summaryrefslogtreecommitdiffhomepage
path: root/vendor/golang.org/x/tools/go
diff options
context:
space:
mode:
authorThomas Voss <mail@thomasvoss.com> 2024-09-13 13:01:48 +0200
committerThomas Voss <mail@thomasvoss.com> 2024-09-13 13:01:48 +0200
commit548090e67f66acf84385c4152ca464e52d3e3319 (patch)
tree9b6de528bd7b0aa63362fa83f5c8e6a97f68a5d8 /vendor/golang.org/x/tools/go
parenta1d809960bee74df19c7e5fc34ffd1e4757cfdcb (diff)
Migrate away from templ and towards html/template
Diffstat (limited to 'vendor/golang.org/x/tools/go')
-rw-r--r--vendor/golang.org/x/tools/go/ast/astutil/enclosing.go654
-rw-r--r--vendor/golang.org/x/tools/go/ast/astutil/imports.go485
-rw-r--r--vendor/golang.org/x/tools/go/ast/astutil/rewrite.go486
-rw-r--r--vendor/golang.org/x/tools/go/ast/astutil/util.go19
-rw-r--r--vendor/golang.org/x/tools/go/buildutil/allpackages.go195
-rw-r--r--vendor/golang.org/x/tools/go/buildutil/fakecontext.go111
-rw-r--r--vendor/golang.org/x/tools/go/buildutil/overlay.go101
-rw-r--r--vendor/golang.org/x/tools/go/buildutil/tags.go100
-rw-r--r--vendor/golang.org/x/tools/go/buildutil/util.go209
-rw-r--r--vendor/golang.org/x/tools/go/callgraph/callgraph.go129
-rw-r--r--vendor/golang.org/x/tools/go/callgraph/cha/cha.go164
-rw-r--r--vendor/golang.org/x/tools/go/callgraph/util.go180
-rw-r--r--vendor/golang.org/x/tools/go/gcexportdata/gcexportdata.go186
-rw-r--r--vendor/golang.org/x/tools/go/gcexportdata/importer.go75
-rw-r--r--vendor/golang.org/x/tools/go/internal/cgo/cgo.go219
-rw-r--r--vendor/golang.org/x/tools/go/internal/cgo/cgo_pkgconfig.go42
-rw-r--r--vendor/golang.org/x/tools/go/loader/doc.go202
-rw-r--r--vendor/golang.org/x/tools/go/loader/loader.go1066
-rw-r--r--vendor/golang.org/x/tools/go/loader/util.go123
-rw-r--r--vendor/golang.org/x/tools/go/packages/doc.go242
-rw-r--r--vendor/golang.org/x/tools/go/packages/external.go156
-rw-r--r--vendor/golang.org/x/tools/go/packages/golist.go1066
-rw-r--r--vendor/golang.org/x/tools/go/packages/golist_overlay.go83
-rw-r--r--vendor/golang.org/x/tools/go/packages/loadmode_string.go57
-rw-r--r--vendor/golang.org/x/tools/go/packages/packages.go1515
-rw-r--r--vendor/golang.org/x/tools/go/packages/visit.go68
-rw-r--r--vendor/golang.org/x/tools/go/ssa/TODO16
-rw-r--r--vendor/golang.org/x/tools/go/ssa/block.go113
-rw-r--r--vendor/golang.org/x/tools/go/ssa/blockopt.go183
-rw-r--r--vendor/golang.org/x/tools/go/ssa/builder.go3276
-rw-r--r--vendor/golang.org/x/tools/go/ssa/const.go232
-rw-r--r--vendor/golang.org/x/tools/go/ssa/coretype.go161
-rw-r--r--vendor/golang.org/x/tools/go/ssa/create.go318
-rw-r--r--vendor/golang.org/x/tools/go/ssa/doc.go122
-rw-r--r--vendor/golang.org/x/tools/go/ssa/dom.go340
-rw-r--r--vendor/golang.org/x/tools/go/ssa/emit.go614
-rw-r--r--vendor/golang.org/x/tools/go/ssa/func.go816
-rw-r--r--vendor/golang.org/x/tools/go/ssa/instantiate.go131
-rw-r--r--vendor/golang.org/x/tools/go/ssa/lift.go688
-rw-r--r--vendor/golang.org/x/tools/go/ssa/lvalue.go155
-rw-r--r--vendor/golang.org/x/tools/go/ssa/methods.go281
-rw-r--r--vendor/golang.org/x/tools/go/ssa/mode.go111
-rw-r--r--vendor/golang.org/x/tools/go/ssa/print.go470
-rw-r--r--vendor/golang.org/x/tools/go/ssa/sanity.go560
-rw-r--r--vendor/golang.org/x/tools/go/ssa/source.go288
-rw-r--r--vendor/golang.org/x/tools/go/ssa/ssa.go1871
-rw-r--r--vendor/golang.org/x/tools/go/ssa/ssautil/load.go214
-rw-r--r--vendor/golang.org/x/tools/go/ssa/ssautil/switch.go230
-rw-r--r--vendor/golang.org/x/tools/go/ssa/ssautil/visit.go157
-rw-r--r--vendor/golang.org/x/tools/go/ssa/subst.go642
-rw-r--r--vendor/golang.org/x/tools/go/ssa/task.go103
-rw-r--r--vendor/golang.org/x/tools/go/ssa/util.go430
-rw-r--r--vendor/golang.org/x/tools/go/ssa/util_go120.go17
-rw-r--r--vendor/golang.org/x/tools/go/ssa/wrappers.go348
-rw-r--r--vendor/golang.org/x/tools/go/types/objectpath/objectpath.go788
-rw-r--r--vendor/golang.org/x/tools/go/types/typeutil/callee.go69
-rw-r--r--vendor/golang.org/x/tools/go/types/typeutil/imports.go30
-rw-r--r--vendor/golang.org/x/tools/go/types/typeutil/map.go518
-rw-r--r--vendor/golang.org/x/tools/go/types/typeutil/methodsetcache.go73
-rw-r--r--vendor/golang.org/x/tools/go/types/typeutil/ui.go55
60 files changed, 22353 insertions, 0 deletions
diff --git a/vendor/golang.org/x/tools/go/ast/astutil/enclosing.go b/vendor/golang.org/x/tools/go/ast/astutil/enclosing.go
new file mode 100644
index 0000000..6e34df4
--- /dev/null
+++ b/vendor/golang.org/x/tools/go/ast/astutil/enclosing.go
@@ -0,0 +1,654 @@
+// Copyright 2013 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package astutil
+
+// This file defines utilities for working with source positions.
+
+import (
+ "fmt"
+ "go/ast"
+ "go/token"
+ "sort"
+)
+
+// PathEnclosingInterval returns the node that encloses the source
+// interval [start, end), and all its ancestors up to the AST root.
+//
+// The definition of "enclosing" used by this function considers
+// additional whitespace abutting a node to be enclosed by it.
+// In this example:
+//
+// z := x + y // add them
+// <-A->
+// <----B----->
+//
+// the ast.BinaryExpr(+) node is considered to enclose interval B
+// even though its [Pos()..End()) is actually only interval A.
+// This behaviour makes user interfaces more tolerant of imperfect
+// input.
+//
+// This function treats tokens as nodes, though they are not included
+// in the result. e.g. PathEnclosingInterval("+") returns the
+// enclosing ast.BinaryExpr("x + y").
+//
+// If start==end, the 1-char interval following start is used instead.
+//
+// The 'exact' result is true if the interval contains only path[0]
+// and perhaps some adjacent whitespace. It is false if the interval
+// overlaps multiple children of path[0], or if it contains only
+// interior whitespace of path[0].
+// In this example:
+//
+// z := x + y // add them
+// <--C--> <---E-->
+// ^
+// D
+//
+// intervals C, D and E are inexact. C is contained by the
+// z-assignment statement, because it spans three of its children (:=,
+// x, +). So too is the 1-char interval D, because it contains only
+// interior whitespace of the assignment. E is considered interior
+// whitespace of the BlockStmt containing the assignment.
+//
+// The resulting path is never empty; it always contains at least the
+// 'root' *ast.File. Ideally PathEnclosingInterval would reject
+// intervals that lie wholly or partially outside the range of the
+// file, but unfortunately ast.File records only the token.Pos of
+// the 'package' keyword, but not of the start of the file itself.
+func PathEnclosingInterval(root *ast.File, start, end token.Pos) (path []ast.Node, exact bool) {
+ // fmt.Printf("EnclosingInterval %d %d\n", start, end) // debugging
+
+ // Precondition: node.[Pos..End) and adjoining whitespace contain [start, end).
+ var visit func(node ast.Node) bool
+ visit = func(node ast.Node) bool {
+ path = append(path, node)
+
+ nodePos := node.Pos()
+ nodeEnd := node.End()
+
+ // fmt.Printf("visit(%T, %d, %d)\n", node, nodePos, nodeEnd) // debugging
+
+ // Intersect [start, end) with interval of node.
+ if start < nodePos {
+ start = nodePos
+ }
+ if end > nodeEnd {
+ end = nodeEnd
+ }
+
+ // Find sole child that contains [start, end).
+ children := childrenOf(node)
+ l := len(children)
+ for i, child := range children {
+ // [childPos, childEnd) is unaugmented interval of child.
+ childPos := child.Pos()
+ childEnd := child.End()
+
+ // [augPos, augEnd) is whitespace-augmented interval of child.
+ augPos := childPos
+ augEnd := childEnd
+ if i > 0 {
+ augPos = children[i-1].End() // start of preceding whitespace
+ }
+ if i < l-1 {
+ nextChildPos := children[i+1].Pos()
+ // Does [start, end) lie between child and next child?
+ if start >= augEnd && end <= nextChildPos {
+ return false // inexact match
+ }
+ augEnd = nextChildPos // end of following whitespace
+ }
+
+ // fmt.Printf("\tchild %d: [%d..%d)\tcontains interval [%d..%d)?\n",
+ // i, augPos, augEnd, start, end) // debugging
+
+ // Does augmented child strictly contain [start, end)?
+ if augPos <= start && end <= augEnd {
+ if is[tokenNode](child) {
+ return true
+ }
+
+ // childrenOf elides the FuncType node beneath FuncDecl.
+ // Add it back here for TypeParams, Params, Results,
+ // all FieldLists). But we don't add it back for the "func" token
+ // even though it is is the tree at FuncDecl.Type.Func.
+ if decl, ok := node.(*ast.FuncDecl); ok {
+ if fields, ok := child.(*ast.FieldList); ok && fields != decl.Recv {
+ path = append(path, decl.Type)
+ }
+ }
+
+ return visit(child)
+ }
+
+ // Does [start, end) overlap multiple children?
+ // i.e. left-augmented child contains start
+ // but LR-augmented child does not contain end.
+ if start < childEnd && end > augEnd {
+ break
+ }
+ }
+
+ // No single child contained [start, end),
+ // so node is the result. Is it exact?
+
+ // (It's tempting to put this condition before the
+ // child loop, but it gives the wrong result in the
+ // case where a node (e.g. ExprStmt) and its sole
+ // child have equal intervals.)
+ if start == nodePos && end == nodeEnd {
+ return true // exact match
+ }
+
+ return false // inexact: overlaps multiple children
+ }
+
+ // Ensure [start,end) is nondecreasing.
+ if start > end {
+ start, end = end, start
+ }
+
+ if start < root.End() && end > root.Pos() {
+ if start == end {
+ end = start + 1 // empty interval => interval of size 1
+ }
+ exact = visit(root)
+
+ // Reverse the path:
+ for i, l := 0, len(path); i < l/2; i++ {
+ path[i], path[l-1-i] = path[l-1-i], path[i]
+ }
+ } else {
+ // Selection lies within whitespace preceding the
+ // first (or following the last) declaration in the file.
+ // The result nonetheless always includes the ast.File.
+ path = append(path, root)
+ }
+
+ return
+}
+
+// tokenNode is a dummy implementation of ast.Node for a single token.
+// They are used transiently by PathEnclosingInterval but never escape
+// this package.
+type tokenNode struct {
+ pos token.Pos
+ end token.Pos
+}
+
+func (n tokenNode) Pos() token.Pos {
+ return n.pos
+}
+
+func (n tokenNode) End() token.Pos {
+ return n.end
+}
+
+func tok(pos token.Pos, len int) ast.Node {
+ return tokenNode{pos, pos + token.Pos(len)}
+}
+
+// childrenOf returns the direct non-nil children of ast.Node n.
+// It may include fake ast.Node implementations for bare tokens.
+// it is not safe to call (e.g.) ast.Walk on such nodes.
+func childrenOf(n ast.Node) []ast.Node {
+ var children []ast.Node
+
+ // First add nodes for all true subtrees.
+ ast.Inspect(n, func(node ast.Node) bool {
+ if node == n { // push n
+ return true // recur
+ }
+ if node != nil { // push child
+ children = append(children, node)
+ }
+ return false // no recursion
+ })
+
+ // Then add fake Nodes for bare tokens.
+ switch n := n.(type) {
+ case *ast.ArrayType:
+ children = append(children,
+ tok(n.Lbrack, len("[")),
+ tok(n.Elt.End(), len("]")))
+
+ case *ast.AssignStmt:
+ children = append(children,
+ tok(n.TokPos, len(n.Tok.String())))
+
+ case *ast.BasicLit:
+ children = append(children,
+ tok(n.ValuePos, len(n.Value)))
+
+ case *ast.BinaryExpr:
+ children = append(children, tok(n.OpPos, len(n.Op.String())))
+
+ case *ast.BlockStmt:
+ children = append(children,
+ tok(n.Lbrace, len("{")),
+ tok(n.Rbrace, len("}")))
+
+ case *ast.BranchStmt:
+ children = append(children,
+ tok(n.TokPos, len(n.Tok.String())))
+
+ case *ast.CallExpr:
+ children = append(children,
+ tok(n.Lparen, len("(")),
+ tok(n.Rparen, len(")")))
+ if n.Ellipsis != 0 {
+ children = append(children, tok(n.Ellipsis, len("...")))
+ }
+
+ case *ast.CaseClause:
+ if n.List == nil {
+ children = append(children,
+ tok(n.Case, len("default")))
+ } else {
+ children = append(children,
+ tok(n.Case, len("case")))
+ }
+ children = append(children, tok(n.Colon, len(":")))
+
+ case *ast.ChanType:
+ switch n.Dir {
+ case ast.RECV:
+ children = append(children, tok(n.Begin, len("<-chan")))
+ case ast.SEND:
+ children = append(children, tok(n.Begin, len("chan<-")))
+ case ast.RECV | ast.SEND:
+ children = append(children, tok(n.Begin, len("chan")))
+ }
+
+ case *ast.CommClause:
+ if n.Comm == nil {
+ children = append(children,
+ tok(n.Case, len("default")))
+ } else {
+ children = append(children,
+ tok(n.Case, len("case")))
+ }
+ children = append(children, tok(n.Colon, len(":")))
+
+ case *ast.Comment:
+ // nop
+
+ case *ast.CommentGroup:
+ // nop
+
+ case *ast.CompositeLit:
+ children = append(children,
+ tok(n.Lbrace, len("{")),
+ tok(n.Rbrace, len("{")))
+
+ case *ast.DeclStmt:
+ // nop
+
+ case *ast.DeferStmt:
+ children = append(children,
+ tok(n.Defer, len("defer")))
+
+ case *ast.Ellipsis:
+ children = append(children,
+ tok(n.Ellipsis, len("...")))
+
+ case *ast.EmptyStmt:
+ // nop
+
+ case *ast.ExprStmt:
+ // nop
+
+ case *ast.Field:
+ // TODO(adonovan): Field.{Doc,Comment,Tag}?
+
+ case *ast.FieldList:
+ children = append(children,
+ tok(n.Opening, len("(")), // or len("[")
+ tok(n.Closing, len(")"))) // or len("]")
+
+ case *ast.File:
+ // TODO test: Doc
+ children = append(children,
+ tok(n.Package, len("package")))
+
+ case *ast.ForStmt:
+ children = append(children,
+ tok(n.For, len("for")))
+
+ case *ast.FuncDecl:
+ // TODO(adonovan): FuncDecl.Comment?
+
+ // Uniquely, FuncDecl breaks the invariant that
+ // preorder traversal yields tokens in lexical order:
+ // in fact, FuncDecl.Recv precedes FuncDecl.Type.Func.
+ //
+ // As a workaround, we inline the case for FuncType
+ // here and order things correctly.
+ // We also need to insert the elided FuncType just
+ // before the 'visit' recursion.
+ //
+ children = nil // discard ast.Walk(FuncDecl) info subtrees
+ children = append(children, tok(n.Type.Func, len("func")))
+ if n.Recv != nil {
+ children = append(children, n.Recv)
+ }
+ children = append(children, n.Name)
+ if tparams := n.Type.TypeParams; tparams != nil {
+ children = append(children, tparams)
+ }
+ if n.Type.Params != nil {
+ children = append(children, n.Type.Params)
+ }
+ if n.Type.Results != nil {
+ children = append(children, n.Type.Results)
+ }
+ if n.Body != nil {
+ children = append(children, n.Body)
+ }
+
+ case *ast.FuncLit:
+ // nop
+
+ case *ast.FuncType:
+ if n.Func != 0 {
+ children = append(children,
+ tok(n.Func, len("func")))
+ }
+
+ case *ast.GenDecl:
+ children = append(children,
+ tok(n.TokPos, len(n.Tok.String())))
+ if n.Lparen != 0 {
+ children = append(children,
+ tok(n.Lparen, len("(")),
+ tok(n.Rparen, len(")")))
+ }
+
+ case *ast.GoStmt:
+ children = append(children,
+ tok(n.Go, len("go")))
+
+ case *ast.Ident:
+ children = append(children,
+ tok(n.NamePos, len(n.Name)))
+
+ case *ast.IfStmt:
+ children = append(children,
+ tok(n.If, len("if")))
+
+ case *ast.ImportSpec:
+ // TODO(adonovan): ImportSpec.{Doc,EndPos}?
+
+ case *ast.IncDecStmt:
+ children = append(children,
+ tok(n.TokPos, len(n.Tok.String())))
+
+ case *ast.IndexExpr:
+ children = append(children,
+ tok(n.Lbrack, len("[")),
+ tok(n.Rbrack, len("]")))
+
+ case *ast.IndexListExpr:
+ children = append(children,
+ tok(n.Lbrack, len("[")),
+ tok(n.Rbrack, len("]")))
+
+ case *ast.InterfaceType:
+ children = append(children,
+ tok(n.Interface, len("interface")))
+
+ case *ast.KeyValueExpr:
+ children = append(children,
+ tok(n.Colon, len(":")))
+
+ case *ast.LabeledStmt:
+ children = append(children,
+ tok(n.Colon, len(":")))
+
+ case *ast.MapType:
+ children = append(children,
+ tok(n.Map, len("map")))
+
+ case *ast.ParenExpr:
+ children = append(children,
+ tok(n.Lparen, len("(")),
+ tok(n.Rparen, len(")")))
+
+ case *ast.RangeStmt:
+ children = append(children,
+ tok(n.For, len("for")),
+ tok(n.TokPos, len(n.Tok.String())))
+
+ case *ast.ReturnStmt:
+ children = append(children,
+ tok(n.Return, len("return")))
+
+ case *ast.SelectStmt:
+ children = append(children,
+ tok(n.Select, len("select")))
+
+ case *ast.SelectorExpr:
+ // nop
+
+ case *ast.SendStmt:
+ children = append(children,
+ tok(n.Arrow, len("<-")))
+
+ case *ast.SliceExpr:
+ children = append(children,
+ tok(n.Lbrack, len("[")),
+ tok(n.Rbrack, len("]")))
+
+ case *ast.StarExpr:
+ children = append(children, tok(n.Star, len("*")))
+
+ case *ast.StructType:
+ children = append(children, tok(n.Struct, len("struct")))
+
+ case *ast.SwitchStmt:
+ children = append(children, tok(n.Switch, len("switch")))
+
+ case *ast.TypeAssertExpr:
+ children = append(children,
+ tok(n.Lparen-1, len(".")),
+ tok(n.Lparen, len("(")),
+ tok(n.Rparen, len(")")))
+
+ case *ast.TypeSpec:
+ // TODO(adonovan): TypeSpec.{Doc,Comment}?
+
+ case *ast.TypeSwitchStmt:
+ children = append(children, tok(n.Switch, len("switch")))
+
+ case *ast.UnaryExpr:
+ children = append(children, tok(n.OpPos, len(n.Op.String())))
+
+ case *ast.ValueSpec:
+ // TODO(adonovan): ValueSpec.{Doc,Comment}?
+
+ case *ast.BadDecl, *ast.BadExpr, *ast.BadStmt:
+ // nop
+ }
+
+ // TODO(adonovan): opt: merge the logic of ast.Inspect() into
+ // the switch above so we can make interleaved callbacks for
+ // both Nodes and Tokens in the right order and avoid the need
+ // to sort.
+ sort.Sort(byPos(children))
+
+ return children
+}
+
+type byPos []ast.Node
+
+func (sl byPos) Len() int {
+ return len(sl)
+}
+func (sl byPos) Less(i, j int) bool {
+ return sl[i].Pos() < sl[j].Pos()
+}
+func (sl byPos) Swap(i, j int) {
+ sl[i], sl[j] = sl[j], sl[i]
+}
+
+// NodeDescription returns a description of the concrete type of n suitable
+// for a user interface.
+//
+// TODO(adonovan): in some cases (e.g. Field, FieldList, Ident,
+// StarExpr) we could be much more specific given the path to the AST
+// root. Perhaps we should do that.
+func NodeDescription(n ast.Node) string {
+ switch n := n.(type) {
+ case *ast.ArrayType:
+ return "array type"
+ case *ast.AssignStmt:
+ return "assignment"
+ case *ast.BadDecl:
+ return "bad declaration"
+ case *ast.BadExpr:
+ return "bad expression"
+ case *ast.BadStmt:
+ return "bad statement"
+ case *ast.BasicLit:
+ return "basic literal"
+ case *ast.BinaryExpr:
+ return fmt.Sprintf("binary %s operation", n.Op)
+ case *ast.BlockStmt:
+ return "block"
+ case *ast.BranchStmt:
+ switch n.Tok {
+ case token.BREAK:
+ return "break statement"
+ case token.CONTINUE:
+ return "continue statement"
+ case token.GOTO:
+ return "goto statement"
+ case token.FALLTHROUGH:
+ return "fall-through statement"
+ }
+ case *ast.CallExpr:
+ if len(n.Args) == 1 && !n.Ellipsis.IsValid() {
+ return "function call (or conversion)"
+ }
+ return "function call"
+ case *ast.CaseClause:
+ return "case clause"
+ case *ast.ChanType:
+ return "channel type"
+ case *ast.CommClause:
+ return "communication clause"
+ case *ast.Comment:
+ return "comment"
+ case *ast.CommentGroup:
+ return "comment group"
+ case *ast.CompositeLit:
+ return "composite literal"
+ case *ast.DeclStmt:
+ return NodeDescription(n.Decl) + " statement"
+ case *ast.DeferStmt:
+ return "defer statement"
+ case *ast.Ellipsis:
+ return "ellipsis"
+ case *ast.EmptyStmt:
+ return "empty statement"
+ case *ast.ExprStmt:
+ return "expression statement"
+ case *ast.Field:
+ // Can be any of these:
+ // struct {x, y int} -- struct field(s)
+ // struct {T} -- anon struct field
+ // interface {I} -- interface embedding
+ // interface {f()} -- interface method
+ // func (A) func(B) C -- receiver, param(s), result(s)
+ return "field/method/parameter"
+ case *ast.FieldList:
+ return "field/method/parameter list"
+ case *ast.File:
+ return "source file"
+ case *ast.ForStmt:
+ return "for loop"
+ case *ast.FuncDecl:
+ return "function declaration"
+ case *ast.FuncLit:
+ return "function literal"
+ case *ast.FuncType:
+ return "function type"
+ case *ast.GenDecl:
+ switch n.Tok {
+ case token.IMPORT:
+ return "import declaration"
+ case token.CONST:
+ return "constant declaration"
+ case token.TYPE:
+ return "type declaration"
+ case token.VAR:
+ return "variable declaration"
+ }
+ case *ast.GoStmt:
+ return "go statement"
+ case *ast.Ident:
+ return "identifier"
+ case *ast.IfStmt:
+ return "if statement"
+ case *ast.ImportSpec:
+ return "import specification"
+ case *ast.IncDecStmt:
+ if n.Tok == token.INC {
+ return "increment statement"
+ }
+ return "decrement statement"
+ case *ast.IndexExpr:
+ return "index expression"
+ case *ast.IndexListExpr:
+ return "index list expression"
+ case *ast.InterfaceType:
+ return "interface type"
+ case *ast.KeyValueExpr:
+ return "key/value association"
+ case *ast.LabeledStmt:
+ return "statement label"
+ case *ast.MapType:
+ return "map type"
+ case *ast.Package:
+ return "package"
+ case *ast.ParenExpr:
+ return "parenthesized " + NodeDescription(n.X)
+ case *ast.RangeStmt:
+ return "range loop"
+ case *ast.ReturnStmt:
+ return "return statement"
+ case *ast.SelectStmt:
+ return "select statement"
+ case *ast.SelectorExpr:
+ return "selector"
+ case *ast.SendStmt:
+ return "channel send"
+ case *ast.SliceExpr:
+ return "slice expression"
+ case *ast.StarExpr:
+ return "*-operation" // load/store expr or pointer type
+ case *ast.StructType:
+ return "struct type"
+ case *ast.SwitchStmt:
+ return "switch statement"
+ case *ast.TypeAssertExpr:
+ return "type assertion"
+ case *ast.TypeSpec:
+ return "type specification"
+ case *ast.TypeSwitchStmt:
+ return "type switch"
+ case *ast.UnaryExpr:
+ return fmt.Sprintf("unary %s operation", n.Op)
+ case *ast.ValueSpec:
+ return "value specification"
+
+ }
+ panic(fmt.Sprintf("unexpected node type: %T", n))
+}
+
+func is[T any](x any) bool {
+ _, ok := x.(T)
+ return ok
+}
diff --git a/vendor/golang.org/x/tools/go/ast/astutil/imports.go b/vendor/golang.org/x/tools/go/ast/astutil/imports.go
new file mode 100644
index 0000000..18d1adb
--- /dev/null
+++ b/vendor/golang.org/x/tools/go/ast/astutil/imports.go
@@ -0,0 +1,485 @@
+// Copyright 2013 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// Package astutil contains common utilities for working with the Go AST.
+package astutil // import "golang.org/x/tools/go/ast/astutil"
+
+import (
+ "fmt"
+ "go/ast"
+ "go/token"
+ "strconv"
+ "strings"
+)
+
+// AddImport adds the import path to the file f, if absent.
+func AddImport(fset *token.FileSet, f *ast.File, path string) (added bool) {
+ return AddNamedImport(fset, f, "", path)
+}
+
+// AddNamedImport adds the import with the given name and path to the file f, if absent.
+// If name is not empty, it is used to rename the import.
+//
+// For example, calling
+//
+// AddNamedImport(fset, f, "pathpkg", "path")
+//
+// adds
+//
+// import pathpkg "path"
+func AddNamedImport(fset *token.FileSet, f *ast.File, name, path string) (added bool) {
+ if imports(f, name, path) {
+ return false
+ }
+
+ newImport := &ast.ImportSpec{
+ Path: &ast.BasicLit{
+ Kind: token.STRING,
+ Value: strconv.Quote(path),
+ },
+ }
+ if name != "" {
+ newImport.Name = &ast.Ident{Name: name}
+ }
+
+ // Find an import decl to add to.
+ // The goal is to find an existing import
+ // whose import path has the longest shared
+ // prefix with path.
+ var (
+ bestMatch = -1 // length of longest shared prefix
+ lastImport = -1 // index in f.Decls of the file's final import decl
+ impDecl *ast.GenDecl // import decl containing the best match
+ impIndex = -1 // spec index in impDecl containing the best match
+
+ isThirdPartyPath = isThirdParty(path)
+ )
+ for i, decl := range f.Decls {
+ gen, ok := decl.(*ast.GenDecl)
+ if ok && gen.Tok == token.IMPORT {
+ lastImport = i
+ // Do not add to import "C", to avoid disrupting the
+ // association with its doc comment, breaking cgo.
+ if declImports(gen, "C") {
+ continue
+ }
+
+ // Match an empty import decl if that's all that is available.
+ if len(gen.Specs) == 0 && bestMatch == -1 {
+ impDecl = gen
+ }
+
+ // Compute longest shared prefix with imports in this group and find best
+ // matched import spec.
+ // 1. Always prefer import spec with longest shared prefix.
+ // 2. While match length is 0,
+ // - for stdlib package: prefer first import spec.
+ // - for third party package: prefer first third party import spec.
+ // We cannot use last import spec as best match for third party package
+ // because grouped imports are usually placed last by goimports -local
+ // flag.
+ // See issue #19190.
+ seenAnyThirdParty := false
+ for j, spec := range gen.Specs {
+ impspec := spec.(*ast.ImportSpec)
+ p := importPath(impspec)
+ n := matchLen(p, path)
+ if n > bestMatch || (bestMatch == 0 && !seenAnyThirdParty && isThirdPartyPath) {
+ bestMatch = n
+ impDecl = gen
+ impIndex = j
+ }
+ seenAnyThirdParty = seenAnyThirdParty || isThirdParty(p)
+ }
+ }
+ }
+
+ // If no import decl found, add one after the last import.
+ if impDecl == nil {
+ impDecl = &ast.GenDecl{
+ Tok: token.IMPORT,
+ }
+ if lastImport >= 0 {
+ impDecl.TokPos = f.Decls[lastImport].End()
+ } else {
+ // There are no existing imports.
+ // Our new import, preceded by a blank line, goes after the package declaration
+ // and after the comment, if any, that starts on the same line as the
+ // package declaration.
+ impDecl.TokPos = f.Package
+
+ file := fset.File(f.Package)
+ pkgLine := file.Line(f.Package)
+ for _, c := range f.Comments {
+ if file.Line(c.Pos()) > pkgLine {
+ break
+ }
+ // +2 for a blank line
+ impDecl.TokPos = c.End() + 2
+ }
+ }
+ f.Decls = append(f.Decls, nil)
+ copy(f.Decls[lastImport+2:], f.Decls[lastImport+1:])
+ f.Decls[lastImport+1] = impDecl
+ }
+
+ // Insert new import at insertAt.
+ insertAt := 0
+ if impIndex >= 0 {
+ // insert after the found import
+ insertAt = impIndex + 1
+ }
+ impDecl.Specs = append(impDecl.Specs, nil)
+ copy(impDecl.Specs[insertAt+1:], impDecl.Specs[insertAt:])
+ impDecl.Specs[insertAt] = newImport
+ pos := impDecl.Pos()
+ if insertAt > 0 {
+ // If there is a comment after an existing import, preserve the comment
+ // position by adding the new import after the comment.
+ if spec, ok := impDecl.Specs[insertAt-1].(*ast.ImportSpec); ok && spec.Comment != nil {
+ pos = spec.Comment.End()
+ } else {
+ // Assign same position as the previous import,
+ // so that the sorter sees it as being in the same block.
+ pos = impDecl.Specs[insertAt-1].Pos()
+ }
+ }
+ if newImport.Name != nil {
+ newImport.Name.NamePos = pos
+ }
+ newImport.Path.ValuePos = pos
+ newImport.EndPos = pos
+
+ // Clean up parens. impDecl contains at least one spec.
+ if len(impDecl.Specs) == 1 {
+ // Remove unneeded parens.
+ impDecl.Lparen = token.NoPos
+ } else if !impDecl.Lparen.IsValid() {
+ // impDecl needs parens added.
+ impDecl.Lparen = impDecl.Specs[0].Pos()
+ }
+
+ f.Imports = append(f.Imports, newImport)
+
+ if len(f.Decls) <= 1 {
+ return true
+ }
+
+ // Merge all the import declarations into the first one.
+ var first *ast.GenDecl
+ for i := 0; i < len(f.Decls); i++ {
+ decl := f.Decls[i]
+ gen, ok := decl.(*ast.GenDecl)
+ if !ok || gen.Tok != token.IMPORT || declImports(gen, "C") {
+ continue
+ }
+ if first == nil {
+ first = gen
+ continue // Don't touch the first one.
+ }
+ // We now know there is more than one package in this import
+ // declaration. Ensure that it ends up parenthesized.
+ first.Lparen = first.Pos()
+ // Move the imports of the other import declaration to the first one.
+ for _, spec := range gen.Specs {
+ spec.(*ast.ImportSpec).Path.ValuePos = first.Pos()
+ first.Specs = append(first.Specs, spec)
+ }
+ f.Decls = append(f.Decls[:i], f.Decls[i+1:]...)
+ i--
+ }
+
+ return true
+}
+
+func isThirdParty(importPath string) bool {
+ // Third party package import path usually contains "." (".com", ".org", ...)
+ // This logic is taken from golang.org/x/tools/imports package.
+ return strings.Contains(importPath, ".")
+}
+
+// DeleteImport deletes the import path from the file f, if present.
+// If there are duplicate import declarations, all matching ones are deleted.
+func DeleteImport(fset *token.FileSet, f *ast.File, path string) (deleted bool) {
+ return DeleteNamedImport(fset, f, "", path)
+}
+
+// DeleteNamedImport deletes the import with the given name and path from the file f, if present.
+// If there are duplicate import declarations, all matching ones are deleted.
+func DeleteNamedImport(fset *token.FileSet, f *ast.File, name, path string) (deleted bool) {
+ var delspecs []*ast.ImportSpec
+ var delcomments []*ast.CommentGroup
+
+ // Find the import nodes that import path, if any.
+ for i := 0; i < len(f.Decls); i++ {
+ decl := f.Decls[i]
+ gen, ok := decl.(*ast.GenDecl)
+ if !ok || gen.Tok != token.IMPORT {
+ continue
+ }
+ for j := 0; j < len(gen.Specs); j++ {
+ spec := gen.Specs[j]
+ impspec := spec.(*ast.ImportSpec)
+ if importName(impspec) != name || importPath(impspec) != path {
+ continue
+ }
+
+ // We found an import spec that imports path.
+ // Delete it.
+ delspecs = append(delspecs, impspec)
+ deleted = true
+ copy(gen.Specs[j:], gen.Specs[j+1:])
+ gen.Specs = gen.Specs[:len(gen.Specs)-1]
+
+ // If this was the last import spec in this decl,
+ // delete the decl, too.
