summaryrefslogtreecommitdiffhomepage
path: root/vendor/golang.org/x/tools/go/ssa/builder.go
blob: 55943e45d24edb60a8124161cab170495a5c8a81 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package ssa

// This file defines the builder, which builds SSA-form IR for function bodies.
//
// SSA construction has two phases, "create" and "build". First, one
// or more packages are created in any order by a sequence of calls to
// CreatePackage, either from syntax or from mere type information.
// Each created package has a complete set of Members (const, var,
// type, func) that can be accessed through methods like
// Program.FuncValue.
//
// It is not necessary to call CreatePackage for all dependencies of
// each syntax package, only for its direct imports. (In future
// perhaps even this restriction may be lifted.)
//
// Second, packages created from syntax are built, by one or more
// calls to Package.Build, which may be concurrent; or by a call to
// Program.Build, which builds all packages in parallel. Building
// traverses the type-annotated syntax tree of each function body and
// creates SSA-form IR, a control-flow graph of instructions,
// populating fields such as Function.Body, .Params, and others.
//
// Building may create additional methods, including:
// - wrapper methods (e.g. for embeddding, or implicit &recv)
// - bound method closures (e.g. for use(recv.f))
// - thunks (e.g. for use(I.f) or use(T.f))
// - generic instances (e.g. to produce f[int] from f[any]).
// As these methods are created, they are added to the build queue,
// and then processed in turn, until a fixed point is reached,
// Since these methods might belong to packages that were not
// created (by a call to CreatePackage), their Pkg field is unset.
//
// Instances of generic functions may be either instantiated (f[int]
// is a copy of f[T] with substitutions) or wrapped (f[int] delegates
// to f[T]), depending on the availability of generic syntax and the
// InstantiateGenerics mode flag.
//
// Each package has an initializer function named "init" that calls
// the initializer functions of each direct import, computes and
// assigns the initial value of each global variable, and calls each
// source-level function named "init". (These generate SSA functions
// named "init#1", "init#2", etc.)
//
// Runtime types
//
// Each MakeInterface operation is a conversion from a non-interface
// type to an interface type. The semantics of this operation requires
// a runtime type descriptor, which is the type portion of an
// interface, and the value abstracted by reflect.Type.
//
// The program accumulates all non-parameterized types that are
// encountered as MakeInterface operands, along with all types that
// may be derived from them using reflection. This set is available as
// Program.RuntimeTypes, and the methods of these types may be
// reachable via interface calls or reflection even if they are never
// referenced from the SSA IR. (In practice, algorithms such as RTA
// that compute reachability from package main perform their own
// tracking of runtime types at a finer grain, so this feature is not
// very useful.)
//
// Function literals
//
// Anonymous functions must be built as soon as they are encountered,
// as it may affect locals of the enclosing function, but they are not
// marked 'built' until the end of the outermost enclosing function.
// (Among other things, this causes them to be logged in top-down order.)
//
// The Function.build fields determines the algorithm for building the
// function body. It is cleared to mark that building is complete.

import (
	"fmt"
	"go/ast"
	"go/constant"
	"go/token"
	"go/types"
	"os"
	"runtime"
	"sync"

	"golang.org/x/tools/internal/aliases"
	"golang.org/x/tools/internal/typeparams"
	"golang.org/x/tools/internal/versions"
)

type opaqueType struct{ name string }

func (t *opaqueType) String() string         { return t.name }
func (t *opaqueType) Underlying() types.Type { return t }

var (
	varOk    = newVar("ok", tBool)
	varIndex = newVar("index", tInt)

	// Type constants.
	tBool       = types.Typ[types.Bool]
	tByte       = types.Typ[types.Byte]
	tInt        = types.Typ[types.Int]
	tInvalid    = types.Typ[types.Invalid]
	tString     = types.Typ[types.String]
	tUntypedNil = types.Typ[types.UntypedNil]

	tRangeIter  = &opaqueType{"iter"}                         // the type of all "range" iterators
	tDeferStack = types.NewPointer(&opaqueType{"deferStack"}) // the type of a "deferStack" from ssa:deferstack()
	tEface      = types.NewInterfaceType(nil, nil).Complete()

	// SSA Value constants.
	vZero  = intConst(0)
	vOne   = intConst(1)
	vTrue  = NewConst(constant.MakeBool(true), tBool)
	vFalse = NewConst(constant.MakeBool(false), tBool)

	jReady = intConst(0)  // range-over-func jump is READY
	jBusy  = intConst(-1) // range-over-func jump is BUSY
	jDone  = intConst(-2) // range-over-func jump is DONE

	// The ssa:deferstack intrinsic returns the current function's defer stack.
	vDeferStack = &Builtin{
		name: "ssa:deferstack",
		sig:  types.NewSignatureType(nil, nil, nil, nil, types.NewTuple(anonVar(tDeferStack)), false),
	}
)

// builder holds state associated with the package currently being built.
// Its methods contain all the logic for AST-to-SSA conversion.
//
// All Functions belong to the same Program.
//
// builders are not thread-safe.
type builder struct {
	fns []*Function // Functions that have finished their CREATE phases.

	finished int // finished is the length of the prefix of fns containing built functions.

	// The task of building shared functions within the builder.
	// Shared functions are ones the the builder may either create or lookup.
	// These may be built by other builders in parallel.
	// The task is done when the builder has finished iterating, and it
	// waits for all shared functions to finish building.
	// nil implies there are no hared functions to wait on.
	buildshared *task
}

// shared is done when the builder has built all of the
// enqueued functions to a fixed-point.
func (b *builder) shared() *task {
	if b.buildshared == nil { // lazily-initialize
		b.buildshared = &task{done: make(chan unit)}
	}
	return b.buildshared
}

// enqueue fn to be built by the builder.
func (b *builder) enqueue(fn *Function) {
	b.fns = append(b.fns, fn)
}

// waitForSharedFunction indicates that the builder should wait until
// the potentially shared function fn has finished building.
//
// This should include any functions that may be built by other
// builders.
func (b *builder) waitForSharedFunction(fn *Function) {
	if fn.buildshared != nil { // maybe need to wait?
		s := b.shared()
		s.addEdge(fn.buildshared)
	}
}

// cond emits to fn code to evaluate boolean condition e and jump
// to t or f depending on its value, performing various simplifications.
//
// Postcondition: fn.currentBlock is nil.
func (b *builder) cond(fn *Function, e ast.Expr, t, f *BasicBlock) {
	switch e := e.(type) {
	case *ast.ParenExpr:
		b.cond(fn, e.X, t, f)
		return

	case *ast.BinaryExpr:
		switch e.Op {
		case token.LAND:
			ltrue := fn.newBasicBlock("cond.true")
			b.cond(fn, e.X, ltrue, f)
			fn.currentBlock = ltrue
			b.cond(fn, e.Y, t, f)
			return

		case token.LOR:
			lfalse := fn.newBasicBlock("cond.false")
			b.cond(fn, e.X, t, lfalse)
			fn.currentBlock = lfalse
			b.cond(fn, e.Y, t, f)
			return
		}

	case *ast.UnaryExpr:
		if e.Op == token.NOT {
			b.cond(fn, e.X, f, t)
			return
		}
	}

	// A traditional compiler would simplify "if false" (etc) here
	// but we do not, for better fidelity to the source code.
	//
	// The value of a constant condition may be platform-specific,
	// and may cause blocks that are reachable in some configuration
	// to be hidden from subsequent analyses such as bug-finding tools.
	emitIf(fn, b.expr(fn, e), t, f)
}

// logicalBinop emits code to fn to evaluate e, a &&- or
// ||-expression whose reified boolean value is wanted.
// The value is returned.
func (b *builder) logicalBinop(fn *Function, e *ast.BinaryExpr) Value {
	rhs := fn.newBasicBlock("binop.rhs")
	done := fn.newBasicBlock("binop.done")

	// T(e) = T(e.X) = T(e.Y) after untyped constants have been
	// eliminated.
	// TODO(adonovan): not true; MyBool==MyBool yields UntypedBool.
	t := fn.typeOf(e)

	var short Value // value of the short-circuit path
	switch e.Op {
	case token.LAND:
		b.cond(fn, e.X, rhs, done)
		short = NewConst(constant.MakeBool(false), t)

	case token.LOR:
		b.cond(fn, e.X, done, rhs)
		short = NewConst(constant.MakeBool(true), t)
	}

	// Is rhs unreachable?
	if rhs.Preds == nil {
		// Simplify false&&y to false, true||y to true.
		fn.currentBlock = done
		return short
	}

	// Is done unreachable?
	if done.Preds == nil {
		// Simplify true&&y (or false||y) to y.
		fn.currentBlock = rhs
		return b.expr(fn, e.Y)
	}

	// All edges from e.X to done carry the short-circuit value.
	var edges []Value
	for range done.Preds {
		edges = append(edges, short)
	}

	// The edge from e.Y to done carries the value of e.Y.
	fn.currentBlock = rhs
	edges = append(edges, b.expr(fn, e.Y))
	emitJump(fn, done)
	fn.currentBlock = done

	phi := &Phi{Edges: edges, Comment: e.Op.String()}
	phi.pos = e.OpPos
	phi.typ = t
	return done.emit(phi)
}

// exprN lowers a multi-result expression e to SSA form, emitting code
// to fn and returning a single Value whose type is a *types.Tuple.
// The caller must access the components via Extract.
//
// Multi-result expressions include CallExprs in a multi-value
// assignment or return statement, and "value,ok" uses of
// TypeAssertExpr, IndexExpr (when X is a map), and UnaryExpr (when Op
// is token.ARROW).
func (b *builder) exprN(fn *Function, e ast.Expr) Value {
	typ := fn.typeOf(e).(*types.Tuple)
	switch e := e.(type) {
	case *ast.ParenExpr:
		return b.exprN(fn, e.X)

	case *ast.CallExpr:
		// Currently, no built-in function nor type conversion
		// has multiple results, so we can avoid some of the
		// cases for single-valued CallExpr.
		var c Call
		b.setCall(fn, e, &c.Call)
		c.typ = typ
		return fn.emit(&c)

	case *ast.IndexExpr:
		mapt := typeparams.CoreType(fn.typeOf(e.X)).(*types.Map) // ,ok must be a map.
		lookup := &Lookup{
			X:       b.expr(fn, e.X),
			Index:   emitConv(fn, b.expr(fn, e.Index), mapt.Key()),
			CommaOk: true,
		}
		lookup.setType(typ)
		lookup.setPos(e.Lbrack)
		return fn.emit(lookup)

	case *ast.TypeAssertExpr:
		return emitTypeTest(fn, b.expr(fn, e.X), typ.At(0).Type(), e.Lparen)

	case *ast.UnaryExpr: // must be receive <-
		unop := &UnOp{
			Op:      token.ARROW,
			X:       b.expr(fn, e.X),
			CommaOk: true,
		}
		unop.setType(typ)
		unop.setPos(e.OpPos)
		return fn.emit(unop)
	}
	panic(fmt.Sprintf("exprN(%T) in %s", e, fn))
}

// builtin emits to fn SSA instructions to implement a call to the
// built-in function obj with the specified arguments
// and return type.  It returns the value defined by the result.
//
// The result is nil if no special handling was required; in this case
// the caller should treat this like an ordinary library function
// call.
func (b *builder) builtin(fn *Function, obj *types.Builtin, args []ast.Expr, typ types.Type, pos token.Pos) Value {
	typ = fn.typ(typ)
	switch obj.Name() {
	case "make":
		switch ct := typeparams.CoreType(typ).(type) {
		case *types.Slice:
			n := b.expr(fn, args[1])
			m := n
			if len(args) == 3 {
				m = b.expr(fn, args[2])
			}
			if m, ok := m.(*Const); ok {
				// treat make([]T, n, m) as new([m]T)[:n]
				cap := m.Int64()
				at := types.NewArray(ct.Elem(), cap)
				v := &Slice{
					X:    emitNew(fn, at, pos, "makeslice"),
					High: n,
				}
				v.setPos(pos)
				v.setType(typ)
				return fn.emit(v)
			}
			v := &MakeSlice{
				Len: n,
				Cap: m,
			}
			v.setPos(pos)
			v.setType(typ)
			return fn.emit(v)

		case *types.Map:
			var res Value
			if len(args) == 2 {
				res = b.expr(fn, args[1])
			}
			v := &MakeMap{Reserve: res}
			v.setPos(pos)
			v.setType(typ)
			return fn.emit(v)

		case *types.Chan:
			var sz Value = vZero
			if len(args) == 2 {
				sz = b.expr(fn, args[1])
			}
			v := &MakeChan{Size: sz}
			v.setPos(pos)
			v.setType(typ)
			return fn.emit(v)
		}

	case "new":
		return emitNew(fn, typeparams.MustDeref(typ), pos, "new")

	case "len", "cap":
		// Special case: len or cap of an array or *array is
		// based on the type, not the value which may be nil.
		// We must still evaluate the value, though.  (If it
		// was side-effect free, the whole call would have
		// been constant-folded.)
		t := typeparams.Deref(fn.typeOf(args[0]))
		if at, ok := typeparams.CoreType(t).(*types.Array); ok {
			b.expr(fn, args[0]) // for effects only
			return intConst(at.Len())
		}
		// Otherwise treat as normal.

	case "panic":
		fn.emit(&Panic{
			X:   emitConv(fn, b.expr(fn, args[0]), tEface),
			pos: pos,
		})
		fn.currentBlock = fn.newBasicBlock("unreachable")
		return vTrue // any non-nil Value will do
	}
	return nil // treat all others as a regular function call
}

