1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
|
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ssa
// Helpers for emitting SSA instructions.
import (
"fmt"
"go/ast"
"go/token"
"go/types"
"golang.org/x/tools/internal/typeparams"
)
// emitAlloc emits to f a new Alloc instruction allocating a variable
// of type typ.
//
// The caller must set Alloc.Heap=true (for an heap-allocated variable)
// or add the Alloc to f.Locals (for a frame-allocated variable).
//
// During building, a variable in f.Locals may have its Heap flag
// set when it is discovered that its address is taken.
// These Allocs are removed from f.Locals at the end.
//
// The builder should generally call one of the emit{New,Local,LocalVar} wrappers instead.
func emitAlloc(f *Function, typ types.Type, pos token.Pos, comment string) *Alloc {
v := &Alloc{Comment: comment}
v.setType(types.NewPointer(typ))
v.setPos(pos)
f.emit(v)
return v
}
// emitNew emits to f a new Alloc instruction heap-allocating a
// variable of type typ. pos is the optional source location.
func emitNew(f *Function, typ types.Type, pos token.Pos, comment string) *Alloc {
alloc := emitAlloc(f, typ, pos, comment)
alloc.Heap = true
return alloc
}
// emitLocal creates a local var for (t, pos, comment) and
// emits an Alloc instruction for it.
//
// (Use this function or emitNew for synthetic variables;
// for source-level variables in the same function, use emitLocalVar.)
func emitLocal(f *Function, t types.Type, pos token.Pos, comment string) *Alloc {
local := emitAlloc(f, t, pos, comment)
f.Locals = append(f.Locals, local)
return local
}
// emitLocalVar creates a local var for v and emits an Alloc instruction for it.
// Subsequent calls to f.lookup(v) return it.
// It applies the appropriate generic instantiation to the type.
func emitLocalVar(f *Function, v *types.Var) *Alloc {
alloc := emitLocal(f, f.typ(v.Type()), v.Pos(), v.Name())
f.vars[v] = alloc
return alloc
}
// emitLoad emits to f an instruction to load the address addr into a
// new temporary, and returns the value so defined.
func emitLoad(f *Function, addr Value) *UnOp {
v := &UnOp{Op: token.MUL, X: addr}
v.setType(typeparams.MustDeref(addr.Type()))
f.emit(v)
return v
}
// emitDebugRef emits to f a DebugRef pseudo-instruction associating
// expression e with value v.
func emitDebugRef(f *Function, e ast.Expr, v Value, isAddr bool) {
if !f.debugInfo() {
return // debugging not enabled
}
if v == nil || e == nil {
panic("nil")
}
var obj types.Object
e = unparen(e)
if id, ok := e.(*ast.Ident); ok {
if isBlankIdent(id) {
return
}
obj = f.objectOf(id)
switch obj.(type) {
case *types.Nil, *types.Const, *types.Builtin:
return
}
}
f.emit(&DebugRef{
X: v,
Expr: e,
IsAddr: isAddr,
object: obj,
})
}
// emitArith emits to f code to compute the binary operation op(x, y)
// where op is an eager shift, logical or arithmetic operation.
// (Use emitCompare() for comparisons and Builder.logicalBinop() for
// non-eager operations.)
func emitArith(f *Function, op token.Token, x, y Value, t types.Type, pos token.Pos) Value {
switch op {
case token.SHL, token.SHR:
x = emitConv(f, x, t)
// y may be signed or an 'untyped' constant.
// There is a runtime panic if y is signed and <0. Instead of inserting a check for y<0
// and converting to an unsigned value (like the compiler) leave y as is.
if isUntyped(y.Type().Underlying()) {
// Untyped conversion:
// Spec https://go.dev/ref/spec#Operators:
// The right operand in a shift expression must have integer type or be an untyped constant
// representable by a value of type uint.
y = emitConv(f, y, types.Typ[types.Uint])
}
case token.ADD, token.SUB, token.MUL, token.QUO, token.REM, token.AND, token.OR, token.XOR, token.AND_NOT:
x = emitConv(f, x, t)
y = emitConv(f, y, t)
default:
panic("illegal op in emitArith: " + op.String())
}
v := &BinOp{
Op: op,
X: x,
Y: y,
}
v.setPos(pos)
v.setType(t)
return f.emit(v)
}
// emitCompare emits to f code compute the boolean result of
// comparison 'x op y'.
func emitCompare(f *Function, op token.Token, x, y Value, pos token.Pos) Value {
xt := x.Type().Underlying()
yt := y.Type().Underlying()
// Special case to optimise a tagless SwitchStmt so that
// these are equivalent
// switch { case e: ...}
// switch true { case e: ... }
// if e==true { ... }
// even in the case when e's type is an interface.