+ if len(gen.Specs) == 0 {
+ copy(f.Decls[i:], f.Decls[i+1:])
+ f.Decls = f.Decls[:len(f.Decls)-1]
+ i--
+ break
+ } else if len(gen.Specs) == 1 {
+ if impspec.Doc != nil {
+ delcomments = append(delcomments, impspec.Doc)
+ }
+ if impspec.Comment != nil {
+ delcomments = append(delcomments, impspec.Comment)
+ }
+ for _, cg := range f.Comments {
+ // Found comment on the same line as the import spec.
+ if cg.End() < impspec.Pos() && fset.Position(cg.End()).Line == fset.Position(impspec.Pos()).Line {
+ delcomments = append(delcomments, cg)
+ break
+ }
+ }
+
+ spec := gen.Specs[0].(*ast.ImportSpec)
+
+ // Move the documentation right after the import decl.
+ if spec.Doc != nil {
+ for fset.Position(gen.TokPos).Line+1 < fset.Position(spec.Doc.Pos()).Line {
+ fset.File(gen.TokPos).MergeLine(fset.Position(gen.TokPos).Line)
+ }
+ }
+ for _, cg := range f.Comments {
+ if cg.End() < spec.Pos() && fset.Position(cg.End()).Line == fset.Position(spec.Pos()).Line {
+ for fset.Position(gen.TokPos).Line+1 < fset.Position(spec.Pos()).Line {
+ fset.File(gen.TokPos).MergeLine(fset.Position(gen.TokPos).Line)
+ }
+ break
+ }
+ }
+ }
+ if j > 0 {
+ lastImpspec := gen.Specs[j-1].(*ast.ImportSpec)
+ lastLine := fset.PositionFor(lastImpspec.Path.ValuePos, false).Line
+ line := fset.PositionFor(impspec.Path.ValuePos, false).Line
+
+ // We deleted an entry but now there may be
+ // a blank line-sized hole where the import was.
+ if line-lastLine > 1 || !gen.Rparen.IsValid() {
+ // There was a blank line immediately preceding the deleted import,
+ // so there's no need to close the hole. The right parenthesis is
+ // invalid after AddImport to an import statement without parenthesis.
+ // Do nothing.
+ } else if line != fset.File(gen.Rparen).LineCount() {
+ // There was no blank line. Close the hole.
+ fset.File(gen.Rparen).MergeLine(line)
+ }
+ }
+ j--
+ }
+ }
+
+ // Delete imports from f.Imports.
+ for i := 0; i < len(f.Imports); i++ {
+ imp := f.Imports[i]
+ for j, del := range delspecs {
+ if imp == del {
+ copy(f.Imports[i:], f.Imports[i+1:])
+ f.Imports = f.Imports[:len(f.Imports)-1]
+ copy(delspecs[j:], delspecs[j+1:])
+ delspecs = delspecs[:len(delspecs)-1]
+ i--
+ break
+ }
+ }
+ }
+
+ // Delete comments from f.Comments.
+ for i := 0; i < len(f.Comments); i++ {
+ cg := f.Comments[i]
+ for j, del := range delcomments {
+ if cg == del {
+ copy(f.Comments[i:], f.Comments[i+1:])
+ f.Comments = f.Comments[:len(f.Comments)-1]
+ copy(delcomments[j:], delcomments[j+1:])
+ delcomments = delcomments[:len(delcomments)-1]
+ i--
+ break
+ }
+ }
+ }
+
+ if len(delspecs) > 0 {
+ panic(fmt.Sprintf("deleted specs from Decls but not Imports: %v", delspecs))
+ }
+
+ return
+}
+
+// RewriteImport rewrites any import of path oldPath to path newPath.
+func RewriteImport(fset *token.FileSet, f *ast.File, oldPath, newPath string) (rewrote bool) {
+ for _, imp := range f.Imports {
+ if importPath(imp) == oldPath {
+ rewrote = true
+ // record old End, because the default is to compute
+ // it using the length of imp.Path.Value.
+ imp.EndPos = imp.End()
+ imp.Path.Value = strconv.Quote(newPath)
+ }
+ }
+ return
+}
+
+// UsesImport reports whether a given import is used.
+func UsesImport(f *ast.File, path string) (used bool) {
+ spec := importSpec(f, path)
+ if spec == nil {
+ return
+ }
+
+ name := spec.Name.String()
+ switch name {
+ case "<nil>":
+ // If the package name is not explicitly specified,
+ // make an educated guess. This is not guaranteed to be correct.
+ lastSlash := strings.LastIndex(path, "/")
+ if lastSlash == -1 {
+ name = path
+ } else {
+ name = path[lastSlash+1:]
+ }
+ case "_", ".":
+ // Not sure if this import is used - err on the side of caution.
+ return true
+ }
+
+ ast.Walk(visitFn(func(n ast.Node) {
+ sel, ok := n.(*ast.SelectorExpr)
+ if ok && isTopName(sel.X, name) {
+ used = true
+ }
+ }), f)
+
+ return
+}
+
+type visitFn func(node ast.Node)
+
+func (fn visitFn) Visit(node ast.Node) ast.Visitor {
+ fn(node)
+ return fn
+}
+
+// imports reports whether f has an import with the specified name and path.
+func imports(f *ast.File, name, path string) bool {
+ for _, s := range f.Imports {
+ if importName(s) == name && importPath(s) == path {
+ return true
+ }
+ }
+ return false
+}
+
+// importSpec returns the import spec if f imports path,
+// or nil otherwise.
+func importSpec(f *ast.File, path string) *ast.ImportSpec {
+ for _, s := range f.Imports {
+ if importPath(s) == path {
+ return s
+ }
+ }
+ return nil
+}
+
+// importName returns the name of s,
+// or "" if the import is not named.
+func importName(s *ast.ImportSpec) string {
+ if s.Name == nil {
+ return ""
+ }
+ return s.Name.Name
+}
+
+// importPath returns the unquoted import path of s,
+// or "" if the path is not properly quoted.
+func importPath(s *ast.ImportSpec) string {
+ t, err := strconv.Unquote(s.Path.Value)
+ if err != nil {
+ return ""
+ }
+ return t
+}
+
+// declImports reports whether gen contains an import of path.
+func declImports(gen *ast.GenDecl, path string) bool {
+ if gen.Tok != token.IMPORT {
+ return false
+ }
+ for _, spec := range gen.Specs {
+ impspec := spec.(*ast.ImportSpec)
+ if importPath(impspec) == path {
+ return true
+ }
+ }
+ return false
+}
+
+// matchLen returns the length of the longest path segment prefix shared by x and y.
+func matchLen(x, y string) int {
+ n := 0
+ for i := 0; i < len(x) && i < len(y) && x[i] == y[i]; i++ {
+ if x[i] == '/' {
+ n++
+ }
+ }
+ return n
+}
+
+// isTopName returns true if n is a top-level unresolved identifier with the given name.
+func isTopName(n ast.Expr, name string) bool {
+ id, ok := n.(*ast.Ident)
+ return ok && id.Name == name && id.Obj == nil
+}
+
+// Imports returns the file imports grouped by paragraph.
+func Imports(fset *token.FileSet, f *ast.File) [][]*ast.ImportSpec {
+ var groups [][]*ast.ImportSpec
+
+ for _, decl := range f.Decls {
+ genDecl, ok := decl.(*ast.GenDecl)
+ if !ok || genDecl.Tok != token.IMPORT {
+ break
+ }
+
+ group := []*ast.ImportSpec{}
+
+ var lastLine int
+ for _, spec := range genDecl.Specs {
+ importSpec := spec.(*ast.ImportSpec)
+ pos := importSpec.Path.ValuePos
+ line := fset.Position(pos).Line
+ if lastLine > 0 && pos > 0 && line-lastLine > 1 {
+ groups = append(groups, group)
+ group = []*ast.ImportSpec{}
+ }
+ group = append(group, importSpec)
+ lastLine = line
+ }
+ groups = append(groups, group)
+ }
+
+ return groups
+}
diff --git a/vendor/golang.org/x/tools/go/ast/astutil/rewrite.go b/vendor/golang.org/x/tools/go/ast/astutil/rewrite.go
new file mode 100644
index 0000000..58934f7
--- /dev/null
+++ b/vendor/golang.org/x/tools/go/ast/astutil/rewrite.go
@@ -0,0 +1,486 @@
+// Copyright 2017 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package astutil
+
+import (
+ "fmt"
+ "go/ast"
+ "reflect"
+ "sort"
+)
+
+// An ApplyFunc is invoked by Apply for each node n, even if n is nil,
+// before and/or after the node's children, using a Cursor describing
+// the current node and providing operations on it.
+//
+// The return value of ApplyFunc controls the syntax tree traversal.
+// See Apply for details.
+type ApplyFunc func(*Cursor) bool
+
+// Apply traverses a syntax tree recursively, starting with root,
+// and calling pre and post for each node as described below.
+// Apply returns the syntax tree, possibly modified.
+//
+// If pre is not nil, it is called for each node before the node's
+// children are traversed (pre-order). If pre returns false, no
+// children are traversed, and post is not called for that node.
+//
+// If post is not nil, and a prior call of pre didn't return false,
+// post is called for each node after its children are traversed
+// (post-order). If post returns false, traversal is terminated and
+// Apply returns immediately.
+//
+// Only fields that refer to AST nodes are considered children;
+// i.e., token.Pos, Scopes, Objects, and fields of basic types
+// (strings, etc.) are ignored.
+//
+// Children are traversed in the order in which they appear in the
+// respective node's struct definition. A package's files are
+// traversed in the filenames' alphabetical order.
+func Apply(root ast.Node, pre, post ApplyFunc) (result ast.Node) {
+ parent := &struct{ ast.Node }{root}
+ defer func() {
+ if r := recover(); r != nil && r != abort {
+ panic(r)
+ }
+ result = parent.Node
+ }()
+ a := &application{pre: pre, post: post}
+ a.apply(parent, "Node", nil, root)
+ return
+}
+
+var abort = new(int) // singleton, to signal termination of Apply
+
+// A Cursor describes a node encountered during Apply.
+// Information about the node and its parent is available
+// from the Node, Parent, Name, and Index methods.
+//
+// If p is a variable of type and value of the current parent node
+// c.Parent(), and f is the field identifier with name c.Name(),
+// the following invariants hold:
+//
+// p.f == c.Node() if c.Index() < 0
+// p.f[c.Index()] == c.Node() if c.Index() >= 0
+//
+// The methods Replace, Delete, InsertBefore, and InsertAfter
+// can be used to change the AST without disrupting Apply.
+type Cursor struct {
+ parent ast.Node
+ name string
+ iter *iterator // valid if non-nil
+ node ast.Node
+}
+
+// Node returns the current Node.
+func (c *Cursor) Node() ast.Node { return c.node }
+
+// Parent returns the parent of the current Node.
+func (c *Cursor) Parent() ast.Node { return c.parent }
+
+// Name returns the name of the parent Node field that contains the current Node.
+// If the parent is a *ast.Package and the current Node is a *ast.File, Name returns
+// the filename for the current Node.
+func (c *Cursor) Name() string { return c.name }
+
+// Index reports the index >= 0 of the current Node in the slice of Nodes that
+// contains it, or a value < 0 if the current Node is not part of a slice.
+// The index of the current node changes if InsertBefore is called while
+// processing the current node.
+func (c *Cursor) Index() int {
+ if c.iter != nil {
+ return c.iter.index
+ }
+ return -1
+}
+
+// field returns the current node's parent field value.
+func (c *Cursor) field() reflect.Value {
+ return reflect.Indirect(reflect.ValueOf(c.parent)).FieldByName(c.name)
+}
+
+// Replace replaces the current Node with n.
+// The replacement node is not walked by Apply.
+func (c *Cursor) Replace(n ast.Node) {
+ if _, ok := c.node.(*ast.File); ok {
+ file, ok := n.(*ast.File)
+ if !ok {
+ panic("attempt to replace *ast.File with non-*ast.File")
+ }
+ c.parent.(*ast.Package).Files[c.name] = file
+ return
+ }
+
+ v := c.field()
+ if i := c.Index(); i >= 0 {
+ v = v.Index(i)
+ }
+ v.Set(reflect.ValueOf(n))
+}
+
+// Delete deletes the current Node from its containing slice.
+// If the current Node is not part of a slice, Delete panics.
+// As a special case, if the current node is a package file,
+// Delete removes it from the package's Files map.
+func (c *Cursor) Delete() {
+ if _, ok := c.node.(*ast.File); ok {
+ delete(c.parent.(*ast.Package).Files, c.name)
+ return
+ }
+
+ i := c.Index()
+ if i < 0 {
+ panic("Delete node not contained in slice")
+ }
+ v := c.field()
+ l := v.Len()
+ reflect.Copy(v.Slice(i, l), v.Slice(i+1, l))
+ v.Index(l - 1).Set(reflect.Zero(v.Type().Elem()))
+ v.SetLen(l - 1)
+ c.iter.step--
+}
+
+// InsertAfter inserts n after the current Node in its containing slice.
+// If the current Node is not part of a slice, InsertAfter panics.
+// Apply does not walk n.
+func (c *Cursor) InsertAfter(n ast.Node) {
+ i := c.Index()
+ if i < 0 {
+ panic("InsertAfter node not contained in slice")
+ }
+ v := c.field()
+ v.Set(reflect.Append(v, reflect.Zero(v.Type().Elem())))
+ l := v.Len()
+ reflect.Copy(v.Slice(i+2, l), v.Slice(i+1, l))
+ v.Index(i + 1).Set(reflect.ValueOf(n))
+ c.iter.step++
+}
+
+// InsertBefore inserts n before the current Node in its containing slice.
+// If the current Node is not part of a slice, InsertBefore panics.
+// Apply will not walk n.
+func (c *Cursor) InsertBefore(n ast.Node) {
+ i := c.Index()
+ if i < 0 {
+ panic("InsertBefore node not contained in slice")
+ }
+ v := c.field()
+ v.Set(reflect.Append(v, reflect.Zero(v.Type().Elem())))
+ l := v.Len()
+ reflect.Copy(v.Slice(i+1, l), v.Slice(i, l))
+ v.Index(i).Set(reflect.ValueOf(n))
+ c.iter.index++
+}
+
+// application carries all the shared data so we can pass it around cheaply.
+type application struct {
+ pre, post ApplyFunc
+ cursor Cursor
+ iter iterator
+}
+
+func (a *application) apply(parent ast.Node, name string, iter *iterator, n ast.Node) {
+ // convert typed nil into untyped nil
+ if v := reflect.ValueOf(n); v.Kind() == reflect.Ptr && v.IsNil() {
+ n = nil
+ }
+
+ // avoid heap-allocating a new cursor for each apply call; reuse a.cursor instead
+ saved := a.cursor
+ a.cursor.parent = parent
+ a.cursor.name = name
+ a.cursor.iter = iter
+ a.cursor.node = n
+
+ if a.pre != nil && !a.pre(&a.cursor) {
+ a.cursor = saved
+ return
+ }
+
+ // walk children
+ // (the order of the cases matches the order of the corresponding node types in go/ast)
+ switch n := n.(type) {
+ case nil:
+ // nothing to do
+
+ // Comments and fields
+ case *ast.Comment:
+ // nothing to do
+
+ case *ast.CommentGroup:
+ if n != nil {
+ a.applyList(n, "List")
+ }
+
+ case *ast.Field:
+ a.apply(n, "Doc", nil, n.Doc)
+ a.applyList(n, "Names")
+ a.apply(n, "Type", nil, n.Type)
+ a.apply(n, "Tag", nil, n.Tag)
+ a.apply(n, "Comment", nil, n.Comment)
+
+ case *ast.FieldList:
+ a.applyList(n, "List")
+
+ // Expressions
+ case *ast.BadExpr, *ast.Ident, *ast.BasicLit:
+ // nothing to do
+
+ case *ast.Ellipsis:
+ a.apply(n, "Elt", nil, n.Elt)
+
+ case *ast.FuncLit:
+ a.apply(n, "Type", nil, n.Type)
+ a.apply(n, "Body", nil, n.Body)
+
+ case *ast.CompositeLit:
+ a.apply(n, "Type", nil, n.Type)
+ a.applyList(n, "Elts")
+
+ case *ast.ParenExpr:
+ a.apply(n, "X", nil, n.X)
+
+ case *ast.SelectorExpr:
+ a.apply(n, "X", nil, n.X)
+ a.apply(n, "Sel", nil, n.Sel)
+
+ case *ast.IndexExpr:
+ a.apply(n, "X", nil, n.X)
+ a.apply(n, "Index", nil, n.Index)
+
+ case *ast.IndexListExpr:
+ a.apply(n, "X", nil, n.X)
+ a.applyList(n, "Indices")
+
+ case *ast.SliceExpr:
+ a.apply(n, "X", nil, n.X)
+ a.apply(n, "Low", nil, n.Low)
+ a.apply(n, "High", nil, n.High)
+ a.apply(n, "Max", nil, n.Max)
+
+ case *ast.TypeAssertExpr:
+ a.apply(n, "X", nil, n.X)
+ a.apply(n, "Type", nil, n.Type)
+
+ case *ast.CallExpr:
+ a.apply(n, "Fun", nil, n.Fun)
+ a.applyList(n, "Args")
+
+ case *ast.StarExpr:
+ a.apply(n, "X", nil, n.X)
+
+ case *ast.UnaryExpr:
+ a.apply(n, "X", nil, n.X)
+
+ case *ast.BinaryExpr:
+ a.apply(n, "X", nil, n.X)
+ a.apply(n, "Y", nil, n.Y)
+
+ case *ast.KeyValueExpr:
+ a.apply(n, "Key", nil, n.Key)
+ a.apply(n, "Value", nil, n.Value)
+
+ // Types
+ case *ast.ArrayType:
+ a.apply(n, "Len", nil, n.Len)
+ a.apply(n, "Elt", nil, n.Elt)
+
+ case *ast.StructType:
+ a.apply(n, "Fields", nil, n.Fields)
+
+ case *ast.FuncType:
+ if tparams := n.TypeParams; tparams != nil {
+ a.apply(n, "TypeParams", nil, tparams)
+ }
+ a.apply(n, "Params", nil, n.Params)
+ a.apply(n, "Results", nil, n.Results)
+
+ case *ast.InterfaceType:
+ a.apply(n, "Methods", nil, n.Methods)
+
+ case *ast.MapType:
+ a.apply(n, "Key", nil, n.Key)
+ a.apply(n, "Value", nil, n.Value)
+
+ case *ast.ChanType:
+ a.apply(n, "Value", nil, n.Value)
+
+ // Statements
+ case *ast.BadStmt:
+ // nothing to do
+
+ case *ast.DeclStmt:
+ a.apply(n, "Decl", nil, n.Decl)
+
+ case *ast.EmptyStmt:
+ // nothing to do
+
+ case *ast.LabeledStmt:
+ a.apply(n, "Label", nil, n.Label)
+ a.apply(n, "Stmt", nil, n.Stmt)
+
+ case *ast.ExprStmt:
+ a.apply(n, "X", nil, n.X)
+
+ case *ast.SendStmt:
+ a.apply(n, "Chan", nil, n.Chan)
+ a.apply(n, "Value", nil, n.Value)
+
+ case *ast.IncDecStmt:
+ a.apply(n, "X", nil, n.X)
+
+ case *ast.AssignStmt:
+ a.applyList(n, "Lhs")
+ a.applyList(n, "Rhs")
+
+ case *ast.GoStmt:
+ a.apply(n, "Call", nil, n.Call)
+
+ case *ast.DeferStmt:
+ a.apply(n, "Call", nil, n.Call)
+
+ case *ast.ReturnStmt:
+ a.applyList(n, "Results")
+
+ case *ast.BranchStmt:
+ a.apply(n, "Label", nil, n.Label)
+
+ case *ast.BlockStmt:
+ a.applyList(n, "List")
+
+ case *ast.IfStmt:
+ a.apply(n, "Init", nil, n.Init)
+ a.apply(n, "Cond", nil, n.Cond)
+ a.apply(n, "Body", nil, n.Body)
+ a.apply(n, "Else", nil, n.Else)
+
+ case *ast.CaseClause:
+ a.applyList(n, "List")
+ a.applyList(n, "Body")
+
+ case *ast.SwitchStmt:
+ a.apply(n, "Init", nil, n.Init)
+ a.apply(n, "Tag", nil, n.Tag)
+ a.apply(n, "Body", nil, n.Body)
+
+ case *ast.TypeSwitchStmt:
+ a.apply(n, "Init", nil, n.Init)
+ a.apply(n, "Assign", nil, n.Assign)
+ a.apply(n, "Body", nil, n.Body)
+
+ case *ast.CommClause:
+ a.apply(n, "Comm", nil, n.Comm)
+ a.applyList(n, "Body")
+
+ case *ast.SelectStmt:
+ a.apply(n, "Body", nil, n.Body)
+
+ case *ast.ForStmt:
+ a.apply(n, "Init", nil, n.Init)
+ a.apply(n, "Cond", nil, n.Cond)
+ a.apply(n, "Post", nil, n.Post)
+ a.apply(n, "Body", nil, n.Body)
+
+ case *ast.RangeStmt:
+ a.apply(n, "Key", nil, n.Key)
+ a.apply(n, "Value", nil, n.Value)
+ a.apply(n, "X", nil, n.X)
+ a.apply(n, "Body", nil, n.Body)
+
+ // Declarations
+ case *ast.ImportSpec:
+ a.apply(n, "Doc", nil, n.Doc)
+ a.apply(n, "Name", nil, n.Name)
+ a.apply(n, "Path", nil, n.Path)
+ a.apply(n, "Comment", nil, n.Comment)
+
+ case *ast.ValueSpec:
+ a.apply(n, "Doc", nil, n.Doc)
+ a.applyList(n, "Names")
+ a.apply(n, "Type", nil, n.Type)
+ a.applyList(n, "Values")
+ a.apply(n, "Comment", nil, n.Comment)
+
+ case *ast.TypeSpec:
+ a.apply(n, "Doc", nil, n.Doc)
+ a.apply(n, "Name", nil, n.Name)
+ if tparams := n.TypeParams; tparams != nil {
+ a.apply(n, "TypeParams", nil, tparams)
+ }
+ a.apply(n, "Type", nil, n.Type)
+ a.apply(n, "Comment", nil, n.Comment)
+
+ case *ast.BadDecl:
+ // nothing to do
+
+ case *ast.GenDecl:
+ a.apply(n, "Doc", nil, n.Doc)
+ a.applyList(n, "Specs")
+
+ case *ast.FuncDecl:
+ a.apply(n, "Doc", nil, n.Doc)
+ a.apply(n, "Recv", nil, n.Recv)
+ a.apply(n, "Name", nil, n.Name)
+ a.apply(n, "Type", nil, n.Type)
+ a.apply(n, "Body", nil, n.Body)
+
+ // Files and packages
+ case *ast.File:
+ a.apply(n, "Doc", nil, n.Doc)
+ a.apply(n, "Name", nil, n.Name)
+ a.applyList(n, "Decls")
+ // Don't walk n.Comments; they have either been walked already if
+ // they are Doc comments, or they can be easily walked explicitly.
+
+ case *ast.Package:
+ // collect and sort names for reproducible behavior
+ var names []string
+ for name := range n.Files {
+ names = append(names, name)
+ }
+ sort.Strings(names)
+ for _, name := range names {
+ a.apply(n, name, nil, n.Files[name])
+ }
+
+ default:
+ panic(fmt.Sprintf("Apply: unexpected node type %T", n))
+ }
+
+ if a.post != nil && !a.post(&a.cursor) {
+ panic(abort)
+ }
+
+ a.cursor = saved
+}
+
+// An iterator controls iteration over a slice of nodes.
+type iterator struct {
+ index, step int
+}
+
+func (a *application) applyList(parent ast.Node, name string) {
+ // avoid heap-allocating a new iterator for each applyList call; reuse a.iter instead
+ saved := a.iter
+ a.iter.index = 0
+ for {
+ // must reload parent.name each time, since cursor modifications might change it
+ v := reflect.Indirect(reflect.ValueOf(parent)).FieldByName(name)
+ if a.iter.index >= v.Len() {
+ break
+ }
+
+ // element x may be nil in a bad AST - be cautious
+ var x ast.Node
+ if e := v.Index(a.iter.index); e.IsValid() {
+ x = e.Interface().(ast.Node)
+ }
+
+ a.iter.step = 1
+ a.apply(parent, name, &a.iter, x)
+ a.iter.index += a.iter.step
+ }
+ a.iter = saved
+}
diff --git a/vendor/golang.org/x/tools/go/ast/astutil/util.go b/vendor/golang.org/x/tools/go/ast/astutil/util.go
new file mode 100644
index 0000000..6bdcf70
--- /dev/null
+++ b/vendor/golang.org/x/tools/go/ast/astutil/util.go
@@ -0,0 +1,19 @@
+// Copyright 2015 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package astutil
+
+import "go/ast"
+
+// Unparen returns e with any enclosing parentheses stripped.
+// TODO(adonovan): use go1.22's ast.Unparen.
+func Unparen(e ast.Expr) ast.Expr {
+ for {
+ p, ok := e.(*ast.ParenExpr)
+ if !ok {
+ return e
+ }
+ e = p.X
+ }
+}
diff --git a/vendor/golang.org/x/tools/go/buildutil/allpackages.go b/vendor/golang.org/x/tools/go/buildutil/allpackages.go
new file mode 100644
index 0000000..dfb8cd6
--- /dev/null
+++ b/vendor/golang.org/x/tools/go/buildutil/allpackages.go
@@ -0,0 +1,195 @@
+// Copyright 2014 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// Package buildutil provides utilities related to the go/build
+// package in the standard library.
+//
+// All I/O is done via the build.Context file system interface, which must
+// be concurrency-safe.
+package buildutil // import "golang.org/x/tools/go/buildutil"
+
+import (
+ "go/build"
+ "os"
+ "path/filepath"
+ "sort"
+ "strings"
+ "sync"
+)
+
+// AllPackages returns the package path of each Go package in any source
+// directory of the specified build context (e.g. $GOROOT or an element
+// of $GOPATH). Errors are ignored. The results are sorted.
+// All package paths are canonical, and thus may contain "/vendor/".
+//
+// The result may include import paths for directories that contain no
+// *.go files, such as "archive" (in $GOROOT/src).
+//
+// All I/O is done via the build.Context file system interface,
+// which must be concurrency-safe.
+func AllPackages(ctxt *build.Context) []string {
+ var list []string
+ ForEachPackage(ctxt, func(pkg string, _ error) {
+ list = append(list, pkg)
+ })
+ sort.Strings(list)
+ return list
+}
+
+// ForEachPackage calls the found function with the package path of
+// each Go package it finds in any source directory of the specified
+// build context (e.g. $GOROOT or an element of $GOPATH).
+// All package paths are canonical, and thus may contain "/vendor/".
+//
+// If the package directory exists but could not be read, the second
+// argument to the found function provides the error.
+//
+// All I/O is done via the build.Context file system interface,
+// which must be concurrency-safe.
+func ForEachPackage(ctxt *build.Context, found func(importPath string, err error)) {
+ ch := make(chan item)
+
+ var wg sync.WaitGroup
+ for _, root := range ctxt.SrcDirs() {
+ root := root
+ wg.Add(1)
+ go func() {
+ allPackages(ctxt, root, ch)
+ wg.Done()
+ }()
+ }
+ go func() {
+ wg.Wait()
+ close(ch)
+ }()
+
+ // All calls to found occur in the caller's goroutine.
+ for i := range ch {
+ found(i.importPath, i.err)
+ }
+}
+
+type item struct {
+ importPath string
+ err error // (optional)
+}
+
+// We use a process-wide counting semaphore to limit
+// the number of parallel calls to ReadDir.
+var ioLimit = make(chan bool, 20)
+
+func allPackages(ctxt *build.Context, root string, ch chan<- item) {
+ root = filepath.Clean(root) + string(os.PathSeparator)
+
+ var wg sync.WaitGroup
+
+ var walkDir func(dir string)
+ walkDir = func(dir string) {
+ // Avoid .foo, _foo, and testdata directory trees.
+ base := filepath.Base(dir)
+ if base == "" || base[0] == '.' || base[0] == '_' || base == "testdata" {
+ return
+ }
+
+ pkg := filepath.ToSlash(strings.TrimPrefix(dir, root))
+
+ // Prune search if we encounter any of these import paths.
+ switch pkg {
+ case "builtin":
+ return
+ }
+
+ ioLimit <- true
+ files, err := ReadDir(ctxt, dir)
+ <-ioLimit
+ if pkg != "" || err != nil {
+ ch <- item{pkg, err}
+ }
+ for _, fi := range files {
+ fi := fi
+ if fi.IsDir() {
+ wg.Add(1)
+ go func() {
+ walkDir(filepath.Join(dir, fi.Name()))
+ wg.Done()
+ }()
+ }
+ }
+ }
+
+ walkDir(root)
+ wg.Wait()
+}
+
+// ExpandPatterns returns the set of packages matched by patterns,
+// which may have the following forms:
+//
+// golang.org/x/tools/cmd/guru # a single package
+// golang.org/x/tools/... # all packages beneath dir
+// ... # the entire workspace.
+//
+// Order is significant: a pattern preceded by '-' removes matching
+// packages from the set. For example, these patterns match all encoding
+// packages except encoding/xml:
+//
+// encoding/... -encoding/xml
+//
+// A trailing slash in a pattern is ignored. (Path components of Go
+// package names are separated by slash, not the platform's path separator.)
+func ExpandPatterns(ctxt *build.Context, patterns []string) map[string]bool {
+ // TODO(adonovan): support other features of 'go list':
+ // - "std"/"cmd"/"all" meta-packages
+ // - "..." not at the end of a pattern
+ // - relative patterns using "./" or "../" prefix
+
+ pkgs := make(map[string]bool)
+ doPkg := func(pkg string, neg bool) {
+ if neg {
+ delete(pkgs, pkg)
+ } else {
+ pkgs[pkg] = true
+ }
+ }
+
+ // Scan entire workspace if wildcards are present.
+ // TODO(adonovan): opt: scan only the necessary subtrees of the workspace.
+ var all []string
+ for _, arg := range patterns {
+ if strings.HasSuffix(arg, "...") {
+ all = AllPackages(ctxt)
+ break
+ }
+ }
+
+ for _, arg := range patterns {
+ if arg == "" {
+ continue
+ }
+
+ neg := arg[0] == '-'
+ if neg {
+ arg = arg[1:]
+ }
+
+ if arg == "..." {
+ // ... matches all packages
+ for _, pkg := range all {
+ doPkg(pkg, neg)
+ }
+ } else if dir := strings.TrimSuffix(arg, "/..."); dir != arg {
+ // dir/... matches all packages beneath dir
+ for _, pkg := range all {
+ if strings.HasPrefix(pkg, dir) &&
+ (len(pkg) == len(dir) || pkg[len(dir)] == '/') {
+ doPkg(pkg, neg)
+ }
+ }
+ } else {
+ // single package
+ doPkg(strings.TrimSuffix(arg, "/"), neg)
+ }
+ }
+
+ return pkgs
+}
diff --git a/vendor/golang.org/x/tools/go/buildutil/fakecontext.go b/vendor/golang.org/x/tools/go/buildutil/fakecontext.go
new file mode 100644
index 0000000..763d188
--- /dev/null
+++ b/vendor/golang.org/x/tools/go/buildutil/fakecontext.go
@@ -0,0 +1,111 @@
+// Copyright 2015 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package buildutil
+
+import (
+ "fmt"
+ "go/build"
+ "io"
+ "os"
+ "path"
+ "path/filepath"
+ "sort"
+ "strings"
+ "time"
+)
+
+// FakeContext returns a build.Context for the fake file tree specified
+// by pkgs, which maps package import paths to a mapping from file base
+// names to contents.
+//
+// The fake Context has a GOROOT of "/go" and no GOPATH, and overrides
+// the necessary file access methods to read from memory instead of the
+// real file system.
+//
+// Unlike a real file tree, the fake one has only two levels---packages
+// and files---so ReadDir("/go/src/") returns all packages under
+// /go/src/ including, for instance, "math" and "math/big".
+// ReadDir("/go/src/math/big") would return all the files in the
+// "math/big" package.
+func FakeContext(pkgs map[string]map[string]string) *build.Context {
+ clean := func(filename string) string {
+ f := path.Clean(filepath.ToSlash(filename))
+ // Removing "/go/src" while respecting segment
+ // boundaries has this unfortunate corner case:
+ if f == "/go/src" {
+ return ""
+ }
+ return strings.TrimPrefix(f, "/go/src/")
+ }
+
+ ctxt := build.Default // copy
+ ctxt.GOROOT = "/go"
+ ctxt.GOPATH = ""
+ ctxt.Compiler = "gc"
+ ctxt.IsDir = func(dir string) bool {
+ dir = clean(dir)
+ if dir == "" {
+ return true // needed by (*build.Context).SrcDirs
+ }
+ return pkgs[dir] != nil
+ }
+ ctxt.ReadDir = func(dir string) ([]os.FileInfo, error) {
+ dir = clean(dir)
+ var fis []os.FileInfo
+ if dir == "" {
+ // enumerate packages
+ for importPath := range pkgs {
+ fis = append(fis, fakeDirInfo(importPath))
+ }
+ } else {
+ // enumerate files of package
+ for basename := range pkgs[dir] {
+ fis = append(fis, fakeFileInfo(basename))
+ }
+ }
+ sort.Sort(byName(fis))
+ return fis, nil
+ }
+ ctxt.OpenFile = func(filename string) (io.ReadCloser, error) {
+ filename = clean(filename)
+ dir, base := path.Split(filename)
+ content, ok := pkgs[path.Clean(dir)][base]
+ if !ok {
+ return nil, fmt.Errorf("file not found: %s", filename)
+ }
+ return io.NopCloser(strings.NewReader(content)), nil
+ }
+ ctxt.IsAbsPath = func(path string) bool {
+ path = filepath.ToSlash(path)
+ // Don't rely on the default (filepath.Path) since on
+ // Windows, it reports virtual paths as non-absolute.