// addr lowers a single-result addressable expression e to SSA form,
// emitting code to fn and returning the location (an lvalue) defined
// by the expression.
//
// If escaping is true, addr marks the base variable of the
// addressable expression e as being a potentially escaping pointer
// value.  For example, in this code:
//
//	a := A{
//	  b: [1]B{B{c: 1}}
//	}
//	return &a.b[0].c
//
// the application of & causes a.b[0].c to have its address taken,
// which means that ultimately the local variable a must be
// heap-allocated.  This is a simple but very conservative escape
// analysis.
//
// Operations forming potentially escaping pointers include:
// - &x, including when implicit in method call or composite literals.
// - a[:] iff a is an array (not *array)
// - references to variables in lexically enclosing functions.
func (b *builder) addr(fn *Function, e ast.Expr, escaping bool) lvalue {
	switch e := e.(type) {
	case *ast.Ident:
		if isBlankIdent(e) {
			return blank{}
		}
		obj := fn.objectOf(e).(*types.Var)
		var v Value
		if g := fn.Prog.packageLevelMember(obj); g != nil {
			v = g.(*Global) // var (address)
		} else {
			v = fn.lookup(obj, escaping)
		}
		return &address{addr: v, pos: e.Pos(), expr: e}

	case *ast.CompositeLit:
		typ := typeparams.Deref(fn.typeOf(e))
		var v *Alloc
		if escaping {
			v = emitNew(fn, typ, e.Lbrace, "complit")
		} else {
			v = emitLocal(fn, typ, e.Lbrace, "complit")
		}
		var sb storebuf
		b.compLit(fn, v, e, true, &sb)
		sb.emit(fn)
		return &address{addr: v, pos: e.Lbrace, expr: e}

	case *ast.ParenExpr:
		return b.addr(fn, e.X, escaping)

	case *ast.SelectorExpr:
		sel := fn.selection(e)
		if sel == nil {
			// qualified identifier
			return b.addr(fn, e.Sel, escaping)
		}
		if sel.kind != types.FieldVal {
			panic(sel)
		}
		wantAddr := true
		v := b.receiver(fn, e.X, wantAddr, escaping, sel)
		index := sel.index[len(sel.index)-1]
		fld := fieldOf(typeparams.MustDeref(v.Type()), index) // v is an addr.

		// Due to the two phases of resolving AssignStmt, a panic from x.f = p()
		// when x is nil is required to come after the side-effects of
		// evaluating x and p().
		emit := func(fn *Function) Value {
			return emitFieldSelection(fn, v, index, true, e.Sel)
		}
		return &lazyAddress{addr: emit, t: fld.Type(), pos: e.Sel.Pos(), expr: e.Sel}

	case *ast.IndexExpr:
		xt := fn.typeOf(e.X)
		elem, mode := indexType(xt)
		var x Value
		var et types.Type
		switch mode {
		case ixArrVar: // array, array|slice, array|*array, or array|*array|slice.
			x = b.addr(fn, e.X, escaping).address(fn)
			et = types.NewPointer(elem)
		case ixVar: // *array, slice, *array|slice
			x = b.expr(fn, e.X)
			et = types.NewPointer(elem)
		case ixMap:
			mt := typeparams.CoreType(xt).(*types.Map)
			return &element{
				m:   b.expr(fn, e.X),
				k:   emitConv(fn, b.expr(fn, e.Index), mt.Key()),
				t:   mt.Elem(),
				pos: e.Lbrack,
			}
		default:
			panic("unexpected container type in IndexExpr: " + xt.String())
		}
		index := b.expr(fn, e.Index)
		if isUntyped(index.Type()) {
			index = emitConv(fn, index, tInt)
		}
		// Due to the two phases of resolving AssignStmt, a panic from x[i] = p()
		// when x is nil or i is out-of-bounds is required to come after the
		// side-effects of evaluating x, i and p().
		emit := func(fn *Function) Value {
			v := &IndexAddr{
				X:     x,
				Index: index,
			}
			v.setPos(e.Lbrack)
			v.setType(et)
			return fn.emit(v)
		}
		return &lazyAddress{addr: emit, t: typeparams.MustDeref(et), pos: e.Lbrack, expr: e}

	case *ast.StarExpr:
		return &address{addr: b.expr(fn, e.X), pos: e.Star, expr: e}
	}

	panic(fmt.Sprintf("unexpected address expression: %T", e))
}

type store struct {
	lhs lvalue
	rhs Value
}

type storebuf struct{ stores []store }

func (sb *storebuf) store(lhs lvalue, rhs Value) {
	sb.stores = append(sb.stores, store{lhs, rhs})
}

func (sb *storebuf) emit(fn *Function) {
	for _, s := range sb.stores {
		s.lhs.store(fn, s.rhs)
	}
}

// assign emits to fn code to initialize the lvalue loc with the value
// of expression e.  If isZero is true, assign assumes that loc holds
// the zero value for its type.
//
// This is equivalent to loc.store(fn, b.expr(fn, e)), but may generate
// better code in some cases, e.g., for composite literals in an
// addressable location.
//
// If sb is not nil, assign generates code to evaluate expression e, but
// not to update loc.  Instead, the necessary stores are appended to the
// storebuf sb so that they can be executed later.  This allows correct
// in-place update of existing variables when the RHS is a composite
// literal that may reference parts of the LHS.
func (b *builder) assign(fn *Function, loc lvalue, e ast.Expr, isZero bool, sb *storebuf) {
	// Can we initialize it in place?
	if e, ok := unparen(e).(*ast.CompositeLit); ok {
		// A CompositeLit never evaluates to a pointer,
		// so if the type of the location is a pointer,
		// an &-operation is implied.
		if !is[blank](loc) && isPointerCore(loc.typ()) { // avoid calling blank.typ()
			ptr := b.addr(fn, e, true).address(fn)
			// copy address
			if sb != nil {
				sb.store(loc, ptr)
			} else {
				loc.store(fn, ptr)
			}
			return
		}

		if _, ok := loc.(*address); ok {
			if isNonTypeParamInterface(loc.typ()) {
				// e.g. var x interface{} = T{...}
				// Can't in-place initialize an interface value.
				// Fall back to copying.
			} else {
				// x = T{...} or x := T{...}
				addr := loc.address(fn)
				if sb != nil {
					b.compLit(fn, addr, e, isZero, sb)
				} else {
					var sb storebuf
					b.compLit(fn, addr, e, isZero, &sb)
					sb.emit(fn)
				}

				// Subtle: emit debug ref for aggregate types only;
				// slice and map are handled by store ops in compLit.
				switch typeparams.CoreType(loc.typ()).(type) {
				case *types.Struct, *types.Array:
					emitDebugRef(fn, e, addr, true)
				}

				return
			}
		}
	}

	// simple case: just copy
	rhs := b.expr(fn, e)
	if sb != nil {
		sb.store(loc, rhs)
	} else {
		loc.store(fn, rhs)
	}
}

// expr lowers a single-result expression e to SSA form, emitting code
// to fn and returning the Value defined by the expression.
func (b *builder) expr(fn *Function, e ast.Expr) Value {
	e = unparen(e)

	tv := fn.info.Types[e]

	// Is expression a constant?
	if tv.Value != nil {
		return NewConst(tv.Value, fn.typ(tv.Type))
	}

	var v Value
	if tv.Addressable() {
		// Prefer pointer arithmetic ({Index,Field}Addr) followed
		// by Load over subelement extraction (e.g. Index, Field),
		// to avoid large copies.
		v = b.addr(fn, e, false).load(fn)
	} else {
		v = b.expr0(fn, e, tv)
	}
	if fn.debugInfo() {
		emitDebugRef(fn, e, v, false)
	}
	return v
}

func (b *builder) expr0(fn *Function, e ast.Expr, tv types.TypeAndValue) Value {
	switch e := e.(type) {
	case *ast.BasicLit:
		panic("non-constant BasicLit") // unreachable

	case *ast.FuncLit:
		/* function literal */
		anon := &Function{
			name:           fmt.Sprintf("%s$%d", fn.Name(), 1+len(fn.AnonFuncs)),
			Signature:      fn.typeOf(e.Type).(*types.Signature),
			pos:            e.Type.Func,
			parent:         fn,
			anonIdx:        int32(len(fn.AnonFuncs)),
			Pkg:            fn.Pkg,
			Prog:           fn.Prog,
			syntax:         e,
			info:           fn.info,
			goversion:      fn.goversion,
			build:          (*builder).buildFromSyntax,
			topLevelOrigin: nil,           // use anonIdx to lookup an anon instance's origin.
			typeparams:     fn.typeparams, // share the parent's type parameters.
			typeargs:       fn.typeargs,   // share the parent's type arguments.
			subst:          fn.subst,      // share the parent's type substitutions.
			uniq:           fn.uniq,       // start from parent's unique values
		}
		fn.AnonFuncs = append(fn.AnonFuncs, anon)
		// Build anon immediately, as it may cause fn's locals to escape.
		// (It is not marked 'built' until the end of the enclosing FuncDecl.)
		anon.build(b, anon)
		fn.uniq = anon.uniq // resume after anon's unique values
		if anon.FreeVars == nil {
			return anon
		}
		v := &MakeClosure{Fn: anon}
		v.setType(fn.typ(tv.Type))
		for _, fv := range anon.FreeVars {
			v.Bindings = append(v.Bindings, fv.outer)
			fv.outer = nil
		}
		return fn.emit(v)

	case *ast.TypeAssertExpr: // single-result form only
		return emitTypeAssert(fn, b.expr(fn, e.X), fn.typ(tv.Type), e.Lparen)

	case *ast.CallExpr:
		if fn.info.Types[e.Fun].IsType() {
			// Explicit type conversion, e.g. string(x) or big.Int(x)
			x := b.expr(fn, e.Args[0])
			y := emitConv(fn, x, fn.typ(tv.Type))
			if y != x {
				switch y := y.(type) {
				case *Convert:
					y.pos = e.Lparen
				case *ChangeType:
					y.pos = e.Lparen
				case *MakeInterface:
					y.pos = e.Lparen
				case *SliceToArrayPointer:
					y.pos = e.Lparen
				case *UnOp: // conversion from slice to array.
					y.pos = e.Lparen
				}
			}
			return y
		}
		// Call to "intrinsic" built-ins, e.g. new, make, panic.
		if id, ok := unparen(e.Fun).(*ast.Ident); ok {
			if obj, ok := fn.info.Uses[id].(*types.Builtin); ok {
				if v := b.builtin(fn, obj, e.Args, fn.typ(tv.Type), e.Lparen); v != nil {
					return v
				}
			}
		}
		// Regular function call.
		var v Call
		b.setCall(fn, e, &v.Call)
		v.setType(fn.typ(tv.Type))
		return fn.emit(&v)

	case *ast.UnaryExpr:
		switch e.Op {
		case token.AND: // &X --- potentially escaping.
			addr := b.addr(fn, e.X, true)
			if _, ok := unparen(e.X).(*ast.StarExpr); ok {
				// &*p must panic if p is nil (http://golang.org/s/go12nil).
				// For simplicity, we'll just (suboptimally) rely
				// on the side effects of a load.
				// TODO(adonovan): emit dedicated nilcheck.
				addr.load(fn)
			}
			return addr.address(fn)
		case token.ADD:
			return b.expr(fn, e.X)
		case token.NOT, token.ARROW, token.SUB, token.XOR: // ! <- - ^
			v := &UnOp{
				Op: e.Op,
				X:  b.expr(fn, e.X),
			}
			v.setPos(e.OpPos)
			v.setType(fn.typ(tv.Type))
			return fn.emit(v)
		default:
			panic(e.Op)
		}

	case *ast.BinaryExpr:
		switch e.Op {
		case token.LAND, token.LOR:
			return b.logicalBinop(fn, e)
		case token.SHL, token.SHR:
			fallthrough
		case token.ADD, token.SUB, token.MUL, token.QUO, token.REM, token.AND, token.OR, token.XOR, token.AND_NOT:
			return emitArith(fn, e.Op, b.expr(fn, e.X), b.expr(fn, e.Y), fn.typ(tv.Type), e.OpPos)

		case token.EQL, token.NEQ, token.GTR, token.LSS, token.LEQ, token.GEQ:
			cmp := emitCompare(fn, e.Op, b.expr(fn, e.X), b.expr(fn, e.Y), e.OpPos)
			// The type of x==y may be UntypedBool.
			return emitConv(fn, cmp, types.Default(fn.typ(tv.Type)))
		default:
			panic("illegal op in BinaryExpr: " + e.Op.String())
		}

	case *ast.SliceExpr:
		var low, high, max Value
		var x Value
		xtyp := fn.typeOf(e.X)
		switch typeparams.CoreType(xtyp).(type) {
		case *types.Array:
			// Potentially escaping.
			x = b.addr(fn, e.X, true).address(fn)
		case *types.Basic, *types.Slice, *types.Pointer: // *array
			x = b.expr(fn, e.X)
		default:
			// core type exception?
			if isBytestring(xtyp) {
				x = b.expr(fn, e.X) // bytestring is handled as string and []byte.
			} else {
				panic("unexpected sequence type in SliceExpr")
			}
		}
		if e.Low != nil {
			low = b.expr(fn, e.Low)
		}
		if e.High != nil {
			high = b.expr(fn, e.High)
		}
		if e.Slice3 {
			max = b.expr(fn, e.Max)
		}
		v := &Slice{
			X:    x,
			Low:  low,
			High: high,
			Max:  max,
		}
		v.setPos(e.Lbrack)
		v.setType(fn.typ(tv.Type))
		return fn.emit(v)

	case *ast.Ident:
		obj := fn.info.Uses[e]
		// Universal built-in or nil?
		switch obj := obj.(type) {
		case *types.Builtin:
			return &Builtin{name: obj.Name(), sig: fn.instanceType(e).(*types.Signature)}
		case *types.Nil:
			return zeroConst(fn.instanceType(e))
		}