// TODO(adonovan): opt: generalise to x==true, false!=y, etc.
if x == vTrue && op == token.EQL {
if yt, ok := yt.(*types.Basic); ok && yt.Info()&types.IsBoolean != 0 {
return y
}
}
if types.Identical(xt, yt) {
// no conversion necessary
} else if isNonTypeParamInterface(x.Type()) {
y = emitConv(f, y, x.Type())
} else if isNonTypeParamInterface(y.Type()) {
x = emitConv(f, x, y.Type())
} else if _, ok := x.(*Const); ok {
x = emitConv(f, x, y.Type())
} else if _, ok := y.(*Const); ok {
y = emitConv(f, y, x.Type())
} else {
// other cases, e.g. channels. No-op.
}
v := &BinOp{
Op: op,
X: x,
Y: y,
}
v.setPos(pos)
v.setType(tBool)
return f.emit(v)
}
// isValuePreserving returns true if a conversion from ut_src to
// ut_dst is value-preserving, i.e. just a change of type.
// Precondition: neither argument is a named or alias type.
func isValuePreserving(ut_src, ut_dst types.Type) bool {
// Identical underlying types?
if types.IdenticalIgnoreTags(ut_dst, ut_src) {
return true
}
switch ut_dst.(type) {
case *types.Chan:
// Conversion between channel types?
_, ok := ut_src.(*types.Chan)
return ok
case *types.Pointer:
// Conversion between pointers with identical base types?
_, ok := ut_src.(*types.Pointer)
return ok
}
return false
}
// emitConv emits to f code to convert Value val to exactly type typ,
// and returns the converted value. Implicit conversions are required
// by language assignability rules in assignments, parameter passing,
// etc.
func emitConv(f *Function, val Value, typ types.Type) Value {
t_src := val.Type()
// Identical types? Conversion is a no-op.
if types.Identical(t_src, typ) {
return val
}
ut_dst := typ.Underlying()
ut_src := t_src.Underlying()
// Conversion to, or construction of a value of, an interface type?
if isNonTypeParamInterface(typ) {
// Interface name change?
if isValuePreserving(ut_src, ut_dst) {
c := &ChangeType{X: val}
c.setType(typ)
return f.emit(c)
}
// Assignment from one interface type to another?
if isNonTypeParamInterface(t_src) {
c := &ChangeInterface{X: val}
c.setType(typ)
return f.emit(c)
}
// Untyped nil constant? Return interface-typed nil constant.
if ut_src == tUntypedNil {
return zeroConst(typ)
}
// Convert (non-nil) "untyped" literals to their default type.
if t, ok := ut_src.(*types.Basic); ok && t.Info()&types.IsUntyped != 0 {
val = emitConv(f, val, types.Default(ut_src))
}
// Record the types of operands to MakeInterface, if
// non-parameterized, as they are the set of runtime types.
t := val.Type()
if f.typeparams.Len() == 0 || !f.Prog.isParameterized(t) {
addRuntimeType(f.Prog, t)
}
mi := &MakeInterface{X: val}
mi.setType(typ)
return f.emit(mi)
}
// In the common case, the typesets of src and dst are singletons
// and we emit an appropriate conversion. But if either contains
// a type parameter, the conversion may represent a cross product,
// in which case which we emit a MultiConvert.
dst_terms := typeSetOf(ut_dst)
src_terms := typeSetOf(ut_src)
// conversionCase describes an instruction pattern that maybe emitted to
// model d <- s for d in dst_terms and s in src_terms.
// Multiple conversions can match the same pattern.
type conversionCase uint8
const (
changeType conversionCase = 1 << iota
sliceToArray
sliceToArrayPtr
sliceTo0Array
sliceTo0ArrayPtr
convert
)
// classify the conversion case of a source type us to a destination type ud.
