the call. If Value is a method,
-// Args[0] contains the receiver parameter.
-//
-// Example printed form:
-//
-// t2 = println(t0, t1)
-// go t3()
-// defer t5(...t6)
-//
-// 2. "invoke" mode: when Method is non-nil (IsInvoke), a CallCommon
-// represents a dynamically dispatched call to an interface method.
-// In this mode, Value is the interface value and Method is the
-// interface's abstract method. The interface value may be a type
-// parameter. Note: an interface method may be shared by multiple
-// interfaces due to embedding; Value.Type() provides the specific
-// interface used for this call.
-//
-// Value is implicitly supplied to the concrete method implementation
-// as the receiver parameter; in other words, Args[0] holds not the
-// receiver but the first true argument.
-//
-// Example printed form:
-//
-// t1 = invoke t0.String()
-// go invoke t3.Run(t2)
-// defer invoke t4.Handle(...t5)
-//
-// For all calls to variadic functions (Signature().Variadic()),
-// the last element of Args is a slice.
-type CallCommon struct {
- Value Value // receiver (invoke mode) or func value (call mode)
- Method *types.Func // interface method (invoke mode)
- Args []Value // actual parameters (in static method call, includes receiver)
- pos token.Pos // position of CallExpr.Lparen, iff explicit in source
-}
-
-// IsInvoke returns true if this call has "invoke" (not "call") mode.
-func (c *CallCommon) IsInvoke() bool {
- return c.Method != nil
-}
-
-func (c *CallCommon) Pos() token.Pos { return c.pos }
-
-// Signature returns the signature of the called function.
-//
-// For an "invoke"-mode call, the signature of the interface method is
-// returned.
-//
-// In either "call" or "invoke" mode, if the callee is a method, its
-// receiver is represented by sig.Recv, not sig.Params().At(0).
-func (c *CallCommon) Signature() *types.Signature {
- if c.Method != nil {
- return c.Method.Type().(*types.Signature)
- }
- return typeparams.CoreType(c.Value.Type()).(*types.Signature)
-}
-
-// StaticCallee returns the callee if this is a trivially static
-// "call"-mode call to a function.
-func (c *CallCommon) StaticCallee() *Function {
- switch fn := c.Value.(type) {
- case *Function:
- return fn
- case *MakeClosure:
- return fn.Fn.(*Function)
- }
- return nil
-}
-
-// Description returns a description of the mode of this call suitable
-// for a user interface, e.g., "static method call".
-func (c *CallCommon) Description() string {
- switch fn := c.Value.(type) {
- case *Builtin:
- return "built-in function call"
- case *MakeClosure:
- return "static function closure call"
- case *Function:
- if fn.Signature.Recv() != nil {
- return "static method call"
- }
- return "static function call"
- }
- if c.IsInvoke() {
- return "dynamic method call" // ("invoke" mode)
- }
- return "dynamic function call"
-}
-
-// The CallInstruction interface, implemented by *Go, *Defer and *Call,
-// exposes the common parts of function-calling instructions,
-// yet provides a way back to the Value defined by *Call alone.