		// Package-level func or var?
		// (obj must belong to same package or a direct import.)
		if v := fn.Prog.packageLevelMember(obj); v != nil {
			if g, ok := v.(*Global); ok {
				return emitLoad(fn, g) // var (address)
			}
			callee := v.(*Function) // (func)
			if callee.typeparams.Len() > 0 {
				targs := fn.subst.types(instanceArgs(fn.info, e))
				callee = callee.instance(targs, b)
			}
			return callee
		}
		// Local var.
		return emitLoad(fn, fn.lookup(obj.(*types.Var), false)) // var (address)

	case *ast.SelectorExpr:
		sel := fn.selection(e)
		if sel == nil {
			// builtin unsafe.{Add,Slice}
			if obj, ok := fn.info.Uses[e.Sel].(*types.Builtin); ok {
				return &Builtin{name: obj.Name(), sig: fn.typ(tv.Type).(*types.Signature)}
			}
			// qualified identifier
			return b.expr(fn, e.Sel)
		}
		switch sel.kind {
		case types.MethodExpr:
			// (*T).f or T.f, the method f from the method-set of type T.
			// The result is a "thunk".
			thunk := createThunk(fn.Prog, sel)
			b.enqueue(thunk)
			return emitConv(fn, thunk, fn.typ(tv.Type))

		case types.MethodVal:
			// e.f where e is an expression and f is a method.
			// The result is a "bound".
			obj := sel.obj.(*types.Func)
			rt := fn.typ(recvType(obj))
			wantAddr := isPointer(rt)
			escaping := true
			v := b.receiver(fn, e.X, wantAddr, escaping, sel)

			if types.IsInterface(rt) {
				// If v may be an interface type I (after instantiating),
				// we must emit a check that v is non-nil.
				if recv, ok := aliases.Unalias(sel.recv).(*types.TypeParam); ok {
					// Emit a nil check if any possible instantiation of the
					// type parameter is an interface type.
					if typeSetOf(recv).Len() > 0 {
						// recv has a concrete term its typeset.
						// So it cannot be instantiated as an interface.
						//
						// Example:
						// func _[T interface{~int; Foo()}] () {
						//    var v T
						//    _ = v.Foo // <-- MethodVal
						// }
					} else {
						// rt may be instantiated as an interface.
						// Emit nil check: typeassert (any(v)).(any).
						emitTypeAssert(fn, emitConv(fn, v, tEface), tEface, token.NoPos)
					}
				} else {
					// non-type param interface
					// Emit nil check: typeassert v.(I).
					emitTypeAssert(fn, v, rt, e.Sel.Pos())
				}
			}
			if targs := receiverTypeArgs(obj); len(targs) > 0 {
				// obj is generic.
				obj = fn.Prog.canon.instantiateMethod(obj, fn.subst.types(targs), fn.Prog.ctxt)
			}
			bound := createBound(fn.Prog, obj)
			b.enqueue(bound)

			c := &MakeClosure{
				Fn:       bound,
				Bindings: []Value{v},
			}
			c.setPos(e.Sel.Pos())
			c.setType(fn.typ(tv.Type))
			return fn.emit(c)

		case types.FieldVal:
			indices := sel.index
			last := len(indices) - 1
			v := b.expr(fn, e.X)
			v = emitImplicitSelections(fn, v, indices[:last], e.Pos())
			v = emitFieldSelection(fn, v, indices[last], false, e.Sel)
			return v
		}

		panic("unexpected expression-relative selector")

	case *ast.IndexListExpr:
		// f[X, Y] must be a generic function
		if !instance(fn.info, e.X) {
			panic("unexpected expression-could not match index list to instantiation")
		}
		return b.expr(fn, e.X) // Handle instantiation within the *Ident or *SelectorExpr cases.

	case *ast.IndexExpr:
		if instance(fn.info, e.X) {
			return b.expr(fn, e.X) // Handle instantiation within the *Ident or *SelectorExpr cases.
		}
		// not a generic instantiation.
		xt := fn.typeOf(e.X)
		switch et, mode := indexType(xt); mode {
		case ixVar:
			// Addressable slice/array; use IndexAddr and Load.
			return b.addr(fn, e, false).load(fn)

		case ixArrVar, ixValue:
			// An array in a register, a string or a combined type that contains
			// either an [_]array (ixArrVar) or string (ixValue).

			// Note: for ixArrVar and CoreType(xt)==nil can be IndexAddr and Load.
			index := b.expr(fn, e.Index)
			if isUntyped(index.Type()) {
				index = emitConv(fn, index, tInt)
			}
			v := &Index{
				X:     b.expr(fn, e.X),
				Index: index,
			}
			v.setPos(e.Lbrack)
			v.setType(et)
			return fn.emit(v)

		case ixMap:
			ct := typeparams.CoreType(xt).(*types.Map)
			v := &Lookup{
				X:     b.expr(fn, e.X),
				Index: emitConv(fn, b.expr(fn, e.Index), ct.Key()),
			}
			v.setPos(e.Lbrack)
			v.setType(ct.Elem())
			return fn.emit(v)
		default:
			panic("unexpected container type in IndexExpr: " + xt.String())
		}

	case *ast.CompositeLit, *ast.StarExpr:
		// Addressable types (lvalues)
		return b.addr(fn, e, false).load(fn)
	}

	panic(fmt.Sprintf("unexpected expr: %T", e))
}

// stmtList emits to fn code for all statements in list.
func (b *builder) stmtList(fn *Function, list []ast.Stmt) {
	for _, s := range list {
		b.stmt(fn, s)
	}
}

// receiver emits to fn code for expression e in the "receiver"
// position of selection e.f (where f may be a field or a method) and
// returns the effective receiver after applying the implicit field
// selections of sel.
//
// wantAddr requests that the result is an address.  If
// !sel.indirect, this may require that e be built in addr() mode; it
// must thus be addressable.
//
// escaping is defined as per builder.addr().
func (b *builder) receiver(fn *Function, e ast.Expr, wantAddr, escaping bool, sel *selection) Value {
	var v Value
	if wantAddr && !sel.indirect && !isPointerCore(fn.typeOf(e)) {
		v = b.addr(fn, e, escaping).address(fn)
	} else {
		v = b.expr(fn, e)
	}

	last := len(sel.index) - 1
	// The position of implicit selection is the position of the inducing receiver expression.
	v = emitImplicitSelections(fn, v, sel.index[:last], e.Pos())
	if types.IsInterface(v.Type()) {
		// When v is an interface, sel.Kind()==MethodValue and v.f is invoked.
		// So v is not loaded, even if v has a pointer core type.
	} else if !wantAddr && isPointerCore(v.Type()) {
		v = emitLoad(fn, v)
	}
	return v
}

// setCallFunc populates the function parts of a CallCommon structure
// (Func, Method, Recv, Args[0]) based on the kind of invocation
// occurring in e.
func (b *builder) setCallFunc(fn *Function, e *ast.CallExpr, c *CallCommon) {
	c.pos = e.Lparen

	// Is this a method call?
	if selector, ok := unparen(e.Fun).(*ast.SelectorExpr); ok {
		sel := fn.selection(selector)
		if sel != nil && sel.kind == types.MethodVal {
			obj := sel.obj.(*types.Func)
			recv := recvType(obj)

			wantAddr := isPointer(recv)
			escaping := true
			v := b.receiver(fn, selector.X, wantAddr, escaping, sel)
			if types.IsInterface(recv) {
				// Invoke-mode call.
				c.Value = v // possibly type param
				c.Method = obj
			} else {
				// "Call"-mode call.
				c.Value = fn.Prog.objectMethod(obj, b)
				c.Args = append(c.Args, v)
			}
			return
		}

		// sel.kind==MethodExpr indicates T.f() or (*T).f():
		// a statically dispatched call to the method f in the
		// method-set of T or *T.  T may be an interface.
		//
		// e.Fun would evaluate to a concrete method, interface
		// wrapper function, or promotion wrapper.
		//
		// For now, we evaluate it in the usual way.
		//
		// TODO(adonovan): opt: inline expr() here, to make the
		// call static and to avoid generation of wrappers.
		// It's somewhat tricky as it may consume the first
		// actual parameter if the call is "invoke" mode.
		//
		// Examples:
		//  type T struct{}; func (T) f() {}   // "call" mode
		//  type T interface { f() }           // "invoke" mode
		//
		//  type S struct{ T }
		//
		//  var s S
		//  S.f(s)
		//  (*S).f(&s)
		//
		// Suggested approach:
		// - consume the first actual parameter expression
		//   and build it with b.expr().
		// - apply implicit field selections.
		// - use MethodVal logic to populate fields of c.
	}

	// Evaluate the function operand in the usual way.
	c.Value = b.expr(fn, e.Fun)
}

// emitCallArgs emits to f code for the actual parameters of call e to
// a (possibly built-in) function of effective type sig.
// The argument values are appended to args, which is then returned.
func (b *builder) emitCallArgs(fn *Function, sig *types.Signature, e *ast.CallExpr, args []Value) []Value {
	// f(x, y, z...): pass slice z straight through.
	if e.Ellipsis != 0 {
		for i, arg := range e.Args {
			v := emitConv(fn, b.expr(fn, arg), sig.Params().At(i).Type())
			args = append(args, v)
		}
		return args
	}

	offset := len(args) // 1 if call has receiver, 0 otherwise

	// Evaluate actual parameter expressions.
	//
	// If this is a chained call of the form f(g()) where g has
	// multiple return values (MRV), they are flattened out into
	// args; a suffix of them may end up in a varargs slice.
	for _, arg := range e.Args {
		v := b.expr(fn, arg)
		if ttuple, ok := v.Type().(*types.Tuple); ok { // MRV chain
			for i, n := 0, ttuple.Len(); i < n; i++ {
				args = append(args, emitExtract(fn, v, i))
			}
		} else {
			args = append(args, v)
		}
	}

	// Actual->formal assignability conversions for normal parameters.
	np := sig.Params().Len() // number of normal parameters
	if sig.Variadic() {
		np--
	}
	for i := 0; i < np; i++ {
		args[offset+i] = emitConv(fn, args[offset+i], sig.Params().At(i).Type())
	}

	// Actual->formal assignability conversions for variadic parameter,
	// and construction of slice.
	if sig.Variadic() {
		varargs := args[offset+np:]
		st := sig.Params().At(np).Type().(*types.Slice)
		vt := st.Elem()
		if len(varargs) == 0 {
			args = append(args, zeroConst(st))
		} else {
			// Replace a suffix of args with a slice containing it.
			at := types.NewArray(vt, int64(len(varargs)))
			a := emitNew(fn, at, token.NoPos, "varargs")
			a.setPos(e.Rparen)
			for i, arg := range varargs {
				iaddr := &IndexAddr{
					X:     a,
					Index: intConst(int64(i)),
				}
				iaddr.setType(types.NewPointer(vt))
				fn.emit(iaddr)
				emitStore(fn, iaddr, arg, arg.Pos())
			}
			s := &Slice{X: a}
			s.setType(st)
			args[offset+np] = fn.emit(s)
			args = args[:offset+np+1]
		}
	}
	return args
}

// setCall emits to fn code to evaluate all the parameters of a function
// call e, and populates *c with those values.
func (b *builder) setCall(fn *Function, e *ast.CallExpr, c *CallCommon) {
	// First deal with the f(...) part and optional receiver.
	b.setCallFunc(fn, e, c)

	// Then append the other actual parameters.
	sig, _ := typeparams.CoreType(fn.typeOf(e.Fun)).(*types.Signature)
	if sig == nil {
		panic(fmt.Sprintf("no signature for call of %s", e.Fun))
	}
	c.Args = b.emitCallArgs(fn, sig, e, c.Args)
}

// assignOp emits to fn code to perform loc <op>= val.
func (b *builder) assignOp(fn *Function, loc lvalue, val Value, op token.Token, pos token.Pos) {
	loc.store(fn, emitArith(fn, op, loc.load(fn), val, loc.typ(), pos))
}

// localValueSpec emits to fn code to define all of the vars in the
// function-local ValueSpec, spec.
func (b *builder) localValueSpec(fn *Function, spec *ast.ValueSpec) {
	switch {
	case len(spec.Values) == len(spec.Names):
		// e.g. var x, y = 0, 1
		// 1:1 assignment
		for i, id := range spec.Names {
			if !isBlankIdent(id) {
				emitLocalVar(fn, identVar(fn, id))
			}
			lval := b.addr(fn, id, false) // non-escaping
			b.assign(fn, lval, spec.Values[i], true, nil)
		}

	case len(spec.Values) == 0:
		// e.g. var x, y int
		// Locals are implicitly zero-initialized.
		for _, id := range spec.Names {
			if !isBlankIdent(id) {
				lhs := emitLocalVar(fn, identVar(fn, id))
				if fn.debugInfo() {
					emitDebugRef(fn, id, lhs, true)
				}
			}
		}

	default:
		// e.g. var x, y = pos()
		tuple := b.exprN(fn, spec.Values[0])
		for i, id := range spec.Names {
			if !isBlankIdent(id) {
				emitLocalVar(fn, identVar(fn, id))
				lhs := b.addr(fn, id, false) // non-escaping
				lhs.store(fn, emitExtract(fn, tuple, i))
			}
		}
	}
}