+ return strings.HasPrefix(path, "/")
+ }
+ return &ctxt
+}
+
+type byName []os.FileInfo
+
+func (s byName) Len() int { return len(s) }
+func (s byName) Swap(i, j int) { s[i], s[j] = s[j], s[i] }
+func (s byName) Less(i, j int) bool { return s[i].Name() < s[j].Name() }
+
+type fakeFileInfo string
+
+func (fi fakeFileInfo) Name() string { return string(fi) }
+func (fakeFileInfo) Sys() interface{} { return nil }
+func (fakeFileInfo) ModTime() time.Time { return time.Time{} }
+func (fakeFileInfo) IsDir() bool { return false }
+func (fakeFileInfo) Size() int64 { return 0 }
+func (fakeFileInfo) Mode() os.FileMode { return 0644 }
+
+type fakeDirInfo string
+
+func (fd fakeDirInfo) Name() string { return string(fd) }
+func (fakeDirInfo) Sys() interface{} { return nil }
+func (fakeDirInfo) ModTime() time.Time { return time.Time{} }
+func (fakeDirInfo) IsDir() bool { return true }
+func (fakeDirInfo) Size() int64 { return 0 }
+func (fakeDirInfo) Mode() os.FileMode { return 0755 }
diff --git a/vendor/golang.org/x/tools/go/buildutil/overlay.go b/vendor/golang.org/x/tools/go/buildutil/overlay.go
new file mode 100644
index 0000000..7e37165
--- /dev/null
+++ b/vendor/golang.org/x/tools/go/buildutil/overlay.go
@@ -0,0 +1,101 @@
+// Copyright 2016 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package buildutil
+
+import (
+ "bufio"
+ "bytes"
+ "fmt"
+ "go/build"
+ "io"
+ "path/filepath"
+ "strconv"
+ "strings"
+)
+
+// OverlayContext overlays a build.Context with additional files from
+// a map. Files in the map take precedence over other files.
+//
+// In addition to plain string comparison, two file names are
+// considered equal if their base names match and their directory
+// components point at the same directory on the file system. That is,
+// symbolic links are followed for directories, but not files.
+//
+// A common use case for OverlayContext is to allow editors to pass in
+// a set of unsaved, modified files.
+//
+// Currently, only the Context.OpenFile function will respect the
+// overlay. This may change in the future.
+func OverlayContext(orig *build.Context, overlay map[string][]byte) *build.Context {
+ // TODO(dominikh): Implement IsDir, HasSubdir and ReadDir
+
+ rc := func(data []byte) (io.ReadCloser, error) {
+ return io.NopCloser(bytes.NewBuffer(data)), nil
+ }
+
+ copy := *orig // make a copy
+ ctxt := &copy
+ ctxt.OpenFile = func(path string) (io.ReadCloser, error) {
+ // Fast path: names match exactly.
+ if content, ok := overlay[path]; ok {
+ return rc(content)
+ }
+
+ // Slow path: check for same file under a different
+ // alias, perhaps due to a symbolic link.
+ for filename, content := range overlay {
+ if sameFile(path, filename) {
+ return rc(content)
+ }
+ }
+
+ return OpenFile(orig, path)
+ }
+ return ctxt
+}
+
+// ParseOverlayArchive parses an archive containing Go files and their
+// contents. The result is intended to be used with OverlayContext.
+//
+// # Archive format
+//
+// The archive consists of a series of files. Each file consists of a
+// name, a decimal file size and the file contents, separated by
+// newlines. No newline follows after the file contents.
+func ParseOverlayArchive(archive io.Reader) (map[string][]byte, error) {
+ overlay := make(map[string][]byte)
+ r := bufio.NewReader(archive)
+ for {
+ // Read file name.
+ filename, err := r.ReadString('\n')
+ if err != nil {
+ if err == io.EOF {
+ break // OK
+ }
+ return nil, fmt.Errorf("reading archive file name: %v", err)
+ }
+ filename = filepath.Clean(strings.TrimSpace(filename))
+
+ // Read file size.
+ sz, err := r.ReadString('\n')
+ if err != nil {
+ return nil, fmt.Errorf("reading size of archive file %s: %v", filename, err)
+ }
+ sz = strings.TrimSpace(sz)
+ size, err := strconv.ParseUint(sz, 10, 32)
+ if err != nil {
+ return nil, fmt.Errorf("parsing size of archive file %s: %v", filename, err)
+ }
+
+ // Read file content.
+ content := make([]byte, size)
+ if _, err := io.ReadFull(r, content); err != nil {
+ return nil, fmt.Errorf("reading archive file %s: %v", filename, err)
+ }
+ overlay[filename] = content
+ }
+
+ return overlay, nil
+}
diff --git a/vendor/golang.org/x/tools/go/buildutil/tags.go b/vendor/golang.org/x/tools/go/buildutil/tags.go
new file mode 100644
index 0000000..32c8d14
--- /dev/null
+++ b/vendor/golang.org/x/tools/go/buildutil/tags.go
@@ -0,0 +1,100 @@
+// Copyright 2015 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package buildutil
+
+// This duplicated logic must be kept in sync with that from go build:
+// $GOROOT/src/cmd/go/internal/work/build.go (tagsFlag.Set)
+// $GOROOT/src/cmd/go/internal/base/flag.go (StringsFlag.Set)
+// $GOROOT/src/cmd/internal/quoted/quoted.go (isSpaceByte, Split)
+
+import (
+ "fmt"
+ "strings"
+)
+
+const TagsFlagDoc = "a list of `build tags` to consider satisfied during the build. " +
+ "For more information about build tags, see the description of " +
+ "build constraints in the documentation for the go/build package"
+
+// TagsFlag is an implementation of the flag.Value and flag.Getter interfaces that parses
+// a flag value the same as go build's -tags flag and populates a []string slice.
+//
+// See $GOROOT/src/go/build/doc.go for description of build tags.
+// See $GOROOT/src/cmd/go/doc.go for description of 'go build -tags' flag.
+//
+// Example:
+//
+// flag.Var((*buildutil.TagsFlag)(&build.Default.BuildTags), "tags", buildutil.TagsFlagDoc)
+type TagsFlag []string
+
+func (v *TagsFlag) Set(s string) error {
+ // See $GOROOT/src/cmd/go/internal/work/build.go (tagsFlag.Set)
+ // For compatibility with Go 1.12 and earlier, allow "-tags='a b c'" or even just "-tags='a'".
+ if strings.Contains(s, " ") || strings.Contains(s, "'") {
+ var err error
+ *v, err = splitQuotedFields(s)
+ if *v == nil {
+ *v = []string{}
+ }
+ return err
+ }
+
+ // Starting in Go 1.13, the -tags flag is a comma-separated list of build tags.
+ *v = []string{}
+ for _, s := range strings.Split(s, ",") {
+ if s != "" {
+ *v = append(*v, s)
+ }
+ }
+ return nil
+}
+
+func (v *TagsFlag) Get() interface{} { return *v }
+
+func splitQuotedFields(s string) ([]string, error) {
+ // See $GOROOT/src/cmd/internal/quoted/quoted.go (Split)
+ // This must remain in sync with that logic.
+ var f []string
+ for len(s) > 0 {
+ for len(s) > 0 && isSpaceByte(s[0]) {
+ s = s[1:]
+ }
+ if len(s) == 0 {
+ break
+ }
+ // Accepted quoted string. No unescaping inside.
+ if s[0] == '"' || s[0] == '\'' {
+ quote := s[0]
+ s = s[1:]
+ i := 0
+ for i < len(s) && s[i] != quote {
+ i++
+ }
+ if i >= len(s) {
+ return nil, fmt.Errorf("unterminated %c string", quote)
+ }
+ f = append(f, s[:i])
+ s = s[i+1:]
+ continue
+ }
+ i := 0
+ for i < len(s) && !isSpaceByte(s[i]) {
+ i++
+ }
+ f = append(f, s[:i])
+ s = s[i:]
+ }
+ return f, nil
+}
+
+func (v *TagsFlag) String() string {
+ return "<tagsFlag>"
+}
+
+func isSpaceByte(c byte) bool {
+ // See $GOROOT/src/cmd/internal/quoted/quoted.go (isSpaceByte, Split)
+ // This list must remain in sync with that.
+ return c == ' ' || c == '\t' || c == '\n' || c == '\r'
+}
diff --git a/vendor/golang.org/x/tools/go/buildutil/util.go b/vendor/golang.org/x/tools/go/buildutil/util.go
new file mode 100644
index 0000000..bee6390
--- /dev/null
+++ b/vendor/golang.org/x/tools/go/buildutil/util.go
@@ -0,0 +1,209 @@
+// Copyright 2014 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package buildutil
+
+import (
+ "fmt"
+ "go/ast"
+ "go/build"
+ "go/parser"
+ "go/token"
+ "io"
+ "io/ioutil"
+ "os"
+ "path"
+ "path/filepath"
+ "strings"
+)
+
+// ParseFile behaves like parser.ParseFile,
+// but uses the build context's file system interface, if any.
+//
+// If file is not absolute (as defined by IsAbsPath), the (dir, file)
+// components are joined using JoinPath; dir must be absolute.
+//
+// The displayPath function, if provided, is used to transform the
+// filename that will be attached to the ASTs.
+//
+// TODO(adonovan): call this from go/loader.parseFiles when the tree thaws.
+func ParseFile(fset *token.FileSet, ctxt *build.Context, displayPath func(string) string, dir string, file string, mode parser.Mode) (*ast.File, error) {
+ if !IsAbsPath(ctxt, file) {
+ file = JoinPath(ctxt, dir, file)
+ }
+ rd, err := OpenFile(ctxt, file)
+ if err != nil {
+ return nil, err
+ }
+ defer rd.Close() // ignore error
+ if displayPath != nil {
+ file = displayPath(file)
+ }
+ return parser.ParseFile(fset, file, rd, mode)
+}
+
+// ContainingPackage returns the package containing filename.
+//
+// If filename is not absolute, it is interpreted relative to working directory dir.
+// All I/O is via the build context's file system interface, if any.
+//
+// The '...Files []string' fields of the resulting build.Package are not
+// populated (build.FindOnly mode).
+func ContainingPackage(ctxt *build.Context, dir, filename string) (*build.Package, error) {
+ if !IsAbsPath(ctxt, filename) {
+ filename = JoinPath(ctxt, dir, filename)
+ }
+
+ // We must not assume the file tree uses
+ // "/" always,
+ // `\` always,
+ // or os.PathSeparator (which varies by platform),
+ // but to make any progress, we are forced to assume that
+ // paths will not use `\` unless the PathSeparator
+ // is also `\`, thus we can rely on filepath.ToSlash for some sanity.
+
+ dirSlash := path.Dir(filepath.ToSlash(filename)) + "/"
+
+ // We assume that no source root (GOPATH[i] or GOROOT) contains any other.
+ for _, srcdir := range ctxt.SrcDirs() {
+ srcdirSlash := filepath.ToSlash(srcdir) + "/"
+ if importPath, ok := HasSubdir(ctxt, srcdirSlash, dirSlash); ok {
+ return ctxt.Import(importPath, dir, build.FindOnly)
+ }
+ }
+
+ return nil, fmt.Errorf("can't find package containing %s", filename)
+}
+
+// -- Effective methods of file system interface -------------------------
+
+// (go/build.Context defines these as methods, but does not export them.)
+
+// HasSubdir calls ctxt.HasSubdir (if not nil) or else uses
+// the local file system to answer the question.
+func HasSubdir(ctxt *build.Context, root, dir string) (rel string, ok bool) {
+ if f := ctxt.HasSubdir; f != nil {
+ return f(root, dir)
+ }
+
+ // Try using paths we received.
+ if rel, ok = hasSubdir(root, dir); ok {
+ return
+ }
+
+ // Try expanding symlinks and comparing
+ // expanded against unexpanded and
+ // expanded against expanded.
+ rootSym, _ := filepath.EvalSymlinks(root)
+ dirSym, _ := filepath.EvalSymlinks(dir)
+
+ if rel, ok = hasSubdir(rootSym, dir); ok {
+ return
+ }
+ if rel, ok = hasSubdir(root, dirSym); ok {
+ return
+ }
+ return hasSubdir(rootSym, dirSym)
+}
+
+func hasSubdir(root, dir string) (rel string, ok bool) {
+ const sep = string(filepath.Separator)
+ root = filepath.Clean(root)
+ if !strings.HasSuffix(root, sep) {
+ root += sep
+ }
+
+ dir = filepath.Clean(dir)
+ if !strings.HasPrefix(dir, root) {
+ return "", false
+ }
+
+ return filepath.ToSlash(dir[len(root):]), true
+}
+
+// FileExists returns true if the specified file exists,
+// using the build context's file system interface.
+func FileExists(ctxt *build.Context, path string) bool {
+ if ctxt.OpenFile != nil {
+ r, err := ctxt.OpenFile(path)
+ if err != nil {
+ return false
+ }
+ r.Close() // ignore error
+ return true
+ }
+ _, err := os.Stat(path)
+ return err == nil
+}
+
+// OpenFile behaves like os.Open,
+// but uses the build context's file system interface, if any.
+func OpenFile(ctxt *build.Context, path string) (io.ReadCloser, error) {
+ if ctxt.OpenFile != nil {
+ return ctxt.OpenFile(path)
+ }
+ return os.Open(path)
+}
+
+// IsAbsPath behaves like filepath.IsAbs,
+// but uses the build context's file system interface, if any.
+func IsAbsPath(ctxt *build.Context, path string) bool {
+ if ctxt.IsAbsPath != nil {
+ return ctxt.IsAbsPath(path)
+ }
+ return filepath.IsAbs(path)
+}
+
+// JoinPath behaves like filepath.Join,
+// but uses the build context's file system interface, if any.
+func JoinPath(ctxt *build.Context, path ...string) string {
+ if ctxt.JoinPath != nil {
+ return ctxt.JoinPath(path...)
+ }
+ return filepath.Join(path...)
+}
+
+// IsDir behaves like os.Stat plus IsDir,
+// but uses the build context's file system interface, if any.
+func IsDir(ctxt *build.Context, path string) bool {
+ if ctxt.IsDir != nil {
+ return ctxt.IsDir(path)
+ }
+ fi, err := os.Stat(path)
+ return err == nil && fi.IsDir()
+}
+
+// ReadDir behaves like ioutil.ReadDir,
+// but uses the build context's file system interface, if any.
+func ReadDir(ctxt *build.Context, path string) ([]os.FileInfo, error) {
+ if ctxt.ReadDir != nil {
+ return ctxt.ReadDir(path)
+ }
+ return ioutil.ReadDir(path)
+}
+
+// SplitPathList behaves like filepath.SplitList,
+// but uses the build context's file system interface, if any.
+func SplitPathList(ctxt *build.Context, s string) []string {
+ if ctxt.SplitPathList != nil {
+ return ctxt.SplitPathList(s)
+ }
+ return filepath.SplitList(s)
+}
+
+// sameFile returns true if x and y have the same basename and denote
+// the same file.
+func sameFile(x, y string) bool {
+ if path.Clean(x) == path.Clean(y) {
+ return true
+ }
+ if filepath.Base(x) == filepath.Base(y) { // (optimisation)
+ if xi, err := os.Stat(x); err == nil {
+ if yi, err := os.Stat(y); err == nil {
+ return os.SameFile(xi, yi)
+ }
+ }
+ }
+ return false
+}
diff --git a/vendor/golang.org/x/tools/go/callgraph/callgraph.go b/vendor/golang.org/x/tools/go/callgraph/callgraph.go
new file mode 100644
index 0000000..a1b0ca5
--- /dev/null
+++ b/vendor/golang.org/x/tools/go/callgraph/callgraph.go
@@ -0,0 +1,129 @@
+// Copyright 2013 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+/*
+Package callgraph defines the call graph and various algorithms
+and utilities to operate on it.
+
+A call graph is a labelled directed graph whose nodes represent
+functions and whose edge labels represent syntactic function call
+sites. The presence of a labelled edge (caller, site, callee)
+indicates that caller may call callee at the specified call site.
+
+A call graph is a multigraph: it may contain multiple edges (caller,
+*, callee) connecting the same pair of nodes, so long as the edges
+differ by label; this occurs when one function calls another function
+from multiple call sites. Also, it may contain multiple edges
+(caller, site, *) that differ only by callee; this indicates a
+polymorphic call.
+
+A SOUND call graph is one that overapproximates the dynamic calling
+behaviors of the program in all possible executions. One call graph
+is more PRECISE than another if it is a smaller overapproximation of
+the dynamic behavior.
+
+All call graphs have a synthetic root node which is responsible for
+calling main() and init().
+
+Calls to built-in functions (e.g. panic, println) are not represented
+in the call graph; they are treated like built-in operators of the
+language.
+*/
+package callgraph // import "golang.org/x/tools/go/callgraph"
+
+// TODO(adonovan): add a function to eliminate wrappers from the
+// callgraph, preserving topology.
+// More generally, we could eliminate "uninteresting" nodes such as
+// nodes from packages we don't care about.
+
+// TODO(zpavlinovic): decide how callgraphs handle calls to and from generic function bodies.
+
+import (
+ "fmt"
+ "go/token"
+
+ "golang.org/x/tools/go/ssa"
+)
+
+// A Graph represents a call graph.
+//
+// A graph may contain nodes that are not reachable from the root.
+// If the call graph is sound, such nodes indicate unreachable
+// functions.
+type Graph struct {
+ Root *Node // the distinguished root node
+ Nodes map[*ssa.Function]*Node // all nodes by function
+}
+
+// New returns a new Graph with the specified root node.
+func New(root *ssa.Function) *Graph {
+ g := &Graph{Nodes: make(map[*ssa.Function]*Node)}
+ g.Root = g.CreateNode(root)
+ return g
+}
+
+// CreateNode returns the Node for fn, creating it if not present.
+// The root node may have fn=nil.
+func (g *Graph) CreateNode(fn *ssa.Function) *Node {
+ n, ok := g.Nodes[fn]
+ if !ok {
+ n = &Node{Func: fn, ID: len(g.Nodes)}
+ g.Nodes[fn] = n
+ }
+ return n
+}
+
+// A Node represents a node in a call graph.
+type Node struct {
+ Func *ssa.Function // the function this node represents
+ ID int // 0-based sequence number
+ In []*Edge // unordered set of incoming call edges (n.In[*].Callee == n)
+ Out []*Edge // unordered set of outgoing call edges (n.Out[*].Caller == n)
+}
+
+func (n *Node) String() string {
+ return fmt.Sprintf("n%d:%s", n.ID, n.Func)
+}
+
+// A Edge represents an edge in the call graph.
+//
+// Site is nil for edges originating in synthetic or intrinsic
+// functions, e.g. reflect.Value.Call or the root of the call graph.
+type Edge struct {
+ Caller *Node
+ Site ssa.CallInstruction
+ Callee *Node
+}
+
+func (e Edge) String() string {
+ return fmt.Sprintf("%s --> %s", e.Caller, e.Callee)
+}
+
+func (e Edge) Description() string {
+ var prefix string
+ switch e.Site.(type) {
+ case nil:
+ return "synthetic call"
+ case *ssa.Go:
+ prefix = "concurrent "
+ case *ssa.Defer:
+ prefix = "deferred "
+ }
+ return prefix + e.Site.Common().Description()
+}
+
+func (e Edge) Pos() token.Pos {
+ if e.Site == nil {
+ return token.NoPos
+ }
+ return e.Site.Pos()
+}
+
+// AddEdge adds the edge (caller, site, callee) to the call graph.
+// Elimination of duplicate edges is the caller's responsibility.
+func AddEdge(caller *Node, site ssa.CallInstruction, callee *Node) {
+ e := &Edge{caller, site, callee}
+ callee.In = append(callee.In, e)
+ caller.Out = append(caller.Out, e)
+}
diff --git a/vendor/golang.org/x/tools/go/callgraph/cha/cha.go b/vendor/golang.org/x/tools/go/callgraph/cha/cha.go
new file mode 100644
index 0000000..3040f3d
--- /dev/null
+++ b/vendor/golang.org/x/tools/go/callgraph/cha/cha.go
@@ -0,0 +1,164 @@
+// Copyright 2014 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// Package cha computes the call graph of a Go program using the Class
+// Hierarchy Analysis (CHA) algorithm.
+//
+// CHA was first described in "Optimization of Object-Oriented Programs
+// Using Static Class Hierarchy Analysis", Jeffrey Dean, David Grove,
+// and Craig Chambers, ECOOP'95.
+//
+// CHA is related to RTA (see go/callgraph/rta); the difference is that
+// CHA conservatively computes the entire "implements" relation between
+// interfaces and concrete types ahead of time, whereas RTA uses dynamic
+// programming to construct it on the fly as it encounters new functions
+// reachable from main. CHA may thus include spurious call edges for
+// types that haven't been instantiated yet, or types that are never
+// instantiated.
+//
+// Since CHA conservatively assumes that all functions are address-taken
+// and all concrete types are put into interfaces, it is sound to run on
+// partial programs, such as libraries without a main or test function.
+package cha // import "golang.org/x/tools/go/callgraph/cha"
+
+// TODO(zpavlinovic): update CHA for how it handles generic function bodies.
+
+import (
+ "go/types"
+
+ "golang.org/x/tools/go/callgraph"
+ "golang.org/x/tools/go/ssa"
+ "golang.org/x/tools/go/ssa/ssautil"
+ "golang.org/x/tools/go/types/typeutil"
+)
+
+// CallGraph computes the call graph of the specified program using the
+// Class Hierarchy Analysis algorithm.
+func CallGraph(prog *ssa.Program) *callgraph.Graph {
+ cg := callgraph.New(nil) // TODO(adonovan) eliminate concept of rooted callgraph
+
+ allFuncs := ssautil.AllFunctions(prog)
+
+ calleesOf := lazyCallees(allFuncs)
+
+ addEdge := func(fnode *callgraph.Node, site ssa.CallInstruction, g *ssa.Function) {
+ gnode := cg.CreateNode(g)
+ callgraph.AddEdge(fnode, site, gnode)
+ }
+
+ addEdges := func(fnode *callgraph.Node, site ssa.CallInstruction, callees []*ssa.Function) {
+ // Because every call to a highly polymorphic and
+ // frequently used abstract method such as
+ // (io.Writer).Write is assumed to call every concrete
+ // Write method in the program, the call graph can
+ // contain a lot of duplication.
+ //
+ // TODO(taking): opt: consider making lazyCallees public.
+ // Using the same benchmarks as callgraph_test.go, removing just
+ // the explicit callgraph.Graph construction is 4x less memory
+ // and is 37% faster.
+ // CHA 86 ms/op 16 MB/op
+ // lazyCallees 63 ms/op 4 MB/op
+ for _, g := range callees {
+ addEdge(fnode, site, g)
+ }
+ }
+
+ for f := range allFuncs {
+ fnode := cg.CreateNode(f)
+ for _, b := range f.Blocks {
+ for _, instr := range b.Instrs {
+ if site, ok := instr.(ssa.CallInstruction); ok {
+ if g := site.Common().StaticCallee(); g != nil {
+ addEdge(fnode, site, g)
+ } else {
+ addEdges(fnode, site, calleesOf(site))
+ }
+ }
+ }
+ }
+ }
+
+ return cg
+}
+
+// lazyCallees returns a function that maps a call site (in a function in fns)
+// to its callees within fns.
+//
+// The resulting function is not concurrency safe.
+func lazyCallees(fns map[*ssa.Function]bool) func(site ssa.CallInstruction) []*ssa.Function {
+ // funcsBySig contains all functions, keyed by signature. It is
+ // the effective set of address-taken functions used to resolve
+ // a dynamic call of a particular signature.
+ var funcsBySig typeutil.Map // value is []*ssa.Function
+
+ // methodsByID contains all methods, grouped by ID for efficient
+ // lookup.
+ //
+ // We must key by ID, not name, for correct resolution of interface
+ // calls to a type with two (unexported) methods spelled the same but
+ // from different packages. The fact that the concrete type implements
+ // the interface does not mean the call dispatches to both methods.
+ methodsByID := make(map[string][]*ssa.Function)
+
+ // An imethod represents an interface method I.m.
+ // (There's no go/types object for it;
+ // a *types.Func may be shared by many interfaces due to interface embedding.)
+ type imethod struct {
+ I *types.Interface
+ id string
+ }
+ // methodsMemo records, for every abstract method call I.m on
+ // interface type I, the set of concrete methods C.m of all
+ // types C that satisfy interface I.
+ //
+ // Abstract methods may be shared by several interfaces,
+ // hence we must pass I explicitly, not guess from m.
+ //
+ // methodsMemo is just a cache, so it needn't be a typeutil.Map.
+ methodsMemo := make(map[imethod][]*ssa.Function)
+ lookupMethods := func(I *types.Interface, m *types.Func) []*ssa.Function {
+ id := m.Id()
+ methods, ok := methodsMemo[imethod{I, id}]
+ if !ok {
+ for _, f := range methodsByID[id] {
+ C := f.Signature.Recv().Type() // named or *named
+ if types.Implements(C, I) {
+ methods = append(methods, f)
+ }
+ }
+ methodsMemo[imethod{I, id}] = methods
+ }
+ return methods
+ }
+
+ for f := range fns {
+ if f.Signature.Recv() == nil {
+ // Package initializers can never be address-taken.
+ if f.Name() == "init" && f.Synthetic == "package initializer" {
+ continue
+ }
+ funcs, _ := funcsBySig.At(f.Signature).([]*ssa.Function)
+ funcs = append(funcs, f)
+ funcsBySig.Set(f.Signature, funcs)
+ } else if obj := f.Object(); obj != nil {
+ id := obj.(*types.Func).Id()
+ methodsByID[id] = append(methodsByID[id], f)
+ }
+ }
+
+ return func(site ssa.CallInstruction) []*ssa.Function {
+ call := site.Common()
+ if call.IsInvoke() {
+ tiface := call.Value.Type().Underlying().(*types.Interface)
+ return lookupMethods(tiface, call.Method)
+ } else if g := call.StaticCallee(); g != nil {
+ return []*ssa.Function{g}
+ } else if _, ok := call.Value.(*ssa.Builtin); !ok {
+ fns, _ := funcsBySig.At(call.Signature()).([]*ssa.Function)
+ return fns
+ }
+ return nil
+ }
+}
diff --git a/vendor/golang.org/x/tools/go/callgraph/util.go b/vendor/golang.org/x/tools/go/callgraph/util.go
new file mode 100644
index 0000000..5499320
--- /dev/null
+++ b/vendor/golang.org/x/tools/go/callgraph/util.go
@@ -0,0 +1,180 @@
+// Copyright 2013 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package callgraph
+
+import "golang.org/x/tools/go/ssa"
+
+// This file provides various utilities over call graphs, such as
+// visitation and path search.
+
+// CalleesOf returns a new set containing all direct callees of the
+// caller node.
+func CalleesOf(caller *Node) map[*Node]bool {
+ callees := make(map[*Node]bool)
+ for _, e := range caller.Out {
+ callees[e.Callee] = true
+ }
+ return callees
+}
+
+// GraphVisitEdges visits all the edges in graph g in depth-first order.
+// The edge function is called for each edge in postorder. If it
+// returns non-nil, visitation stops and GraphVisitEdges returns that
+// value.
+func GraphVisitEdges(g *Graph, edge func(*Edge) error) error {
+ seen := make(map[*Node]bool)
+ var visit func(n *Node) error
+ visit = func(n *Node) error {
+ if !seen[n] {
+ seen[n] = true
+ for _, e := range n.Out {
+ if err := visit(e.Callee); err != nil {
+ return err
+ }
+ if err := edge(e); err != nil {
+ return err
+ }
+ }
+ }
+ return nil
+ }
+ for _, n := range g.Nodes {
+ if err := visit(n); err != nil {
+ return err
+ }
+ }
+ return nil
+}
+
+// PathSearch finds an arbitrary path starting at node start and
+// ending at some node for which isEnd() returns true. On success,
+// PathSearch returns the path as an ordered list of edges; on
+// failure, it returns nil.
+func PathSearch(start *Node, isEnd func(*Node) bool) []*Edge {
+ stack := make([]*Edge, 0, 32)
+ seen := make(map[*Node]bool)
+ var search func(n *Node) []*Edge
+ search = func(n *Node) []*Edge {
+ if !seen[n] {
+ seen[n] = true
+ if isEnd(n) {
+ return stack
+ }
+ for _, e := range n.Out {
+ stack = append(stack, e) // push
+ if found := search(e.Callee); found != nil {
+ return found
+ }
+ stack = stack[:len(stack)-1] // pop
+ }
+ }
+ return nil
+ }
+ return search(start)
+}
+
+// DeleteSyntheticNodes removes from call graph g all nodes for
+// functions that do not correspond to source syntax. For historical
+// reasons, nodes for g.Root and package initializers are always
+// kept.
+//
+// As nodes are removed, edges are created to preserve the
+// reachability relation of the remaining nodes.
+func (g *Graph) DeleteSyntheticNodes() {
+ // Measurements on the standard library and go.tools show that
+ // resulting graph has ~15% fewer nodes and 4-8% fewer edges
+ // than the input.
+ //
+ // Inlining a wrapper of in-degree m, out-degree n adds m*n
+ // and removes m+n edges. Since most wrappers are monomorphic
+ // (n=1) this results in a slight reduction. Polymorphic
+ // wrappers (n>1), e.g. from embedding an interface value
+ // inside a struct to satisfy some interface, cause an
+ // increase in the graph, but they seem to be uncommon.
+
+ // Hash all existing edges to avoid creating duplicates.
+ edges := make(map[Edge]bool)
+ for _, cgn := range g.Nodes {
+ for _, e := range cgn.Out {
+ edges[*e] = true
+ }
+ }
+ for fn, cgn := range g.Nodes {
+ if cgn == g.Root || isInit(cgn.Func) || fn.Syntax() != nil {
+ continue // keep
+ }
+ for _, eIn := range cgn.In {
+ for _, eOut := range cgn.Out {
+ newEdge := Edge{eIn.Caller, eIn.Site, eOut.Callee}
+ if edges[newEdge] {
+ continue // don't add duplicate
+ }
+ AddEdge(eIn.Caller, eIn.Site, eOut.Callee)
+ edges[newEdge] = true
+ }
+ }
+ g.DeleteNode(cgn)
+ }
+}
+
+func isInit(fn *ssa.Function) bool {
+ return fn.Pkg != nil && fn.Pkg.Func("init") == fn
+}
+
+// DeleteNode removes node n and its edges from the graph g.
+// (NB: not efficient for batch deletion.)
+func (g *Graph) DeleteNode(n *Node) {
+ n.deleteIns()
+ n.deleteOuts()
+ delete(g.Nodes, n.Func)
+}
+
+// deleteIns deletes all incoming edges to n.
+func (n *Node) deleteIns() {
+ for _, e := range n.In {
+ removeOutEdge(e)
+ }
+ n.In = nil
+}
+
+// deleteOuts deletes all outgoing edges from n.
+func (n *Node) deleteOuts() {
+ for _, e := range n.Out {
+ removeInEdge(e)
+ }
+ n.Out = nil
+}
+
+// removeOutEdge removes edge.Caller's outgoing edge 'edge'.
+func removeOutEdge(edge *Edge) {
+ caller := edge.Caller
+ n := len(caller.Out)
+ for i, e := range caller.Out {
+ if e == edge {
+ // Replace it with the final element and shrink the slice.
+ caller.Out[i] = caller.Out[n-1]
+ caller.Out[n-1] = nil // aid GC
+ caller.Out = caller.Out[:n-1]
+ return
+ }
+ }
+ panic("edge not found: " + edge.String())
+}
+
+// removeInEdge removes edge.Callee's incoming edge 'edge'.
+func removeInEdge(edge *Edge) {
+ caller := edge.Callee
+ n := len(caller.In)
+ for i, e := range caller.In {
+ if e == edge {
+ // Replace it with the final element and shrink the slice.
+ caller.In[i] = caller.In[n-1]
+ caller.In[n-1] = nil // aid GC
+ caller.In = caller.In[:n-1]
+ return
+ }
+ }
+ panic("edge not found: " + edge.String())
+}
diff --git a/vendor/golang.org/x/tools/go/gcexportdata/gcexportdata.go b/vendor/golang.org/x/tools/go/gcexportdata/gcexportdata.go
new file mode 100644
index 0000000..137cc8d
--- /dev/null
+++ b/vendor/golang.org/x/tools/go/gcexportdata/gcexportdata.go
@@ -0,0 +1,186 @@
+// Copyright 2016 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// Package gcexportdata provides functions for locating, reading, and
+// writing export data files containing type information produced by the
+// gc compiler. This package supports go1.7 export data format and all
+// later versions.
+//
+// Although it might seem convenient for this package to live alongside
+// go/types in the standard library, this would cause version skew
+// problems for developer tools that use it, since they must be able to
+// consume the outputs of the gc compiler both before and after a Go
+// update such as from Go 1.7 to Go 1.8. Because this package lives in
+// golang.org/x/tools, sites can update their version of this repo some
+// time before the Go 1.8 release and rebuild and redeploy their
+// developer tools, which will then be able to consume both Go 1.7 and
+// Go 1.8 export data files, so they will work before and after the
+// Go update. (See discussion at https://golang.org/issue/15651.)
+package gcexportdata // import "golang.org/x/tools/go/gcexportdata"
+
+import (
+ "bufio"
+ "bytes"
+ "encoding/json"
+ "fmt"
+ "go/token"
+ "go/types"
+ "io"
+ "os/exec"
+
+ "golang.org/x/tools/internal/gcimporter"
+)
+
+// Find returns the name of an object (.o) or archive (.a) file
+// containing type information for the specified import path,
+// using the go command.
+// If no file was found, an empty filename is returned.
+//
+// A relative srcDir is interpreted relative to the current working directory.
+//
+// Find also returns the package's resolved (canonical) import path,
+// reflecting the effects of srcDir and vendoring on importPath.
+//
+// Deprecated: Use the higher-level API in golang.org/x/tools/go/packages,
+// which is more efficient.
+func Find(importPath, srcDir string) (filename, path string) {
+ cmd := exec.Command("go", "list", "-json", "-export", "--", importPath)
+ cmd.Dir = srcDir
+ out, err := cmd.Output()
+ if err != nil {
+ return "", ""
+ }
+ var data struct {
+ ImportPath string
+ Export string
+ }
+ json.Unmarshal(out, &data)
+ return data.Export, data.ImportPath
+}
+
+// NewReader returns a reader for the export data section of an object
+// (.o) or archive (.a) file read from r. The new reader may provide
+// additional trailing data beyond the end of the export data.