-type CallInstruction interface {
- Instruction
- Common() *CallCommon // returns the common parts of the call
- Value() *Call // returns the result value of the call (*Call) or nil (*Go, *Defer)
-}
-
-func (s *Call) Common() *CallCommon { return &s.Call }
-func (s *Defer) Common() *CallCommon { return &s.Call }
-func (s *Go) Common() *CallCommon { return &s.Call }
-
-func (s *Call) Value() *Call { return s }
-func (s *Defer) Value() *Call { return nil }
-func (s *Go) Value() *Call { return nil }
-
-func (v *Builtin) Type() types.Type { return v.sig }
-func (v *Builtin) Name() string { return v.name }
-func (*Builtin) Referrers() *[]Instruction { return nil }
-func (v *Builtin) Pos() token.Pos { return token.NoPos }
-func (v *Builtin) Object() types.Object { return types.Universe.Lookup(v.name) }
-func (v *Builtin) Parent() *Function { return nil }
-
-func (v *FreeVar) Type() types.Type { return v.typ }
-func (v *FreeVar) Name() string { return v.name }
-func (v *FreeVar) Referrers() *[]Instruction { return &v.referrers }
-func (v *FreeVar) Pos() token.Pos { return v.pos }
-func (v *FreeVar) Parent() *Function { return v.parent }
-
-func (v *Global) Type() types.Type { return v.typ }
-func (v *Global) Name() string { return v.name }
-func (v *Global) Parent() *Function { return nil }
-func (v *Global) Pos() token.Pos { return v.pos }
-func (v *Global) Referrers() *[]Instruction { return nil }
-func (v *Global) Token() token.Token { return token.VAR }
-func (v *Global) Object() types.Object { return v.object }
-func (v *Global) String() string { return v.RelString(nil) }
-func (v *Global) Package() *Package { return v.Pkg }
-func (v *Global) RelString(from *types.Package) string { return relString(v, from) }
-
-func (v *Function) Name() string { return v.name }
-func (v *Function) Type() types.Type { return v.Signature }
-func (v *Function) Pos() token.Pos { return v.pos }
-func (v *Function) Token() token.Token { return token.FUNC }
-func (v *Function) Object() types.Object {
- if v.object != nil {
- return types.Object(v.object)
- }
- return nil
-}
-func (v *Function) String() string { return v.RelString(nil) }
-func (v *Function) Package() *Package { return v.Pkg }
-func (v *Function) Parent() *Function { return v.parent }
-func (v *Function) Referrers() *[]Instruction {
- if v.parent != nil {
- return &v.referrers
- }
- return nil
-}
-
-// TypeParams are the function's type parameters if generic or the
-// type parameters that were instantiated if fn is an instantiation.
-func (fn *Function) TypeParams() *types.TypeParamList {
- return fn.typeparams
-}
-
-// TypeArgs are the types that TypeParams() were instantiated by to create fn
-// from fn.Origin().
-func (fn *Function) TypeArgs() []types.Type { return fn.typeargs }
-
-// Origin returns the generic function from which fn was instantiated,
-// or nil if fn is not an instantiation.
-func (fn *Function) Origin() *Function {
- if fn.parent != nil && len(fn.typeargs) > 0 {
- // Nested functions are BUILT at a different time than their instances.
- // Build declared package if not yet BUILT. This is not an expected use
- // case, but is simple and robust.
- fn.declaredPackage().Build()
- }
- return origin(fn)
-}
-
-// origin is the function that fn is an instantiation of. Returns nil if fn is
-// not an instantiation.
-//
-// Precondition: fn and the origin function are done building.
-func origin(fn *Function) *Function {
- if fn.parent != nil && len(fn.typeargs) > 0 {
- return origin(fn.parent).AnonFuncs[fn.anonIdx]
- }
- return fn.topLevelOrigin
-}
-
-func (v *Parameter) Type() types.Type { return v.typ }
-func (v *Parameter) Name() string { return v.name }
-func (v *Parameter) Object() types.Object { return v.object }
-func (v *Parameter) Referrers() *[]Instruction { return &v.referrers }
-func (v *Parameter) Pos() token.Pos { return v.object.Pos() }