// assignStmt emits code to fn for a parallel assignment of rhss to lhss.
// isDef is true if this is a short variable declaration (:=).
//
// Note the similarity with localValueSpec.
func (b *builder) assignStmt(fn *Function, lhss, rhss []ast.Expr, isDef bool) {
	// Side effects of all LHSs and RHSs must occur in left-to-right order.
	lvals := make([]lvalue, len(lhss))
	isZero := make([]bool, len(lhss))
	for i, lhs := range lhss {
		var lval lvalue = blank{}
		if !isBlankIdent(lhs) {
			if isDef {
				if obj, ok := fn.info.Defs[lhs.(*ast.Ident)].(*types.Var); ok {
					emitLocalVar(fn, obj)
					isZero[i] = true
				}
			}
			lval = b.addr(fn, lhs, false) // non-escaping
		}
		lvals[i] = lval
	}
	if len(lhss) == len(rhss) {
		// Simple assignment:   x     = f()        (!isDef)
		// Parallel assignment: x, y  = f(), g()   (!isDef)
		// or short var decl:   x, y := f(), g()   (isDef)
		//
		// In all cases, the RHSs may refer to the LHSs,
		// so we need a storebuf.
		var sb storebuf
		for i := range rhss {
			b.assign(fn, lvals[i], rhss[i], isZero[i], &sb)
		}
		sb.emit(fn)
	} else {
		// e.g. x, y = pos()
		tuple := b.exprN(fn, rhss[0])
		emitDebugRef(fn, rhss[0], tuple, false)
		for i, lval := range lvals {
			lval.store(fn, emitExtract(fn, tuple, i))
		}
	}
}

// arrayLen returns the length of the array whose composite literal elements are elts.
func (b *builder) arrayLen(fn *Function, elts []ast.Expr) int64 {
	var max int64 = -1
	var i int64 = -1
	for _, e := range elts {
		if kv, ok := e.(*ast.KeyValueExpr); ok {
			i = b.expr(fn, kv.Key).(*Const).Int64()
		} else {
			i++
		}
		if i > max {
			max = i
		}
	}
	return max + 1
}

// compLit emits to fn code to initialize a composite literal e at
// address addr with type typ.
//
// Nested composite literals are recursively initialized in place
// where possible. If isZero is true, compLit assumes that addr
// holds the zero value for typ.
//
// Because the elements of a composite literal may refer to the
// variables being updated, as in the second line below,
//
//	x := T{a: 1}
//	x = T{a: x.a}
//
// all the reads must occur before all the writes.  Thus all stores to
// loc are emitted to the storebuf sb for later execution.
//
// A CompositeLit may have pointer type only in the recursive (nested)
// case when the type name is implicit.  e.g. in []*T{{}}, the inner
// literal has type *T behaves like &T{}.
// In that case, addr must hold a T, not a *T.
func (b *builder) compLit(fn *Function, addr Value, e *ast.CompositeLit, isZero bool, sb *storebuf) {
	typ := typeparams.Deref(fn.typeOf(e)) // retain the named/alias/param type, if any
	switch t := typeparams.CoreType(typ).(type) {
	case *types.Struct:
		if !isZero && len(e.Elts) != t.NumFields() {
			// memclear
			zt := typeparams.MustDeref(addr.Type())
			sb.store(&address{addr, e.Lbrace, nil}, zeroConst(zt))
			isZero = true
		}
		for i, e := range e.Elts {
			fieldIndex := i
			pos := e.Pos()
			if kv, ok := e.(*ast.KeyValueExpr); ok {
				fname := kv.Key.(*ast.Ident).Name
				for i, n := 0, t.NumFields(); i < n; i++ {
					sf := t.Field(i)
					if sf.Name() == fname {
						fieldIndex = i
						pos = kv.Colon
						e = kv.Value
						break
					}
				}
			}
			sf := t.Field(fieldIndex)
			faddr := &FieldAddr{
				X:     addr,
				Field: fieldIndex,
			}
			faddr.setPos(pos)
			faddr.setType(types.NewPointer(sf.Type()))
			fn.emit(faddr)
			b.assign(fn, &address{addr: faddr, pos: pos, expr: e}, e, isZero, sb)
		}

	case *types.Array, *types.Slice:
		var at *types.Array
		var array Value
		switch t := t.(type) {
		case *types.Slice:
			at = types.NewArray(t.Elem(), b.arrayLen(fn, e.Elts))
			array = emitNew(fn, at, e.Lbrace, "slicelit")
		case *types.Array:
			at = t
			array = addr

			if !isZero && int64(len(e.Elts)) != at.Len() {
				// memclear
				zt := typeparams.MustDeref(array.Type())
				sb.store(&address{array, e.Lbrace, nil}, zeroConst(zt))
			}
		}

		var idx *Const
		for _, e := range e.Elts {
			pos := e.Pos()
			if kv, ok := e.(*ast.KeyValueExpr); ok {
				idx = b.expr(fn, kv.Key).(*Const)
				pos = kv.Colon
				e = kv.Value
			} else {
				var idxval int64
				if idx != nil {
					idxval = idx.Int64() + 1
				}
				idx = intConst(idxval)
			}
			iaddr := &IndexAddr{
				X:     array,
				Index: idx,
			}
			iaddr.setType(types.NewPointer(at.Elem()))
			fn.emit(iaddr)
			if t != at { // slice
				// backing array is unaliased => storebuf not needed.
				b.assign(fn, &address{addr: iaddr, pos: pos, expr: e}, e, true, nil)
			} else {
				b.assign(fn, &address{addr: iaddr, pos: pos, expr: e}, e, true, sb)
			}
		}

		if t != at { // slice
			s := &Slice{X: array}
			s.setPos(e.Lbrace)
			s.setType(typ)
			sb.store(&address{addr: addr, pos: e.Lbrace, expr: e}, fn.emit(s))
		}

	case *types.Map:
		m := &MakeMap{Reserve: intConst(int64(len(e.Elts)))}
		m.setPos(e.Lbrace)
		m.setType(typ)
		fn.emit(m)
		for _, e := range e.Elts {
			e := e.(*ast.KeyValueExpr)

			// If a key expression in a map literal is itself a
			// composite literal, the type may be omitted.
			// For example:
			//	map[*struct{}]bool{{}: true}
			// An &-operation may be implied:
			//	map[*struct{}]bool{&struct{}{}: true}
			wantAddr := false
			if _, ok := unparen(e.Key).(*ast.CompositeLit); ok {
				wantAddr = isPointerCore(t.Key())
			}

			var key Value
			if wantAddr {
				// A CompositeLit never evaluates to a pointer,
				// so if the type of the location is a pointer,
				// an &-operation is implied.
				key = b.addr(fn, e.Key, true).address(fn)
			} else {
				key = b.expr(fn, e.Key)
			}

			loc := element{
				m:   m,
				k:   emitConv(fn, key, t.Key()),
				t:   t.Elem(),
				pos: e.Colon,
			}

			// We call assign() only because it takes care
			// of any &-operation required in the recursive
			// case, e.g.,
			// map[int]*struct{}{0: {}} implies &struct{}{}.
			// In-place update is of course impossible,
			// and no storebuf is needed.
			b.assign(fn, &loc, e.Value, true, nil)
		}
		sb.store(&address{addr: addr, pos: e.Lbrace, expr: e}, m)

	default:
		panic("unexpected CompositeLit type: " + typ.String())
	}
}

// switchStmt emits to fn code for the switch statement s, optionally
// labelled by label.
func (b *builder) switchStmt(fn *Function, s *ast.SwitchStmt, label *lblock) {
	// We treat SwitchStmt like a sequential if-else chain.
	// Multiway dispatch can be recovered later by ssautil.Switches()
	// to those cases that are free of side effects.
	if s.Init != nil {
		b.stmt(fn, s.Init)
	}
	var tag Value = vTrue
	if s.Tag != nil {
		tag = b.expr(fn, s.Tag)
	}
	done := fn.newBasicBlock("switch.done")
	if label != nil {
		label._break = done
	}
	// We pull the default case (if present) down to the end.
	// But each fallthrough label must point to the next
	// body block in source order, so we preallocate a
	// body block (fallthru) for the next case.
	// Unfortunately this makes for a confusing block order.
	var dfltBody *[]ast.Stmt
	var dfltFallthrough *BasicBlock
	var fallthru, dfltBlock *BasicBlock
	ncases := len(s.Body.List)
	for i, clause := range s.Body.List {
		body := fallthru
		if body == nil {
			body = fn.newBasicBlock("switch.body") // first case only
		}

		// Preallocate body block for the next case.
		fallthru = done
		if i+1 < ncases {
			fallthru = fn.newBasicBlock("switch.body")
		}

		cc := clause.(*ast.CaseClause)
		if cc.List == nil {
			// Default case.
			dfltBody = &cc.Body
			dfltFallthrough = fallthru
			dfltBlock = body
			continue
		}

		var nextCond *BasicBlock
		for _, cond := range cc.List {
			nextCond = fn.newBasicBlock("switch.next")
			// TODO(adonovan): opt: when tag==vTrue, we'd
			// get better code if we use b.cond(cond)
			// instead of BinOp(EQL, tag, b.expr(cond))
			// followed by If.  Don't forget conversions
			// though.
			cond := emitCompare(fn, token.EQL, tag, b.expr(fn, cond), cond.Pos())
			emitIf(fn, cond, body, nextCond)
			fn.currentBlock = nextCond
		}
		fn.currentBlock = body
		fn.targets = &targets{
			tail:         fn.targets,
			_break:       done,
			_fallthrough: fallthru,
		}
		b.stmtList(fn, cc.Body)
		fn.targets = fn.targets.tail
		emitJump(fn, done)
		fn.currentBlock = nextCond
	}
	if dfltBlock != nil {
		emitJump(fn, dfltBlock)
		fn.currentBlock = dfltBlock
		fn.targets = &targets{
			tail:         fn.targets,
			_break:       done,
			_fallthrough: dfltFallthrough,
		}
		b.stmtList(fn, *dfltBody)
		fn.targets = fn.targets.tail
	}
	emitJump(fn, done)
	fn.currentBlock = done
}

// typeSwitchStmt emits to fn code for the type switch statement s, optionally
// labelled by label.
func (b *builder) typeSwitchStmt(fn *Function, s *ast.TypeSwitchStmt, label *lblock) {
	// We treat TypeSwitchStmt like a sequential if-else chain.
	// Multiway dispatch can be recovered later by ssautil.Switches().

	// Typeswitch lowering:
	//
	// var x X
	// switch y := x.(type) {
	// case T1, T2: S1                  // >1 	(y := x)
	// case nil:    SN                  // nil 	(y := x)
	// default:     SD                  // 0 types 	(y := x)
	// case T3:     S3                  // 1 type 	(y := x.(T3))
	// }
	//
	//      ...s.Init...
	// 	x := eval x
	// .caseT1:
	// 	t1, ok1 := typeswitch,ok x <T1>
	// 	if ok1 then goto S1 else goto .caseT2
	// .caseT2:
	// 	t2, ok2 := typeswitch,ok x <T2>
	// 	if ok2 then goto S1 else goto .caseNil
	// .S1:
	//      y := x
	// 	...S1...
	// 	goto done
	// .caseNil:
	// 	if t2, ok2 := typeswitch,ok x <T2>
	// 	if x == nil then goto SN else goto .caseT3
	// .SN:
	//      y := x
	// 	...SN...
	// 	goto done
	// .caseT3:
	// 	t3, ok3 := typeswitch,ok x <T3>
	// 	if ok3 then goto S3 else goto default
	// .S3:
	//      y := t3
	// 	...S3...
	// 	goto done
	// .default:
	//      y := x
	// 	...SD...
	// 	goto done
	// .done:
	if s.Init != nil {
		b.stmt(fn, s.Init)
	}

	var x Value
	switch ass := s.Assign.(type) {
	case *ast.ExprStmt: // x.(type)
		x = b.expr(fn, unparen(ass.X).(*ast.TypeAssertExpr).X)
	case *ast.AssignStmt: // y := x.(type)
		x = b.expr(fn, unparen(ass.Rhs[0]).(*ast.TypeAssertExpr).X)
	}

	done := fn.newBasicBlock("typeswitch.done")
	if label != nil {
		label._break = done
	}
	var default_ *ast.CaseClause
	for _, clause := range s.Body.List {
		cc := clause.(*ast.CaseClause)
		if cc.List == nil {
			default_ = cc
			continue
		}
		body := fn.newBasicBlock("typeswitch.body")
		var next *BasicBlock
		var casetype types.Type
		var ti Value // ti, ok := typeassert,ok x <Ti>
		for _, cond := range cc.List {
			next = fn.newBasicBlock("typeswitch.next")
			casetype = fn.typeOf(cond)
			var condv Value
			if casetype == tUntypedNil {
				condv = emitCompare(fn, token.EQL, x, zeroConst(x.Type()), cond.Pos())
				ti = x
			} else {
				yok := emitTypeTest(fn, x, casetype, cc.Case)
				ti = emitExtract(fn, yok, 0)
				condv = emitExtract(fn, yok, 1)
			}
			emitIf(fn, condv, body, next)
			fn.currentBlock = next
		}
		if len(cc.List) != 1 {
			ti = x
		}
		fn.currentBlock = body
		b.typeCaseBody(fn, cc, ti, done)
		fn.currentBlock = next
	}
	if default_ != nil {
		b.typeCaseBody(fn, default_, x, done)
	} else {
		emitJump(fn, done)
	}
	fn.currentBlock = done
}

func (b *builder) typeCaseBody(fn *Function, cc *ast.CaseClause, x Value, done *BasicBlock) {
	if obj, ok := fn.info.Implicits[cc].(*types.Var); ok {
		// In a switch y := x.(type), each case clause
		// implicitly declares a distinct object y.
		// In a single-type case, y has that type.
		// In multi-type cases, 'case nil' and default,
		// y has the same type as the interface operand.
		emitStore(fn, emitLocalVar(fn, obj), x, obj.Pos())
	}
	fn.targets = &targets{
		tail:   fn.targets,
		_break: done,
	}
	b.stmtList(fn, cc.Body)
	fn.targets = fn.targets.tail
	emitJump(fn, done)
}