+func NewReader(r io.Reader) (io.Reader, error) {
+ buf := bufio.NewReader(r)
+ _, size, err := gcimporter.FindExportData(buf)
+ if err != nil {
+ return nil, err
+ }
+
+ if size >= 0 {
+ // We were given an archive and found the __.PKGDEF in it.
+ // This tells us the size of the export data, and we don't
+ // need to return the entire file.
+ return &io.LimitedReader{
+ R: buf,
+ N: size,
+ }, nil
+ } else {
+ // We were given an object file. As such, we don't know how large
+ // the export data is and must return the entire file.
+ return buf, nil
+ }
+}
+
+// readAll works the same way as io.ReadAll, but avoids allocations and copies
+// by preallocating a byte slice of the necessary size if the size is known up
+// front. This is always possible when the input is an archive. In that case,
+// NewReader will return the known size using an io.LimitedReader.
+func readAll(r io.Reader) ([]byte, error) {
+ if lr, ok := r.(*io.LimitedReader); ok {
+ data := make([]byte, lr.N)
+ _, err := io.ReadFull(lr, data)
+ return data, err
+ }
+ return io.ReadAll(r)
+}
+
+// Read reads export data from in, decodes it, and returns type
+// information for the package.
+//
+// The package path (effectively its linker symbol prefix) is
+// specified by path, since unlike the package name, this information
+// may not be recorded in the export data.
+//
+// File position information is added to fset.
+//
+// Read may inspect and add to the imports map to ensure that references
+// within the export data to other packages are consistent. The caller
+// must ensure that imports[path] does not exist, or exists but is
+// incomplete (see types.Package.Complete), and Read inserts the
+// resulting package into this map entry.
+//
+// On return, the state of the reader is undefined.
+func Read(in io.Reader, fset *token.FileSet, imports map[string]*types.Package, path string) (*types.Package, error) {
+ data, err := readAll(in)
+ if err != nil {
+ return nil, fmt.Errorf("reading export data for %q: %v", path, err)
+ }
+
+ if bytes.HasPrefix(data, []byte("!<arch>")) {
+ return nil, fmt.Errorf("can't read export data for %q directly from an archive file (call gcexportdata.NewReader first to extract export data)", path)
+ }
+
+ // The indexed export format starts with an 'i'; the older
+ // binary export format starts with a 'c', 'd', or 'v'
+ // (from "version"). Select appropriate importer.
+ if len(data) > 0 {
+ switch data[0] {
+ case 'v', 'c', 'd': // binary, till go1.10
+ return nil, fmt.Errorf("binary (%c) import format is no longer supported", data[0])
+
+ case 'i': // indexed, till go1.19
+ _, pkg, err := gcimporter.IImportData(fset, imports, data[1:], path)
+ return pkg, err
+
+ case 'u': // unified, from go1.20
+ _, pkg, err := gcimporter.UImportData(fset, imports, data[1:], path)
+ return pkg, err
+
+ default:
+ l := len(data)
+ if l > 10 {
+ l = 10
+ }
+ return nil, fmt.Errorf("unexpected export data with prefix %q for path %s", string(data[:l]), path)
+ }
+ }
+ return nil, fmt.Errorf("empty export data for %s", path)
+}
+
+// Write writes encoded type information for the specified package to out.
+// The FileSet provides file position information for named objects.
+func Write(out io.Writer, fset *token.FileSet, pkg *types.Package) error {
+ if _, err := io.WriteString(out, "i"); err != nil {
+ return err
+ }
+ return gcimporter.IExportData(out, fset, pkg)
+}
+
+// ReadBundle reads an export bundle from in, decodes it, and returns type
+// information for the packages.
+// File position information is added to fset.
+//
+// ReadBundle may inspect and add to the imports map to ensure that references
+// within the export bundle to other packages are consistent.
+//
+// On return, the state of the reader is undefined.
+//
+// Experimental: This API is experimental and may change in the future.
+func ReadBundle(in io.Reader, fset *token.FileSet, imports map[string]*types.Package) ([]*types.Package, error) {
+ data, err := readAll(in)
+ if err != nil {
+ return nil, fmt.Errorf("reading export bundle: %v", err)
+ }
+ return gcimporter.IImportBundle(fset, imports, data)
+}
+
+// WriteBundle writes encoded type information for the specified packages to out.
+// The FileSet provides file position information for named objects.
+//
+// Experimental: This API is experimental and may change in the future.
+func WriteBundle(out io.Writer, fset *token.FileSet, pkgs []*types.Package) error {
+ return gcimporter.IExportBundle(out, fset, pkgs)
+}
diff --git a/vendor/golang.org/x/tools/go/gcexportdata/importer.go b/vendor/golang.org/x/tools/go/gcexportdata/importer.go
new file mode 100644
index 0000000..37a7247
--- /dev/null
+++ b/vendor/golang.org/x/tools/go/gcexportdata/importer.go
@@ -0,0 +1,75 @@
+// Copyright 2016 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package gcexportdata
+
+import (
+ "fmt"
+ "go/token"
+ "go/types"
+ "os"
+)
+
+// NewImporter returns a new instance of the types.Importer interface
+// that reads type information from export data files written by gc.
+// The Importer also satisfies types.ImporterFrom.
+//
+// Export data files are located using "go build" workspace conventions
+// and the build.Default context.
+//
+// Use this importer instead of go/importer.For("gc", ...) to avoid the
+// version-skew problems described in the documentation of this package,
+// or to control the FileSet or access the imports map populated during
+// package loading.
+//
+// Deprecated: Use the higher-level API in golang.org/x/tools/go/packages,
+// which is more efficient.
+func NewImporter(fset *token.FileSet, imports map[string]*types.Package) types.ImporterFrom {
+ return importer{fset, imports}
+}
+
+type importer struct {
+ fset *token.FileSet
+ imports map[string]*types.Package
+}
+
+func (imp importer) Import(importPath string) (*types.Package, error) {
+ return imp.ImportFrom(importPath, "", 0)
+}
+
+func (imp importer) ImportFrom(importPath, srcDir string, mode types.ImportMode) (_ *types.Package, err error) {
+ filename, path := Find(importPath, srcDir)
+ if filename == "" {
+ if importPath == "unsafe" {
+ // Even for unsafe, call Find first in case
+ // the package was vendored.
+ return types.Unsafe, nil
+ }
+ return nil, fmt.Errorf("can't find import: %s", importPath)
+ }
+
+ if pkg, ok := imp.imports[path]; ok && pkg.Complete() {
+ return pkg, nil // cache hit
+ }
+
+ // open file
+ f, err := os.Open(filename)
+ if err != nil {
+ return nil, err
+ }
+ defer func() {
+ f.Close()
+ if err != nil {
+ // add file name to error
+ err = fmt.Errorf("reading export data: %s: %v", filename, err)
+ }
+ }()
+
+ r, err := NewReader(f)
+ if err != nil {
+ return nil, err
+ }
+
+ return Read(r, imp.fset, imp.imports, path)
+}
diff --git a/vendor/golang.org/x/tools/go/internal/cgo/cgo.go b/vendor/golang.org/x/tools/go/internal/cgo/cgo.go
new file mode 100644
index 0000000..697974b
--- /dev/null
+++ b/vendor/golang.org/x/tools/go/internal/cgo/cgo.go
@@ -0,0 +1,219 @@
+// Copyright 2013 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// Package cgo handles cgo preprocessing of files containing `import "C"`.
+//
+// DESIGN
+//
+// The approach taken is to run the cgo processor on the package's
+// CgoFiles and parse the output, faking the filenames of the
+// resulting ASTs so that the synthetic file containing the C types is
+// called "C" (e.g. "~/go/src/net/C") and the preprocessed files
+// have their original names (e.g. "~/go/src/net/cgo_unix.go"),
+// not the names of the actual temporary files.
+//
+// The advantage of this approach is its fidelity to 'go build'. The
+// downside is that the token.Position.Offset for each AST node is
+// incorrect, being an offset within the temporary file. Line numbers
+// should still be correct because of the //line comments.
+//
+// The logic of this file is mostly plundered from the 'go build'
+// tool, which also invokes the cgo preprocessor.
+//
+//
+// REJECTED ALTERNATIVE
+//
+// An alternative approach that we explored is to extend go/types'
+// Importer mechanism to provide the identity of the importing package
+// so that each time `import "C"` appears it resolves to a different
+// synthetic package containing just the objects needed in that case.
+// The loader would invoke cgo but parse only the cgo_types.go file
+// defining the package-level objects, discarding the other files
+// resulting from preprocessing.
+//
+// The benefit of this approach would have been that source-level
+// syntax information would correspond exactly to the original cgo
+// file, with no preprocessing involved, making source tools like
+// godoc, guru, and eg happy. However, the approach was rejected
+// due to the additional complexity it would impose on go/types. (It
+// made for a beautiful demo, though.)
+//
+// cgo files, despite their *.go extension, are not legal Go source
+// files per the specification since they may refer to unexported
+// members of package "C" such as C.int. Also, a function such as
+// C.getpwent has in effect two types, one matching its C type and one
+// which additionally returns (errno C.int). The cgo preprocessor
+// uses name mangling to distinguish these two functions in the
+// processed code, but go/types would need to duplicate this logic in
+// its handling of function calls, analogous to the treatment of map
+// lookups in which y=m[k] and y,ok=m[k] are both legal.
+
+package cgo
+
+import (
+ "fmt"
+ "go/ast"
+ "go/build"
+ "go/parser"
+ "go/token"
+ "log"
+ "os"
+ "os/exec"
+ "path/filepath"
+ "regexp"
+ "strings"
+)
+
+// ProcessFiles invokes the cgo preprocessor on bp.CgoFiles, parses
+// the output and returns the resulting ASTs.
+func ProcessFiles(bp *build.Package, fset *token.FileSet, DisplayPath func(path string) string, mode parser.Mode) ([]*ast.File, error) {
+ tmpdir, err := os.MkdirTemp("", strings.Replace(bp.ImportPath, "/", "_", -1)+"_C")
+ if err != nil {
+ return nil, err
+ }
+ defer os.RemoveAll(tmpdir)
+
+ pkgdir := bp.Dir
+ if DisplayPath != nil {
+ pkgdir = DisplayPath(pkgdir)
+ }
+
+ cgoFiles, cgoDisplayFiles, err := Run(bp, pkgdir, tmpdir, false)
+ if err != nil {
+ return nil, err
+ }
+ var files []*ast.File
+ for i := range cgoFiles {
+ rd, err := os.Open(cgoFiles[i])
+ if err != nil {
+ return nil, err
+ }
+ display := filepath.Join(bp.Dir, cgoDisplayFiles[i])
+ f, err := parser.ParseFile(fset, display, rd, mode)
+ rd.Close()
+ if err != nil {
+ return nil, err
+ }
+ files = append(files, f)
+ }
+ return files, nil
+}
+
+var cgoRe = regexp.MustCompile(`[/\\:]`)
+
+// Run invokes the cgo preprocessor on bp.CgoFiles and returns two
+// lists of files: the resulting processed files (in temporary
+// directory tmpdir) and the corresponding names of the unprocessed files.
+//
+// Run is adapted from (*builder).cgo in
+// $GOROOT/src/cmd/go/build.go, but these features are unsupported:
+// Objective C, CGOPKGPATH, CGO_FLAGS.
+//
+// If useabs is set to true, absolute paths of the bp.CgoFiles will be passed in
+// to the cgo preprocessor. This in turn will set the // line comments
+// referring to those files to use absolute paths. This is needed for
+// go/packages using the legacy go list support so it is able to find
+// the original files.
+func Run(bp *build.Package, pkgdir, tmpdir string, useabs bool) (files, displayFiles []string, err error) {
+ cgoCPPFLAGS, _, _, _ := cflags(bp, true)
+ _, cgoexeCFLAGS, _, _ := cflags(bp, false)
+
+ if len(bp.CgoPkgConfig) > 0 {
+ pcCFLAGS, err := pkgConfigFlags(bp)
+ if err != nil {
+ return nil, nil, err
+ }
+ cgoCPPFLAGS = append(cgoCPPFLAGS, pcCFLAGS...)
+ }
+
+ // Allows including _cgo_export.h from .[ch] files in the package.
+ cgoCPPFLAGS = append(cgoCPPFLAGS, "-I", tmpdir)
+
+ // _cgo_gotypes.go (displayed "C") contains the type definitions.
+ files = append(files, filepath.Join(tmpdir, "_cgo_gotypes.go"))
+ displayFiles = append(displayFiles, "C")
+ for _, fn := range bp.CgoFiles {
+ // "foo.cgo1.go" (displayed "foo.go") is the processed Go source.
+ f := cgoRe.ReplaceAllString(fn[:len(fn)-len("go")], "_")
+ files = append(files, filepath.Join(tmpdir, f+"cgo1.go"))
+ displayFiles = append(displayFiles, fn)
+ }
+
+ var cgoflags []string
+ if bp.Goroot && bp.ImportPath == "runtime/cgo" {
+ cgoflags = append(cgoflags, "-import_runtime_cgo=false")
+ }
+ if bp.Goroot && bp.ImportPath == "runtime/race" || bp.ImportPath == "runtime/cgo" {
+ cgoflags = append(cgoflags, "-import_syscall=false")
+ }
+
+ var cgoFiles []string = bp.CgoFiles
+ if useabs {
+ cgoFiles = make([]string, len(bp.CgoFiles))
+ for i := range cgoFiles {
+ cgoFiles[i] = filepath.Join(pkgdir, bp.CgoFiles[i])
+ }
+ }
+
+ args := stringList(
+ "go", "tool", "cgo", "-objdir", tmpdir, cgoflags, "--",
+ cgoCPPFLAGS, cgoexeCFLAGS, cgoFiles,
+ )
+ if false {
+ log.Printf("Running cgo for package %q: %s (dir=%s)", bp.ImportPath, args, pkgdir)
+ }
+ cmd := exec.Command(args[0], args[1:]...)
+ cmd.Dir = pkgdir
+ cmd.Env = append(os.Environ(), "PWD="+pkgdir)
+ cmd.Stdout = os.Stderr
+ cmd.Stderr = os.Stderr
+ if err := cmd.Run(); err != nil {
+ return nil, nil, fmt.Errorf("cgo failed: %s: %s", args, err)
+ }
+
+ return files, displayFiles, nil
+}
+
+// -- unmodified from 'go build' ---------------------------------------
+
+// Return the flags to use when invoking the C or C++ compilers, or cgo.
+func cflags(p *build.Package, def bool) (cppflags, cflags, cxxflags, ldflags []string) {
+ var defaults string
+ if def {
+ defaults = "-g -O2"
+ }
+
+ cppflags = stringList(envList("CGO_CPPFLAGS", ""), p.CgoCPPFLAGS)
+ cflags = stringList(envList("CGO_CFLAGS", defaults), p.CgoCFLAGS)
+ cxxflags = stringList(envList("CGO_CXXFLAGS", defaults), p.CgoCXXFLAGS)
+ ldflags = stringList(envList("CGO_LDFLAGS", defaults), p.CgoLDFLAGS)
+ return
+}
+
+// envList returns the value of the given environment variable broken
+// into fields, using the default value when the variable is empty.
+func envList(key, def string) []string {
+ v := os.Getenv(key)
+ if v == "" {
+ v = def
+ }
+ return strings.Fields(v)
+}
+
+// stringList's arguments should be a sequence of string or []string values.
+// stringList flattens them into a single []string.
+func stringList(args ...interface{}) []string {
+ var x []string
+ for _, arg := range args {
+ switch arg := arg.(type) {
+ case []string:
+ x = append(x, arg...)
+ case string:
+ x = append(x, arg)
+ default:
+ panic("stringList: invalid argument")
+ }
+ }
+ return x
+}
diff --git a/vendor/golang.org/x/tools/go/internal/cgo/cgo_pkgconfig.go b/vendor/golang.org/x/tools/go/internal/cgo/cgo_pkgconfig.go
new file mode 100644
index 0000000..2455be5
--- /dev/null
+++ b/vendor/golang.org/x/tools/go/internal/cgo/cgo_pkgconfig.go
@@ -0,0 +1,42 @@
+// Copyright 2013 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package cgo
+
+import (
+ "errors"
+ "fmt"
+ "go/build"
+ "os/exec"
+ "strings"
+)
+
+// pkgConfig runs pkg-config with the specified arguments and returns the flags it prints.
+func pkgConfig(mode string, pkgs []string) (flags []string, err error) {
+ cmd := exec.Command("pkg-config", append([]string{mode}, pkgs...)...)
+ out, err := cmd.Output()
+ if err != nil {
+ s := fmt.Sprintf("%s failed: %v", strings.Join(cmd.Args, " "), err)
+ if len(out) > 0 {
+ s = fmt.Sprintf("%s: %s", s, out)
+ }
+ if err, ok := err.(*exec.ExitError); ok && len(err.Stderr) > 0 {
+ s = fmt.Sprintf("%s\nstderr:\n%s", s, err.Stderr)
+ }
+ return nil, errors.New(s)
+ }
+ if len(out) > 0 {
+ flags = strings.Fields(string(out))
+ }
+ return
+}
+
+// pkgConfigFlags calls pkg-config if needed and returns the cflags
+// needed to build the package.
+func pkgConfigFlags(p *build.Package) (cflags []string, err error) {
+ if len(p.CgoPkgConfig) == 0 {
+ return nil, nil
+ }
+ return pkgConfig("--cflags", p.CgoPkgConfig)
+}
diff --git a/vendor/golang.org/x/tools/go/loader/doc.go b/vendor/golang.org/x/tools/go/loader/doc.go
new file mode 100644
index 0000000..e35b1fd
--- /dev/null
+++ b/vendor/golang.org/x/tools/go/loader/doc.go
@@ -0,0 +1,202 @@
+// Copyright 2015 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// Package loader loads a complete Go program from source code, parsing
+// and type-checking the initial packages plus their transitive closure
+// of dependencies. The ASTs and the derived facts are retained for
+// later use.
+//
+// Deprecated: This is an older API and does not have support
+// for modules. Use golang.org/x/tools/go/packages instead.
+//
+// The package defines two primary types: Config, which specifies a
+// set of initial packages to load and various other options; and
+// Program, which is the result of successfully loading the packages
+// specified by a configuration.
+//
+// The configuration can be set directly, but *Config provides various
+// convenience methods to simplify the common cases, each of which can
+// be called any number of times. Finally, these are followed by a
+// call to Load() to actually load and type-check the program.
+//
+// var conf loader.Config
+//
+// // Use the command-line arguments to specify
+// // a set of initial packages to load from source.
+// // See FromArgsUsage for help.
+// rest, err := conf.FromArgs(os.Args[1:], wantTests)
+//
+// // Parse the specified files and create an ad hoc package with path "foo".
+// // All files must have the same 'package' declaration.
+// conf.CreateFromFilenames("foo", "foo.go", "bar.go")
+//
+// // Create an ad hoc package with path "foo" from
+// // the specified already-parsed files.
+// // All ASTs must have the same 'package' declaration.
+// conf.CreateFromFiles("foo", parsedFiles)
+//
+// // Add "runtime" to the set of packages to be loaded.
+// conf.Import("runtime")
+//
+// // Adds "fmt" and "fmt_test" to the set of packages
+// // to be loaded. "fmt" will include *_test.go files.
+// conf.ImportWithTests("fmt")
+//
+// // Finally, load all the packages specified by the configuration.
+// prog, err := conf.Load()
+//
+// See examples_test.go for examples of API usage.
+//
+// # CONCEPTS AND TERMINOLOGY
+//
+// The WORKSPACE is the set of packages accessible to the loader. The
+// workspace is defined by Config.Build, a *build.Context. The
+// default context treats subdirectories of $GOROOT and $GOPATH as
+// packages, but this behavior may be overridden.
+//
+// An AD HOC package is one specified as a set of source files on the
+// command line. In the simplest case, it may consist of a single file
+// such as $GOROOT/src/net/http/triv.go.
+//
+// EXTERNAL TEST packages are those comprised of a set of *_test.go
+// files all with the same 'package foo_test' declaration, all in the
+// same directory. (go/build.Package calls these files XTestFiles.)
+//
+// An IMPORTABLE package is one that can be referred to by some import
+// spec. Every importable package is uniquely identified by its
+// PACKAGE PATH or just PATH, a string such as "fmt", "encoding/json",
+// or "cmd/vendor/golang.org/x/arch/x86/x86asm". A package path
+// typically denotes a subdirectory of the workspace.
+//
+// An import declaration uses an IMPORT PATH to refer to a package.
+// Most import declarations use the package path as the import path.
+//
+// Due to VENDORING (https://golang.org/s/go15vendor), the
+// interpretation of an import path may depend on the directory in which
+// it appears. To resolve an import path to a package path, go/build
+// must search the enclosing directories for a subdirectory named
+// "vendor".
+//
+// ad hoc packages and external test packages are NON-IMPORTABLE. The
+// path of an ad hoc package is inferred from the package
+// declarations of its files and is therefore not a unique package key.
+// For example, Config.CreatePkgs may specify two initial ad hoc
+// packages, both with path "main".
+//
+// An AUGMENTED package is an importable package P plus all the
+// *_test.go files with same 'package foo' declaration as P.
+// (go/build.Package calls these files TestFiles.)
+//
+// The INITIAL packages are those specified in the configuration. A
+// DEPENDENCY is a package loaded to satisfy an import in an initial
+// package or another dependency.
+package loader
+
+// IMPLEMENTATION NOTES
+//
+// 'go test', in-package test files, and import cycles
+// ---------------------------------------------------
+//
+// An external test package may depend upon members of the augmented
+// package that are not in the unaugmented package, such as functions
+// that expose internals. (See bufio/export_test.go for an example.)
+// So, the loader must ensure that for each external test package
+// it loads, it also augments the corresponding non-test package.
+//
+// The import graph over n unaugmented packages must be acyclic; the
+// import graph over n-1 unaugmented packages plus one augmented
+// package must also be acyclic. ('go test' relies on this.) But the
+// import graph over n augmented packages may contain cycles.
+//
+// First, all the (unaugmented) non-test packages and their
+// dependencies are imported in the usual way; the loader reports an
+// error if it detects an import cycle.
+//
+// Then, each package P for which testing is desired is augmented by
+// the list P' of its in-package test files, by calling
+// (*types.Checker).Files. This arrangement ensures that P' may
+// reference definitions within P, but P may not reference definitions
+// within P'. Furthermore, P' may import any other package, including
+// ones that depend upon P, without an import cycle error.
+//
+// Consider two packages A and B, both of which have lists of
+// in-package test files we'll call A' and B', and which have the
+// following import graph edges:
+// B imports A
+// B' imports A
+// A' imports B
+// This last edge would be expected to create an error were it not
+// for the special type-checking discipline above.
+// Cycles of size greater than two are possible. For example:
+// compress/bzip2/bzip2_test.go (package bzip2) imports "io/ioutil"
+// io/ioutil/tempfile_test.go (package ioutil) imports "regexp"
+// regexp/exec_test.go (package regexp) imports "compress/bzip2"
+//
+//
+// Concurrency
+// -----------
+//
+// Let us define the import dependency graph as follows. Each node is a
+// list of files passed to (Checker).Files at once. Many of these lists
+// are the production code of an importable Go package, so those nodes
+// are labelled by the package's path. The remaining nodes are
+// ad hoc packages and lists of in-package *_test.go files that augment
+// an importable package; those nodes have no label.
+//
+// The edges of the graph represent import statements appearing within a
+// file. An edge connects a node (a list of files) to the node it
+// imports, which is importable and thus always labelled.
+//
+// Loading is controlled by this dependency graph.
+//
+// To reduce I/O latency, we start loading a package's dependencies
+// asynchronously as soon as we've parsed its files and enumerated its
+// imports (scanImports). This performs a preorder traversal of the
+// import dependency graph.
+//
+// To exploit hardware parallelism, we type-check unrelated packages in
+// parallel, where "unrelated" means not ordered by the partial order of
+// the import dependency graph.
+//
+// We use a concurrency-safe non-blocking cache (importer.imported) to
+// record the results of type-checking, whether success or failure. An
+// entry is created in this cache by startLoad the first time the
+// package is imported. The first goroutine to request an entry becomes
+// responsible for completing the task and broadcasting completion to
+// subsequent requestors, which block until then.
+//
+// Type checking occurs in (parallel) postorder: we cannot type-check a
+// set of files until we have loaded and type-checked all of their
+// immediate dependencies (and thus all of their transitive
+// dependencies). If the input were guaranteed free of import cycles,
+// this would be trivial: we could simply wait for completion of the
+// dependencies and then invoke the typechecker.
+//
+// But as we saw in the 'go test' section above, some cycles in the
+// import graph over packages are actually legal, so long as the
+// cycle-forming edge originates in the in-package test files that
+// augment the package. This explains why the nodes of the import
+// dependency graph are not packages, but lists of files: the unlabelled
+// nodes avoid the cycles. Consider packages A and B where B imports A
+// and A's in-package tests AT import B. The naively constructed import
+// graph over packages would contain a cycle (A+AT) --> B --> (A+AT) but
+// the graph over lists of files is AT --> B --> A, where AT is an
+// unlabelled node.
+//
+// Awaiting completion of the dependencies in a cyclic graph would
+// deadlock, so we must materialize the import dependency graph (as
+// importer.graph) and check whether each import edge forms a cycle. If
+// x imports y, and the graph already contains a path from y to x, then
+// there is an import cycle, in which case the processing of x must not
+// wait for the completion of processing of y.
+//
+// When the type-checker makes a callback (doImport) to the loader for a
+// given import edge, there are two possible cases. In the normal case,
+// the dependency has already been completely type-checked; doImport
+// does a cache lookup and returns it. In the cyclic case, the entry in
+// the cache is still necessarily incomplete, indicating a cycle. We
+// perform the cycle check again to obtain the error message, and return
+// the error.
+//
+// The result of using concurrency is about a 2.5x speedup for stdlib_test.
diff --git a/vendor/golang.org/x/tools/go/loader/loader.go b/vendor/golang.org/x/tools/go/loader/loader.go
new file mode 100644
index 0000000..013c0f5
--- /dev/null
+++ b/vendor/golang.org/x/tools/go/loader/loader.go
@@ -0,0 +1,1066 @@
+// Copyright 2013 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package loader
+
+// See doc.go for package documentation and implementation notes.
+
+import (
+ "errors"
+ "fmt"
+ "go/ast"
+ "go/build"
+ "go/parser"
+ "go/token"
+ "go/types"
+ "os"
+ "path/filepath"
+ "sort"
+ "strings"
+ "sync"
+ "time"
+
+ "golang.org/x/tools/go/ast/astutil"
+ "golang.org/x/tools/go/internal/cgo"
+ "golang.org/x/tools/internal/versions"
+)
+
+var ignoreVendor build.ImportMode
+
+const trace = false // show timing info for type-checking
+
+// Config specifies the configuration for loading a whole program from
+// Go source code.
+// The zero value for Config is a ready-to-use default configuration.
+type Config struct {
+ // Fset is the file set for the parser to use when loading the
+ // program. If nil, it may be lazily initialized by any
+ // method of Config.
+ Fset *token.FileSet
+
+ // ParserMode specifies the mode to be used by the parser when
+ // loading source packages.
+ ParserMode parser.Mode
+
+ // TypeChecker contains options relating to the type checker.
+ //
+ // The supplied IgnoreFuncBodies is not used; the effective
+ // value comes from the TypeCheckFuncBodies func below.
+ // The supplied Import function is not used either.
+ TypeChecker types.Config
+
+ // TypeCheckFuncBodies is a predicate over package paths.
+ // A package for which the predicate is false will
+ // have its package-level declarations type checked, but not
+ // its function bodies; this can be used to quickly load
+ // dependencies from source. If nil, all func bodies are type
+ // checked.
+ TypeCheckFuncBodies func(path string) bool
+
+ // If Build is non-nil, it is used to locate source packages.
+ // Otherwise &build.Default is used.
+ //
+ // By default, cgo is invoked to preprocess Go files that
+ // import the fake package "C". This behaviour can be
+ // disabled by setting CGO_ENABLED=0 in the environment prior
+ // to startup, or by setting Build.CgoEnabled=false.
+ Build *build.Context
+
+ // The current directory, used for resolving relative package
+ // references such as "./go/loader". If empty, os.Getwd will be
+ // used instead.
+ Cwd string
+
+ // If DisplayPath is non-nil, it is used to transform each
+ // file name obtained from Build.Import(). This can be used
+ // to prevent a virtualized build.Config's file names from
+ // leaking into the user interface.
+ DisplayPath func(path string) string
+
+ // If AllowErrors is true, Load will return a Program even
+ // if some of the its packages contained I/O, parser or type
+ // errors; such errors are accessible via PackageInfo.Errors. If
+ // false, Load will fail if any package had an error.
+ AllowErrors bool
+
+ // CreatePkgs specifies a list of non-importable initial
+ // packages to create. The resulting packages will appear in
+ // the corresponding elements of the Program.Created slice.
+ CreatePkgs []PkgSpec
+
+ // ImportPkgs specifies a set of initial packages to load.
+ // The map keys are package paths.
+ //
+ // The map value indicates whether to load tests. If true, Load
+ // will add and type-check two lists of files to the package:
+ // non-test files followed by in-package *_test.go files. In
+ // addition, it will append the external test package (if any)
+ // to Program.Created.
+ ImportPkgs map[string]bool
+
+ // FindPackage is called during Load to create the build.Package
+ // for a given import path from a given directory.
+ // If FindPackage is nil, (*build.Context).Import is used.
+ // A client may use this hook to adapt to a proprietary build
+ // system that does not follow the "go build" layout
+ // conventions, for example.
+ //
+ // It must be safe to call concurrently from multiple goroutines.
+ FindPackage func(ctxt *build.Context, importPath, fromDir string, mode build.ImportMode) (*build.Package, error)
+
+ // AfterTypeCheck is called immediately after a list of files
+ // has been type-checked and appended to info.Files.
+ //
+ // This optional hook function is the earliest opportunity for
+ // the client to observe the output of the type checker,
+ // which may be useful to reduce analysis latency when loading
+ // a large program.
+ //
+ // The function is permitted to modify info.Info, for instance
+ // to clear data structures that are no longer needed, which can
+ // dramatically reduce peak memory consumption.
+ //
+ // The function may be called twice for the same PackageInfo:
+ // once for the files of the package and again for the
+ // in-package test files.
+ //
+ // It must be safe to call concurrently from multiple goroutines.
+ AfterTypeCheck func(info *PackageInfo, files []*ast.File)
+}
+
+// A PkgSpec specifies a non-importable package to be created by Load.
+// Files are processed first, but typically only one of Files and
+// Filenames is provided. The path needn't be globally unique.
+//
+// For vendoring purposes, the package's directory is the one that
+// contains the first file.
+type PkgSpec struct {
+ Path string // package path ("" => use package declaration)
+ Files []*ast.File // ASTs of already-parsed files
+ Filenames []string // names of files to be parsed
+}
+
+// A Program is a Go program loaded from source as specified by a Config.
+type Program struct {
+ Fset *token.FileSet // the file set for this program
+
+ // Created[i] contains the initial package whose ASTs or
+ // filenames were supplied by Config.CreatePkgs[i], followed by
+ // the external test package, if any, of each package in
+ // Config.ImportPkgs ordered by ImportPath.
+ //
+ // NOTE: these files must not import "C". Cgo preprocessing is
+ // only performed on imported packages, not ad hoc packages.
+ //
+ // TODO(adonovan): we need to copy and adapt the logic of
+ // goFilesPackage (from $GOROOT/src/cmd/go/build.go) and make
+ // Config.Import and Config.Create methods return the same kind
+ // of entity, essentially a build.Package.
+ // Perhaps we can even reuse that type directly.
+ Created []*PackageInfo
+
+ // Imported contains the initially imported packages,
+ // as specified by Config.ImportPkgs.
+ Imported map[string]*PackageInfo
+
+ // AllPackages contains the PackageInfo of every package
+ // encountered by Load: all initial packages and all
+ // dependencies, including incomplete ones.
+ AllPackages map[*types.Package]*PackageInfo
+
+ // importMap is the canonical mapping of package paths to
+ // packages. It contains all Imported initial packages, but not
+ // Created ones, and all imported dependencies.
+ importMap map[string]*types.Package
+}
+
+// PackageInfo holds the ASTs and facts derived by the type-checker
+// for a single package.
+//
+// Not mutated once exposed via the API.
+type PackageInfo struct {
+ Pkg *types.Package
+ Importable bool // true if 'import "Pkg.Path()"' would resolve to this
+ TransitivelyErrorFree bool // true if Pkg and all its dependencies are free of errors
+ Files []*ast.File // syntax trees for the package's files
+ Errors []error // non-nil if the package had errors
+ types.Info // type-checker deductions.
+ dir string // package directory
+
+ checker *types.Checker // transient type-checker state
+ errorFunc func(error)
+}
+
+func (info *PackageInfo) String() string { return info.Pkg.Path() }
+
+func (info *PackageInfo) appendError(err error) {
+ if info.errorFunc != nil {
+ info.errorFunc(err)
+ } else {
+ fmt.Fprintln(os.Stderr, err)
+ }
+ info.Errors = append(info.Errors, err)
+}
+
+func (conf *Config) fset() *token.FileSet {
+ if conf.Fset == nil {
+ conf.Fset = token.NewFileSet()
+ }
+ return conf.Fset
+}
+
+// ParseFile is a convenience function (intended for testing) that invokes
+// the parser using the Config's FileSet, which is initialized if nil.
+//
+// src specifies the parser input as a string, []byte, or io.Reader, and
+// filename is its apparent name. If src is nil, the contents of
+// filename are read from the file system.
+func (conf *Config) ParseFile(filename string, src interface{}) (*ast.File, error) {
+ // TODO(adonovan): use conf.build() etc like parseFiles does.
+ return parser.ParseFile(conf.fset(), filename, src, conf.ParserMode)
+}
+
+// FromArgsUsage is a partial usage message that applications calling
+// FromArgs may wish to include in their -help output.
+const FromArgsUsage = `
+<args> is a list of arguments denoting a set of initial packages.
+It may take one of two forms:
+
+1. A list of *.go source files.
+
+ All of the specified files are loaded, parsed and type-checked
+ as a single package. All the files must belong to the same directory.
+
+2. A list of import paths, each denoting a package.
+
+ The package's directory is found relative to the $GOROOT and
+ $GOPATH using similar logic to 'go build', and the *.go files in
+ that directory are loaded, parsed and type-checked as a single
+ package.