-func (v *Parameter) Parent() *Function { return v.parent }
-
-func (v *Alloc) Type() types.Type { return v.typ }
-func (v *Alloc) Referrers() *[]Instruction { return &v.referrers }
-func (v *Alloc) Pos() token.Pos { return v.pos }
-
-func (v *register) Type() types.Type { return v.typ }
-func (v *register) setType(typ types.Type) { v.typ = typ }
-func (v *register) Name() string { return fmt.Sprintf("t%d", v.num) }
-func (v *register) setNum(num int) { v.num = num }
-func (v *register) Referrers() *[]Instruction { return &v.referrers }
-func (v *register) Pos() token.Pos { return v.pos }
-func (v *register) setPos(pos token.Pos) { v.pos = pos }
-
-func (v *anInstruction) Parent() *Function { return v.block.parent }
-func (v *anInstruction) Block() *BasicBlock { return v.block }
-func (v *anInstruction) setBlock(block *BasicBlock) { v.block = block }
-func (v *anInstruction) Referrers() *[]Instruction { return nil }
-
-func (t *Type) Name() string { return t.object.Name() }
-func (t *Type) Pos() token.Pos { return t.object.Pos() }
-func (t *Type) Type() types.Type { return t.object.Type() }
-func (t *Type) Token() token.Token { return token.TYPE }
-func (t *Type) Object() types.Object { return t.object }
-func (t *Type) String() string { return t.RelString(nil) }
-func (t *Type) Package() *Package { return t.pkg }
-func (t *Type) RelString(from *types.Package) string { return relString(t, from) }
-
-func (c *NamedConst) Name() string { return c.object.Name() }
-func (c *NamedConst) Pos() token.Pos { return c.object.Pos() }
-func (c *NamedConst) String() string { return c.RelString(nil) }
-func (c *NamedConst) Type() types.Type { return c.object.Type() }
-func (c *NamedConst) Token() token.Token { return token.CONST }
-func (c *NamedConst) Object() types.Object { return c.object }
-func (c *NamedConst) Package() *Package { return c.pkg }
-func (c *NamedConst) RelString(from *types.Package) string { return relString(c, from) }
-
-func (d *DebugRef) Object() types.Object { return d.object }
-
-// Func returns the package-level function of the specified name,
-// or nil if not found.
-func (p *Package) Func(name string) (f *Function) {
- f, _ = p.Members[name].(*Function)
- return
-}
-
-// Var returns the package-level variable of the specified name,
-// or nil if not found.
-func (p *Package) Var(name string) (g *Global) {
- g, _ = p.Members[name].(*Global)
- return
-}
-
-// Const returns the package-level constant of the specified name,
-// or nil if not found.
-func (p *Package) Const(name string) (c *NamedConst) {
- c, _ = p.Members[name].(*NamedConst)
- return
-}
-
-// Type returns the package-level type of the specified name,
-// or nil if not found.
-func (p *Package) Type(name string) (t *Type) {
- t, _ = p.Members[name].(*Type)
- return
-}
-
-func (v *Call) Pos() token.Pos { return v.Call.pos }
-func (s *Defer) Pos() token.Pos { return s.pos }
-func (s *Go) Pos() token.Pos { return s.pos }
-func (s *MapUpdate) Pos() token.Pos { return s.pos }
-func (s *Panic) Pos() token.Pos { return s.pos }
-func (s *Return) Pos() token.Pos { return s.pos }
-func (s *Send) Pos() token.Pos { return s.pos }
-func (s *Store) Pos() token.Pos { return s.pos }
-func (s *If) Pos() token.Pos { return token.NoPos }
-func (s *Jump) Pos() token.Pos { return token.NoPos }
-func (s *RunDefers) Pos() token.Pos { return token.NoPos }
-func (s *DebugRef) Pos() token.Pos { return s.Expr.Pos() }
-
-// Operands.
-
-func (v *Alloc) Operands(rands []*Value) []*Value {
- return rands
-}
-
-func (v *BinOp) Operands(rands []*Value) []*Value {
- return append(rands, &v.X, &v.Y)
-}
-
-func (c *CallCommon) Operands(rands []*Value) []*Value {
- rands = append(rands, &c.Value)
- for i := range c.Args {
- rands = append(rands, &c.Args[i])
- }
- return rands
-}
-
-func (s *Go) Operands(rands []*Value) []*Value {
- return s.Call.Operands(rands)
-}
-