// selectStmt emits to fn code for the select statement s, optionally
// labelled by label.
func (b *builder) selectStmt(fn *Function, s *ast.SelectStmt, label *lblock) {
	// A blocking select of a single case degenerates to a
	// simple send or receive.
	// TODO(adonovan): opt: is this optimization worth its weight?
	if len(s.Body.List) == 1 {
		clause := s.Body.List[0].(*ast.CommClause)
		if clause.Comm != nil {
			b.stmt(fn, clause.Comm)
			done := fn.newBasicBlock("select.done")
			if label != nil {
				label._break = done
			}
			fn.targets = &targets{
				tail:   fn.targets,
				_break: done,
			}
			b.stmtList(fn, clause.Body)
			fn.targets = fn.targets.tail
			emitJump(fn, done)
			fn.currentBlock = done
			return
		}
	}

	// First evaluate all channels in all cases, and find
	// the directions of each state.
	var states []*SelectState
	blocking := true
	debugInfo := fn.debugInfo()
	for _, clause := range s.Body.List {
		var st *SelectState
		switch comm := clause.(*ast.CommClause).Comm.(type) {
		case nil: // default case
			blocking = false
			continue

		case *ast.SendStmt: // ch<- i
			ch := b.expr(fn, comm.Chan)
			chtyp := typeparams.CoreType(fn.typ(ch.Type())).(*types.Chan)
			st = &SelectState{
				Dir:  types.SendOnly,
				Chan: ch,
				Send: emitConv(fn, b.expr(fn, comm.Value), chtyp.Elem()),
				Pos:  comm.Arrow,
			}
			if debugInfo {
				st.DebugNode = comm
			}

		case *ast.AssignStmt: // x := <-ch
			recv := unparen(comm.Rhs[0]).(*ast.UnaryExpr)
			st = &SelectState{
				Dir:  types.RecvOnly,
				Chan: b.expr(fn, recv.X),
				Pos:  recv.OpPos,
			}
			if debugInfo {
				st.DebugNode = recv
			}

		case *ast.ExprStmt: // <-ch
			recv := unparen(comm.X).(*ast.UnaryExpr)
			st = &SelectState{
				Dir:  types.RecvOnly,
				Chan: b.expr(fn, recv.X),
				Pos:  recv.OpPos,
			}
			if debugInfo {
				st.DebugNode = recv
			}
		}
		states = append(states, st)
	}

	// We dispatch on the (fair) result of Select using a
	// sequential if-else chain, in effect:
	//
	// idx, recvOk, r0...r_n-1 := select(...)
	// if idx == 0 {  // receive on channel 0  (first receive => r0)
	//     x, ok := r0, recvOk
	//     ...state0...
	// } else if v == 1 {   // send on channel 1
	//     ...state1...
	// } else {
	//     ...default...
	// }
	sel := &Select{
		States:   states,
		Blocking: blocking,
	}
	sel.setPos(s.Select)
	var vars []*types.Var
	vars = append(vars, varIndex, varOk)
	for _, st := range states {
		if st.Dir == types.RecvOnly {
			chtyp := typeparams.CoreType(fn.typ(st.Chan.Type())).(*types.Chan)
			vars = append(vars, anonVar(chtyp.Elem()))
		}
	}
	sel.setType(types.NewTuple(vars...))

	fn.emit(sel)
	idx := emitExtract(fn, sel, 0)

	done := fn.newBasicBlock("select.done")
	if label != nil {
		label._break = done
	}

	var defaultBody *[]ast.Stmt
	state := 0
	r := 2 // index in 'sel' tuple of value; increments if st.Dir==RECV
	for _, cc := range s.Body.List {
		clause := cc.(*ast.CommClause)
		if clause.Comm == nil {
			defaultBody = &clause.Body
			continue
		}
		body := fn.newBasicBlock("select.body")
		next := fn.newBasicBlock("select.next")
		emitIf(fn, emitCompare(fn, token.EQL, idx, intConst(int64(state)), token.NoPos), body, next)
		fn.currentBlock = body
		fn.targets = &targets{
			tail:   fn.targets,
			_break: done,
		}
		switch comm := clause.Comm.(type) {
		case *ast.ExprStmt: // <-ch
			if debugInfo {
				v := emitExtract(fn, sel, r)
				emitDebugRef(fn, states[state].DebugNode.(ast.Expr), v, false)
			}
			r++

		case *ast.AssignStmt: // x := <-states[state].Chan
			if comm.Tok == token.DEFINE {
				emitLocalVar(fn, identVar(fn, comm.Lhs[0].(*ast.Ident)))
			}
			x := b.addr(fn, comm.Lhs[0], false) // non-escaping
			v := emitExtract(fn, sel, r)
			if debugInfo {
				emitDebugRef(fn, states[state].DebugNode.(ast.Expr), v, false)
			}
			x.store(fn, v)

			if len(comm.Lhs) == 2 { // x, ok := ...
				if comm.Tok == token.DEFINE {
					emitLocalVar(fn, identVar(fn, comm.Lhs[1].(*ast.Ident)))
				}
				ok := b.addr(fn, comm.Lhs[1], false) // non-escaping
				ok.store(fn, emitExtract(fn, sel, 1))
			}
			r++
		}
		b.stmtList(fn, clause.Body)
		fn.targets = fn.targets.tail
		emitJump(fn, done)
		fn.currentBlock = next
		state++
	}
	if defaultBody != nil {
		fn.targets = &targets{
			tail:   fn.targets,
			_break: done,
		}
		b.stmtList(fn, *defaultBody)
		fn.targets = fn.targets.tail
	} else {
		// A blocking select must match some case.
		// (This should really be a runtime.errorString, not a string.)
		fn.emit(&Panic{
			X: emitConv(fn, stringConst("blocking select matched no case"), tEface),
		})
		fn.currentBlock = fn.newBasicBlock("unreachable")
	}
	emitJump(fn, done)
	fn.currentBlock = done
}

// forStmt emits to fn code for the for statement s, optionally
// labelled by label.
func (b *builder) forStmt(fn *Function, s *ast.ForStmt, label *lblock) {
	// Use forStmtGo122 instead if it applies.
	if s.Init != nil {
		if assign, ok := s.Init.(*ast.AssignStmt); ok && assign.Tok == token.DEFINE {
			if versions.AtLeast(fn.goversion, versions.Go1_22) {
				b.forStmtGo122(fn, s, label)
				return
			}
		}
	}

	//     ...init...
	//     jump loop
	// loop:
	//     if cond goto body else done
	// body:
	//     ...body...
	//     jump post
	// post:                                 (target of continue)
	//     ...post...
	//     jump loop
	// done:                                 (target of break)
	if s.Init != nil {
		b.stmt(fn, s.Init)
	}

	body := fn.newBasicBlock("for.body")
	done := fn.newBasicBlock("for.done") // target of 'break'
	loop := body                         // target of back-edge
	if s.Cond != nil {
		loop = fn.newBasicBlock("for.loop")
	}
	cont := loop // target of 'continue'
	if s.Post != nil {
		cont = fn.newBasicBlock("for.post")
	}
	if label != nil {
		label._break = done
		label._continue = cont
	}
	emitJump(fn, loop)
	fn.currentBlock = loop
	if loop != body {
		b.cond(fn, s.Cond, body, done)
		fn.currentBlock = body
	}
	fn.targets = &targets{
		tail:      fn.targets,
		_break:    done,
		_continue: cont,
	}
	b.stmt(fn, s.Body)
	fn.targets = fn.targets.tail
	emitJump(fn, cont)

	if s.Post != nil {
		fn.currentBlock = cont
		b.stmt(fn, s.Post)
		emitJump(fn, loop) // back-edge
	}
	fn.currentBlock = done
}

// forStmtGo122 emits to fn code for the for statement s, optionally
// labelled by label. s must define its variables.
//
// This allocates once per loop iteration. This is only correct in
// GoVersions >= go1.22.
func (b *builder) forStmtGo122(fn *Function, s *ast.ForStmt, label *lblock) {
	//     i_outer = alloc[T]
	//     *i_outer = ...init...        // under objects[i] = i_outer
	//     jump loop
	// loop:
	//     i = phi [head: i_outer, loop: i_next]
	//     ...cond...                   // under objects[i] = i
	//     if cond goto body else done
	// body:
	//     ...body...                   // under objects[i] = i (same as loop)
	//     jump post
	// post:
	//     tmp = *i
	//     i_next = alloc[T]
	//     *i_next = tmp
	//     ...post...                   // under objects[i] = i_next
	//     goto loop
	// done:

	init := s.Init.(*ast.AssignStmt)
	startingBlocks := len(fn.Blocks)

	pre := fn.currentBlock               // current block before starting
	loop := fn.newBasicBlock("for.loop") // target of back-edge
	body := fn.newBasicBlock("for.body")
	post := fn.newBasicBlock("for.post") // target of 'continue'
	done := fn.newBasicBlock("for.done") // target of 'break'

	// For each of the n loop variables, we create five SSA values,
	// outer, phi, next, load, and store in pre, loop, and post.
	// There is no limit on n.
	type loopVar struct {
		obj   *types.Var
		outer *Alloc
		phi   *Phi
		load  *UnOp
		next  *Alloc
		store *Store
	}
	vars := make([]loopVar, len(init.Lhs))
	for i, lhs := range init.Lhs {
		v := identVar(fn, lhs.(*ast.Ident))
		typ := fn.typ(v.Type())

		fn.currentBlock = pre
		outer := emitLocal(fn, typ, v.Pos(), v.Name())

		fn.currentBlock = loop
		phi := &Phi{Comment: v.Name()}
		phi.pos = v.Pos()
		phi.typ = outer.Type()
		fn.emit(phi)

		fn.currentBlock = post
		// If next is local, it reuses the address and zeroes the old value so
		// load before allocating next.
		load := emitLoad(fn, phi)
		next := emitLocal(fn, typ, v.Pos(), v.Name())
		store := emitStore(fn, next, load, token.NoPos)

		phi.Edges = []Value{outer, next} // pre edge is emitted before post edge.

		vars[i] = loopVar{v, outer, phi, load, next, store}
	}

	// ...init... under fn.objects[v] = i_outer
	fn.currentBlock = pre
	for _, v := range vars {
		fn.vars[v.obj] = v.outer
	}
	const isDef = false // assign to already-allocated outers
	b.assignStmt(fn, init.Lhs, init.Rhs, isDef)
	if label != nil {
		label._break = done
		label._continue = post
	}
	emitJump(fn, loop)

	// ...cond... under fn.objects[v] = i
	fn.currentBlock = loop
	for _, v := range vars {
		fn.vars[v.obj] = v.phi
	}
	if s.Cond != nil {
		b.cond(fn, s.Cond, body, done)
	} else {
		emitJump(fn, body)
	}

	// ...body... under fn.objects[v] = i
	fn.currentBlock = body
	fn.targets = &targets{
		tail:      fn.targets,
		_break:    done,
		_continue: post,
	}
	b.stmt(fn, s.Body)
	fn.targets = fn.targets.tail
	emitJump(fn, post)

	// ...post... under fn.objects[v] = i_next
	for _, v := range vars {
		fn.vars[v.obj] = v.next
	}
	fn.currentBlock = post
	if s.Post != nil {
		b.stmt(fn, s.Post)
	}
	emitJump(fn, loop) // back-edge
	fn.currentBlock = done

	// For each loop variable that does not escape,
	// (the common case), fuse its next cells into its
	// (local) outer cell as they have disjoint live ranges.
	//
	// It is sufficient to test whether i_next escapes,
	// because its Heap flag will be marked true if either
	// the cond or post expression causes i to escape
	// (because escape distributes over phi).
	var nlocals int
	for _, v := range vars {
		if !v.next.Heap {
			nlocals++
		}
	}
	if nlocals > 0 {
		replace := make(map[Value]Value, 2*nlocals)
		dead := make(map[Instruction]bool, 4*nlocals)
		for _, v := range vars {
			if !v.next.Heap {
				replace[v.next] = v.outer
				replace[v.phi] = v.outer
				dead[v.phi], dead[v.next], dead[v.load], dead[v.store] = true, true, true, true
			}
		}

		// Replace all uses of i_next and phi with i_outer.
		// Referrers have not been built for fn yet so only update Instruction operands.
		// We need only look within the blocks added by the loop.
		var operands []*Value // recycle storage
		for _, b := range fn.Blocks[startingBlocks:] {
			for _, instr := range b.Instrs {
				operands = instr.Operands(operands[:0])
				for _, ptr := range operands {
					k := *ptr
					if v := replace[k]; v != nil {
						*ptr = v
					}
				}
			}
		}

		// Remove instructions for phi, load, and store.
		// lift() will remove the unused i_next *Alloc.
		isDead := func(i Instruction) bool { return dead[i] }
		loop.Instrs = removeInstrsIf(loop.Instrs, isDead)
		post.Instrs = removeInstrsIf(post.Instrs, isDead)
	}
}