// us and ud are underlying types (not *Named or *Alias)
classify := func(us, ud types.Type) conversionCase {
// Just a change of type, but not value or representation?
if isValuePreserving(us, ud) {
return changeType
}
// Conversion from slice to array or slice to array pointer?
if slice, ok := us.(*types.Slice); ok {
var arr *types.Array
var ptr bool
// Conversion from slice to array pointer?
switch d := ud.(type) {
case *types.Array:
arr = d
case *types.Pointer:
arr, _ = d.Elem().Underlying().(*types.Array)
ptr = true
}
if arr != nil && types.Identical(slice.Elem(), arr.Elem()) {
if arr.Len() == 0 {
if ptr {
return sliceTo0ArrayPtr
} else {
return sliceTo0Array
}
}
if ptr {
return sliceToArrayPtr
} else {
return sliceToArray
}
}
}
// The only remaining case in well-typed code is a representation-
// changing conversion of basic types (possibly with []byte/[]rune).
if !isBasic(us) && !isBasic(ud) {
panic(fmt.Sprintf("in %s: cannot convert term %s (%s [within %s]) to type %s [within %s]", f, val, val.Type(), us, typ, ud))
}
return convert
}
var classifications conversionCase
for _, s := range src_terms {
us := s.Type().Underlying()
for _, d := range dst_terms {
ud := d.Type().Underlying()
classifications |= classify(us, ud)
}
}
if classifications == 0 {
panic(fmt.Sprintf("in %s: cannot convert %s (%s) to %s", f, val, val.Type(), typ))
}
// Conversion of a compile-time constant value?
if c, ok := val.(*Const); ok {
// Conversion to a basic type?
if isBasic(ut_dst) {
// Conversion of a compile-time constant to
// another constant type results in a new
// constant of the destination type and
// (initially) the same abstract value.
// We don't truncate the value yet.
return NewConst(c.Value, typ)
}
// Can we always convert from zero value without panicking?
const mayPanic = sliceToArray | sliceToArrayPtr
if c.Value == nil && classifications&mayPanic == 0 {
return NewConst(nil, typ)
}
// We're converting from constant to non-constant type,
// e.g. string -> []byte/[]rune.
}
switch classifications {
case changeType: // representation-preserving change
c := &ChangeType{X: val}
c.setType(typ)
return f.emit(c)
case sliceToArrayPtr, sliceTo0ArrayPtr: // slice to array pointer
c := &SliceToArrayPointer{X: val}
c.setType(typ)
return f.emit(c)
case sliceToArray: // slice to arrays (not zero-length)
ptype := types.NewPointer(typ)
p := &SliceToArrayPointer{X: val}
p.setType(ptype)
x := f.emit(p)
unOp := &UnOp{Op: token.MUL, X: x}
unOp.setType(typ)
return f.emit(unOp)
case sliceTo0Array: // slice to zero-length arrays (constant)
return zeroConst(typ)
case convert: // representation-changing conversion
c := &Convert{X: val}
c.setType(typ)
return f.emit(c)
default: // multiple conversion
c := &MultiConvert{X: val, from: src_terms, to: dst_terms}
c.setType(typ)
return f.emit(c)
}
}
// emitTypeCoercion emits to f code to coerce the type of a
// Value v to exactly type typ, and returns the coerced value.
//
// Requires that coercing v.Typ() to typ is a value preserving change.
//
// Currently used only when v.Type() is a type instance of typ or vice versa.
// A type v is a type instance of a type t if there exists a
// type parameter substitution σ s.t. σ(v) == t. Example:
//
// σ(func(T) T) == func(int) int for σ == [T ↦ int]
//
// This happens in instantiation wrappers for conversion
// from an instantiation to a parameterized type (and vice versa)
// with σ substituting f.typeparams by f.typeargs.
func emitTypeCoercion(f *Function, v Value, typ types.Type) Value {
if types.Identical(v.Type(), typ) {
return v // no coercion needed
}
// TODO(taking): for instances should we record which side is the instance?
c := &ChangeType{
X: v,
}
c.setType(typ)
f.emit(c)
return c
}
// emitStore emits to f an instruction to store value val at location
// addr, applying implicit conversions as required by assignability rules.
func emitStore(f *Function, addr, val Value, pos token.Pos) *Store {
typ := typeparams.MustDeref(addr.Type())
s := &Store{
Addr: addr,
Val: emitConv(f, val, typ),
pos: pos,
}
f.emit(s)
return s
}
// emitJump emits to f a jump to target, and updates the control-flow graph.
// Postcondition: f.currentBlock is nil.
func emitJump(f *Function, target *BasicBlock) {
b := f.currentBlock
b.emit(new(Jump))
addEdge(b, target)
f.currentBlock = nil
}
// emitIf emits to f a conditional jump to tblock or fblock based on
// cond, and updates the control-flow graph.