+
+ In addition, all *_test.go files in the directory are then loaded
+ and parsed. Those files whose package declaration equals that of
+ the non-*_test.go files are included in the primary package. Test
+ files whose package declaration ends with "_test" are type-checked
+ as another package, the 'external' test package, so that a single
+ import path may denote two packages. (Whether this behaviour is
+ enabled is tool-specific, and may depend on additional flags.)
+
+A '--' argument terminates the list of packages.
+`
+
+// FromArgs interprets args as a set of initial packages to load from
+// source and updates the configuration. It returns the list of
+// unconsumed arguments.
+//
+// It is intended for use in command-line interfaces that require a
+// set of initial packages to be specified; see FromArgsUsage message
+// for details.
+//
+// Only superficial errors are reported at this stage; errors dependent
+// on I/O are detected during Load.
+func (conf *Config) FromArgs(args []string, xtest bool) ([]string, error) {
+ var rest []string
+ for i, arg := range args {
+ if arg == "--" {
+ rest = args[i+1:]
+ args = args[:i]
+ break // consume "--" and return the remaining args
+ }
+ }
+
+ if len(args) > 0 && strings.HasSuffix(args[0], ".go") {
+ // Assume args is a list of a *.go files
+ // denoting a single ad hoc package.
+ for _, arg := range args {
+ if !strings.HasSuffix(arg, ".go") {
+ return nil, fmt.Errorf("named files must be .go files: %s", arg)
+ }
+ }
+ conf.CreateFromFilenames("", args...)
+ } else {
+ // Assume args are directories each denoting a
+ // package and (perhaps) an external test, iff xtest.
+ for _, arg := range args {
+ if xtest {
+ conf.ImportWithTests(arg)
+ } else {
+ conf.Import(arg)
+ }
+ }
+ }
+
+ return rest, nil
+}
+
+// CreateFromFilenames is a convenience function that adds
+// a conf.CreatePkgs entry to create a package of the specified *.go
+// files.
+func (conf *Config) CreateFromFilenames(path string, filenames ...string) {
+ conf.CreatePkgs = append(conf.CreatePkgs, PkgSpec{Path: path, Filenames: filenames})
+}
+
+// CreateFromFiles is a convenience function that adds a conf.CreatePkgs
+// entry to create package of the specified path and parsed files.
+func (conf *Config) CreateFromFiles(path string, files ...*ast.File) {
+ conf.CreatePkgs = append(conf.CreatePkgs, PkgSpec{Path: path, Files: files})
+}
+
+// ImportWithTests is a convenience function that adds path to
+// ImportPkgs, the set of initial source packages located relative to
+// $GOPATH. The package will be augmented by any *_test.go files in
+// its directory that contain a "package x" (not "package x_test")
+// declaration.
+//
+// In addition, if any *_test.go files contain a "package x_test"
+// declaration, an additional package comprising just those files will
+// be added to CreatePkgs.
+func (conf *Config) ImportWithTests(path string) { conf.addImport(path, true) }
+
+// Import is a convenience function that adds path to ImportPkgs, the
+// set of initial packages that will be imported from source.
+func (conf *Config) Import(path string) { conf.addImport(path, false) }
+
+func (conf *Config) addImport(path string, tests bool) {
+ if path == "C" {
+ return // ignore; not a real package
+ }
+ if conf.ImportPkgs == nil {
+ conf.ImportPkgs = make(map[string]bool)
+ }
+ conf.ImportPkgs[path] = conf.ImportPkgs[path] || tests
+}
+
+// PathEnclosingInterval returns the PackageInfo and ast.Node that
+// contain source interval [start, end), and all the node's ancestors
+// up to the AST root. It searches all ast.Files of all packages in prog.
+// exact is defined as for astutil.PathEnclosingInterval.
+//
+// The zero value is returned if not found.
+func (prog *Program) PathEnclosingInterval(start, end token.Pos) (pkg *PackageInfo, path []ast.Node, exact bool) {
+ for _, info := range prog.AllPackages {
+ for _, f := range info.Files {
+ if f.Pos() == token.NoPos {
+ // This can happen if the parser saw
+ // too many errors and bailed out.
+ // (Use parser.AllErrors to prevent that.)
+ continue
+ }
+ if !tokenFileContainsPos(prog.Fset.File(f.Pos()), start) {
+ continue
+ }
+ if path, exact := astutil.PathEnclosingInterval(f, start, end); path != nil {
+ return info, path, exact
+ }
+ }
+ }
+ return nil, nil, false
+}
+
+// InitialPackages returns a new slice containing the set of initial
+// packages (Created + Imported) in unspecified order.
+func (prog *Program) InitialPackages() []*PackageInfo {
+ infos := make([]*PackageInfo, 0, len(prog.Created)+len(prog.Imported))
+ infos = append(infos, prog.Created...)
+ for _, info := range prog.Imported {
+ infos = append(infos, info)
+ }
+ return infos
+}
+
+// Package returns the ASTs and results of type checking for the
+// specified package.
+func (prog *Program) Package(path string) *PackageInfo {
+ if info, ok := prog.AllPackages[prog.importMap[path]]; ok {
+ return info
+ }
+ for _, info := range prog.Created {
+ if path == info.Pkg.Path() {
+ return info
+ }
+ }
+ return nil
+}
+
+// ---------- Implementation ----------
+
+// importer holds the working state of the algorithm.
+type importer struct {
+ conf *Config // the client configuration
+ start time.Time // for logging
+
+ progMu sync.Mutex // guards prog
+ prog *Program // the resulting program
+
+ // findpkg is a memoization of FindPackage.
+ findpkgMu sync.Mutex // guards findpkg
+ findpkg map[findpkgKey]*findpkgValue
+
+ importedMu sync.Mutex // guards imported
+ imported map[string]*importInfo // all imported packages (incl. failures) by import path
+
+ // import dependency graph: graph[x][y] => x imports y
+ //
+ // Since non-importable packages cannot be cyclic, we ignore
+ // their imports, thus we only need the subgraph over importable
+ // packages. Nodes are identified by their import paths.
+ graphMu sync.Mutex
+ graph map[string]map[string]bool
+}
+
+type findpkgKey struct {
+ importPath string
+ fromDir string
+ mode build.ImportMode
+}
+
+type findpkgValue struct {
+ ready chan struct{} // closed to broadcast readiness
+ bp *build.Package
+ err error
+}
+
+// importInfo tracks the success or failure of a single import.
+//
+// Upon completion, exactly one of info and err is non-nil:
+// info on successful creation of a package, err otherwise.
+// A successful package may still contain type errors.
+type importInfo struct {
+ path string // import path
+ info *PackageInfo // results of typechecking (including errors)
+ complete chan struct{} // closed to broadcast that info is set.
+}
+
+// awaitCompletion blocks until ii is complete,
+// i.e. the info field is safe to inspect.
+func (ii *importInfo) awaitCompletion() {
+ <-ii.complete // wait for close
+}
+
+// Complete marks ii as complete.
+// Its info and err fields will not be subsequently updated.
+func (ii *importInfo) Complete(info *PackageInfo) {
+ if info == nil {
+ panic("info == nil")
+ }
+ ii.info = info
+ close(ii.complete)
+}
+
+type importError struct {
+ path string // import path
+ err error // reason for failure to create a package
+}
+
+// Load creates the initial packages specified by conf.{Create,Import}Pkgs,
+// loading their dependencies packages as needed.
+//
+// On success, Load returns a Program containing a PackageInfo for
+// each package. On failure, it returns an error.
+//
+// If AllowErrors is true, Load will return a Program even if some
+// packages contained I/O, parser or type errors, or if dependencies
+// were missing. (Such errors are accessible via PackageInfo.Errors. If
+// false, Load will fail if any package had an error.
+//
+// It is an error if no packages were loaded.
+func (conf *Config) Load() (*Program, error) {
+ // Create a simple default error handler for parse/type errors.
+ if conf.TypeChecker.Error == nil {
+ conf.TypeChecker.Error = func(e error) { fmt.Fprintln(os.Stderr, e) }
+ }
+
+ // Set default working directory for relative package references.
+ if conf.Cwd == "" {
+ var err error
+ conf.Cwd, err = os.Getwd()
+ if err != nil {
+ return nil, err
+ }
+ }
+
+ // Install default FindPackage hook using go/build logic.
+ if conf.FindPackage == nil {
+ conf.FindPackage = (*build.Context).Import
+ }
+
+ prog := &Program{
+ Fset: conf.fset(),
+ Imported: make(map[string]*PackageInfo),
+ importMap: make(map[string]*types.Package),
+ AllPackages: make(map[*types.Package]*PackageInfo),
+ }
+
+ imp := importer{
+ conf: conf,
+ prog: prog,
+ findpkg: make(map[findpkgKey]*findpkgValue),
+ imported: make(map[string]*importInfo),
+ start: time.Now(),
+ graph: make(map[string]map[string]bool),
+ }
+
+ // -- loading proper (concurrent phase) --------------------------------
+
+ var errpkgs []string // packages that contained errors
+
+ // Load the initially imported packages and their dependencies,
+ // in parallel.
+ // No vendor check on packages imported from the command line.
+ infos, importErrors := imp.importAll("", conf.Cwd, conf.ImportPkgs, ignoreVendor)
+ for _, ie := range importErrors {
+ conf.TypeChecker.Error(ie.err) // failed to create package
+ errpkgs = append(errpkgs, ie.path)
+ }
+ for _, info := range infos {
+ prog.Imported[info.Pkg.Path()] = info
+ }
+
+ // Augment the designated initial packages by their tests.
+ // Dependencies are loaded in parallel.
+ var xtestPkgs []*build.Package
+ for importPath, augment := range conf.ImportPkgs {
+ if !augment {
+ continue
+ }
+
+ // No vendor check on packages imported from command line.
+ bp, err := imp.findPackage(importPath, conf.Cwd, ignoreVendor)
+ if err != nil {
+ // Package not found, or can't even parse package declaration.
+ // Already reported by previous loop; ignore it.
+ continue
+ }
+
+ // Needs external test package?
+ if len(bp.XTestGoFiles) > 0 {
+ xtestPkgs = append(xtestPkgs, bp)
+ }
+
+ // Consult the cache using the canonical package path.
+ path := bp.ImportPath
+ imp.importedMu.Lock() // (unnecessary, we're sequential here)
+ ii, ok := imp.imported[path]
+ // Paranoid checks added due to issue #11012.
+ if !ok {
+ // Unreachable.
+ // The previous loop called importAll and thus
+ // startLoad for each path in ImportPkgs, which
+ // populates imp.imported[path] with a non-zero value.
+ panic(fmt.Sprintf("imported[%q] not found", path))
+ }
+ if ii == nil {
+ // Unreachable.
+ // The ii values in this loop are the same as in
+ // the previous loop, which enforced the invariant
+ // that at least one of ii.err and ii.info is non-nil.
+ panic(fmt.Sprintf("imported[%q] == nil", path))
+ }
+ if ii.info == nil {
+ // Unreachable.
+ // awaitCompletion has the postcondition
+ // ii.info != nil.
+ panic(fmt.Sprintf("imported[%q].info = nil", path))
+ }
+ info := ii.info
+ imp.importedMu.Unlock()
+
+ // Parse the in-package test files.
+ files, errs := imp.conf.parsePackageFiles(bp, 't')
+ for _, err := range errs {
+ info.appendError(err)
+ }
+
+ // The test files augmenting package P cannot be imported,
+ // but may import packages that import P,
+ // so we must disable the cycle check.
+ imp.addFiles(info, files, false)
+ }
+
+ createPkg := func(path, dir string, files []*ast.File, errs []error) {
+ info := imp.newPackageInfo(path, dir)
+ for _, err := range errs {
+ info.appendError(err)
+ }
+
+ // Ad hoc packages are non-importable,
+ // so no cycle check is needed.
+ // addFiles loads dependencies in parallel.
+ imp.addFiles(info, files, false)
+ prog.Created = append(prog.Created, info)
+ }
+
+ // Create packages specified by conf.CreatePkgs.
+ for _, cp := range conf.CreatePkgs {
+ files, errs := parseFiles(conf.fset(), conf.build(), nil, conf.Cwd, cp.Filenames, conf.ParserMode)
+ files = append(files, cp.Files...)
+
+ path := cp.Path
+ if path == "" {
+ if len(files) > 0 {
+ path = files[0].Name.Name
+ } else {
+ path = "(unnamed)"
+ }
+ }
+
+ dir := conf.Cwd
+ if len(files) > 0 && files[0].Pos().IsValid() {
+ dir = filepath.Dir(conf.fset().File(files[0].Pos()).Name())
+ }
+ createPkg(path, dir, files, errs)
+ }
+
+ // Create external test packages.
+ sort.Sort(byImportPath(xtestPkgs))
+ for _, bp := range xtestPkgs {
+ files, errs := imp.conf.parsePackageFiles(bp, 'x')
+ createPkg(bp.ImportPath+"_test", bp.Dir, files, errs)
+ }
+
+ // -- finishing up (sequential) ----------------------------------------
+
+ if len(prog.Imported)+len(prog.Created) == 0 {
+ return nil, errors.New("no initial packages were loaded")
+ }
+
+ // Create infos for indirectly imported packages.
+ // e.g. incomplete packages without syntax, loaded from export data.
+ for _, obj := range prog.importMap {
+ info := prog.AllPackages[obj]
+ if info == nil {
+ prog.AllPackages[obj] = &PackageInfo{Pkg: obj, Importable: true}
+ } else {
+ // finished
+ info.checker = nil
+ info.errorFunc = nil
+ }
+ }
+
+ if !conf.AllowErrors {
+ // Report errors in indirectly imported packages.
+ for _, info := range prog.AllPackages {
+ if len(info.Errors) > 0 {
+ errpkgs = append(errpkgs, info.Pkg.Path())
+ }
+ }
+ if errpkgs != nil {
+ var more string
+ if len(errpkgs) > 3 {
+ more = fmt.Sprintf(" and %d more", len(errpkgs)-3)
+ errpkgs = errpkgs[:3]
+ }
+ return nil, fmt.Errorf("couldn't load packages due to errors: %s%s",
+ strings.Join(errpkgs, ", "), more)
+ }
+ }
+
+ markErrorFreePackages(prog.AllPackages)
+
+ return prog, nil
+}
+
+type byImportPath []*build.Package
+
+func (b byImportPath) Len() int { return len(b) }
+func (b byImportPath) Less(i, j int) bool { return b[i].ImportPath < b[j].ImportPath }
+func (b byImportPath) Swap(i, j int) { b[i], b[j] = b[j], b[i] }
+
+// markErrorFreePackages sets the TransitivelyErrorFree flag on all
+// applicable packages.
+func markErrorFreePackages(allPackages map[*types.Package]*PackageInfo) {
+ // Build the transpose of the import graph.
+ importedBy := make(map[*types.Package]map[*types.Package]bool)
+ for P := range allPackages {
+ for _, Q := range P.Imports() {
+ clients, ok := importedBy[Q]
+ if !ok {
+ clients = make(map[*types.Package]bool)
+ importedBy[Q] = clients
+ }
+ clients[P] = true
+ }
+ }
+
+ // Find all packages reachable from some error package.
+ reachable := make(map[*types.Package]bool)
+ var visit func(*types.Package)
+ visit = func(p *types.Package) {
+ if !reachable[p] {
+ reachable[p] = true
+ for q := range importedBy[p] {
+ visit(q)
+ }
+ }
+ }
+ for _, info := range allPackages {
+ if len(info.Errors) > 0 {
+ visit(info.Pkg)
+ }
+ }
+
+ // Mark the others as "transitively error-free".
+ for _, info := range allPackages {
+ if !reachable[info.Pkg] {
+ info.TransitivelyErrorFree = true
+ }
+ }
+}
+
+// build returns the effective build context.
+func (conf *Config) build() *build.Context {
+ if conf.Build != nil {
+ return conf.Build
+ }
+ return &build.Default
+}
+
+// parsePackageFiles enumerates the files belonging to package path,
+// then loads, parses and returns them, plus a list of I/O or parse
+// errors that were encountered.
+//
+// 'which' indicates which files to include:
+//
+// 'g': include non-test *.go source files (GoFiles + processed CgoFiles)
+// 't': include in-package *_test.go source files (TestGoFiles)
+// 'x': include external *_test.go source files. (XTestGoFiles)
+func (conf *Config) parsePackageFiles(bp *build.Package, which rune) ([]*ast.File, []error) {
+ if bp.ImportPath == "unsafe" {
+ return nil, nil
+ }
+ var filenames []string
+ switch which {
+ case 'g':
+ filenames = bp.GoFiles
+ case 't':
+ filenames = bp.TestGoFiles
+ case 'x':
+ filenames = bp.XTestGoFiles
+ default:
+ panic(which)
+ }
+
+ files, errs := parseFiles(conf.fset(), conf.build(), conf.DisplayPath, bp.Dir, filenames, conf.ParserMode)
+
+ // Preprocess CgoFiles and parse the outputs (sequentially).
+ if which == 'g' && bp.CgoFiles != nil {
+ cgofiles, err := cgo.ProcessFiles(bp, conf.fset(), conf.DisplayPath, conf.ParserMode)
+ if err != nil {
+ errs = append(errs, err)
+ } else {
+ files = append(files, cgofiles...)
+ }
+ }
+
+ return files, errs
+}
+
+// doImport imports the package denoted by path.
+// It implements the types.Importer signature.
+//
+// It returns an error if a package could not be created
+// (e.g. go/build or parse error), but type errors are reported via
+// the types.Config.Error callback (the first of which is also saved
+// in the package's PackageInfo).
+//
+// Idempotent.
+func (imp *importer) doImport(from *PackageInfo, to string) (*types.Package, error) {
+ if to == "C" {
+ // This should be unreachable, but ad hoc packages are
+ // not currently subject to cgo preprocessing.
+ // See https://golang.org/issue/11627.
+ return nil, fmt.Errorf(`the loader doesn't cgo-process ad hoc packages like %q; see Go issue 11627`,
+ from.Pkg.Path())
+ }
+
+ bp, err := imp.findPackage(to, from.dir, 0)
+ if err != nil {
+ return nil, err
+ }
+
+ // The standard unsafe package is handled specially,
+ // and has no PackageInfo.
+ if bp.ImportPath == "unsafe" {
+ return types.Unsafe, nil
+ }
+
+ // Look for the package in the cache using its canonical path.
+ path := bp.ImportPath
+ imp.importedMu.Lock()
+ ii := imp.imported[path]
+ imp.importedMu.Unlock()
+ if ii == nil {
+ panic("internal error: unexpected import: " + path)
+ }
+ if ii.info != nil {
+ return ii.info.Pkg, nil
+ }
+
+ // Import of incomplete package: this indicates a cycle.
+ fromPath := from.Pkg.Path()
+ if cycle := imp.findPath(path, fromPath); cycle != nil {
+ // Normalize cycle: start from alphabetically largest node.
+ pos, start := -1, ""
+ for i, s := range cycle {
+ if pos < 0 || s > start {
+ pos, start = i, s
+ }
+ }
+ cycle = append(cycle, cycle[:pos]...)[pos:] // rotate cycle to start from largest
+ cycle = append(cycle, cycle[0]) // add start node to end to show cycliness
+ return nil, fmt.Errorf("import cycle: %s", strings.Join(cycle, " -> "))
+ }
+
+ panic("internal error: import of incomplete (yet acyclic) package: " + fromPath)
+}
+
+// findPackage locates the package denoted by the importPath in the
+// specified directory.
+func (imp *importer) findPackage(importPath, fromDir string, mode build.ImportMode) (*build.Package, error) {
+ // We use a non-blocking duplicate-suppressing cache (gopl.io §9.7)
+ // to avoid holding the lock around FindPackage.
+ key := findpkgKey{importPath, fromDir, mode}
+ imp.findpkgMu.Lock()
+ v, ok := imp.findpkg[key]
+ if ok {
+ // cache hit
+ imp.findpkgMu.Unlock()
+
+ <-v.ready // wait for entry to become ready
+ } else {
+ // Cache miss: this goroutine becomes responsible for
+ // populating the map entry and broadcasting its readiness.
+ v = &findpkgValue{ready: make(chan struct{})}
+ imp.findpkg[key] = v
+ imp.findpkgMu.Unlock()
+
+ ioLimit <- true
+ v.bp, v.err = imp.conf.FindPackage(imp.conf.build(), importPath, fromDir, mode)
+ <-ioLimit
+
+ if _, ok := v.err.(*build.NoGoError); ok {
+ v.err = nil // empty directory is not an error
+ }
+
+ close(v.ready) // broadcast ready condition
+ }
+ return v.bp, v.err
+}
+
+// importAll loads, parses, and type-checks the specified packages in
+// parallel and returns their completed importInfos in unspecified order.
+//
+// fromPath is the package path of the importing package, if it is
+// importable, "" otherwise. It is used for cycle detection.
+//
+// fromDir is the directory containing the import declaration that
+// caused these imports.
+func (imp *importer) importAll(fromPath, fromDir string, imports map[string]bool, mode build.ImportMode) (infos []*PackageInfo, errors []importError) {
+ if fromPath != "" {
+ // We're loading a set of imports.
+ //
+ // We must record graph edges from the importing package
+ // to its dependencies, and check for cycles.
+ imp.graphMu.Lock()
+ deps, ok := imp.graph[fromPath]
+ if !ok {
+ deps = make(map[string]bool)
+ imp.graph[fromPath] = deps
+ }
+ for importPath := range imports {
+ deps[importPath] = true
+ }
+ imp.graphMu.Unlock()
+ }
+
+ var pending []*importInfo
+ for importPath := range imports {
+ if fromPath != "" {
+ if cycle := imp.findPath(importPath, fromPath); cycle != nil {
+ // Cycle-forming import: we must not check it
+ // since it would deadlock.
+ if trace {
+ fmt.Fprintf(os.Stderr, "import cycle: %q\n", cycle)
+ }
+ continue
+ }
+ }
+ bp, err := imp.findPackage(importPath, fromDir, mode)
+ if err != nil {
+ errors = append(errors, importError{
+ path: importPath,
+ err: err,
+ })
+ continue
+ }
+ pending = append(pending, imp.startLoad(bp))
+ }
+
+ for _, ii := range pending {
+ ii.awaitCompletion()
+ infos = append(infos, ii.info)
+ }
+
+ return infos, errors
+}
+
+// findPath returns an arbitrary path from 'from' to 'to' in the import
+// graph, or nil if there was none.
+func (imp *importer) findPath(from, to string) []string {
+ imp.graphMu.Lock()
+ defer imp.graphMu.Unlock()
+
+ seen := make(map[string]bool)
+ var search func(stack []string, importPath string) []string
+ search = func(stack []string, importPath string) []string {
+ if !seen[importPath] {
+ seen[importPath] = true
+ stack = append(stack, importPath)
+ if importPath == to {
+ return stack
+ }
+ for x := range imp.graph[importPath] {
+ if p := search(stack, x); p != nil {
+ return p
+ }
+ }
+ }
+ return nil
+ }
+ return search(make([]string, 0, 20), from)
+}
+
+// startLoad initiates the loading, parsing and type-checking of the
+// specified package and its dependencies, if it has not already begun.
+//
+// It returns an importInfo, not necessarily in a completed state. The
+// caller must call awaitCompletion() before accessing its info field.
+//
+// startLoad is concurrency-safe and idempotent.
+func (imp *importer) startLoad(bp *build.Package) *importInfo {
+ path := bp.ImportPath
+ imp.importedMu.Lock()
+ ii, ok := imp.imported[path]
+ if !ok {
+ ii = &importInfo{path: path, complete: make(chan struct{})}
+ imp.imported[path] = ii
+ go func() {
+ info := imp.load(bp)
+ ii.Complete(info)
+ }()
+ }
+ imp.importedMu.Unlock()
+
+ return ii
+}
+
+// load implements package loading by parsing Go source files
+// located by go/build.
+func (imp *importer) load(bp *build.Package) *PackageInfo {
+ info := imp.newPackageInfo(bp.ImportPath, bp.Dir)
+ info.Importable = true
+ files, errs := imp.conf.parsePackageFiles(bp, 'g')
+ for _, err := range errs {
+ info.appendError(err)
+ }
+
+ imp.addFiles(info, files, true)
+
+ imp.progMu.Lock()
+ imp.prog.importMap[bp.ImportPath] = info.Pkg
+ imp.progMu.Unlock()
+
+ return info
+}
+
+// addFiles adds and type-checks the specified files to info, loading
+// their dependencies if needed. The order of files determines the
+// package initialization order. It may be called multiple times on the
+// same package. Errors are appended to the info.Errors field.
+//
+// cycleCheck determines whether the imports within files create
+// dependency edges that should be checked for potential cycles.
+func (imp *importer) addFiles(info *PackageInfo, files []*ast.File, cycleCheck bool) {
+ // Ensure the dependencies are loaded, in parallel.
+ var fromPath string
+ if cycleCheck {
+ fromPath = info.Pkg.Path()
+ }
+ // TODO(adonovan): opt: make the caller do scanImports.
+ // Callers with a build.Package can skip it.
+ imp.importAll(fromPath, info.dir, scanImports(files), 0)
+
+ if trace {
+ fmt.Fprintf(os.Stderr, "%s: start %q (%d)\n",
+ time.Since(imp.start), info.Pkg.Path(), len(files))
+ }
+
+ // Don't call checker.Files on Unsafe, even with zero files,
+ // because it would mutate the package, which is a global.
+ if info.Pkg == types.Unsafe {
+ if len(files) > 0 {
+ panic(`"unsafe" package contains unexpected files`)
+ }
+ } else {
+ // Ignore the returned (first) error since we
+ // already collect them all in the PackageInfo.
+ info.checker.Files(files)
+ info.Files = append(info.Files, files...)
+ }
+
+ if imp.conf.AfterTypeCheck != nil {
+ imp.conf.AfterTypeCheck(info, files)
+ }
+
+ if trace {
+ fmt.Fprintf(os.Stderr, "%s: stop %q\n",
+ time.Since(imp.start), info.Pkg.Path())
+ }
+}
+
+func (imp *importer) newPackageInfo(path, dir string) *PackageInfo {
+ var pkg *types.Package
+ if path == "unsafe" {
+ pkg = types.Unsafe
+ } else {
+ pkg = types.NewPackage(path, "")
+ }
+ info := &PackageInfo{
+ Pkg: pkg,
+ Info: types.Info{
+ Types: make(map[ast.Expr]types.TypeAndValue),
+ Defs: make(map[*ast.Ident]types.Object),
+ Uses: make(map[*ast.Ident]types.Object),
+ Implicits: make(map[ast.Node]types.Object),
+ Instances: make(map[*ast.Ident]types.Instance),
+ Scopes: make(map[ast.Node]*types.Scope),
+ Selections: make(map[*ast.SelectorExpr]*types.Selection),
+ },
+ errorFunc: imp.conf.TypeChecker.Error,
+ dir: dir,
+ }
+ versions.InitFileVersions(&info.Info)
+
+ // Copy the types.Config so we can vary it across PackageInfos.
+ tc := imp.conf.TypeChecker
+ tc.IgnoreFuncBodies = false
+ if f := imp.conf.TypeCheckFuncBodies; f != nil {
+ tc.IgnoreFuncBodies = !f(path)
+ }
+ tc.Importer = closure{imp, info}
+ tc.Error = info.appendError // appendError wraps the user's Error function
+
+ info.checker = types.NewChecker(&tc, imp.conf.fset(), pkg, &info.Info)
+ imp.progMu.Lock()
+ imp.prog.AllPackages[pkg] = info
+ imp.progMu.Unlock()
+ return info
+}
+
+type closure struct {
+ imp *importer
+ info *PackageInfo
+}
+
+func (c closure) Import(to string) (*types.Package, error) { return c.imp.doImport(c.info, to) }
diff --git a/vendor/golang.org/x/tools/go/loader/util.go b/vendor/golang.org/x/tools/go/loader/util.go
new file mode 100644
index 0000000..3a80aca
--- /dev/null
+++ b/vendor/golang.org/x/tools/go/loader/util.go
@@ -0,0 +1,123 @@
+// Copyright 2013 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package loader
+
+import (
+ "go/ast"
+ "go/build"
+ "go/parser"
+ "go/token"
+ "io"
+ "os"
+ "strconv"
+ "sync"
+
+ "golang.org/x/tools/go/buildutil"
+)
+
+// We use a counting semaphore to limit
+// the number of parallel I/O calls per process.
+var ioLimit = make(chan bool, 10)
+
+// parseFiles parses the Go source files within directory dir and
+// returns the ASTs of the ones that could be at least partially parsed,
+// along with a list of I/O and parse errors encountered.
+//
+// I/O is done via ctxt, which may specify a virtual file system.
+// displayPath is used to transform the filenames attached to the ASTs.
+func parseFiles(fset *token.FileSet, ctxt *build.Context, displayPath func(string) string, dir string, files []string, mode parser.Mode) ([]*ast.File, []error) {
+ if displayPath == nil {
+ displayPath = func(path string) string { return path }
+ }
+ var wg sync.WaitGroup
+ n := len(files)
+ parsed := make([]*ast.File, n)
+ errors := make([]error, n)
+ for i, file := range files {
+ if !buildutil.IsAbsPath(ctxt, file) {
+ file = buildutil.JoinPath(ctxt, dir, file)
+ }
+ wg.Add(1)
+ go func(i int, file string) {
+ ioLimit <- true // wait
+ defer func() {
+ wg.Done()
+ <-ioLimit // signal
+ }()
+ var rd io.ReadCloser
+ var err error
+ if ctxt.OpenFile != nil {
+ rd, err = ctxt.OpenFile(file)
+ } else {
+ rd, err = os.Open(file)
+ }
+ if err != nil {
+ errors[i] = err // open failed
+ return
+ }
+
+ // ParseFile may return both an AST and an error.
+ parsed[i], errors[i] = parser.ParseFile(fset, displayPath(file), rd, mode)
+ rd.Close()
+ }(i, file)
+ }
+ wg.Wait()
+
+ // Eliminate nils, preserving order.
+ var o int
+ for _, f := range parsed {
+ if f != nil {
+ parsed[o] = f
+ o++
+ }
+ }
+ parsed = parsed[:o]
+
+ o = 0
+ for _, err := range errors {
+ if err != nil {
+ errors[o] = err
+ o++
+ }
+ }
+ errors = errors[:o]
+
+ return parsed, errors
+}
+
+// scanImports returns the set of all import paths from all
+// import specs in the specified files.
+func scanImports(files []*ast.File) map[string]bool {
+ imports := make(map[string]bool)
+ for _, f := range files {
+ for _, decl := range f.Decls {
+ if decl, ok := decl.(*ast.GenDecl); ok && decl.Tok == token.IMPORT {
+ for _, spec := range decl.Specs {
+ spec := spec.(*ast.ImportSpec)
+
+ // NB: do not assume the program is well-formed!
+ path, err := strconv.Unquote(spec.Path.Value)
+ if err != nil {
+ continue // quietly ignore the error
+ }
+ if path == "C" {
+ continue // skip pseudopackage
+ }
+ imports[path] = true
+ }
+ }
+ }
+ }
+ return imports
+}
+
+// ---------- Internal helpers ----------
+
+// TODO(adonovan): make this a method: func (*token.File) Contains(token.Pos)
+func tokenFileContainsPos(f *token.File, pos token.Pos) bool {
+ p := int(pos)
+ base := f.Base()
+ return base <= p && p < base+f.Size()
+}
diff --git a/vendor/golang.org/x/tools/go/packages/doc.go b/vendor/golang.org/x/tools/go/packages/doc.go
new file mode 100644
index 0000000..3531ac8
--- /dev/null
+++ b/vendor/golang.org/x/tools/go/packages/doc.go
@@ -0,0 +1,242 @@
+// Copyright 2018 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+/*
+Package packages loads Go packages for inspection and analysis.
+
+The [Load] function takes as input a list of patterns and returns a
+list of [Package] values describing individual packages matched by those
+patterns.
+A [Config] specifies configuration options, the most important of which is
+the [LoadMode], which controls the amount of detail in the loaded packages.
+
+Load passes most patterns directly to the underlying build tool.
+The default build tool is the go command.
+Its supported patterns are described at
+https://pkg.go.dev/cmd/go#hdr-Package_lists_and_patterns.
+Other build systems may be supported by providing a "driver";
+see [The driver protocol].
+
+All patterns with the prefix "query=", where query is a
+non-empty string of letters from [a-z], are reserved and may be
+interpreted as query operators.
+
+Two query operators are currently supported: "file" and "pattern".
+
+The query "file=path/to/file.go" matches the package or packages enclosing
+the Go source file path/to/file.go. For example "file=~/go/src/fmt/print.go"
+might return the packages "fmt" and "fmt [fmt.test]".
+
+The query "pattern=string" causes "string" to be passed directly to
+the underlying build tool. In most cases this is unnecessary,
+but an application can use Load("pattern=" + x) as an escaping mechanism
+to ensure that x is not interpreted as a query operator if it contains '='.
+
+All other query operators are reserved for future use and currently
+cause Load to report an error.
+
+The Package struct provides basic information about the package, including
+
+ - ID, a unique identifier for the package in the returned set;
+ - GoFiles, the names of the package's Go source files;
+ - Imports, a map from source import strings to the Packages they name;
+ - Types, the type information for the package's exported symbols;
+ - Syntax, the parsed syntax trees for the package's source code; and
+ - TypesInfo, the result of a complete type-check of the package syntax trees.
+
+(See the documentation for type Package for the complete list of fields
+and more detailed descriptions.)
+
+For example,
+
+ Load(nil, "bytes", "unicode...")
+
+returns four Package structs describing the standard library packages
+bytes, unicode, unicode/utf16, and unicode/utf8. Note that one pattern
+can match multiple packages and that a package might be matched by
+multiple patterns: in general it is not possible to determine which
+packages correspond to which patterns.
+
+Note that the list returned by Load contains only the packages matched
+by the patterns. Their dependencies can be found by walking the import
+graph using the Imports fields.
+
+The Load function can be configured by passing a pointer to a Config as
+the first argument. A nil Config is equivalent to the zero Config, which
+causes Load to run in LoadFiles mode, collecting minimal information.
+See the documentation for type Config for details.
+
+As noted earlier, the Config.Mode controls the amount of detail
+reported about the loaded packages. See the documentation for type LoadMode
+for details.
+
+Most tools should pass their command-line arguments (after any flags)
+uninterpreted to [Load], so that it can interpret them
+according to the conventions of the underlying build system.