// rangeIndexed emits to fn the header for an integer-indexed loop
// over array, *array or slice value x.
// The v result is defined only if tv is non-nil.
// forPos is the position of the "for" token.
func (b *builder) rangeIndexed(fn *Function, x Value, tv types.Type, pos token.Pos) (k, v Value, loop, done *BasicBlock) {
	//
	//     length = len(x)
	//     index = -1
	// loop:                                     (target of continue)
	//     index++
	//     if index < length goto body else done
	// body:
	//     k = index
	//     v = x[index]
	//     ...body...
	//     jump loop
	// done:                                     (target of break)

	// Determine number of iterations.
	var length Value
	dt := typeparams.Deref(x.Type())
	if arr, ok := typeparams.CoreType(dt).(*types.Array); ok {
		// For array or *array, the number of iterations is
		// known statically thanks to the type.  We avoid a
		// data dependence upon x, permitting later dead-code
		// elimination if x is pure, static unrolling, etc.
		// Ranging over a nil *array may have >0 iterations.
		// We still generate code for x, in case it has effects.
		length = intConst(arr.Len())
	} else {
		// length = len(x).
		var c Call
		c.Call.Value = makeLen(x.Type())
		c.Call.Args = []Value{x}
		c.setType(tInt)
		length = fn.emit(&c)
	}

	index := emitLocal(fn, tInt, token.NoPos, "rangeindex")
	emitStore(fn, index, intConst(-1), pos)

	loop = fn.newBasicBlock("rangeindex.loop")
	emitJump(fn, loop)
	fn.currentBlock = loop

	incr := &BinOp{
		Op: token.ADD,
		X:  emitLoad(fn, index),
		Y:  vOne,
	}
	incr.setType(tInt)
	emitStore(fn, index, fn.emit(incr), pos)

	body := fn.newBasicBlock("rangeindex.body")
	done = fn.newBasicBlock("rangeindex.done")
	emitIf(fn, emitCompare(fn, token.LSS, incr, length, token.NoPos), body, done)
	fn.currentBlock = body

	k = emitLoad(fn, index)
	if tv != nil {
		switch t := typeparams.CoreType(x.Type()).(type) {
		case *types.Array:
			instr := &Index{
				X:     x,
				Index: k,
			}
			instr.setType(t.Elem())
			instr.setPos(x.Pos())
			v = fn.emit(instr)

		case *types.Pointer: // *array
			instr := &IndexAddr{
				X:     x,
				Index: k,
			}
			instr.setType(types.NewPointer(t.Elem().Underlying().(*types.Array).Elem()))
			instr.setPos(x.Pos())
			v = emitLoad(fn, fn.emit(instr))

		case *types.Slice:
			instr := &IndexAddr{
				X:     x,
				Index: k,
			}
			instr.setType(types.NewPointer(t.Elem()))
			instr.setPos(x.Pos())
			v = emitLoad(fn, fn.emit(instr))

		default:
			panic("rangeIndexed x:" + t.String())
		}
	}
	return
}

// rangeIter emits to fn the header for a loop using
// Range/Next/Extract to iterate over map or string value x.
// tk and tv are the types of the key/value results k and v, or nil
// if the respective component is not wanted.
func (b *builder) rangeIter(fn *Function, x Value, tk, tv types.Type, pos token.Pos) (k, v Value, loop, done *BasicBlock) {
	//
	//     it = range x
	// loop:                                   (target of continue)
	//     okv = next it                       (ok, key, value)
	//     ok = extract okv #0
	//     if ok goto body else done
	// body:
	//     k = extract okv #1
	//     v = extract okv #2
	//     ...body...
	//     jump loop
	// done:                                   (target of break)
	//

	if tk == nil {
		tk = tInvalid
	}
	if tv == nil {
		tv = tInvalid
	}

	rng := &Range{X: x}
	rng.setPos(pos)
	rng.setType(tRangeIter)
	it := fn.emit(rng)

	loop = fn.newBasicBlock("rangeiter.loop")
	emitJump(fn, loop)
	fn.currentBlock = loop

	okv := &Next{
		Iter:     it,
		IsString: isBasic(typeparams.CoreType(x.Type())),
	}
	okv.setType(types.NewTuple(
		varOk,
		newVar("k", tk),
		newVar("v", tv),
	))
	fn.emit(okv)

	body := fn.newBasicBlock("rangeiter.body")
	done = fn.newBasicBlock("rangeiter.done")
	emitIf(fn, emitExtract(fn, okv, 0), body, done)
	fn.currentBlock = body

	if tk != tInvalid {
		k = emitExtract(fn, okv, 1)
	}
	if tv != tInvalid {
		v = emitExtract(fn, okv, 2)
	}
	return
}

// rangeChan emits to fn the header for a loop that receives from
// channel x until it fails.
// tk is the channel's element type, or nil if the k result is
// not wanted
// pos is the position of the '=' or ':=' token.
func (b *builder) rangeChan(fn *Function, x Value, tk types.Type, pos token.Pos) (k Value, loop, done *BasicBlock) {
	//
	// loop:                                   (target of continue)
	//     ko = <-x                            (key, ok)
	//     ok = extract ko #1
	//     if ok goto body else done
	// body:
	//     k = extract ko #0
	//     ...body...
	//     goto loop
	// done:                                   (target of break)

	loop = fn.newBasicBlock("rangechan.loop")
	emitJump(fn, loop)
	fn.currentBlock = loop
	recv := &UnOp{
		Op:      token.ARROW,
		X:       x,
		CommaOk: true,
	}
	recv.setPos(pos)
	recv.setType(types.NewTuple(
		newVar("k", typeparams.CoreType(x.Type()).(*types.Chan).Elem()),
		varOk,
	))
	ko := fn.emit(recv)
	body := fn.newBasicBlock("rangechan.body")
	done = fn.newBasicBlock("rangechan.done")
	emitIf(fn, emitExtract(fn, ko, 1), body, done)
	fn.currentBlock = body
	if tk != nil {
		k = emitExtract(fn, ko, 0)
	}
	return
}

// rangeInt emits to fn the header for a range loop with an integer operand.
// tk is the key value's type, or nil if the k result is not wanted.
// pos is the position of the "for" token.
func (b *builder) rangeInt(fn *Function, x Value, tk types.Type, pos token.Pos) (k Value, loop, done *BasicBlock) {
	//
	//     iter = 0
	//     if 0 < x goto body else done
	// loop:                                   (target of continue)
	//     iter++
	//     if iter < x goto body else done
	// body:
	//     k = x
	//     ...body...
	//     jump loop
	// done:                                   (target of break)

	if isUntyped(x.Type()) {
		x = emitConv(fn, x, tInt)
	}

	T := x.Type()
	iter := emitLocal(fn, T, token.NoPos, "rangeint.iter")
	// x may be unsigned. Avoid initializing x to -1.

	body := fn.newBasicBlock("rangeint.body")
	done = fn.newBasicBlock("rangeint.done")
	emitIf(fn, emitCompare(fn, token.LSS, zeroConst(T), x, token.NoPos), body, done)

	loop = fn.newBasicBlock("rangeint.loop")
	fn.currentBlock = loop

	incr := &BinOp{
		Op: token.ADD,
		X:  emitLoad(fn, iter),
		Y:  emitConv(fn, vOne, T),
	}
	incr.setType(T)
	emitStore(fn, iter, fn.emit(incr), pos)
	emitIf(fn, emitCompare(fn, token.LSS, incr, x, token.NoPos), body, done)
	fn.currentBlock = body

	if tk != nil {
		// Integer types (int, uint8, etc.) are named and
		// we know that k is assignable to x when tk != nil.
		// This implies tk and T are identical so no conversion is needed.
		k = emitLoad(fn, iter)
	}

	return
}

// rangeStmt emits to fn code for the range statement s, optionally
// labelled by label.
func (b *builder) rangeStmt(fn *Function, s *ast.RangeStmt, label *lblock) {
	var tk, tv types.Type
	if s.Key != nil && !isBlankIdent(s.Key) {
		tk = fn.typeOf(s.Key)
	}
	if s.Value != nil && !isBlankIdent(s.Value) {
		tv = fn.typeOf(s.Value)
	}

	// create locals for s.Key and s.Value.
	createVars := func() {
		// Unlike a short variable declaration, a RangeStmt
		// using := never redeclares an existing variable; it
		// always creates a new one.
		if tk != nil {
			emitLocalVar(fn, identVar(fn, s.Key.(*ast.Ident)))
		}
		if tv != nil {
			emitLocalVar(fn, identVar(fn, s.Value.(*ast.Ident)))
		}
	}

	afterGo122 := versions.AtLeast(fn.goversion, versions.Go1_22)
	if s.Tok == token.DEFINE && !afterGo122 {
		// pre-go1.22: If iteration variables are defined (:=), this
		// occurs once outside the loop.
		createVars()
	}

	x := b.expr(fn, s.X)

	var k, v Value
	var loop, done *BasicBlock
	switch rt := typeparams.CoreType(x.Type()).(type) {
	case *types.Slice, *types.Array, *types.Pointer: // *array
		k, v, loop, done = b.rangeIndexed(fn, x, tv, s.For)

	case *types.Chan:
		k, loop, done = b.rangeChan(fn, x, tk, s.For)

	case *types.Map:
		k, v, loop, done = b.rangeIter(fn, x, tk, tv, s.For)

	case *types.Basic:
		switch {
		case rt.Info()&types.IsString != 0:
			k, v, loop, done = b.rangeIter(fn, x, tk, tv, s.For)

		case rt.Info()&types.IsInteger != 0:
			k, loop, done = b.rangeInt(fn, x, tk, s.For)

		default:
			panic("Cannot range over basic type: " + rt.String())
		}

	case *types.Signature:
		// Special case rewrite (fn.goversion >= go1.23):
		// 	for x := range f { ... }
		// into
		// 	f(func(x T) bool { ... })
		b.rangeFunc(fn, x, tk, tv, s, label)
		return

	default:
		panic("Cannot range over: " + rt.String())
	}

	if s.Tok == token.DEFINE && afterGo122 {
		// go1.22: If iteration variables are defined (:=), this occurs inside the loop.
		createVars()
	}

	// Evaluate both LHS expressions before we update either.
	var kl, vl lvalue
	if tk != nil {
		kl = b.addr(fn, s.Key, false) // non-escaping
	}
	if tv != nil {
		vl = b.addr(fn, s.Value, false) // non-escaping
	}
	if tk != nil {
		kl.store(fn, k)
	}
	if tv != nil {
		vl.store(fn, v)
	}

	if label != nil {
		label._break = done
		label._continue = loop
	}

	fn.targets = &targets{
		tail:      fn.targets,
		_break:    done,
		_continue: loop,
	}
	b.stmt(fn, s.Body)
	fn.targets = fn.targets.tail
	emitJump(fn, loop) // back-edge
	fn.currentBlock = done
}

// rangeFunc emits to fn code for the range-over-func rng.Body of the iterator
// function x, optionally labelled by label. It creates a new anonymous function
// yield for rng and builds the function.
func (b *builder) rangeFunc(fn *Function, x Value, tk, tv types.Type, rng *ast.RangeStmt, label *lblock) {
	// Consider the SSA code for the outermost range-over-func in fn:
	//
	//   func fn(...) (ret R) {
	//     ...
	//     for k, v = range x {
	// 	     ...
	//     }
	//     ...
	//   }
	//
	// The code emitted into fn will look something like this.
	//
	// loop:
	//     jump := READY
	//     y := make closure yield [ret, deferstack, jump, k, v]
	//     x(y)
	//     switch jump {
	//        [see resuming execution]
	//     }
	//     goto done
	// done:
	//     ...
	//
	// where yield is a new synthetic yield function:
	//
	// func yield(_k tk, _v tv) bool
	//   free variables: [ret, stack, jump, k, v]
	// {
	//    entry:
	//      if jump != READY then goto invalid else valid
	//    invalid:
	//      panic("iterator called when it is not in a ready state")
	//    valid:
	//      jump = BUSY
	//      k = _k
	//      v = _v
	//    ...
	//    cont:
	//      jump = READY
	//      return true
	// }
	//
	// Yield state:
	//
	// Each range loop has an associated jump variable that records
	// the state of the iterator. A yield function is initially
	// in a READY (0) and callable state.  If the yield function is called
	// and is not in READY state, it panics. When it is called in a callable
	// state, it becomes BUSY. When execution reaches the end of the body
	// of the loop (or a continue statement targeting the loop is executed),
	// the yield function returns true and resumes being in a READY state.
	// After the iterator function x(y) returns, then if the yield function
	// is in a READY state, the yield enters the DONE state.
	//
	// Each lowered control statement (break X, continue X, goto Z, or return)
	// that exits the loop sets the variable to a unique positive EXIT value,
	// before returning false from the yield function.
	//
	// If the yield function returns abruptly due to a panic or GoExit,
	// it remains in a BUSY state. The generated code asserts that, after
	// the iterator call x(y) returns normally, the jump variable state
	// is DONE.
	//
	// Resuming execution:
	//
	// The code generated for the range statement checks the jump
	// variable to determine how to resume execution.
	//
	//    switch jump {
	//    case BUSY:  panic("...")
	//    case DONE:  goto done
	//    case READY: state = DONE; goto done
	//    case 123:   ... // action for exit 123.
	//    case 456:   ... // action for exit 456.
	//    ...
	//    }
	//
	// Forward goto statements within a yield are jumps to labels that
	// have not yet been traversed in fn. They may be in the Body of the
	// function. What we emit for these is:
	//
	//    goto target
	//  target:
	//    ...
	//
	// We leave an unresolved exit in yield.exits to check at the end
	// of building yield if it encountered target in the body. If it
	// encountered target, no additional work is required. Otherwise,
	// the yield emits a new early exit in the basic block for target.
	// We expect that blockopt will fuse the early exit into the case
	// block later. The unresolved exit is then added to yield.parent.exits.