-func (s *Call) Operands(rands []*Value) []*Value {
- return s.Call.Operands(rands)
-}
-
-func (s *Defer) Operands(rands []*Value) []*Value {
- return append(s.Call.Operands(rands), &s.DeferStack)
-}
-
-func (v *ChangeInterface) Operands(rands []*Value) []*Value {
- return append(rands, &v.X)
-}
-
-func (v *ChangeType) Operands(rands []*Value) []*Value {
- return append(rands, &v.X)
-}
-
-func (v *Convert) Operands(rands []*Value) []*Value {
- return append(rands, &v.X)
-}
-
-func (v *MultiConvert) Operands(rands []*Value) []*Value {
- return append(rands, &v.X)
-}
-
-func (v *SliceToArrayPointer) Operands(rands []*Value) []*Value {
- return append(rands, &v.X)
-}
-
-func (s *DebugRef) Operands(rands []*Value) []*Value {
- return append(rands, &s.X)
-}
-
-func (v *Extract) Operands(rands []*Value) []*Value {
- return append(rands, &v.Tuple)
-}
-
-func (v *Field) Operands(rands []*Value) []*Value {
- return append(rands, &v.X)
-}
-
-func (v *FieldAddr) Operands(rands []*Value) []*Value {
- return append(rands, &v.X)
-}
-
-func (s *If) Operands(rands []*Value) []*Value {
- return append(rands, &s.Cond)
-}
-
-func (v *Index) Operands(rands []*Value) []*Value {
- return append(rands, &v.X, &v.Index)
-}
-
-func (v *IndexAddr) Operands(rands []*Value) []*Value {
- return append(rands, &v.X, &v.Index)
-}
-
-func (*Jump) Operands(rands []*Value) []*Value {
- return rands
-}
-
-func (v *Lookup) Operands(rands []*Value) []*Value {
- return append(rands, &v.X, &v.Index)
-}
-
-func (v *MakeChan) Operands(rands []*Value) []*Value {
- return append(rands, &v.Size)
-}
-
-func (v *MakeClosure) Operands(rands []*Value) []*Value {
- rands = append(rands, &v.Fn)
- for i := range v.Bindings {
- rands = append(rands, &v.Bindings[i])
- }
- return rands
-}
-
-func (v *MakeInterface) Operands(rands []*Value) []*Value {
- return append(rands, &v.X)
-}
-
-func (v *MakeMap) Operands(rands []*Value) []*Value {
- return append(rands, &v.Reserve)
-}
-
-func (v *MakeSlice) Operands(rands []*Value) []*Value {
- return append(rands, &v.Len, &v.Cap)
-}
-
-func (v *MapUpdate) Operands(rands []*Value) []*Value {
- return append(rands, &v.Map, &v.Key, &v.Value)
-}
-
-func (v *Next) Operands(rands []*Value) []*Value {
- return append(rands, &v.Iter)
-}
-
-func (s *Panic) Operands(rands []*Value) []*Value {
- return append(rands, &s.X)
-}
-
-func (v *Phi) Operands(rands []*Value) []*Value {
- for i := range v.Edges {
- rands = append(rands, &v.Edges[i])
- }
- return rands
-}
-
-func (v *Range) Operands(rands []*Value) []*Value {
- return append(rands, &v.X)
-}
-
-func (s *Return) Operands(rands []*Value) []*Value {
- for i := range s.Results {
- rands = append(rands, &s.Results[i])
- }
- return rands
-}
-
-func (*RunDefers) Operands(rands []*Value) []*Value {
- return rands
-}
-
-func (v *Select) Operands(rands []*Value) []*Value {
- for i := range v.States {
- rands = append(rands, &v.States[i].Chan, &v.States[i].Send)
- }
- return rands
-}
-
-func (s *Send) Operands(rands []*Value) []*Value {
- return append(rands, &s.Chan, &s.X)
-}
-
-func (v *Slice) Operands(rands []*Value) []*Value {
- return append(rands, &v.X, &v.Low, &v.High, &v.Max)
-}
-
-func (s *Store) Operands(rands []*Value) []*Value {
- return append(rands, &s.Addr, &s.Val)
-}
-
-func (v *TypeAssert) Operands(rands []*Value) []*Value {
- return append(rands, &v.X)
-}
-
-func (v *UnOp) Operands(rands []*Value) []*Value {
- return append(rands, &v.X)
-}
-
-// Non-Instruction Values:
-func (v *Builtin) Operands(rands []*Value) []*Value { return rands }
-func (v *FreeVar) Operands(rands []*Value) []*Value { return rands }
-func (v *Const) Operands(rands []*Value) []*Value { return rands }
-func (v *Function) Operands(rands []*Value) []*Value { return rands }
-func (v *Global) Operands(rands []*Value) []*Value { return rands }
-func (v *Parameter) Operands(rands []*Value) []*Value { return rands }