+
+See the Example function for typical usage.
+
+# The driver protocol
+
+[Load] may be used to load Go packages even in Go projects that use
+alternative build systems, by installing an appropriate "driver"
+program for the build system and specifying its location in the
+GOPACKAGESDRIVER environment variable.
+For example,
+https://github.com/bazelbuild/rules_go/wiki/Editor-and-tool-integration
+explains how to use the driver for Bazel.
+
+The driver program is responsible for interpreting patterns in its
+preferred notation and reporting information about the packages that
+those patterns identify. Drivers must also support the special "file="
+and "pattern=" patterns described above.
+
+The patterns are provided as positional command-line arguments. A
+JSON-encoded [DriverRequest] message providing additional information
+is written to the driver's standard input. The driver must write a
+JSON-encoded [DriverResponse] message to its standard output. (This
+message differs from the JSON schema produced by 'go list'.)
+*/
+package packages // import "golang.org/x/tools/go/packages"
+
+/*
+
+Motivation and design considerations
+
+The new package's design solves problems addressed by two existing
+packages: go/build, which locates and describes packages, and
+golang.org/x/tools/go/loader, which loads, parses and type-checks them.
+The go/build.Package structure encodes too much of the 'go build' way
+of organizing projects, leaving us in need of a data type that describes a
+package of Go source code independent of the underlying build system.
+We wanted something that works equally well with go build and vgo, and
+also other build systems such as Bazel and Blaze, making it possible to
+construct analysis tools that work in all these environments.
+Tools such as errcheck and staticcheck were essentially unavailable to
+the Go community at Google, and some of Google's internal tools for Go
+are unavailable externally.
+This new package provides a uniform way to obtain package metadata by
+querying each of these build systems, optionally supporting their
+preferred command-line notations for packages, so that tools integrate
+neatly with users' build environments. The Metadata query function
+executes an external query tool appropriate to the current workspace.
+
+Loading packages always returns the complete import graph "all the way down",
+even if all you want is information about a single package, because the query
+mechanisms of all the build systems we currently support ({go,vgo} list, and
+blaze/bazel aspect-based query) cannot provide detailed information
+about one package without visiting all its dependencies too, so there is
+no additional asymptotic cost to providing transitive information.
+(This property might not be true of a hypothetical 5th build system.)
+
+In calls to TypeCheck, all initial packages, and any package that
+transitively depends on one of them, must be loaded from source.
+Consider A->B->C->D->E: if A,C are initial, A,B,C must be loaded from
+source; D may be loaded from export data, and E may not be loaded at all
+(though it's possible that D's export data mentions it, so a
+types.Package may be created for it and exposed.)
+
+The old loader had a feature to suppress type-checking of function
+bodies on a per-package basis, primarily intended to reduce the work of
+obtaining type information for imported packages. Now that imports are
+satisfied by export data, the optimization no longer seems necessary.
+
+Despite some early attempts, the old loader did not exploit export data,
+instead always using the equivalent of WholeProgram mode. This was due
+to the complexity of mixing source and export data packages (now
+resolved by the upward traversal mentioned above), and because export data
+files were nearly always missing or stale. Now that 'go build' supports
+caching, all the underlying build systems can guarantee to produce
+export data in a reasonable (amortized) time.
+
+Test "main" packages synthesized by the build system are now reported as
+first-class packages, avoiding the need for clients (such as go/ssa) to
+reinvent this generation logic.
+
+One way in which go/packages is simpler than the old loader is in its
+treatment of in-package tests. In-package tests are packages that
+consist of all the files of the library under test, plus the test files.
+The old loader constructed in-package tests by a two-phase process of
+mutation called "augmentation": first it would construct and type check
+all the ordinary library packages and type-check the packages that
+depend on them; then it would add more (test) files to the package and
+type-check again. This two-phase approach had four major problems:
+1) in processing the tests, the loader modified the library package,
+ leaving no way for a client application to see both the test
+ package and the library package; one would mutate into the other.
+2) because test files can declare additional methods on types defined in
+ the library portion of the package, the dispatch of method calls in
+ the library portion was affected by the presence of the test files.
+ This should have been a clue that the packages were logically
+ different.
+3) this model of "augmentation" assumed at most one in-package test
+ per library package, which is true of projects using 'go build',
+ but not other build systems.
+4) because of the two-phase nature of test processing, all packages that
+ import the library package had to be processed before augmentation,
+ forcing a "one-shot" API and preventing the client from calling Load
+ in several times in sequence as is now possible in WholeProgram mode.
+ (TypeCheck mode has a similar one-shot restriction for a different reason.)
+
+Early drafts of this package supported "multi-shot" operation.
+Although it allowed clients to make a sequence of calls (or concurrent
+calls) to Load, building up the graph of Packages incrementally,
+it was of marginal value: it complicated the API
+(since it allowed some options to vary across calls but not others),
+it complicated the implementation,
+it cannot be made to work in Types mode, as explained above,
+and it was less efficient than making one combined call (when this is possible).
+Among the clients we have inspected, none made multiple calls to load
+but could not be easily and satisfactorily modified to make only a single call.
+However, applications changes may be required.
+For example, the ssadump command loads the user-specified packages
+and in addition the runtime package. It is tempting to simply append
+"runtime" to the user-provided list, but that does not work if the user
+specified an ad-hoc package such as [a.go b.go].
+Instead, ssadump no longer requests the runtime package,
+but seeks it among the dependencies of the user-specified packages,
+and emits an error if it is not found.
+
+Questions & Tasks
+
+- Add GOARCH/GOOS?
+ They are not portable concepts, but could be made portable.
+ Our goal has been to allow users to express themselves using the conventions
+ of the underlying build system: if the build system honors GOARCH
+ during a build and during a metadata query, then so should
+ applications built atop that query mechanism.
+ Conversely, if the target architecture of the build is determined by
+ command-line flags, the application can pass the relevant
+ flags through to the build system using a command such as:
+ myapp -query_flag="--cpu=amd64" -query_flag="--os=darwin"
+ However, this approach is low-level, unwieldy, and non-portable.
+ GOOS and GOARCH seem important enough to warrant a dedicated option.
+
+- How should we handle partial failures such as a mixture of good and
+ malformed patterns, existing and non-existent packages, successful and
+ failed builds, import failures, import cycles, and so on, in a call to
+ Load?
+
+- Support bazel, blaze, and go1.10 list, not just go1.11 list.
+
+- Handle (and test) various partial success cases, e.g.
+ a mixture of good packages and:
+ invalid patterns
+ nonexistent packages
+ empty packages
+ packages with malformed package or import declarations
+ unreadable files
+ import cycles
+ other parse errors
+ type errors
+ Make sure we record errors at the correct place in the graph.
+
+- Missing packages among initial arguments are not reported.
+ Return bogus packages for them, like golist does.
+
+- "undeclared name" errors (for example) are reported out of source file
+ order. I suspect this is due to the breadth-first resolution now used
+ by go/types. Is that a bug? Discuss with gri.
+
+*/
diff --git a/vendor/golang.org/x/tools/go/packages/external.go b/vendor/golang.org/x/tools/go/packages/external.go
new file mode 100644
index 0000000..c2b4b71
--- /dev/null
+++ b/vendor/golang.org/x/tools/go/packages/external.go
@@ -0,0 +1,156 @@
+// Copyright 2018 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package packages
+
+// This file defines the protocol that enables an external "driver"
+// tool to supply package metadata in place of 'go list'.
+
+import (
+ "bytes"
+ "encoding/json"
+ "fmt"
+ "os"
+ "os/exec"
+ "strings"
+)
+
+// DriverRequest defines the schema of a request for package metadata
+// from an external driver program. The JSON-encoded DriverRequest
+// message is provided to the driver program's standard input. The
+// query patterns are provided as command-line arguments.
+//
+// See the package documentation for an overview.
+type DriverRequest struct {
+ Mode LoadMode `json:"mode"`
+
+ // Env specifies the environment the underlying build system should be run in.
+ Env []string `json:"env"`
+
+ // BuildFlags are flags that should be passed to the underlying build system.
+ BuildFlags []string `json:"build_flags"`
+
+ // Tests specifies whether the patterns should also return test packages.
+ Tests bool `json:"tests"`
+
+ // Overlay maps file paths (relative to the driver's working directory)
+ // to the contents of overlay files (see Config.Overlay).
+ Overlay map[string][]byte `json:"overlay"`
+}
+
+// DriverResponse defines the schema of a response from an external
+// driver program, providing the results of a query for package
+// metadata. The driver program must write a JSON-encoded
+// DriverResponse message to its standard output.
+//
+// See the package documentation for an overview.
+type DriverResponse struct {
+ // NotHandled is returned if the request can't be handled by the current
+ // driver. If an external driver returns a response with NotHandled, the
+ // rest of the DriverResponse is ignored, and go/packages will fallback
+ // to the next driver. If go/packages is extended in the future to support
+ // lists of multiple drivers, go/packages will fall back to the next driver.
+ NotHandled bool
+
+ // Compiler and Arch are the arguments pass of types.SizesFor
+ // to get a types.Sizes to use when type checking.
+ Compiler string
+ Arch string
+
+ // Roots is the set of package IDs that make up the root packages.
+ // We have to encode this separately because when we encode a single package
+ // we cannot know if it is one of the roots as that requires knowledge of the
+ // graph it is part of.
+ Roots []string `json:",omitempty"`
+
+ // Packages is the full set of packages in the graph.
+ // The packages are not connected into a graph.
+ // The Imports if populated will be stubs that only have their ID set.
+ // Imports will be connected and then type and syntax information added in a
+ // later pass (see refine).
+ Packages []*Package
+
+ // GoVersion is the minor version number used by the driver
+ // (e.g. the go command on the PATH) when selecting .go files.
+ // Zero means unknown.
+ GoVersion int
+}
+
+// driver is the type for functions that query the build system for the
+// packages named by the patterns.
+type driver func(cfg *Config, patterns ...string) (*DriverResponse, error)
+
+// findExternalDriver returns the file path of a tool that supplies
+// the build system package structure, or "" if not found."
+// If GOPACKAGESDRIVER is set in the environment findExternalTool returns its
+// value, otherwise it searches for a binary named gopackagesdriver on the PATH.
+func findExternalDriver(cfg *Config) driver {
+ const toolPrefix = "GOPACKAGESDRIVER="
+ tool := ""
+ for _, env := range cfg.Env {
+ if val := strings.TrimPrefix(env, toolPrefix); val != env {
+ tool = val
+ }
+ }
+ if tool != "" && tool == "off" {
+ return nil
+ }
+ if tool == "" {
+ var err error
+ tool, err = exec.LookPath("gopackagesdriver")
+ if err != nil {
+ return nil
+ }
+ }
+ return func(cfg *Config, words ...string) (*DriverResponse, error) {
+ req, err := json.Marshal(DriverRequest{
+ Mode: cfg.Mode,
+ Env: cfg.Env,
+ BuildFlags: cfg.BuildFlags,
+ Tests: cfg.Tests,
+ Overlay: cfg.Overlay,
+ })
+ if err != nil {
+ return nil, fmt.Errorf("failed to encode message to driver tool: %v", err)
+ }
+
+ buf := new(bytes.Buffer)
+ stderr := new(bytes.Buffer)
+ cmd := exec.CommandContext(cfg.Context, tool, words...)
+ cmd.Dir = cfg.Dir
+ // The cwd gets resolved to the real path. On Darwin, where
+ // /tmp is a symlink, this breaks anything that expects the
+ // working directory to keep the original path, including the
+ // go command when dealing with modules.
+ //
+ // os.Getwd stdlib has a special feature where if the
+ // cwd and the PWD are the same node then it trusts
+ // the PWD, so by setting it in the env for the child
+ // process we fix up all the paths returned by the go
+ // command.
+ //
+ // (See similar trick in Invocation.run in ../../internal/gocommand/invoke.go)
+ cmd.Env = append(slicesClip(cfg.Env), "PWD="+cfg.Dir)
+ cmd.Stdin = bytes.NewReader(req)
+ cmd.Stdout = buf
+ cmd.Stderr = stderr
+
+ if err := cmd.Run(); err != nil {
+ return nil, fmt.Errorf("%v: %v: %s", tool, err, cmd.Stderr)
+ }
+ if len(stderr.Bytes()) != 0 && os.Getenv("GOPACKAGESPRINTDRIVERERRORS") != "" {
+ fmt.Fprintf(os.Stderr, "%s stderr: <<%s>>\n", cmdDebugStr(cmd), stderr)
+ }
+
+ var response DriverResponse
+ if err := json.Unmarshal(buf.Bytes(), &response); err != nil {
+ return nil, err
+ }
+ return &response, nil
+ }
+}
+
+// slicesClip removes unused capacity from the slice, returning s[:len(s):len(s)].
+// TODO(adonovan): use go1.21 slices.Clip.
+func slicesClip[S ~[]E, E any](s S) S { return s[:len(s):len(s)] }
diff --git a/vendor/golang.org/x/tools/go/packages/golist.go b/vendor/golang.org/x/tools/go/packages/golist.go
new file mode 100644
index 0000000..1a3a5b4
--- /dev/null
+++ b/vendor/golang.org/x/tools/go/packages/golist.go
@@ -0,0 +1,1066 @@
+// Copyright 2018 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package packages
+
+import (
+ "bytes"
+ "context"
+ "encoding/json"
+ "fmt"
+ "log"
+ "os"
+ "os/exec"
+ "path"
+ "path/filepath"
+ "reflect"
+ "sort"
+ "strconv"
+ "strings"
+ "sync"
+ "unicode"
+
+ "golang.org/x/tools/internal/gocommand"
+ "golang.org/x/tools/internal/packagesinternal"
+)
+
+// debug controls verbose logging.
+var debug, _ = strconv.ParseBool(os.Getenv("GOPACKAGESDEBUG"))
+
+// A goTooOldError reports that the go command
+// found by exec.LookPath is too old to use the new go list behavior.
+type goTooOldError struct {
+ error
+}
+
+// responseDeduper wraps a DriverResponse, deduplicating its contents.
+type responseDeduper struct {
+ seenRoots map[string]bool
+ seenPackages map[string]*Package
+ dr *DriverResponse
+}
+
+func newDeduper() *responseDeduper {
+ return &responseDeduper{
+ dr: &DriverResponse{},
+ seenRoots: map[string]bool{},
+ seenPackages: map[string]*Package{},
+ }
+}
+
+// addAll fills in r with a DriverResponse.
+func (r *responseDeduper) addAll(dr *DriverResponse) {
+ for _, pkg := range dr.Packages {
+ r.addPackage(pkg)
+ }
+ for _, root := range dr.Roots {
+ r.addRoot(root)
+ }
+ r.dr.GoVersion = dr.GoVersion
+}
+
+func (r *responseDeduper) addPackage(p *Package) {
+ if r.seenPackages[p.ID] != nil {
+ return
+ }
+ r.seenPackages[p.ID] = p
+ r.dr.Packages = append(r.dr.Packages, p)
+}
+
+func (r *responseDeduper) addRoot(id string) {
+ if r.seenRoots[id] {
+ return
+ }
+ r.seenRoots[id] = true
+ r.dr.Roots = append(r.dr.Roots, id)
+}
+
+type golistState struct {
+ cfg *Config
+ ctx context.Context
+
+ envOnce sync.Once
+ goEnvError error
+ goEnv map[string]string
+
+ rootsOnce sync.Once
+ rootDirsError error
+ rootDirs map[string]string
+
+ goVersionOnce sync.Once
+ goVersionError error
+ goVersion int // The X in Go 1.X.
+
+ // vendorDirs caches the (non)existence of vendor directories.
+ vendorDirs map[string]bool
+}
+
+// getEnv returns Go environment variables. Only specific variables are
+// populated -- computing all of them is slow.
+func (state *golistState) getEnv() (map[string]string, error) {
+ state.envOnce.Do(func() {
+ var b *bytes.Buffer
+ b, state.goEnvError = state.invokeGo("env", "-json", "GOMOD", "GOPATH")
+ if state.goEnvError != nil {
+ return
+ }
+
+ state.goEnv = make(map[string]string)
+ decoder := json.NewDecoder(b)
+ if state.goEnvError = decoder.Decode(&state.goEnv); state.goEnvError != nil {
+ return
+ }
+ })
+ return state.goEnv, state.goEnvError
+}
+
+// mustGetEnv is a convenience function that can be used if getEnv has already succeeded.
+func (state *golistState) mustGetEnv() map[string]string {
+ env, err := state.getEnv()
+ if err != nil {
+ panic(fmt.Sprintf("mustGetEnv: %v", err))
+ }
+ return env
+}
+
+// goListDriver uses the go list command to interpret the patterns and produce
+// the build system package structure.
+// See driver for more details.
+func goListDriver(cfg *Config, patterns ...string) (_ *DriverResponse, err error) {
+ // Make sure that any asynchronous go commands are killed when we return.
+ parentCtx := cfg.Context
+ if parentCtx == nil {
+ parentCtx = context.Background()
+ }
+ ctx, cancel := context.WithCancel(parentCtx)
+ defer cancel()
+
+ response := newDeduper()
+
+ state := &golistState{
+ cfg: cfg,
+ ctx: ctx,
+ vendorDirs: map[string]bool{},
+ }
+
+ // Fill in response.Sizes asynchronously if necessary.
+ if cfg.Mode&NeedTypesSizes != 0 || cfg.Mode&NeedTypes != 0 {
+ errCh := make(chan error)
+ go func() {
+ compiler, arch, err := getSizesForArgs(ctx, state.cfgInvocation(), cfg.gocmdRunner)
+ response.dr.Compiler = compiler
+ response.dr.Arch = arch
+ errCh <- err
+ }()
+ defer func() {
+ if sizesErr := <-errCh; sizesErr != nil {
+ err = sizesErr
+ }
+ }()
+ }
+
+ // Determine files requested in contains patterns
+ var containFiles []string
+ restPatterns := make([]string, 0, len(patterns))
+ // Extract file= and other [querytype]= patterns. Report an error if querytype
+ // doesn't exist.
+extractQueries:
+ for _, pattern := range patterns {
+ eqidx := strings.Index(pattern, "=")
+ if eqidx < 0 {
+ restPatterns = append(restPatterns, pattern)
+ } else {
+ query, value := pattern[:eqidx], pattern[eqidx+len("="):]
+ switch query {
+ case "file":
+ containFiles = append(containFiles, value)
+ case "pattern":
+ restPatterns = append(restPatterns, value)
+ case "": // not a reserved query
+ restPatterns = append(restPatterns, pattern)
+ default:
+ for _, rune := range query {
+ if rune < 'a' || rune > 'z' { // not a reserved query
+ restPatterns = append(restPatterns, pattern)
+ continue extractQueries
+ }
+ }
+ // Reject all other patterns containing "="
+ return nil, fmt.Errorf("invalid query type %q in query pattern %q", query, pattern)
+ }
+ }
+ }
+
+ // See if we have any patterns to pass through to go list. Zero initial
+ // patterns also requires a go list call, since it's the equivalent of
+ // ".".
+ if len(restPatterns) > 0 || len(patterns) == 0 {
+ dr, err := state.createDriverResponse(restPatterns...)
+ if err != nil {
+ return nil, err
+ }
+ response.addAll(dr)
+ }
+
+ if len(containFiles) != 0 {
+ if err := state.runContainsQueries(response, containFiles); err != nil {
+ return nil, err
+ }
+ }
+
+ // (We may yet return an error due to defer.)
+ return response.dr, nil
+}
+
+func (state *golistState) runContainsQueries(response *responseDeduper, queries []string) error {
+ for _, query := range queries {
+ // TODO(matloob): Do only one query per directory.
+ fdir := filepath.Dir(query)
+ // Pass absolute path of directory to go list so that it knows to treat it as a directory,
+ // not a package path.
+ pattern, err := filepath.Abs(fdir)
+ if err != nil {
+ return fmt.Errorf("could not determine absolute path of file= query path %q: %v", query, err)
+ }
+ dirResponse, err := state.createDriverResponse(pattern)
+
+ // If there was an error loading the package, or no packages are returned,
+ // or the package is returned with errors, try to load the file as an
+ // ad-hoc package.
+ // Usually the error will appear in a returned package, but may not if we're
+ // in module mode and the ad-hoc is located outside a module.
+ if err != nil || len(dirResponse.Packages) == 0 || len(dirResponse.Packages) == 1 && len(dirResponse.Packages[0].GoFiles) == 0 &&
+ len(dirResponse.Packages[0].Errors) == 1 {
+ var queryErr error
+ if dirResponse, queryErr = state.adhocPackage(pattern, query); queryErr != nil {
+ return err // return the original error
+ }
+ }
+ isRoot := make(map[string]bool, len(dirResponse.Roots))
+ for _, root := range dirResponse.Roots {
+ isRoot[root] = true
+ }
+ for _, pkg := range dirResponse.Packages {
+ // Add any new packages to the main set
+ // We don't bother to filter packages that will be dropped by the changes of roots,
+ // that will happen anyway during graph construction outside this function.
+ // Over-reporting packages is not a problem.
+ response.addPackage(pkg)
+ // if the package was not a root one, it cannot have the file
+ if !isRoot[pkg.ID] {
+ continue
+ }
+ for _, pkgFile := range pkg.GoFiles {
+ if filepath.Base(query) == filepath.Base(pkgFile) {
+ response.addRoot(pkg.ID)
+ break
+ }
+ }
+ }
+ }
+ return nil
+}
+
+// adhocPackage attempts to load or construct an ad-hoc package for a given
+// query, if the original call to the driver produced inadequate results.
+func (state *golistState) adhocPackage(pattern, query string) (*DriverResponse, error) {
+ response, err := state.createDriverResponse(query)
+ if err != nil {
+ return nil, err
+ }
+ // If we get nothing back from `go list`,
+ // try to make this file into its own ad-hoc package.
+ // TODO(rstambler): Should this check against the original response?
+ if len(response.Packages) == 0 {
+ response.Packages = append(response.Packages, &Package{
+ ID: "command-line-arguments",
+ PkgPath: query,
+ GoFiles: []string{query},
+ CompiledGoFiles: []string{query},
+ Imports: make(map[string]*Package),
+ })
+ response.Roots = append(response.Roots, "command-line-arguments")
+ }
+ // Handle special cases.
+ if len(response.Packages) == 1 {
+ // golang/go#33482: If this is a file= query for ad-hoc packages where
+ // the file only exists on an overlay, and exists outside of a module,
+ // add the file to the package and remove the errors.
+ if response.Packages[0].ID == "command-line-arguments" ||
+ filepath.ToSlash(response.Packages[0].PkgPath) == filepath.ToSlash(query) {
+ if len(response.Packages[0].GoFiles) == 0 {
+ filename := filepath.Join(pattern, filepath.Base(query)) // avoid recomputing abspath
+ // TODO(matloob): check if the file is outside of a root dir?
+ for path := range state.cfg.Overlay {
+ if path == filename {
+ response.Packages[0].Errors = nil
+ response.Packages[0].GoFiles = []string{path}
+ response.Packages[0].CompiledGoFiles = []string{path}
+ }
+ }
+ }
+ }
+ }
+ return response, nil
+}
+
+// Fields must match go list;
+// see $GOROOT/src/cmd/go/internal/load/pkg.go.
+type jsonPackage struct {
+ ImportPath string
+ Dir string
+ Name string
+ Export string
+ GoFiles []string
+ CompiledGoFiles []string
+ IgnoredGoFiles []string
+ IgnoredOtherFiles []string
+ EmbedPatterns []string
+ EmbedFiles []string
+ CFiles []string
+ CgoFiles []string
+ CXXFiles []string
+ MFiles []string
+ HFiles []string
+ FFiles []string
+ SFiles []string
+ SwigFiles []string
+ SwigCXXFiles []string
+ SysoFiles []string
+ Imports []string
+ ImportMap map[string]string
+ Deps []string
+ Module *Module
+ TestGoFiles []string
+ TestImports []string
+ XTestGoFiles []string
+ XTestImports []string
+ ForTest string // q in a "p [q.test]" package, else ""
+ DepOnly bool
+
+ Error *packagesinternal.PackageError
+ DepsErrors []*packagesinternal.PackageError
+}
+
+type jsonPackageError struct {
+ ImportStack []string
+ Pos string
+ Err string
+}
+
+func otherFiles(p *jsonPackage) [][]string {
+ return [][]string{p.CFiles, p.CXXFiles, p.MFiles, p.HFiles, p.FFiles, p.SFiles, p.SwigFiles, p.SwigCXXFiles, p.SysoFiles}
+}
+
+// createDriverResponse uses the "go list" command to expand the pattern
+// words and return a response for the specified packages.
+func (state *golistState) createDriverResponse(words ...string) (*DriverResponse, error) {
+ // go list uses the following identifiers in ImportPath and Imports:
+ //
+ // "p" -- importable package or main (command)
+ // "q.test" -- q's test executable
+ // "p [q.test]" -- variant of p as built for q's test executable
+ // "q_test [q.test]" -- q's external test package
+ //
+ // The packages p that are built differently for a test q.test
+ // are q itself, plus any helpers used by the external test q_test,
+ // typically including "testing" and all its dependencies.
+
+ // Run "go list" for complete
+ // information on the specified packages.
+ goVersion, err := state.getGoVersion()
+ if err != nil {
+ return nil, err
+ }
+ buf, err := state.invokeGo("list", golistargs(state.cfg, words, goVersion)...)
+ if err != nil {
+ return nil, err
+ }
+
+ seen := make(map[string]*jsonPackage)
+ pkgs := make(map[string]*Package)
+ additionalErrors := make(map[string][]Error)
+ // Decode the JSON and convert it to Package form.
+ response := &DriverResponse{
+ GoVersion: goVersion,
+ }
+ for dec := json.NewDecoder(buf); dec.More(); {
+ p := new(jsonPackage)
+ if err := dec.Decode(p); err != nil {
+ return nil, fmt.Errorf("JSON decoding failed: %v", err)
+ }
+
+ if p.ImportPath == "" {
+ // The documentation for go list says that “[e]rroneous packages will have
+ // a non-empty ImportPath”. If for some reason it comes back empty, we
+ // prefer to error out rather than silently discarding data or handing
+ // back a package without any way to refer to it.
+ if p.Error != nil {
+ return nil, Error{
+ Pos: p.Error.Pos,
+ Msg: p.Error.Err,
+ }
+ }
+ return nil, fmt.Errorf("package missing import path: %+v", p)
+ }
+
+ // Work around https://golang.org/issue/33157:
+ // go list -e, when given an absolute path, will find the package contained at
+ // that directory. But when no package exists there, it will return a fake package
+ // with an error and the ImportPath set to the absolute path provided to go list.
+ // Try to convert that absolute path to what its package path would be if it's
+ // contained in a known module or GOPATH entry. This will allow the package to be
+ // properly "reclaimed" when overlays are processed.
+ if filepath.IsAbs(p.ImportPath) && p.Error != nil {
+ pkgPath, ok, err := state.getPkgPath(p.ImportPath)
+ if err != nil {
+ return nil, err
+ }
+ if ok {
+ p.ImportPath = pkgPath
+ }
+ }
+
+ if old, found := seen[p.ImportPath]; found {
+ // If one version of the package has an error, and the other doesn't, assume
+ // that this is a case where go list is reporting a fake dependency variant
+ // of the imported package: When a package tries to invalidly import another
+ // package, go list emits a variant of the imported package (with the same
+ // import path, but with an error on it, and the package will have a
+ // DepError set on it). An example of when this can happen is for imports of
+ // main packages: main packages can not be imported, but they may be
+ // separately matched and listed by another pattern.
+ // See golang.org/issue/36188 for more details.
+
+ // The plan is that eventually, hopefully in Go 1.15, the error will be
+ // reported on the importing package rather than the duplicate "fake"
+ // version of the imported package. Once all supported versions of Go
+ // have the new behavior this logic can be deleted.
+ // TODO(matloob): delete the workaround logic once all supported versions of
+ // Go return the errors on the proper package.
+
+ // There should be exactly one version of a package that doesn't have an
+ // error.
+ if old.Error == nil && p.Error == nil {
+ if !reflect.DeepEqual(p, old) {
+ return nil, fmt.Errorf("internal error: go list gives conflicting information for package %v", p.ImportPath)
+ }
+ continue
+ }
+
+ // Determine if this package's error needs to be bubbled up.
+ // This is a hack, and we expect for go list to eventually set the error
+ // on the package.
+ if old.Error != nil {
+ var errkind string
+ if strings.Contains(old.Error.Err, "not an importable package") {
+ errkind = "not an importable package"
+ } else if strings.Contains(old.Error.Err, "use of internal package") && strings.Contains(old.Error.Err, "not allowed") {
+ errkind = "use of internal package not allowed"
+ }
+ if errkind != "" {
+ if len(old.Error.ImportStack) < 1 {
+ return nil, fmt.Errorf(`internal error: go list gave a %q error with empty import stack`, errkind)
+ }
+ importingPkg := old.Error.ImportStack[len(old.Error.ImportStack)-1]
+ if importingPkg == old.ImportPath {
+ // Using an older version of Go which put this package itself on top of import
+ // stack, instead of the importer. Look for importer in second from top
+ // position.
+ if len(old.Error.ImportStack) < 2 {
+ return nil, fmt.Errorf(`internal error: go list gave a %q error with an import stack without importing package`, errkind)
+ }
+ importingPkg = old.Error.ImportStack[len(old.Error.ImportStack)-2]
+ }
+ additionalErrors[importingPkg] = append(additionalErrors[importingPkg], Error{
+ Pos: old.Error.Pos,
+ Msg: old.Error.Err,
+ Kind: ListError,
+ })
+ }
+ }
+
+ // Make sure that if there's a version of the package without an error,
+ // that's the one reported to the user.
+ if old.Error == nil {
+ continue
+ }
+
+ // This package will replace the old one at the end of the loop.
+ }
+ seen[p.ImportPath] = p
+
+ pkg := &Package{
+ Name: p.Name,
+ ID: p.ImportPath,
+ GoFiles: absJoin(p.Dir, p.GoFiles, p.CgoFiles),
+ CompiledGoFiles: absJoin(p.Dir, p.CompiledGoFiles),
+ OtherFiles: absJoin(p.Dir, otherFiles(p)...),
+ EmbedFiles: absJoin(p.Dir, p.EmbedFiles),
+ EmbedPatterns: absJoin(p.Dir, p.EmbedPatterns),
+ IgnoredFiles: absJoin(p.Dir, p.IgnoredGoFiles, p.IgnoredOtherFiles),
+ forTest: p.ForTest,
+ depsErrors: p.DepsErrors,
+ Module: p.Module,
+ }
+
+ if (state.cfg.Mode&typecheckCgo) != 0 && len(p.CgoFiles) != 0 {
+ if len(p.CompiledGoFiles) > len(p.GoFiles) {
+ // We need the cgo definitions, which are in the first
+ // CompiledGoFile after the non-cgo ones. This is a hack but there
+ // isn't currently a better way to find it. We also need the pure
+ // Go files and unprocessed cgo files, all of which are already
+ // in pkg.GoFiles.
+ cgoTypes := p.CompiledGoFiles[len(p.GoFiles)]
+ pkg.CompiledGoFiles = append([]string{cgoTypes}, pkg.GoFiles...)
+ } else {
+ // golang/go#38990: go list silently fails to do cgo processing
+ pkg.CompiledGoFiles = nil
+ pkg.Errors = append(pkg.Errors, Error{
+ Msg: "go list failed to return CompiledGoFiles. This may indicate failure to perform cgo processing; try building at the command line. See https://golang.org/issue/38990.",
+ Kind: ListError,
+ })
+ }
+ }
+
+ // Work around https://golang.org/issue/28749:
+ // cmd/go puts assembly, C, and C++ files in CompiledGoFiles.
+ // Remove files from CompiledGoFiles that are non-go files
+ // (or are not files that look like they are from the cache).
+ if len(pkg.CompiledGoFiles) > 0 {
+ out := pkg.CompiledGoFiles[:0]
+ for _, f := range pkg.CompiledGoFiles {
+ if ext := filepath.Ext(f); ext != ".go" && ext != "" { // ext == "" means the file is from the cache, so probably cgo-processed file
+ continue
+ }
+ out = append(out, f)
+ }
+ pkg.CompiledGoFiles = out
+ }
+
+ // Extract the PkgPath from the package's ID.
+ if i := strings.IndexByte(pkg.ID, ' '); i >= 0 {
+ pkg.PkgPath = pkg.ID[:i]
+ } else {
+ pkg.PkgPath = pkg.ID
+ }
+
+ if pkg.PkgPath == "unsafe" {
+ pkg.CompiledGoFiles = nil // ignore fake unsafe.go file (#59929)
+ } else if len(pkg.CompiledGoFiles) == 0 {
+ // Work around for pre-go.1.11 versions of go list.
+ // TODO(matloob): they should be handled by the fallback.
+ // Can we delete this?
+ pkg.CompiledGoFiles = pkg.GoFiles
+ }
+
+ // Assume go list emits only absolute paths for Dir.
+ if p.Dir != "" && !filepath.IsAbs(p.Dir) {
+ log.Fatalf("internal error: go list returned non-absolute Package.Dir: %s", p.Dir)
+ }
+
+ if p.Export != "" && !filepath.IsAbs(p.Export) {
+ pkg.ExportFile = filepath.Join(p.Dir, p.Export)
+ } else {
+ pkg.ExportFile = p.Export
+ }
+
+ // imports
+ //
+ // Imports contains the IDs of all imported packages.
+ // ImportsMap records (path, ID) only where they differ.
+ ids := make(map[string]bool)
+ for _, id := range p.Imports {
+ ids[id] = true
+ }
+ pkg.Imports = make(map[string]*Package)
+ for path, id := range p.ImportMap {
+ pkg.Imports[path] = &Package{ID: id} // non-identity import
+ delete(ids, id)
+ }
+ for id := range ids {
+ if id == "C" {
+ continue
+ }
+
+ pkg.Imports[id] = &Package{ID: id} // identity import
+ }
+ if !p.DepOnly {
+ response.Roots = append(response.Roots, pkg.ID)
+ }
+
+ // Temporary work-around for golang/go#39986. Parse filenames out of
+ // error messages. This happens if there are unrecoverable syntax
+ // errors in the source, so we can't match on a specific error message.
+ //
+ // TODO(rfindley): remove this heuristic, in favor of considering
+ // InvalidGoFiles from the list driver.