	loop := fn.newBasicBlock("rangefunc.loop")
	done := fn.newBasicBlock("rangefunc.done")

	// These are targets within y.
	fn.targets = &targets{
		tail:   fn.targets,
		_break: done,
		// _continue is within y.
	}
	if label != nil {
		label._break = done
		// _continue is within y
	}

	emitJump(fn, loop)
	fn.currentBlock = loop

	// loop:
	//     jump := READY

	anonIdx := len(fn.AnonFuncs)

	jump := newVar(fmt.Sprintf("jump$%d", anonIdx+1), tInt)
	emitLocalVar(fn, jump) // zero value is READY

	xsig := typeparams.CoreType(x.Type()).(*types.Signature)
	ysig := typeparams.CoreType(xsig.Params().At(0).Type()).(*types.Signature)

	/* synthetic yield function for body of range-over-func loop */
	y := &Function{
		name:           fmt.Sprintf("%s$%d", fn.Name(), anonIdx+1),
		Signature:      ysig,
		Synthetic:      "range-over-func yield",
		pos:            rangePosition(rng),
		parent:         fn,
		anonIdx:        int32(len(fn.AnonFuncs)),
		Pkg:            fn.Pkg,
		Prog:           fn.Prog,
		syntax:         rng,
		info:           fn.info,
		goversion:      fn.goversion,
		build:          (*builder).buildYieldFunc,
		topLevelOrigin: nil,
		typeparams:     fn.typeparams,
		typeargs:       fn.typeargs,
		subst:          fn.subst,
		jump:           jump,
		deferstack:     fn.deferstack,
		returnVars:     fn.returnVars, // use the parent's return variables
		uniq:           fn.uniq,       // start from parent's unique values
	}

	// If the RangeStmt has a label, this is how it is passed to buildYieldFunc.
	if label != nil {
		y.lblocks = map[*types.Label]*lblock{label.label: nil}
	}
	fn.AnonFuncs = append(fn.AnonFuncs, y)

	// Build y immediately. It may:
	// * cause fn's locals to escape, and
	// * create new exit nodes in exits.
	// (y is not marked 'built' until the end of the enclosing FuncDecl.)
	unresolved := len(fn.exits)
	y.build(b, y)
	fn.uniq = y.uniq // resume after y's unique values

	// Emit the call of y.
	//   c := MakeClosure y
	//   x(c)
	c := &MakeClosure{Fn: y}
	c.setType(ysig)
	for _, fv := range y.FreeVars {
		c.Bindings = append(c.Bindings, fv.outer)
		fv.outer = nil
	}
	fn.emit(c)
	call := Call{
		Call: CallCommon{
			Value: x,
			Args:  []Value{c},
			pos:   token.NoPos,
		},
	}
	call.setType(xsig.Results())
	fn.emit(&call)

	exits := fn.exits[unresolved:]
	b.buildYieldResume(fn, jump, exits, done)

	emitJump(fn, done)
	fn.currentBlock = done
}

// buildYieldResume emits to fn code for how to resume execution once a call to
// the iterator function over the yield function returns x(y). It does this by building
// a switch over the value of jump for when it is READY, BUSY, or EXIT(id).
func (b *builder) buildYieldResume(fn *Function, jump *types.Var, exits []*exit, done *BasicBlock) {
	//    v := *jump
	//    switch v {
	//    case BUSY:    panic("...")
	//    case READY:   jump = DONE; goto done
	//    case EXIT(a): ...
	//    case EXIT(b): ...
	//    ...
	//    }
	v := emitLoad(fn, fn.lookup(jump, false))

	// case BUSY: panic("...")
	isbusy := fn.newBasicBlock("rangefunc.resume.busy")
	ifready := fn.newBasicBlock("rangefunc.resume.ready.check")
	emitIf(fn, emitCompare(fn, token.EQL, v, jBusy, token.NoPos), isbusy, ifready)
	fn.currentBlock = isbusy
	fn.emit(&Panic{
		X: emitConv(fn, stringConst("iterator call did not preserve panic"), tEface),
	})
	fn.currentBlock = ifready

	// case READY: jump = DONE; goto done
	isready := fn.newBasicBlock("rangefunc.resume.ready")
	ifexit := fn.newBasicBlock("rangefunc.resume.exits")
	emitIf(fn, emitCompare(fn, token.EQL, v, jReady, token.NoPos), isready, ifexit)
	fn.currentBlock = isready
	storeVar(fn, jump, jDone, token.NoPos)
	emitJump(fn, done)
	fn.currentBlock = ifexit

	for _, e := range exits {
		id := intConst(e.id)

		//  case EXIT(id): { /* do e */ }
		cond := emitCompare(fn, token.EQL, v, id, e.pos)
		matchb := fn.newBasicBlock("rangefunc.resume.match")
		cndb := fn.newBasicBlock("rangefunc.resume.cnd")
		emitIf(fn, cond, matchb, cndb)
		fn.currentBlock = matchb

		// Cases to fill in the { /* do e */ } bit.
		switch {
		case e.label != nil: // forward goto?
			// case EXIT(id): goto lb // label
			lb := fn.lblockOf(e.label)
			// Do not mark lb as resolved.
			// If fn does not contain label, lb remains unresolved and
			// fn must itself be a range-over-func function. lb will be:
			//   lb:
			//     fn.jump = id
			//     return false
			emitJump(fn, lb._goto)

		case e.to != fn: // e jumps to an ancestor of fn?
			// case EXIT(id): { fn.jump = id; return false }
			// fn is a range-over-func function.
			storeVar(fn, fn.jump, id, token.NoPos)
			fn.emit(&Return{Results: []Value{vFalse}, pos: e.pos})

		case e.block == nil && e.label == nil: // return from fn?
			// case EXIT(id): { return ... }
			fn.emit(new(RunDefers))
			results := make([]Value, len(fn.results))
			for i, r := range fn.results {
				results[i] = emitLoad(fn, r)
			}
			fn.emit(&Return{Results: results, pos: e.pos})

		case e.block != nil:
			// case EXIT(id): goto block
			emitJump(fn, e.block)

		default:
			panic("unreachable")
		}
		fn.currentBlock = cndb
	}
}

// stmt lowers statement s to SSA form, emitting code to fn.
func (b *builder) stmt(fn *Function, _s ast.Stmt) {
	// The label of the current statement.  If non-nil, its _goto
	// target is always set; its _break and _continue are set only
	// within the body of switch/typeswitch/select/for/range.
	// It is effectively an additional default-nil parameter of stmt().
	var label *lblock
start:
	switch s := _s.(type) {
	case *ast.EmptyStmt:
		// ignore.  (Usually removed by gofmt.)

	case *ast.DeclStmt: // Con, Var or Typ
		d := s.Decl.(*ast.GenDecl)
		if d.Tok == token.VAR {
			for _, spec := range d.Specs {
				if vs, ok := spec.(*ast.ValueSpec); ok {
					b.localValueSpec(fn, vs)
				}
			}
		}

	case *ast.LabeledStmt:
		if s.Label.Name == "_" {
			// Blank labels can't be the target of a goto, break,
			// or continue statement, so we don't need a new block.
			_s = s.Stmt
			goto start
		}
		label = fn.lblockOf(fn.label(s.Label))
		label.resolved = true
		emitJump(fn, label._goto)
		fn.currentBlock = label._goto
		_s = s.Stmt
		goto start // effectively: tailcall stmt(fn, s.Stmt, label)

	case *ast.ExprStmt:
		b.expr(fn, s.X)

	case *ast.SendStmt:
		chtyp := typeparams.CoreType(fn.typeOf(s.Chan)).(*types.Chan)
		fn.emit(&Send{
			Chan: b.expr(fn, s.Chan),
			X:    emitConv(fn, b.expr(fn, s.Value), chtyp.Elem()),
			pos:  s.Arrow,
		})

	case *ast.IncDecStmt:
		op := token.ADD
		if s.Tok == token.DEC {
			op = token.SUB
		}
		loc := b.addr(fn, s.X, false)
		b.assignOp(fn, loc, NewConst(constant.MakeInt64(1), loc.typ()), op, s.Pos())

	case *ast.AssignStmt:
		switch s.Tok {
		case token.ASSIGN, token.DEFINE:
			b.assignStmt(fn, s.Lhs, s.Rhs, s.Tok == token.DEFINE)

		default: // +=, etc.
			op := s.Tok + token.ADD - token.ADD_ASSIGN
			b.assignOp(fn, b.addr(fn, s.Lhs[0], false), b.expr(fn, s.Rhs[0]), op, s.Pos())
		}

	case *ast.GoStmt:
		// The "intrinsics" new/make/len/cap are forbidden here.
		// panic is treated like an ordinary function call.
		v := Go{pos: s.Go}
		b.setCall(fn, s.Call, &v.Call)
		fn.emit(&v)

	case *ast.DeferStmt:
		// The "intrinsics" new/make/len/cap are forbidden here.
		// panic is treated like an ordinary function call.
		deferstack := emitLoad(fn, fn.lookup(fn.deferstack, false))
		v := Defer{pos: s.Defer, DeferStack: deferstack}
		b.setCall(fn, s.Call, &v.Call)
		fn.emit(&v)

		// A deferred call can cause recovery from panic,
		// and control resumes at the Recover block.
		createRecoverBlock(fn.source)

	case *ast.ReturnStmt:
		b.returnStmt(fn, s)

	case *ast.BranchStmt:
		b.branchStmt(fn, s)

	case *ast.BlockStmt:
		b.stmtList(fn, s.List)

	case *ast.IfStmt:
		if s.Init != nil {
			b.stmt(fn, s.Init)
		}
		then := fn.newBasicBlock("if.then")
		done := fn.newBasicBlock("if.done")
		els := done
		if s.Else != nil {
			els = fn.newBasicBlock("if.else")
		}
		b.cond(fn, s.Cond, then, els)
		fn.currentBlock = then
		b.stmt(fn, s.Body)
		emitJump(fn, done)

		if s.Else != nil {
			fn.currentBlock = els
			b.stmt(fn, s.Else)
			emitJump(fn, done)
		}

		fn.currentBlock = done

	case *ast.SwitchStmt:
		b.switchStmt(fn, s, label)

	case *ast.TypeSwitchStmt:
		b.typeSwitchStmt(fn, s, label)

	case *ast.SelectStmt:
		b.selectStmt(fn, s, label)

	case *ast.ForStmt:
		b.forStmt(fn, s, label)

	case *ast.RangeStmt:
		b.rangeStmt(fn, s, label)

	default:
		panic(fmt.Sprintf("unexpected statement kind: %T", s))
	}
}

func (b *builder) branchStmt(fn *Function, s *ast.BranchStmt) {
	var block *BasicBlock
	if s.Label == nil {
		block = targetedBlock(fn, s.Tok)
	} else {
		target := fn.label(s.Label)
		block = labelledBlock(fn, target, s.Tok)
		if block == nil { // forward goto
			lb := fn.lblockOf(target)
			block = lb._goto // jump to lb._goto
			if fn.jump != nil {
				// fn is a range-over-func and the goto may exit fn.
				// Create an exit and resolve it at the end of
				// builder.buildYieldFunc.
				labelExit(fn, target, s.Pos())
			}
		}
	}
	to := block.parent

	if to == fn {
		emitJump(fn, block)
	} else { // break outside of fn.
		// fn must be a range-over-func
		e := blockExit(fn, block, s.Pos())
		storeVar(fn, fn.jump, intConst(e.id), e.pos)
		fn.emit(&Return{Results: []Value{vFalse}, pos: e.pos})
	}
	fn.currentBlock = fn.newBasicBlock("unreachable")
}

func (b *builder) returnStmt(fn *Function, s *ast.ReturnStmt) {
	var results []Value

	sig := fn.source.Signature // signature of the enclosing source function

	// Convert return operands to result type.
	if len(s.Results) == 1 && sig.Results().Len() > 1 {
		// Return of one expression in a multi-valued function.
		tuple := b.exprN(fn, s.Results[0])
		ttuple := tuple.Type().(*types.Tuple)
		for i, n := 0, ttuple.Len(); i < n; i++ {
			results = append(results,
				emitConv(fn, emitExtract(fn, tuple, i),
					sig.Results().At(i).Type()))
		}
	} else {
		// 1:1 return, or no-arg return in non-void function.
		for i, r := range s.Results {
			v := emitConv(fn, b.expr(fn, r), sig.Results().At(i).Type())
			results = append(results, v)
		}
	}

	// Store the results.
	for i, r := range results {
		var result Value // fn.source.result[i] conceptually
		if fn == fn.source {
			result = fn.results[i]
		} else { // lookup needed?
			result = fn.lookup(fn.returnVars[i], false)
		}
		emitStore(fn, result, r, s.Return)
	}

	if fn.jump != nil {
		// Return from body of a range-over-func.
		// The return statement is syntactically within the loop,
		// but the generated code is in the 'switch jump {...}' after it.
		e := returnExit(fn, s.Pos())
		storeVar(fn, fn.jump, intConst(e.id), e.pos)
		fn.emit(&Return{Results: []Value{vFalse}, pos: e.pos})
		fn.currentBlock = fn.newBasicBlock("unreachable")
		return
	}