// Postcondition: f.currentBlock is nil.
func emitIf(f *Function, cond Value, tblock, fblock *BasicBlock) {
b := f.currentBlock
b.emit(&If{Cond: cond})
addEdge(b, tblock)
addEdge(b, fblock)
f.currentBlock = nil
}
// emitExtract emits to f an instruction to extract the index'th
// component of tuple. It returns the extracted value.
func emitExtract(f *Function, tuple Value, index int) Value {
e := &Extract{Tuple: tuple, Index: index}
e.setType(tuple.Type().(*types.Tuple).At(index).Type())
return f.emit(e)
}
// emitTypeAssert emits to f a type assertion value := x.(t) and
// returns the value. x.Type() must be an interface.
func emitTypeAssert(f *Function, x Value, t types.Type, pos token.Pos) Value {
a := &TypeAssert{X: x, AssertedType: t}
a.setPos(pos)
a.setType(t)
return f.emit(a)
}
// emitTypeTest emits to f a type test value,ok := x.(t) and returns
// a (value, ok) tuple. x.Type() must be an interface.
func emitTypeTest(f *Function, x Value, t types.Type, pos token.Pos) Value {
a := &TypeAssert{
X: x,
AssertedType: t,
CommaOk: true,
}
a.setPos(pos)
a.setType(types.NewTuple(
newVar("value", t),
varOk,
))
return f.emit(a)
}
// emitTailCall emits to f a function call in tail position. The
// caller is responsible for all fields of 'call' except its type.
// Intended for wrapper methods.
// Precondition: f does/will not use deferred procedure calls.
// Postcondition: f.currentBlock is nil.
func emitTailCall(f *Function, call *Call) {
tresults := f.Signature.Results()
nr := tresults.Len()
if nr == 1 {
call.typ = tresults.At(0).Type()
} else {
call.typ = tresults
}
tuple := f.emit(call)
var ret Return
switch nr {
case 0:
// no-op
case 1:
ret.Results = []Value{tuple}
default:
for i := 0; i < nr; i++ {
v := emitExtract(f, tuple, i)
// TODO(adonovan): in principle, this is required:
// v = emitConv(f, o.Type, f.Signature.Results[i].Type)
// but in practice emitTailCall is only used when
// the types exactly match.
ret.Results = append(ret.Results, v)
}
}
f.emit(&ret)
f.currentBlock = nil
}
// emitImplicitSelections emits to f code to apply the sequence of
// implicit field selections specified by indices to base value v, and
// returns the selected value.
//
// If v is the address of a struct, the result will be the address of
// a field; if it is the value of a struct, the result will be the
// value of a field.
func emitImplicitSelections(f *Function, v Value, indices []int, pos token.Pos) Value {
for _, index := range indices {
if isPointerCore(v.Type()) {
fld := fieldOf(typeparams.MustDeref(v.Type()), index)
instr := &FieldAddr{
X: v,
Field: index,
}
instr.setPos(pos)
instr.setType(types.NewPointer(fld.Type()))
v = f.emit(instr)
// Load the field's value iff indirectly embedded.
if isPointerCore(fld.Type()) {
v = emitLoad(f, v)
}
} else {
fld := fieldOf(v.Type(), index)
instr := &Field{
X: v,
Field: index,
}
instr.setPos(pos)
instr.setType(fld.Type())
v = f.emit(instr)
}
}
return v
}
// emitFieldSelection emits to f code to select the index'th field of v.
//
// If wantAddr, the input must be a pointer-to-struct and the result
// will be the field's address; otherwise the result will be the
// field's value.
// Ident id is used for position and debug info.
func emitFieldSelection(f *Function, v Value, index int, wantAddr bool, id *ast.Ident) Value {
if isPointerCore(v.Type()) {
fld := fieldOf(typeparams.MustDeref(v.Type()), index)
instr := &FieldAddr{
X: v,
Field: index,
}
instr.setPos(id.Pos())
instr.setType(types.NewPointer(fld.Type()))
v = f.emit(instr)
// Load the field's value iff we don't want its address.
if !wantAddr {
v = emitLoad(f, v)
}
} else {
fld := fieldOf(v.Type(), index)
instr := &Field{
X: v,
Field: index,
}
instr.setPos(id.Pos())
instr.setType(fld.Type())
v = f.emit(instr)
}
emitDebugRef(f, id, v, wantAddr)
return v
}
// createRecoverBlock emits to f a block of code to return after a
// recovered panic, and sets f.Recover to it.
//
// If f's result parameters are named, the code loads and returns
// their current values, otherwise it returns the zero values of their
// type.
//
// Idempotent.
func createRecoverBlock(f *Function) {
if f.Recover != nil {
return // already created
}
saved := f.currentBlock
f.Recover = f.newBasicBlock("recover")
f.currentBlock = f.Recover
var results []Value
// Reload NRPs to form value tuple.
for _, nr := range f.results {
results = append(results, emitLoad(f, nr))
}
f.emit(&Return{Results: results})
f.currentBlock = saved
}
|