+ if err := p.Error; err != nil && state.shouldAddFilenameFromError(p) {
+ addFilenameFromPos := func(pos string) bool {
+ split := strings.Split(pos, ":")
+ if len(split) < 1 {
+ return false
+ }
+ filename := strings.TrimSpace(split[0])
+ if filename == "" {
+ return false
+ }
+ if !filepath.IsAbs(filename) {
+ filename = filepath.Join(state.cfg.Dir, filename)
+ }
+ info, _ := os.Stat(filename)
+ if info == nil {
+ return false
+ }
+ pkg.CompiledGoFiles = append(pkg.CompiledGoFiles, filename)
+ pkg.GoFiles = append(pkg.GoFiles, filename)
+ return true
+ }
+ found := addFilenameFromPos(err.Pos)
+ // In some cases, go list only reports the error position in the
+ // error text, not the error position. One such case is when the
+ // file's package name is a keyword (see golang.org/issue/39763).
+ if !found {
+ addFilenameFromPos(err.Err)
+ }
+ }
+
+ if p.Error != nil {
+ msg := strings.TrimSpace(p.Error.Err) // Trim to work around golang.org/issue/32363.
+ // Address golang.org/issue/35964 by appending import stack to error message.
+ if msg == "import cycle not allowed" && len(p.Error.ImportStack) != 0 {
+ msg += fmt.Sprintf(": import stack: %v", p.Error.ImportStack)
+ }
+ pkg.Errors = append(pkg.Errors, Error{
+ Pos: p.Error.Pos,
+ Msg: msg,
+ Kind: ListError,
+ })
+ }
+
+ pkgs[pkg.ID] = pkg
+ }
+
+ for id, errs := range additionalErrors {
+ if p, ok := pkgs[id]; ok {
+ p.Errors = append(p.Errors, errs...)
+ }
+ }
+ for _, pkg := range pkgs {
+ response.Packages = append(response.Packages, pkg)
+ }
+ sort.Slice(response.Packages, func(i, j int) bool { return response.Packages[i].ID < response.Packages[j].ID })
+
+ return response, nil
+}
+
+func (state *golistState) shouldAddFilenameFromError(p *jsonPackage) bool {
+ if len(p.GoFiles) > 0 || len(p.CompiledGoFiles) > 0 {
+ return false
+ }
+
+ goV, err := state.getGoVersion()
+ if err != nil {
+ return false
+ }
+
+ // On Go 1.14 and earlier, only add filenames from errors if the import stack is empty.
+ // The import stack behaves differently for these versions than newer Go versions.
+ if goV < 15 {
+ return len(p.Error.ImportStack) == 0
+ }
+
+ // On Go 1.15 and later, only parse filenames out of error if there's no import stack,
+ // or the current package is at the top of the import stack. This is not guaranteed
+ // to work perfectly, but should avoid some cases where files in errors don't belong to this
+ // package.
+ return len(p.Error.ImportStack) == 0 || p.Error.ImportStack[len(p.Error.ImportStack)-1] == p.ImportPath
+}
+
+// getGoVersion returns the effective minor version of the go command.
+func (state *golistState) getGoVersion() (int, error) {
+ state.goVersionOnce.Do(func() {
+ state.goVersion, state.goVersionError = gocommand.GoVersion(state.ctx, state.cfgInvocation(), state.cfg.gocmdRunner)
+ })
+ return state.goVersion, state.goVersionError
+}
+
+// getPkgPath finds the package path of a directory if it's relative to a root
+// directory.
+func (state *golistState) getPkgPath(dir string) (string, bool, error) {
+ absDir, err := filepath.Abs(dir)
+ if err != nil {
+ return "", false, err
+ }
+ roots, err := state.determineRootDirs()
+ if err != nil {
+ return "", false, err
+ }
+
+ for rdir, rpath := range roots {
+ // Make sure that the directory is in the module,
+ // to avoid creating a path relative to another module.
+ if !strings.HasPrefix(absDir, rdir) {
+ continue
+ }
+ // TODO(matloob): This doesn't properly handle symlinks.
+ r, err := filepath.Rel(rdir, dir)
+ if err != nil {
+ continue
+ }
+ if rpath != "" {
+ // We choose only one root even though the directory even it can belong in multiple modules
+ // or GOPATH entries. This is okay because we only need to work with absolute dirs when a
+ // file is missing from disk, for instance when gopls calls go/packages in an overlay.
+ // Once the file is saved, gopls, or the next invocation of the tool will get the correct
+ // result straight from golist.
+ // TODO(matloob): Implement module tiebreaking?
+ return path.Join(rpath, filepath.ToSlash(r)), true, nil
+ }
+ return filepath.ToSlash(r), true, nil
+ }
+ return "", false, nil
+}
+
+// absJoin absolutizes and flattens the lists of files.
+func absJoin(dir string, fileses ...[]string) (res []string) {
+ for _, files := range fileses {
+ for _, file := range files {
+ if !filepath.IsAbs(file) {
+ file = filepath.Join(dir, file)
+ }
+ res = append(res, file)
+ }
+ }
+ return res
+}
+
+func jsonFlag(cfg *Config, goVersion int) string {
+ if goVersion < 19 {
+ return "-json"
+ }
+ var fields []string
+ added := make(map[string]bool)
+ addFields := func(fs ...string) {
+ for _, f := range fs {
+ if !added[f] {
+ added[f] = true
+ fields = append(fields, f)
+ }
+ }
+ }
+ addFields("Name", "ImportPath", "Error") // These fields are always needed
+ if cfg.Mode&NeedFiles != 0 || cfg.Mode&NeedTypes != 0 {
+ addFields("Dir", "GoFiles", "IgnoredGoFiles", "IgnoredOtherFiles", "CFiles",
+ "CgoFiles", "CXXFiles", "MFiles", "HFiles", "FFiles", "SFiles",
+ "SwigFiles", "SwigCXXFiles", "SysoFiles")
+ if cfg.Tests {
+ addFields("TestGoFiles", "XTestGoFiles")
+ }
+ }
+ if cfg.Mode&NeedTypes != 0 {
+ // CompiledGoFiles seems to be required for the test case TestCgoNoSyntax,
+ // even when -compiled isn't passed in.
+ // TODO(#52435): Should we make the test ask for -compiled, or automatically
+ // request CompiledGoFiles in certain circumstances?
+ addFields("Dir", "CompiledGoFiles")
+ }
+ if cfg.Mode&NeedCompiledGoFiles != 0 {
+ addFields("Dir", "CompiledGoFiles", "Export")
+ }
+ if cfg.Mode&NeedImports != 0 {
+ // When imports are requested, DepOnly is used to distinguish between packages
+ // explicitly requested and transitive imports of those packages.
+ addFields("DepOnly", "Imports", "ImportMap")
+ if cfg.Tests {
+ addFields("TestImports", "XTestImports")
+ }
+ }
+ if cfg.Mode&NeedDeps != 0 {
+ addFields("DepOnly")
+ }
+ if usesExportData(cfg) {
+ // Request Dir in the unlikely case Export is not absolute.
+ addFields("Dir", "Export")
+ }
+ if cfg.Mode&needInternalForTest != 0 {
+ addFields("ForTest")
+ }
+ if cfg.Mode&needInternalDepsErrors != 0 {
+ addFields("DepsErrors")
+ }
+ if cfg.Mode&NeedModule != 0 {
+ addFields("Module")
+ }
+ if cfg.Mode&NeedEmbedFiles != 0 {
+ addFields("EmbedFiles")
+ }
+ if cfg.Mode&NeedEmbedPatterns != 0 {
+ addFields("EmbedPatterns")
+ }
+ return "-json=" + strings.Join(fields, ",")
+}
+
+func golistargs(cfg *Config, words []string, goVersion int) []string {
+ const findFlags = NeedImports | NeedTypes | NeedSyntax | NeedTypesInfo
+ fullargs := []string{
+ "-e", jsonFlag(cfg, goVersion),
+ fmt.Sprintf("-compiled=%t", cfg.Mode&(NeedCompiledGoFiles|NeedSyntax|NeedTypes|NeedTypesInfo|NeedTypesSizes) != 0),
+ fmt.Sprintf("-test=%t", cfg.Tests),
+ fmt.Sprintf("-export=%t", usesExportData(cfg)),
+ fmt.Sprintf("-deps=%t", cfg.Mode&NeedImports != 0),
+ // go list doesn't let you pass -test and -find together,
+ // probably because you'd just get the TestMain.
+ fmt.Sprintf("-find=%t", !cfg.Tests && cfg.Mode&findFlags == 0 && !usesExportData(cfg)),
+ }
+
+ // golang/go#60456: with go1.21 and later, go list serves pgo variants, which
+ // can be costly to compute and may result in redundant processing for the
+ // caller. Disable these variants. If someone wants to add e.g. a NeedPGO
+ // mode flag, that should be a separate proposal.
+ if goVersion >= 21 {
+ fullargs = append(fullargs, "-pgo=off")
+ }
+
+ fullargs = append(fullargs, cfg.BuildFlags...)
+ fullargs = append(fullargs, "--")
+ fullargs = append(fullargs, words...)
+ return fullargs
+}
+
+// cfgInvocation returns an Invocation that reflects cfg's settings.
+func (state *golistState) cfgInvocation() gocommand.Invocation {
+ cfg := state.cfg
+ return gocommand.Invocation{
+ BuildFlags: cfg.BuildFlags,
+ ModFile: cfg.modFile,
+ ModFlag: cfg.modFlag,
+ CleanEnv: cfg.Env != nil,
+ Env: cfg.Env,
+ Logf: cfg.Logf,
+ WorkingDir: cfg.Dir,
+ Overlay: cfg.goListOverlayFile,
+ }
+}
+
+// invokeGo returns the stdout of a go command invocation.
+func (state *golistState) invokeGo(verb string, args ...string) (*bytes.Buffer, error) {
+ cfg := state.cfg
+
+ inv := state.cfgInvocation()
+ inv.Verb = verb
+ inv.Args = args
+ gocmdRunner := cfg.gocmdRunner
+ if gocmdRunner == nil {
+ gocmdRunner = &gocommand.Runner{}
+ }
+ stdout, stderr, friendlyErr, err := gocmdRunner.RunRaw(cfg.Context, inv)
+ if err != nil {
+ // Check for 'go' executable not being found.
+ if ee, ok := err.(*exec.Error); ok && ee.Err == exec.ErrNotFound {
+ return nil, fmt.Errorf("'go list' driver requires 'go', but %s", exec.ErrNotFound)
+ }
+
+ exitErr, ok := err.(*exec.ExitError)
+ if !ok {
+ // Catastrophic error:
+ // - context cancellation
+ return nil, fmt.Errorf("couldn't run 'go': %w", err)
+ }
+
+ // Old go version?
+ if strings.Contains(stderr.String(), "flag provided but not defined") {
+ return nil, goTooOldError{fmt.Errorf("unsupported version of go: %s: %s", exitErr, stderr)}
+ }
+
+ // Related to #24854
+ if len(stderr.String()) > 0 && strings.Contains(stderr.String(), "unexpected directory layout") {
+ return nil, friendlyErr
+ }
+
+ // Is there an error running the C compiler in cgo? This will be reported in the "Error" field
+ // and should be suppressed by go list -e.
+ //
+ // This condition is not perfect yet because the error message can include other error messages than runtime/cgo.
+ isPkgPathRune := func(r rune) bool {
+ // From https://golang.org/ref/spec#Import_declarations:
+ // Implementation restriction: A compiler may restrict ImportPaths to non-empty strings
+ // using only characters belonging to Unicode's L, M, N, P, and S general categories
+ // (the Graphic characters without spaces) and may also exclude the
+ // characters !"#$%&'()*,:;<=>?[\]^`{|} and the Unicode replacement character U+FFFD.
+ return unicode.IsOneOf([]*unicode.RangeTable{unicode.L, unicode.M, unicode.N, unicode.P, unicode.S}, r) &&
+ !strings.ContainsRune("!\"#$%&'()*,:;<=>?[\\]^`{|}\uFFFD", r)
+ }
+ // golang/go#36770: Handle case where cmd/go prints module download messages before the error.
+ msg := stderr.String()
+ for strings.HasPrefix(msg, "go: downloading") {
+ msg = msg[strings.IndexRune(msg, '\n')+1:]
+ }
+ if len(stderr.String()) > 0 && strings.HasPrefix(stderr.String(), "# ") {
+ msg := msg[len("# "):]
+ if strings.HasPrefix(strings.TrimLeftFunc(msg, isPkgPathRune), "\n") {
+ return stdout, nil
+ }
+ // Treat pkg-config errors as a special case (golang.org/issue/36770).
+ if strings.HasPrefix(msg, "pkg-config") {
+ return stdout, nil
+ }
+ }
+
+ // This error only appears in stderr. See golang.org/cl/166398 for a fix in go list to show
+ // the error in the Err section of stdout in case -e option is provided.
+ // This fix is provided for backwards compatibility.
+ if len(stderr.String()) > 0 && strings.Contains(stderr.String(), "named files must be .go files") {
+ output := fmt.Sprintf(`{"ImportPath": "command-line-arguments","Incomplete": true,"Error": {"Pos": "","Err": %q}}`,
+ strings.Trim(stderr.String(), "\n"))
+ return bytes.NewBufferString(output), nil
+ }
+
+ // Similar to the previous error, but currently lacks a fix in Go.
+ if len(stderr.String()) > 0 && strings.Contains(stderr.String(), "named files must all be in one directory") {
+ output := fmt.Sprintf(`{"ImportPath": "command-line-arguments","Incomplete": true,"Error": {"Pos": "","Err": %q}}`,
+ strings.Trim(stderr.String(), "\n"))
+ return bytes.NewBufferString(output), nil
+ }
+
+ // Backwards compatibility for Go 1.11 because 1.12 and 1.13 put the directory in the ImportPath.
+ // If the package doesn't exist, put the absolute path of the directory into the error message,
+ // as Go 1.13 list does.
+ const noSuchDirectory = "no such directory"
+ if len(stderr.String()) > 0 && strings.Contains(stderr.String(), noSuchDirectory) {
+ errstr := stderr.String()
+ abspath := strings.TrimSpace(errstr[strings.Index(errstr, noSuchDirectory)+len(noSuchDirectory):])
+ output := fmt.Sprintf(`{"ImportPath": %q,"Incomplete": true,"Error": {"Pos": "","Err": %q}}`,
+ abspath, strings.Trim(stderr.String(), "\n"))
+ return bytes.NewBufferString(output), nil
+ }
+
+ // Workaround for #29280: go list -e has incorrect behavior when an ad-hoc package doesn't exist.
+ // Note that the error message we look for in this case is different that the one looked for above.
+ if len(stderr.String()) > 0 && strings.Contains(stderr.String(), "no such file or directory") {
+ output := fmt.Sprintf(`{"ImportPath": "command-line-arguments","Incomplete": true,"Error": {"Pos": "","Err": %q}}`,
+ strings.Trim(stderr.String(), "\n"))
+ return bytes.NewBufferString(output), nil
+ }
+
+ // Workaround for #34273. go list -e with GO111MODULE=on has incorrect behavior when listing a
+ // directory outside any module.
+ if len(stderr.String()) > 0 && strings.Contains(stderr.String(), "outside available modules") {
+ output := fmt.Sprintf(`{"ImportPath": %q,"Incomplete": true,"Error": {"Pos": "","Err": %q}}`,
+ // TODO(matloob): command-line-arguments isn't correct here.
+ "command-line-arguments", strings.Trim(stderr.String(), "\n"))
+ return bytes.NewBufferString(output), nil
+ }
+
+ // Another variation of the previous error
+ if len(stderr.String()) > 0 && strings.Contains(stderr.String(), "outside module root") {
+ output := fmt.Sprintf(`{"ImportPath": %q,"Incomplete": true,"Error": {"Pos": "","Err": %q}}`,
+ // TODO(matloob): command-line-arguments isn't correct here.
+ "command-line-arguments", strings.Trim(stderr.String(), "\n"))
+ return bytes.NewBufferString(output), nil
+ }
+
+ // Workaround for an instance of golang.org/issue/26755: go list -e will return a non-zero exit
+ // status if there's a dependency on a package that doesn't exist. But it should return
+ // a zero exit status and set an error on that package.
+ if len(stderr.String()) > 0 && strings.Contains(stderr.String(), "no Go files in") {
+ // Don't clobber stdout if `go list` actually returned something.
+ if len(stdout.String()) > 0 {
+ return stdout, nil
+ }
+ // try to extract package name from string
+ stderrStr := stderr.String()
+ var importPath string
+ colon := strings.Index(stderrStr, ":")
+ if colon > 0 && strings.HasPrefix(stderrStr, "go build ") {
+ importPath = stderrStr[len("go build "):colon]
+ }
+ output := fmt.Sprintf(`{"ImportPath": %q,"Incomplete": true,"Error": {"Pos": "","Err": %q}}`,
+ importPath, strings.Trim(stderrStr, "\n"))
+ return bytes.NewBufferString(output), nil
+ }
+
+ // Export mode entails a build.
+ // If that build fails, errors appear on stderr
+ // (despite the -e flag) and the Export field is blank.
+ // Do not fail in that case.
+ // The same is true if an ad-hoc package given to go list doesn't exist.
+ // TODO(matloob): Remove these once we can depend on go list to exit with a zero status with -e even when
+ // packages don't exist or a build fails.
+ if !usesExportData(cfg) && !containsGoFile(args) {
+ return nil, friendlyErr
+ }
+ }
+ return stdout, nil
+}
+
+func containsGoFile(s []string) bool {
+ for _, f := range s {
+ if strings.HasSuffix(f, ".go") {
+ return true
+ }
+ }
+ return false
+}
+
+func cmdDebugStr(cmd *exec.Cmd) string {
+ env := make(map[string]string)
+ for _, kv := range cmd.Env {
+ split := strings.SplitN(kv, "=", 2)
+ k, v := split[0], split[1]
+ env[k] = v
+ }
+
+ var args []string
+ for _, arg := range cmd.Args {
+ quoted := strconv.Quote(arg)
+ if quoted[1:len(quoted)-1] != arg || strings.Contains(arg, " ") {
+ args = append(args, quoted)
+ } else {
+ args = append(args, arg)
+ }
+ }
+ return fmt.Sprintf("GOROOT=%v GOPATH=%v GO111MODULE=%v GOPROXY=%v PWD=%v %v", env["GOROOT"], env["GOPATH"], env["GO111MODULE"], env["GOPROXY"], env["PWD"], strings.Join(args, " "))
+}
+
+// getSizesForArgs queries 'go list' for the appropriate
+// Compiler and GOARCH arguments to pass to [types.SizesFor].
+func getSizesForArgs(ctx context.Context, inv gocommand.Invocation, gocmdRunner *gocommand.Runner) (string, string, error) {
+ inv.Verb = "list"
+ inv.Args = []string{"-f", "{{context.GOARCH}} {{context.Compiler}}", "--", "unsafe"}
+ stdout, stderr, friendlyErr, rawErr := gocmdRunner.RunRaw(ctx, inv)
+ var goarch, compiler string
+ if rawErr != nil {
+ rawErrMsg := rawErr.Error()
+ if strings.Contains(rawErrMsg, "cannot find main module") ||
+ strings.Contains(rawErrMsg, "go.mod file not found") {
+ // User's running outside of a module.
+ // All bets are off. Get GOARCH and guess compiler is gc.
+ // TODO(matloob): Is this a problem in practice?
+ inv.Verb = "env"
+ inv.Args = []string{"GOARCH"}
+ envout, enverr := gocmdRunner.Run(ctx, inv)
+ if enverr != nil {
+ return "", "", enverr
+ }
+ goarch = strings.TrimSpace(envout.String())
+ compiler = "gc"
+ } else if friendlyErr != nil {
+ return "", "", friendlyErr
+ } else {
+ // This should be unreachable, but be defensive
+ // in case RunRaw's error results are inconsistent.
+ return "", "", rawErr
+ }
+ } else {
+ fields := strings.Fields(stdout.String())
+ if len(fields) < 2 {
+ return "", "", fmt.Errorf("could not parse GOARCH and Go compiler in format \"<GOARCH> <compiler>\":\nstdout: <<%s>>\nstderr: <<%s>>",
+ stdout.String(), stderr.String())
+ }
+ goarch = fields[0]
+ compiler = fields[1]
+ }
+ return compiler, goarch, nil
+}
diff --git a/vendor/golang.org/x/tools/go/packages/golist_overlay.go b/vendor/golang.org/x/tools/go/packages/golist_overlay.go
new file mode 100644
index 0000000..d823c47
--- /dev/null
+++ b/vendor/golang.org/x/tools/go/packages/golist_overlay.go
@@ -0,0 +1,83 @@
+// Copyright 2018 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package packages
+
+import (
+ "encoding/json"
+ "path/filepath"
+
+ "golang.org/x/tools/internal/gocommand"
+)
+
+// determineRootDirs returns a mapping from absolute directories that could
+// contain code to their corresponding import path prefixes.
+func (state *golistState) determineRootDirs() (map[string]string, error) {
+ env, err := state.getEnv()
+ if err != nil {
+ return nil, err
+ }
+ if env["GOMOD"] != "" {
+ state.rootsOnce.Do(func() {
+ state.rootDirs, state.rootDirsError = state.determineRootDirsModules()
+ })
+ } else {
+ state.rootsOnce.Do(func() {
+ state.rootDirs, state.rootDirsError = state.determineRootDirsGOPATH()
+ })
+ }
+ return state.rootDirs, state.rootDirsError
+}
+
+func (state *golistState) determineRootDirsModules() (map[string]string, error) {
+ // List all of the modules--the first will be the directory for the main
+ // module. Any replaced modules will also need to be treated as roots.
+ // Editing files in the module cache isn't a great idea, so we don't
+ // plan to ever support that.
+ out, err := state.invokeGo("list", "-m", "-json", "all")
+ if err != nil {
+ // 'go list all' will fail if we're outside of a module and
+ // GO111MODULE=on. Try falling back without 'all'.
+ var innerErr error
+ out, innerErr = state.invokeGo("list", "-m", "-json")
+ if innerErr != nil {
+ return nil, err
+ }
+ }
+ roots := map[string]string{}
+ modules := map[string]string{}
+ var i int
+ for dec := json.NewDecoder(out); dec.More(); {
+ mod := new(gocommand.ModuleJSON)
+ if err := dec.Decode(mod); err != nil {
+ return nil, err
+ }
+ if mod.Dir != "" && mod.Path != "" {
+ // This is a valid module; add it to the map.
+ absDir, err := filepath.Abs(mod.Dir)
+ if err != nil {
+ return nil, err
+ }
+ modules[absDir] = mod.Path
+ // The first result is the main module.
+ if i == 0 || mod.Replace != nil && mod.Replace.Path != "" {
+ roots[absDir] = mod.Path
+ }
+ }
+ i++
+ }
+ return roots, nil
+}
+
+func (state *golistState) determineRootDirsGOPATH() (map[string]string, error) {
+ m := map[string]string{}
+ for _, dir := range filepath.SplitList(state.mustGetEnv()["GOPATH"]) {
+ absDir, err := filepath.Abs(dir)
+ if err != nil {
+ return nil, err
+ }
+ m[filepath.Join(absDir, "src")] = ""
+ }
+ return m, nil
+}
diff --git a/vendor/golang.org/x/tools/go/packages/loadmode_string.go b/vendor/golang.org/x/tools/go/packages/loadmode_string.go
new file mode 100644
index 0000000..5c080d2
--- /dev/null
+++ b/vendor/golang.org/x/tools/go/packages/loadmode_string.go
@@ -0,0 +1,57 @@
+// Copyright 2019 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package packages
+
+import (
+ "fmt"
+ "strings"
+)
+
+var allModes = []LoadMode{
+ NeedName,
+ NeedFiles,
+ NeedCompiledGoFiles,
+ NeedImports,
+ NeedDeps,
+ NeedExportFile,
+ NeedTypes,
+ NeedSyntax,
+ NeedTypesInfo,
+ NeedTypesSizes,
+}
+
+var modeStrings = []string{
+ "NeedName",
+ "NeedFiles",
+ "NeedCompiledGoFiles",
+ "NeedImports",
+ "NeedDeps",
+ "NeedExportFile",
+ "NeedTypes",
+ "NeedSyntax",
+ "NeedTypesInfo",
+ "NeedTypesSizes",
+}
+
+func (mod LoadMode) String() string {
+ m := mod
+ if m == 0 {
+ return "LoadMode(0)"
+ }
+ var out []string
+ for i, x := range allModes {
+ if x > m {
+ break
+ }
+ if (m & x) != 0 {
+ out = append(out, modeStrings[i])
+ m = m ^ x
+ }
+ }
+ if m != 0 {
+ out = append(out, "Unknown")
+ }
+ return fmt.Sprintf("LoadMode(%s)", strings.Join(out, "|"))
+}
diff --git a/vendor/golang.org/x/tools/go/packages/packages.go b/vendor/golang.org/x/tools/go/packages/packages.go
new file mode 100644
index 0000000..0b6bfaf
--- /dev/null
+++ b/vendor/golang.org/x/tools/go/packages/packages.go
@@ -0,0 +1,1515 @@
+// Copyright 2018 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package packages
+
+// See doc.go for package documentation and implementation notes.
+
+import (
+ "context"
+ "encoding/json"
+ "errors"
+ "fmt"
+ "go/ast"
+ "go/parser"
+ "go/scanner"
+ "go/token"
+ "go/types"
+ "io"
+ "log"
+ "os"
+ "path/filepath"
+ "runtime"
+ "strings"
+ "sync"
+ "time"
+
+ "golang.org/x/sync/errgroup"
+
+ "golang.org/x/tools/go/gcexportdata"
+ "golang.org/x/tools/internal/gocommand"
+ "golang.org/x/tools/internal/packagesinternal"
+ "golang.org/x/tools/internal/typesinternal"
+ "golang.org/x/tools/internal/versions"
+)
+
+// A LoadMode controls the amount of detail to return when loading.
+// The bits below can be combined to specify which fields should be
+// filled in the result packages.
+//
+// The zero value is a special case, equivalent to combining
+// the NeedName, NeedFiles, and NeedCompiledGoFiles bits.
+//
+// ID and Errors (if present) will always be filled.
+// [Load] may return more information than requested.
+//
+// Unfortunately there are a number of open bugs related to
+// interactions among the LoadMode bits:
+// - https://github.com/golang/go/issues/56633
+// - https://github.com/golang/go/issues/56677
+// - https://github.com/golang/go/issues/58726
+// - https://github.com/golang/go/issues/63517
+type LoadMode int
+
+const (
+ // NeedName adds Name and PkgPath.
+ NeedName LoadMode = 1 << iota
+
+ // NeedFiles adds GoFiles and OtherFiles.
+ NeedFiles
+
+ // NeedCompiledGoFiles adds CompiledGoFiles.
+ NeedCompiledGoFiles
+
+ // NeedImports adds Imports. If NeedDeps is not set, the Imports field will contain
+ // "placeholder" Packages with only the ID set.
+ NeedImports
+
+ // NeedDeps adds the fields requested by the LoadMode in the packages in Imports.
+ NeedDeps
+
+ // NeedExportFile adds ExportFile.
+ NeedExportFile
+
+ // NeedTypes adds Types, Fset, and IllTyped.
+ NeedTypes
+
+ // NeedSyntax adds Syntax and Fset.
+ NeedSyntax
+
+ // NeedTypesInfo adds TypesInfo.
+ NeedTypesInfo
+
+ // NeedTypesSizes adds TypesSizes.
+ NeedTypesSizes
+
+ // needInternalDepsErrors adds the internal deps errors field for use by gopls.
+ needInternalDepsErrors
+
+ // needInternalForTest adds the internal forTest field.
+ // Tests must also be set on the context for this field to be populated.
+ needInternalForTest
+
+ // typecheckCgo enables full support for type checking cgo. Requires Go 1.15+.
+ // Modifies CompiledGoFiles and Types, and has no effect on its own.
+ typecheckCgo
+
+ // NeedModule adds Module.
+ NeedModule
+
+ // NeedEmbedFiles adds EmbedFiles.
+ NeedEmbedFiles
+
+ // NeedEmbedPatterns adds EmbedPatterns.
+ NeedEmbedPatterns
+)
+
+const (
+ // Deprecated: LoadFiles exists for historical compatibility
+ // and should not be used. Please directly specify the needed fields using the Need values.
+ LoadFiles = NeedName | NeedFiles | NeedCompiledGoFiles
+
+ // Deprecated: LoadImports exists for historical compatibility
+ // and should not be used. Please directly specify the needed fields using the Need values.
+ LoadImports = LoadFiles | NeedImports
+
+ // Deprecated: LoadTypes exists for historical compatibility
+ // and should not be used. Please directly specify the needed fields using the Need values.
+ LoadTypes = LoadImports | NeedTypes | NeedTypesSizes
+
+ // Deprecated: LoadSyntax exists for historical compatibility
+ // and should not be used. Please directly specify the needed fields using the Need values.
+ LoadSyntax = LoadTypes | NeedSyntax | NeedTypesInfo
+
+ // Deprecated: LoadAllSyntax exists for historical compatibility
+ // and should not be used. Please directly specify the needed fields using the Need values.
+ LoadAllSyntax = LoadSyntax | NeedDeps
+
+ // Deprecated: NeedExportsFile is a historical misspelling of NeedExportFile.
+ NeedExportsFile = NeedExportFile
+)
+
+// A Config specifies details about how packages should be loaded.
+// The zero value is a valid configuration.
+//
+// Calls to Load do not modify this struct.
+//
+// TODO(adonovan): #67702: this is currently false: in fact,
+// calls to [Load] do not modify the public fields of this struct, but
+// may modify hidden fields, so concurrent calls to [Load] must not
+// use the same Config. But perhaps we should reestablish the
+// documented invariant.
+type Config struct {
+ // Mode controls the level of information returned for each package.
+ Mode LoadMode
+
+ // Context specifies the context for the load operation.
+ // Cancelling the context may cause [Load] to abort and
+ // return an error.
+ Context context.Context
+
+ // Logf is the logger for the config.
+ // If the user provides a logger, debug logging is enabled.
+ // If the GOPACKAGESDEBUG environment variable is set to true,
+ // but the logger is nil, default to log.Printf.
+ Logf func(format string, args ...interface{})
+
+ // Dir is the directory in which to run the build system's query tool
+ // that provides information about the packages.
+ // If Dir is empty, the tool is run in the current directory.
+ Dir string
+
+ // Env is the environment to use when invoking the build system's query tool.
+ // If Env is nil, the current environment is used.
+ // As in os/exec's Cmd, only the last value in the slice for
+ // each environment key is used. To specify the setting of only
+ // a few variables, append to the current environment, as in:
+ //
+ // opt.Env = append(os.Environ(), "GOOS=plan9", "GOARCH=386")
+ //
+ Env []string
+
+ // gocmdRunner guards go command calls from concurrency errors.
+ gocmdRunner *gocommand.Runner
+
+ // BuildFlags is a list of command-line flags to be passed through to
+ // the build system's query tool.
+ BuildFlags []string
+
+ // modFile will be used for -modfile in go command invocations.
+ modFile string
+
+ // modFlag will be used for -modfile in go command invocations.
+ modFlag string
+
+ // Fset provides source position information for syntax trees and types.
+ // If Fset is nil, Load will use a new fileset, but preserve Fset's value.
+ Fset *token.FileSet
+
+ // ParseFile is called to read and parse each file
+ // when preparing a package's type-checked syntax tree.
+ // It must be safe to call ParseFile simultaneously from multiple goroutines.
+ // If ParseFile is nil, the loader will uses parser.ParseFile.
+ //
+ // ParseFile should parse the source from src and use filename only for
+ // recording position information.
+ //
+ // An application may supply a custom implementation of ParseFile
+ // to change the effective file contents or the behavior of the parser,
+ // or to modify the syntax tree. For example, selectively eliminating
+ // unwanted function bodies can significantly accelerate type checking.
+ ParseFile func(fset *token.FileSet, filename string, src []byte) (*ast.File, error)
+
+ // If Tests is set, the loader includes not just the packages
+ // matching a particular pattern but also any related test packages,
+ // including test-only variants of the package and the test executable.
+ //
+ // For example, when using the go command, loading "fmt" with Tests=true
+ // returns four packages, with IDs "fmt" (the standard package),
+ // "fmt [fmt.test]" (the package as compiled for the test),
+ // "fmt_test" (the test functions from source files in package fmt_test),
+ // and "fmt.test" (the test binary).
+ //
+ // In build systems with explicit names for tests,
+ // setting Tests may have no effect.
+ Tests bool
+
+ // Overlay is a mapping from absolute file paths to file contents.
+ //
+ // For each map entry, [Load] uses the alternative file
+ // contents provided by the overlay mapping instead of reading
+ // from the file system. This mechanism can be used to enable
+ // editor-integrated tools to correctly analyze the contents
+ // of modified but unsaved buffers, for example.
+ //
+ // The overlay mapping is passed to the build system's driver
+ // (see "The driver protocol") so that it too can report
+ // consistent package metadata about unsaved files. However,
+ // drivers may vary in their level of support for overlays.
+ Overlay map[string][]byte
+
+ // goListOverlayFile is the JSON file that encodes the Overlay
+ // mapping, used by 'go list -overlay=...'
+ goListOverlayFile string
+}
+
+// Load loads and returns the Go packages named by the given patterns.
+//
+// Config specifies loading options;
+// nil behaves the same as an empty Config.
+//
+// The [Config.Mode] field is a set of bits that determine what kinds
+// of information should be computed and returned. Modes that require
+// more information tend to be slower. See [LoadMode] for details
+// and important caveats. Its zero value is equivalent to
+// NeedName | NeedFiles | NeedCompiledGoFiles.
+//
+// Each call to Load returns a new set of [Package] instances.
+// The Packages and their Imports form a directed acyclic graph.
+//
+// If the [NeedTypes] mode flag was set, each call to Load uses a new
+// [types.Importer], so [types.Object] and [types.Type] values from
+// different calls to Load must not be mixed as they will have
+// inconsistent notions of type identity.
+//
+// If any of the patterns was invalid as defined by the
+// underlying build system, Load returns an error.
+// It may return an empty list of packages without an error,
+// for instance for an empty expansion of a valid wildcard.
+// Errors associated with a particular package are recorded in the
+// corresponding Package's Errors list, and do not cause Load to
+// return an error. Clients may need to handle such errors before
+// proceeding with further analysis. The PrintErrors function is
+// provided for convenient display of all errors.