	// Run function calls deferred in this
	// function when explicitly returning from it.
	fn.emit(new(RunDefers))
	// Reload (potentially) named result variables to form the result tuple.
	results = results[:0]
	for _, nr := range fn.results {
		results = append(results, emitLoad(fn, nr))
	}
	fn.emit(&Return{Results: results, pos: s.Return})
	fn.currentBlock = fn.newBasicBlock("unreachable")
}

// A buildFunc is a strategy for building the SSA body for a function.
type buildFunc = func(*builder, *Function)

// iterate causes all created but unbuilt functions to be built. As
// this may create new methods, the process is iterated until it
// converges.
//
// Waits for any dependencies to finish building.
func (b *builder) iterate() {
	for ; b.finished < len(b.fns); b.finished++ {
		fn := b.fns[b.finished]
		b.buildFunction(fn)
	}

	b.buildshared.markDone()
	b.buildshared.wait()
}

// buildFunction builds SSA code for the body of function fn.  Idempotent.
func (b *builder) buildFunction(fn *Function) {
	if fn.build != nil {
		assert(fn.parent == nil, "anonymous functions should not be built by buildFunction()")

		if fn.Prog.mode&LogSource != 0 {
			defer logStack("build %s @ %s", fn, fn.Prog.Fset.Position(fn.pos))()
		}
		fn.build(b, fn)
		fn.done()
	}
}

// buildParamsOnly builds fn.Params from fn.Signature, but does not build fn.Body.
func (b *builder) buildParamsOnly(fn *Function) {
	// For external (C, asm) functions or functions loaded from
	// export data, we must set fn.Params even though there is no
	// body code to reference them.
	if recv := fn.Signature.Recv(); recv != nil {
		fn.addParamVar(recv)
	}
	params := fn.Signature.Params()
	for i, n := 0, params.Len(); i < n; i++ {
		fn.addParamVar(params.At(i))
	}
}

// buildFromSyntax builds fn.Body from fn.syntax, which must be non-nil.
func (b *builder) buildFromSyntax(fn *Function) {
	var (
		recvField *ast.FieldList
		body      *ast.BlockStmt
		functype  *ast.FuncType
	)
	switch syntax := fn.syntax.(type) {
	case *ast.FuncDecl:
		functype = syntax.Type
		recvField = syntax.Recv
		body = syntax.Body
		if body == nil {
			b.buildParamsOnly(fn) // no body (non-Go function)
			return
		}
	case *ast.FuncLit:
		functype = syntax.Type
		body = syntax.Body
	case nil:
		panic("no syntax")
	default:
		panic(syntax) // unexpected syntax
	}
	fn.source = fn
	fn.startBody()
	fn.createSyntacticParams(recvField, functype)
	fn.createDeferStack()
	b.stmt(fn, body)
	if cb := fn.currentBlock; cb != nil && (cb == fn.Blocks[0] || cb == fn.Recover || cb.Preds != nil) {
		// Control fell off the end of the function's body block.
		//
		// Block optimizations eliminate the current block, if
		// unreachable.  It is a builder invariant that
		// if this no-arg return is ill-typed for
		// fn.Signature.Results, this block must be
		// unreachable.  The sanity checker checks this.
		fn.emit(new(RunDefers))
		fn.emit(new(Return))
	}
	fn.finishBody()
}

// buildYieldFunc builds the body of the yield function created
// from a range-over-func *ast.RangeStmt.
func (b *builder) buildYieldFunc(fn *Function) {
	// See builder.rangeFunc for detailed documentation on how fn is set up.
	//
	// In psuedo-Go this roughly builds:
	// func yield(_k tk, _v tv) bool {
	// 	   if jump != READY { panic("yield function called after range loop exit") }
	//     jump = BUSY
	//     k, v = _k, _v // assign the iterator variable (if needed)
	//     ... // rng.Body
	//   continue:
	//     jump = READY
	//     return true
	// }
	s := fn.syntax.(*ast.RangeStmt)
	fn.source = fn.parent.source
	fn.startBody()
	params := fn.Signature.Params()
	for i := 0; i < params.Len(); i++ {
		fn.addParamVar(params.At(i))
	}

	// Initial targets
	ycont := fn.newBasicBlock("yield-continue")
	// lblocks is either {} or is {label: nil} where label is the label of syntax.
	for label := range fn.lblocks {
		fn.lblocks[label] = &lblock{
			label:     label,
			resolved:  true,
			_goto:     ycont,
			_continue: ycont,
			// `break label` statement targets fn.parent.targets._break
		}
	}
	fn.targets = &targets{
		_continue: ycont,
		// `break` statement targets fn.parent.targets._break.
	}

	// continue:
	//   jump = READY
	//   return true
	saved := fn.currentBlock
	fn.currentBlock = ycont
	storeVar(fn, fn.jump, jReady, s.Body.Rbrace)
	// A yield function's own deferstack is always empty, so rundefers is not needed.
	fn.emit(&Return{Results: []Value{vTrue}, pos: token.NoPos})

	// Emit header:
	//
	//   if jump != READY { panic("yield iterator accessed after exit") }
	//   jump = BUSY
	//   k, v = _k, _v
	fn.currentBlock = saved
	yloop := fn.newBasicBlock("yield-loop")
	invalid := fn.newBasicBlock("yield-invalid")

	jumpVal := emitLoad(fn, fn.lookup(fn.jump, true))
	emitIf(fn, emitCompare(fn, token.EQL, jumpVal, jReady, token.NoPos), yloop, invalid)
	fn.currentBlock = invalid
	fn.emit(&Panic{
		X: emitConv(fn, stringConst("yield function called after range loop exit"), tEface),
	})

	fn.currentBlock = yloop
	storeVar(fn, fn.jump, jBusy, s.Body.Rbrace)

	// Initialize k and v from params.
	var tk, tv types.Type
	if s.Key != nil && !isBlankIdent(s.Key) {
		tk = fn.typeOf(s.Key) // fn.parent.typeOf is identical
	}
	if s.Value != nil && !isBlankIdent(s.Value) {
		tv = fn.typeOf(s.Value)
	}
	if s.Tok == token.DEFINE {
		if tk != nil {
			emitLocalVar(fn, identVar(fn, s.Key.(*ast.Ident)))
		}
		if tv != nil {
			emitLocalVar(fn, identVar(fn, s.Value.(*ast.Ident)))
		}
	}
	var k, v Value
	if len(fn.Params) > 0 {
		k = fn.Params[0]
	}
	if len(fn.Params) > 1 {
		v = fn.Params[1]
	}
	var kl, vl lvalue
	if tk != nil {
		kl = b.addr(fn, s.Key, false) // non-escaping
	}
	if tv != nil {
		vl = b.addr(fn, s.Value, false) // non-escaping
	}
	if tk != nil {
		kl.store(fn, k)
	}
	if tv != nil {
		vl.store(fn, v)
	}

	// Build the body of the range loop.
	b.stmt(fn, s.Body)
	if cb := fn.currentBlock; cb != nil && (cb == fn.Blocks[0] || cb == fn.Recover || cb.Preds != nil) {
		// Control fell off the end of the function's body block.
		// Block optimizations eliminate the current block, if
		// unreachable.
		emitJump(fn, ycont)
	}

	// Clean up exits and promote any unresolved exits to fn.parent.
	for _, e := range fn.exits {
		if e.label != nil {
			lb := fn.lblocks[e.label]
			if lb.resolved {
				// label was resolved. Do not turn lb into an exit.
				// e does not need to be handled by the parent.
				continue
			}

			// _goto becomes an exit.
			//   _goto:
			//     jump = id
			//     return false
			fn.currentBlock = lb._goto
			id := intConst(e.id)
			storeVar(fn, fn.jump, id, e.pos)
			fn.emit(&Return{Results: []Value{vFalse}, pos: e.pos})
		}

		if e.to != fn { // e needs to be handled by the parent too.
			fn.parent.exits = append(fn.parent.exits, e)
		}
	}

	fn.finishBody()
}

// addRuntimeType records t as a runtime type,
// along with all types derivable from it using reflection.
//
// Acquires prog.runtimeTypesMu.
func addRuntimeType(prog *Program, t types.Type) {
	prog.runtimeTypesMu.Lock()
	defer prog.runtimeTypesMu.Unlock()
	forEachReachable(&prog.MethodSets, t, func(t types.Type) bool {
		prev, _ := prog.runtimeTypes.Set(t, true).(bool)
		return !prev // already seen?
	})
}

// Build calls Package.Build for each package in prog.
// Building occurs in parallel unless the BuildSerially mode flag was set.
//
// Build is intended for whole-program analysis; a typical compiler
// need only build a single package.
//
// Build is idempotent and thread-safe.
func (prog *Program) Build() {
	var wg sync.WaitGroup
	for _, p := range prog.packages {
		if prog.mode&BuildSerially != 0 {
			p.Build()
		} else {
			wg.Add(1)
			cpuLimit <- unit{} // acquire a token
			go func(p *Package) {
				p.Build()
				wg.Done()
				<-cpuLimit // release a token
			}(p)
		}
	}
	wg.Wait()
}

// cpuLimit is a counting semaphore to limit CPU parallelism.
var cpuLimit = make(chan unit, runtime.GOMAXPROCS(0))

// Build builds SSA code for all functions and vars in package p.
//
// CreatePackage must have been called for all of p's direct imports
// (and hence its direct imports must have been error-free). It is not
// necessary to call CreatePackage for indirect dependencies.
// Functions will be created for all necessary methods in those
// packages on demand.
//
// Build is idempotent and thread-safe.
func (p *Package) Build() { p.buildOnce.Do(p.build) }

func (p *Package) build() {
	if p.info == nil {
		return // synthetic package, e.g. "testmain"
	}
	if p.Prog.mode&LogSource != 0 {
		defer logStack("build %s", p)()
	}

	b := builder{fns: p.created}
	b.iterate()

	// We no longer need transient information: ASTs or go/types deductions.
	p.info = nil
	p.created = nil
	p.files = nil
	p.initVersion = nil

	if p.Prog.mode&SanityCheckFunctions != 0 {
		sanityCheckPackage(p)
	}
}

// buildPackageInit builds fn.Body for the synthetic package initializer.
func (b *builder) buildPackageInit(fn *Function) {
	p := fn.Pkg
	fn.startBody()

	var done *BasicBlock

	if p.Prog.mode&BareInits == 0 {
		// Make init() skip if package is already initialized.
		initguard := p.Var("init$guard")
		doinit := fn.newBasicBlock("init.start")
		done = fn.newBasicBlock("init.done")
		emitIf(fn, emitLoad(fn, initguard), done, doinit)
		fn.currentBlock = doinit
		emitStore(fn, initguard, vTrue, token.NoPos)

		// Call the init() function of each package we import.
		for _, pkg := range p.Pkg.Imports() {
			prereq := p.Prog.packages[pkg]
			if prereq == nil {
				panic(fmt.Sprintf("Package(%q).Build(): unsatisfied import: Program.CreatePackage(%q) was not called", p.Pkg.Path(), pkg.Path()))
			}
			var v Call
			v.Call.Value = prereq.init
			v.Call.pos = fn.pos
			v.setType(types.NewTuple())
			fn.emit(&v)
		}
	}

	// Initialize package-level vars in correct order.
	if len(p.info.InitOrder) > 0 && len(p.files) == 0 {
		panic("no source files provided for package. cannot initialize globals")
	}

	for _, varinit := range p.info.InitOrder {
		if fn.Prog.mode&LogSource != 0 {
			fmt.Fprintf(os.Stderr, "build global initializer %v @ %s\n",
				varinit.Lhs, p.Prog.Fset.Position(varinit.Rhs.Pos()))
		}
		// Initializers for global vars are evaluated in dependency
		// order, but may come from arbitrary files of the package
		// with different versions, so we transiently update
		// fn.goversion for each one. (Since init is a synthetic
		// function it has no syntax of its own that needs a version.)
		fn.goversion = p.initVersion[varinit.Rhs]
		if len(varinit.Lhs) == 1 {
			// 1:1 initialization: var x, y = a(), b()
			var lval lvalue
			if v := varinit.Lhs[0]; v.Name() != "_" {
				lval = &address{addr: p.objects[v].(*Global), pos: v.Pos()}
			} else {
				lval = blank{}
			}
			b.assign(fn, lval, varinit.Rhs, true, nil)
		} else {
			// n:1 initialization: var x, y :=  f()
			tuple := b.exprN(fn, varinit.Rhs)
			for i, v := range varinit.Lhs {
				if v.Name() == "_" {
					continue
				}
				emitStore(fn, p.objects[v].(*Global), emitExtract(fn, tuple, i), v.Pos())
			}
		}
	}

	// The rest of the init function is synthetic:
	// no syntax, info, goversion.
	fn.info = nil
	fn.goversion = ""

	// Call all of the declared init() functions in source order.
	for _, file := range p.files {
		for _, decl := range file.Decls {
			if decl, ok := decl.(*ast.FuncDecl); ok {
				id := decl.Name
				if !isBlankIdent(id) && id.Name == "init" && decl.Recv == nil {
					declaredInit := p.objects[p.info.Defs[id]].(*Function)
					var v Call
					v.Call.Value = declaredInit
					v.setType(types.NewTuple())
					p.init.emit(&v)
				}
			}
		}
	}

	// Finish up init().
	if p.Prog.mode&BareInits == 0 {
		emitJump(fn, done)
		fn.currentBlock = done
	}
	fn.emit(new(Return))
	fn.finishBody()
}