+func Load(cfg *Config, patterns ...string) ([]*Package, error) {
+ ld := newLoader(cfg)
+ response, external, err := defaultDriver(&ld.Config, patterns...)
+ if err != nil {
+ return nil, err
+ }
+
+ ld.sizes = types.SizesFor(response.Compiler, response.Arch)
+ if ld.sizes == nil && ld.Config.Mode&(NeedTypes|NeedTypesSizes|NeedTypesInfo) != 0 {
+ // Type size information is needed but unavailable.
+ if external {
+ // An external driver may fail to populate the Compiler/GOARCH fields,
+ // especially since they are relatively new (see #63700).
+ // Provide a sensible fallback in this case.
+ ld.sizes = types.SizesFor("gc", runtime.GOARCH)
+ if ld.sizes == nil { // gccgo-only arch
+ ld.sizes = types.SizesFor("gc", "amd64")
+ }
+ } else {
+ // Go list should never fail to deliver accurate size information.
+ // Reject the whole Load since the error is the same for every package.
+ return nil, fmt.Errorf("can't determine type sizes for compiler %q on GOARCH %q",
+ response.Compiler, response.Arch)
+ }
+ }
+
+ return ld.refine(response)
+}
+
+// defaultDriver is a driver that implements go/packages' fallback behavior.
+// It will try to request to an external driver, if one exists. If there's
+// no external driver, or the driver returns a response with NotHandled set,
+// defaultDriver will fall back to the go list driver.
+// The boolean result indicates that an external driver handled the request.
+func defaultDriver(cfg *Config, patterns ...string) (*DriverResponse, bool, error) {
+ const (
+ // windowsArgMax specifies the maximum command line length for
+ // the Windows' CreateProcess function.
+ windowsArgMax = 32767
+ // maxEnvSize is a very rough estimation of the maximum environment
+ // size of a user.
+ maxEnvSize = 16384
+ // safeArgMax specifies the maximum safe command line length to use
+ // by the underlying driver excl. the environment. We choose the Windows'
+ // ARG_MAX as the starting point because it's one of the lowest ARG_MAX
+ // constants out of the different supported platforms,
+ // e.g., https://www.in-ulm.de/~mascheck/various/argmax/#results.
+ safeArgMax = windowsArgMax - maxEnvSize
+ )
+ chunks, err := splitIntoChunks(patterns, safeArgMax)
+ if err != nil {
+ return nil, false, err
+ }
+
+ if driver := findExternalDriver(cfg); driver != nil {
+ response, err := callDriverOnChunks(driver, cfg, chunks)
+ if err != nil {
+ return nil, false, err
+ } else if !response.NotHandled {
+ return response, true, nil
+ }
+ // (fall through)
+ }
+
+ // go list fallback
+ //
+ // Write overlays once, as there are many calls
+ // to 'go list' (one per chunk plus others too).
+ overlay, cleanupOverlay, err := gocommand.WriteOverlays(cfg.Overlay)
+ if err != nil {
+ return nil, false, err
+ }
+ defer cleanupOverlay()
+ cfg.goListOverlayFile = overlay
+
+ response, err := callDriverOnChunks(goListDriver, cfg, chunks)
+ if err != nil {
+ return nil, false, err
+ }
+ return response, false, err
+}
+
+// splitIntoChunks chunks the slice so that the total number of characters
+// in a chunk is no longer than argMax.
+func splitIntoChunks(patterns []string, argMax int) ([][]string, error) {
+ if argMax <= 0 {
+ return nil, errors.New("failed to split patterns into chunks, negative safe argMax value")
+ }
+ var chunks [][]string
+ charsInChunk := 0
+ nextChunkStart := 0
+ for i, v := range patterns {
+ vChars := len(v)
+ if vChars > argMax {
+ // a single pattern is longer than the maximum safe ARG_MAX, hardly should happen
+ return nil, errors.New("failed to split patterns into chunks, a pattern is too long")
+ }
+ charsInChunk += vChars + 1 // +1 is for a whitespace between patterns that has to be counted too
+ if charsInChunk > argMax {
+ chunks = append(chunks, patterns[nextChunkStart:i])
+ nextChunkStart = i
+ charsInChunk = vChars
+ }
+ }
+ // add the last chunk
+ if nextChunkStart < len(patterns) {
+ chunks = append(chunks, patterns[nextChunkStart:])
+ }
+ return chunks, nil
+}
+
+func callDriverOnChunks(driver driver, cfg *Config, chunks [][]string) (*DriverResponse, error) {
+ if len(chunks) == 0 {
+ return driver(cfg)
+ }
+ responses := make([]*DriverResponse, len(chunks))
+ errNotHandled := errors.New("driver returned NotHandled")
+ var g errgroup.Group
+ for i, chunk := range chunks {
+ i := i
+ chunk := chunk
+ g.Go(func() (err error) {
+ responses[i], err = driver(cfg, chunk...)
+ if responses[i] != nil && responses[i].NotHandled {
+ err = errNotHandled
+ }
+ return err
+ })
+ }
+ if err := g.Wait(); err != nil {
+ if errors.Is(err, errNotHandled) {
+ return &DriverResponse{NotHandled: true}, nil
+ }
+ return nil, err
+ }
+ return mergeResponses(responses...), nil
+}
+
+func mergeResponses(responses ...*DriverResponse) *DriverResponse {
+ if len(responses) == 0 {
+ return nil
+ }
+ response := newDeduper()
+ response.dr.NotHandled = false
+ response.dr.Compiler = responses[0].Compiler
+ response.dr.Arch = responses[0].Arch
+ response.dr.GoVersion = responses[0].GoVersion
+ for _, v := range responses {
+ response.addAll(v)
+ }
+ return response.dr
+}
+
+// A Package describes a loaded Go package.
+//
+// It also defines part of the JSON schema of [DriverResponse].
+// See the package documentation for an overview.
+type Package struct {
+ // ID is a unique identifier for a package,
+ // in a syntax provided by the underlying build system.
+ //
+ // Because the syntax varies based on the build system,
+ // clients should treat IDs as opaque and not attempt to
+ // interpret them.
+ ID string
+
+ // Name is the package name as it appears in the package source code.
+ Name string
+
+ // PkgPath is the package path as used by the go/types package.
+ PkgPath string
+
+ // Errors contains any errors encountered querying the metadata
+ // of the package, or while parsing or type-checking its files.
+ Errors []Error
+
+ // TypeErrors contains the subset of errors produced during type checking.
+ TypeErrors []types.Error
+
+ // GoFiles lists the absolute file paths of the package's Go source files.
+ // It may include files that should not be compiled, for example because
+ // they contain non-matching build tags, are documentary pseudo-files such as
+ // unsafe/unsafe.go or builtin/builtin.go, or are subject to cgo preprocessing.
+ GoFiles []string
+
+ // CompiledGoFiles lists the absolute file paths of the package's source
+ // files that are suitable for type checking.
+ // This may differ from GoFiles if files are processed before compilation.
+ CompiledGoFiles []string
+
+ // OtherFiles lists the absolute file paths of the package's non-Go source files,
+ // including assembly, C, C++, Fortran, Objective-C, SWIG, and so on.
+ OtherFiles []string
+
+ // EmbedFiles lists the absolute file paths of the package's files
+ // embedded with go:embed.
+ EmbedFiles []string
+
+ // EmbedPatterns lists the absolute file patterns of the package's
+ // files embedded with go:embed.
+ EmbedPatterns []string
+
+ // IgnoredFiles lists source files that are not part of the package
+ // using the current build configuration but that might be part of
+ // the package using other build configurations.
+ IgnoredFiles []string
+
+ // ExportFile is the absolute path to a file containing type
+ // information for the package as provided by the build system.
+ ExportFile string
+
+ // Imports maps import paths appearing in the package's Go source files
+ // to corresponding loaded Packages.
+ Imports map[string]*Package
+
+ // Module is the module information for the package if it exists.
+ //
+ // Note: it may be missing for std and cmd; see Go issue #65816.
+ Module *Module
+
+ // -- The following fields are not part of the driver JSON schema. --
+
+ // Types provides type information for the package.
+ // The NeedTypes LoadMode bit sets this field for packages matching the
+ // patterns; type information for dependencies may be missing or incomplete,
+ // unless NeedDeps and NeedImports are also set.
+ //
+ // Each call to [Load] returns a consistent set of type
+ // symbols, as defined by the comment at [types.Identical].
+ // Avoid mixing type information from two or more calls to [Load].
+ Types *types.Package `json:"-"`
+
+ // Fset provides position information for Types, TypesInfo, and Syntax.
+ // It is set only when Types is set.
+ Fset *token.FileSet `json:"-"`
+
+ // IllTyped indicates whether the package or any dependency contains errors.
+ // It is set only when Types is set.
+ IllTyped bool `json:"-"`
+
+ // Syntax is the package's syntax trees, for the files listed in CompiledGoFiles.
+ //
+ // The NeedSyntax LoadMode bit populates this field for packages matching the patterns.
+ // If NeedDeps and NeedImports are also set, this field will also be populated
+ // for dependencies.
+ //
+ // Syntax is kept in the same order as CompiledGoFiles, with the caveat that nils are
+ // removed. If parsing returned nil, Syntax may be shorter than CompiledGoFiles.
+ Syntax []*ast.File `json:"-"`
+
+ // TypesInfo provides type information about the package's syntax trees.
+ // It is set only when Syntax is set.
+ TypesInfo *types.Info `json:"-"`
+
+ // TypesSizes provides the effective size function for types in TypesInfo.
+ TypesSizes types.Sizes `json:"-"`
+
+ // -- internal --
+
+ // forTest is the package under test, if any.
+ forTest string
+
+ // depsErrors is the DepsErrors field from the go list response, if any.
+ depsErrors []*packagesinternal.PackageError
+}
+
+// Module provides module information for a package.
+//
+// It also defines part of the JSON schema of [DriverResponse].
+// See the package documentation for an overview.
+type Module struct {
+ Path string // module path
+ Version string // module version
+ Replace *Module // replaced by this module
+ Time *time.Time // time version was created
+ Main bool // is this the main module?
+ Indirect bool // is this module only an indirect dependency of main module?
+ Dir string // directory holding files for this module, if any
+ GoMod string // path to go.mod file used when loading this module, if any
+ GoVersion string // go version used in module
+ Error *ModuleError // error loading module
+}
+
+// ModuleError holds errors loading a module.
+type ModuleError struct {
+ Err string // the error itself
+}
+
+func init() {
+ packagesinternal.GetForTest = func(p interface{}) string {
+ return p.(*Package).forTest
+ }
+ packagesinternal.GetDepsErrors = func(p interface{}) []*packagesinternal.PackageError {
+ return p.(*Package).depsErrors
+ }
+ packagesinternal.SetModFile = func(config interface{}, value string) {
+ config.(*Config).modFile = value
+ }
+ packagesinternal.SetModFlag = func(config interface{}, value string) {
+ config.(*Config).modFlag = value
+ }
+ packagesinternal.TypecheckCgo = int(typecheckCgo)
+ packagesinternal.DepsErrors = int(needInternalDepsErrors)
+ packagesinternal.ForTest = int(needInternalForTest)
+}
+
+// An Error describes a problem with a package's metadata, syntax, or types.
+type Error struct {
+ Pos string // "file:line:col" or "file:line" or "" or "-"
+ Msg string
+ Kind ErrorKind
+}
+
+// ErrorKind describes the source of the error, allowing the user to
+// differentiate between errors generated by the driver, the parser, or the
+// type-checker.
+type ErrorKind int
+
+const (
+ UnknownError ErrorKind = iota
+ ListError
+ ParseError
+ TypeError
+)
+
+func (err Error) Error() string {
+ pos := err.Pos
+ if pos == "" {
+ pos = "-" // like token.Position{}.String()
+ }
+ return pos + ": " + err.Msg
+}
+
+// flatPackage is the JSON form of Package
+// It drops all the type and syntax fields, and transforms the Imports
+//
+// TODO(adonovan): identify this struct with Package, effectively
+// publishing the JSON protocol.
+type flatPackage struct {
+ ID string
+ Name string `json:",omitempty"`
+ PkgPath string `json:",omitempty"`
+ Errors []Error `json:",omitempty"`
+ GoFiles []string `json:",omitempty"`
+ CompiledGoFiles []string `json:",omitempty"`
+ OtherFiles []string `json:",omitempty"`
+ EmbedFiles []string `json:",omitempty"`
+ EmbedPatterns []string `json:",omitempty"`
+ IgnoredFiles []string `json:",omitempty"`
+ ExportFile string `json:",omitempty"`
+ Imports map[string]string `json:",omitempty"`
+}
+
+// MarshalJSON returns the Package in its JSON form.
+// For the most part, the structure fields are written out unmodified, and
+// the type and syntax fields are skipped.
+// The imports are written out as just a map of path to package id.
+// The errors are written using a custom type that tries to preserve the
+// structure of error types we know about.
+//
+// This method exists to enable support for additional build systems. It is
+// not intended for use by clients of the API and we may change the format.
+func (p *Package) MarshalJSON() ([]byte, error) {
+ flat := &flatPackage{
+ ID: p.ID,
+ Name: p.Name,
+ PkgPath: p.PkgPath,
+ Errors: p.Errors,
+ GoFiles: p.GoFiles,
+ CompiledGoFiles: p.CompiledGoFiles,
+ OtherFiles: p.OtherFiles,
+ EmbedFiles: p.EmbedFiles,
+ EmbedPatterns: p.EmbedPatterns,
+ IgnoredFiles: p.IgnoredFiles,
+ ExportFile: p.ExportFile,
+ }
+ if len(p.Imports) > 0 {
+ flat.Imports = make(map[string]string, len(p.Imports))
+ for path, ipkg := range p.Imports {
+ flat.Imports[path] = ipkg.ID
+ }
+ }
+ return json.Marshal(flat)
+}
+
+// UnmarshalJSON reads in a Package from its JSON format.
+// See MarshalJSON for details about the format accepted.
+func (p *Package) UnmarshalJSON(b []byte) error {
+ flat := &flatPackage{}
+ if err := json.Unmarshal(b, &flat); err != nil {
+ return err
+ }
+ *p = Package{
+ ID: flat.ID,
+ Name: flat.Name,
+ PkgPath: flat.PkgPath,
+ Errors: flat.Errors,
+ GoFiles: flat.GoFiles,
+ CompiledGoFiles: flat.CompiledGoFiles,
+ OtherFiles: flat.OtherFiles,
+ EmbedFiles: flat.EmbedFiles,
+ EmbedPatterns: flat.EmbedPatterns,
+ IgnoredFiles: flat.IgnoredFiles,
+ ExportFile: flat.ExportFile,
+ }
+ if len(flat.Imports) > 0 {
+ p.Imports = make(map[string]*Package, len(flat.Imports))
+ for path, id := range flat.Imports {
+ p.Imports[path] = &Package{ID: id}
+ }
+ }
+ return nil
+}
+
+func (p *Package) String() string { return p.ID }
+
+// loaderPackage augments Package with state used during the loading phase
+type loaderPackage struct {
+ *Package
+ importErrors map[string]error // maps each bad import to its error
+ loadOnce sync.Once
+ color uint8 // for cycle detection
+ needsrc bool // load from source (Mode >= LoadTypes)
+ needtypes bool // type information is either requested or depended on
+ initial bool // package was matched by a pattern
+ goVersion int // minor version number of go command on PATH
+}
+
+// loader holds the working state of a single call to load.
+type loader struct {
+ pkgs map[string]*loaderPackage
+ Config
+ sizes types.Sizes // non-nil if needed by mode
+ parseCache map[string]*parseValue
+ parseCacheMu sync.Mutex
+ exportMu sync.Mutex // enforces mutual exclusion of exportdata operations
+
+ // Config.Mode contains the implied mode (see impliedLoadMode).
+ // Implied mode contains all the fields we need the data for.
+ // In requestedMode there are the actually requested fields.
+ // We'll zero them out before returning packages to the user.
+ // This makes it easier for us to get the conditions where
+ // we need certain modes right.
+ requestedMode LoadMode
+}
+
+type parseValue struct {
+ f *ast.File
+ err error
+ ready chan struct{}
+}
+
+func newLoader(cfg *Config) *loader {
+ ld := &loader{
+ parseCache: map[string]*parseValue{},
+ }
+ if cfg != nil {
+ ld.Config = *cfg
+ // If the user has provided a logger, use it.
+ ld.Config.Logf = cfg.Logf
+ }
+ if ld.Config.Logf == nil {
+ // If the GOPACKAGESDEBUG environment variable is set to true,
+ // but the user has not provided a logger, default to log.Printf.
+ if debug {
+ ld.Config.Logf = log.Printf
+ } else {
+ ld.Config.Logf = func(format string, args ...interface{}) {}
+ }
+ }
+ if ld.Config.Mode == 0 {
+ ld.Config.Mode = NeedName | NeedFiles | NeedCompiledGoFiles // Preserve zero behavior of Mode for backwards compatibility.
+ }
+ if ld.Config.Env == nil {
+ ld.Config.Env = os.Environ()
+ }
+ if ld.Config.gocmdRunner == nil {
+ ld.Config.gocmdRunner = &gocommand.Runner{}
+ }
+ if ld.Context == nil {
+ ld.Context = context.Background()
+ }
+ if ld.Dir == "" {
+ if dir, err := os.Getwd(); err == nil {
+ ld.Dir = dir
+ }
+ }
+
+ // Save the actually requested fields. We'll zero them out before returning packages to the user.
+ ld.requestedMode = ld.Mode
+ ld.Mode = impliedLoadMode(ld.Mode)
+
+ if ld.Mode&NeedTypes != 0 || ld.Mode&NeedSyntax != 0 {
+ if ld.Fset == nil {
+ ld.Fset = token.NewFileSet()
+ }
+
+ // ParseFile is required even in LoadTypes mode
+ // because we load source if export data is missing.
+ if ld.ParseFile == nil {
+ ld.ParseFile = func(fset *token.FileSet, filename string, src []byte) (*ast.File, error) {
+ const mode = parser.AllErrors | parser.ParseComments
+ return parser.ParseFile(fset, filename, src, mode)
+ }
+ }
+ }
+
+ return ld
+}
+
+// refine connects the supplied packages into a graph and then adds type
+// and syntax information as requested by the LoadMode.
+func (ld *loader) refine(response *DriverResponse) ([]*Package, error) {
+ roots := response.Roots
+ rootMap := make(map[string]int, len(roots))
+ for i, root := range roots {
+ rootMap[root] = i
+ }
+ ld.pkgs = make(map[string]*loaderPackage)
+ // first pass, fixup and build the map and roots
+ var initial = make([]*loaderPackage, len(roots))
+ for _, pkg := range response.Packages {
+ rootIndex := -1
+ if i, found := rootMap[pkg.ID]; found {
+ rootIndex = i
+ }
+
+ // Overlays can invalidate export data.
+ // TODO(matloob): make this check fine-grained based on dependencies on overlaid files
+ exportDataInvalid := len(ld.Overlay) > 0 || pkg.ExportFile == "" && pkg.PkgPath != "unsafe"
+ // This package needs type information if the caller requested types and the package is
+ // either a root, or it's a non-root and the user requested dependencies ...
+ needtypes := (ld.Mode&NeedTypes|NeedTypesInfo != 0 && (rootIndex >= 0 || ld.Mode&NeedDeps != 0))
+ // This package needs source if the call requested source (or types info, which implies source)
+ // and the package is either a root, or itas a non- root and the user requested dependencies...
+ needsrc := ((ld.Mode&(NeedSyntax|NeedTypesInfo) != 0 && (rootIndex >= 0 || ld.Mode&NeedDeps != 0)) ||
+ // ... or if we need types and the exportData is invalid. We fall back to (incompletely)
+ // typechecking packages from source if they fail to compile.
+ (ld.Mode&(NeedTypes|NeedTypesInfo) != 0 && exportDataInvalid)) && pkg.PkgPath != "unsafe"
+ lpkg := &loaderPackage{
+ Package: pkg,
+ needtypes: needtypes,
+ needsrc: needsrc,
+ goVersion: response.GoVersion,
+ }
+ ld.pkgs[lpkg.ID] = lpkg
+ if rootIndex >= 0 {
+ initial[rootIndex] = lpkg
+ lpkg.initial = true
+ }
+ }
+ for i, root := range roots {
+ if initial[i] == nil {
+ return nil, fmt.Errorf("root package %v is missing", root)
+ }
+ }
+
+ if ld.Mode&NeedImports != 0 {
+ // Materialize the import graph.
+
+ const (
+ white = 0 // new
+ grey = 1 // in progress
+ black = 2 // complete
+ )
+
+ // visit traverses the import graph, depth-first,
+ // and materializes the graph as Packages.Imports.
+ //
+ // Valid imports are saved in the Packages.Import map.
+ // Invalid imports (cycles and missing nodes) are saved in the importErrors map.
+ // Thus, even in the presence of both kinds of errors,
+ // the Import graph remains a DAG.
+ //
+ // visit returns whether the package needs src or has a transitive
+ // dependency on a package that does. These are the only packages
+ // for which we load source code.
+ var stack []*loaderPackage
+ var visit func(lpkg *loaderPackage) bool
+ visit = func(lpkg *loaderPackage) bool {
+ switch lpkg.color {
+ case black:
+ return lpkg.needsrc
+ case grey:
+ panic("internal error: grey node")
+ }
+ lpkg.color = grey
+ stack = append(stack, lpkg) // push
+ stubs := lpkg.Imports // the structure form has only stubs with the ID in the Imports
+ lpkg.Imports = make(map[string]*Package, len(stubs))
+ for importPath, ipkg := range stubs {
+ var importErr error
+ imp := ld.pkgs[ipkg.ID]
+ if imp == nil {
+ // (includes package "C" when DisableCgo)
+ importErr = fmt.Errorf("missing package: %q", ipkg.ID)
+ } else if imp.color == grey {
+ importErr = fmt.Errorf("import cycle: %s", stack)
+ }
+ if importErr != nil {
+ if lpkg.importErrors == nil {
+ lpkg.importErrors = make(map[string]error)
+ }
+ lpkg.importErrors[importPath] = importErr
+ continue
+ }
+
+ if visit(imp) {
+ lpkg.needsrc = true
+ }
+ lpkg.Imports[importPath] = imp.Package
+ }
+
+ // Complete type information is required for the
+ // immediate dependencies of each source package.
+ if lpkg.needsrc && ld.Mode&NeedTypes != 0 {
+ for _, ipkg := range lpkg.Imports {
+ ld.pkgs[ipkg.ID].needtypes = true
+ }
+ }
+
+ // NeedTypeSizes causes TypeSizes to be set even
+ // on packages for which types aren't needed.
+ if ld.Mode&NeedTypesSizes != 0 {
+ lpkg.TypesSizes = ld.sizes
+ }
+ stack = stack[:len(stack)-1] // pop
+ lpkg.color = black
+
+ return lpkg.needsrc
+ }
+
+ // For each initial package, create its import DAG.
+ for _, lpkg := range initial {
+ visit(lpkg)
+ }
+
+ } else {
+ // !NeedImports: drop the stub (ID-only) import packages
+ // that we are not even going to try to resolve.
+ for _, lpkg := range initial {
+ lpkg.Imports = nil
+ }
+ }
+
+ // Load type data and syntax if needed, starting at
+ // the initial packages (roots of the import DAG).
+ if ld.Mode&NeedTypes != 0 || ld.Mode&NeedSyntax != 0 {
+ var wg sync.WaitGroup
+ for _, lpkg := range initial {
+ wg.Add(1)
+ go func(lpkg *loaderPackage) {
+ ld.loadRecursive(lpkg)
+ wg.Done()
+ }(lpkg)
+ }
+ wg.Wait()
+ }
+
+ // If the context is done, return its error and
+ // throw out [likely] incomplete packages.
+ if err := ld.Context.Err(); err != nil {
+ return nil, err
+ }
+
+ result := make([]*Package, len(initial))
+ for i, lpkg := range initial {
+ result[i] = lpkg.Package
+ }
+ for i := range ld.pkgs {
+ // Clear all unrequested fields,
+ // to catch programs that use more than they request.
+ if ld.requestedMode&NeedName == 0 {
+ ld.pkgs[i].Name = ""
+ ld.pkgs[i].PkgPath = ""
+ }
+ if ld.requestedMode&NeedFiles == 0 {
+ ld.pkgs[i].GoFiles = nil
+ ld.pkgs[i].OtherFiles = nil
+ ld.pkgs[i].IgnoredFiles = nil
+ }
+ if ld.requestedMode&NeedEmbedFiles == 0 {
+ ld.pkgs[i].EmbedFiles = nil
+ }
+ if ld.requestedMode&NeedEmbedPatterns == 0 {
+ ld.pkgs[i].EmbedPatterns = nil
+ }
+ if ld.requestedMode&NeedCompiledGoFiles == 0 {
+ ld.pkgs[i].CompiledGoFiles = nil
+ }
+ if ld.requestedMode&NeedImports == 0 {
+ ld.pkgs[i].Imports = nil
+ }
+ if ld.requestedMode&NeedExportFile == 0 {
+ ld.pkgs[i].ExportFile = ""
+ }
+ if ld.requestedMode&NeedTypes == 0 {
+ ld.pkgs[i].Types = nil
+ ld.pkgs[i].IllTyped = false
+ }
+ if ld.requestedMode&NeedSyntax == 0 {
+ ld.pkgs[i].Syntax = nil
+ }
+ if ld.requestedMode&NeedTypes == 0 && ld.requestedMode&NeedSyntax == 0 {
+ ld.pkgs[i].Fset = nil
+ }
+ if ld.requestedMode&NeedTypesInfo == 0 {
+ ld.pkgs[i].TypesInfo = nil
+ }
+ if ld.requestedMode&NeedTypesSizes == 0 {
+ ld.pkgs[i].TypesSizes = nil
+ }
+ if ld.requestedMode&NeedModule == 0 {
+ ld.pkgs[i].Module = nil
+ }
+ }
+
+ return result, nil
+}
+
+// loadRecursive loads the specified package and its dependencies,
+// recursively, in parallel, in topological order.
+// It is atomic and idempotent.
+// Precondition: ld.Mode&NeedTypes.
+func (ld *loader) loadRecursive(lpkg *loaderPackage) {
+ lpkg.loadOnce.Do(func() {
+ // Load the direct dependencies, in parallel.
+ var wg sync.WaitGroup
+ for _, ipkg := range lpkg.Imports {
+ imp := ld.pkgs[ipkg.ID]
+ wg.Add(1)
+ go func(imp *loaderPackage) {
+ ld.loadRecursive(imp)
+ wg.Done()
+ }(imp)
+ }
+ wg.Wait()
+ ld.loadPackage(lpkg)
+ })
+}
+
+// loadPackage loads the specified package.
+// It must be called only once per Package,
+// after immediate dependencies are loaded.
+// Precondition: ld.Mode & NeedTypes.
+func (ld *loader) loadPackage(lpkg *loaderPackage) {
+ if lpkg.PkgPath == "unsafe" {
+ // Fill in the blanks to avoid surprises.
+ lpkg.Types = types.Unsafe
+ lpkg.Fset = ld.Fset
+ lpkg.Syntax = []*ast.File{}
+ lpkg.TypesInfo = new(types.Info)
+ lpkg.TypesSizes = ld.sizes
+ return
+ }
+
+ // Call NewPackage directly with explicit name.
+ // This avoids skew between golist and go/types when the files'
+ // package declarations are inconsistent.
+ lpkg.Types = types.NewPackage(lpkg.PkgPath, lpkg.Name)
+ lpkg.Fset = ld.Fset
+
+ // Start shutting down if the context is done and do not load
+ // source or export data files.
+ // Packages that import this one will have ld.Context.Err() != nil.
+ // ld.Context.Err() will be returned later by refine.
+ if ld.Context.Err() != nil {
+ return
+ }
+
+ // Subtle: we populate all Types fields with an empty Package
+ // before loading export data so that export data processing
+ // never has to create a types.Package for an indirect dependency,
+ // which would then require that such created packages be explicitly
+ // inserted back into the Import graph as a final step after export data loading.
+ // (Hence this return is after the Types assignment.)
+ // The Diamond test exercises this case.
+ if !lpkg.needtypes && !lpkg.needsrc {
+ return
+ }
+ if !lpkg.needsrc {
+ if err := ld.loadFromExportData(lpkg); err != nil {
+ lpkg.Errors = append(lpkg.Errors, Error{
+ Pos: "-",
+ Msg: err.Error(),
+ Kind: UnknownError, // e.g. can't find/open/parse export data
+ })
+ }
+ return // not a source package, don't get syntax trees
+ }
+
+ appendError := func(err error) {
+ // Convert various error types into the one true Error.
+ var errs []Error
+ switch err := err.(type) {
+ case Error:
+ // from driver
+ errs = append(errs, err)
+
+ case *os.PathError:
+ // from parser
+ errs = append(errs, Error{
+ Pos: err.Path + ":1",
+ Msg: err.Err.Error(),
+ Kind: ParseError,
+ })
+
+ case scanner.ErrorList:
+ // from parser
+ for _, err := range err {
+ errs = append(errs, Error{
+ Pos: err.Pos.String(),
+ Msg: err.Msg,
+ Kind: ParseError,
+ })
+ }
+
+ case types.Error:
+ // from type checker
+ lpkg.TypeErrors = append(lpkg.TypeErrors, err)
+ errs = append(errs, Error{
+ Pos: err.Fset.Position(err.Pos).String(),
+ Msg: err.Msg,
+ Kind: TypeError,
+ })
+
+ default:
+ // unexpected impoverished error from parser?
+ errs = append(errs, Error{
+ Pos: "-",
+ Msg: err.Error(),
+ Kind: UnknownError,
+ })
+
+ // If you see this error message, please file a bug.
+ log.Printf("internal error: error %q (%T) without position", err, err)
+ }
+
+ lpkg.Errors = append(lpkg.Errors, errs...)
+ }
+
+ // If the go command on the PATH is newer than the runtime,
+ // then the go/{scanner,ast,parser,types} packages from the
+ // standard library may be unable to process the files
+ // selected by go list.
+ //
+ // There is currently no way to downgrade the effective
+ // version of the go command (see issue 52078), so we proceed
+ // with the newer go command but, in case of parse or type
+ // errors, we emit an additional diagnostic.
+ //
+ // See:
+ // - golang.org/issue/52078 (flag to set release tags)
+ // - golang.org/issue/50825 (gopls legacy version support)
+ // - golang.org/issue/55883 (go/packages confusing error)
+ //
+ // Should we assert a hard minimum of (currently) go1.16 here?
+ var runtimeVersion int
+ if _, err := fmt.Sscanf(runtime.Version(), "go1.%d", &runtimeVersion); err == nil && runtimeVersion < lpkg.goVersion {
+ defer func() {
+ if len(lpkg.Errors) > 0 {
+ appendError(Error{
+ Pos: "-",
+ Msg: fmt.Sprintf("This application uses version go1.%d of the source-processing packages but runs version go1.%d of 'go list'. It may fail to process source files that rely on newer language features. If so, rebuild the application using a newer version of Go.", runtimeVersion, lpkg.goVersion),
+ Kind: UnknownError,
+ })
+ }
+ }()
+ }
+
+ if ld.Config.Mode&NeedTypes != 0 && len(lpkg.CompiledGoFiles) == 0 && lpkg.ExportFile != "" {
+ // The config requested loading sources and types, but sources are missing.
+ // Add an error to the package and fall back to loading from export data.
+ appendError(Error{"-", fmt.Sprintf("sources missing for package %s", lpkg.ID), ParseError})
+ _ = ld.loadFromExportData(lpkg) // ignore any secondary errors
+
+ return // can't get syntax trees for this package
+ }
+
+ files, errs := ld.parseFiles(lpkg.CompiledGoFiles)
+ for _, err := range errs {
+ appendError(err)
+ }
+
+ lpkg.Syntax = files
+ if ld.Config.Mode&NeedTypes == 0 {
+ return
+ }
+
+ // Start shutting down if the context is done and do not type check.
+ // Packages that import this one will have ld.Context.Err() != nil.
+ // ld.Context.Err() will be returned later by refine.
+ if ld.Context.Err() != nil {
+ return
+ }
+
+ lpkg.TypesInfo = &types.Info{
+ Types: make(map[ast.Expr]types.TypeAndValue),
+ Defs: make(map[*ast.Ident]types.Object),
+ Uses: make(map[*ast.Ident]types.Object),
+ Implicits: make(map[ast.Node]types.Object),
+ Instances: make(map[*ast.Ident]types.Instance),
+ Scopes: make(map[ast.Node]*types.Scope),
+ Selections: make(map[*ast.SelectorExpr]*types.Selection),
+ }
+ versions.InitFileVersions(lpkg.TypesInfo)
+ lpkg.TypesSizes = ld.sizes
+
+ importer := importerFunc(func(path string) (*types.Package, error) {
+ if path == "unsafe" {
+ return types.Unsafe, nil
+ }
+
+ // The imports map is keyed by import path.
+ ipkg := lpkg.Imports[path]
+ if ipkg == nil {
+ if err := lpkg.importErrors[path]; err != nil {
+ return nil, err
+ }
+ // There was skew between the metadata and the
+ // import declarations, likely due to an edit
+ // race, or because the ParseFile feature was
+ // used to supply alternative file contents.
+ return nil, fmt.Errorf("no metadata for %s", path)
+ }
+
+ if ipkg.Types != nil && ipkg.Types.Complete() {
+ return ipkg.Types, nil
+ }
+ log.Fatalf("internal error: package %q without types was imported from %q", path, lpkg)
+ panic("unreachable")
+ })
+
+ // type-check
+ tc := &types.Config{
+ Importer: importer,
+
+ // Type-check bodies of functions only in initial packages.
+ // Example: for import graph A->B->C and initial packages {A,C},
+ // we can ignore function bodies in B.
+ IgnoreFuncBodies: ld.Mode&NeedDeps == 0 && !lpkg.initial,
+
+ Error: appendError,
+ Sizes: ld.sizes, // may be nil
+ }
+ if lpkg.Module != nil && lpkg.Module.GoVersion != "" {
+ tc.GoVersion = "go" + lpkg.Module.GoVersion
+ }
+ if (ld.Mode & typecheckCgo) != 0 {
+ if !typesinternal.SetUsesCgo(tc) {
+ appendError(Error{
+ Msg: "typecheckCgo requires Go 1.15+",
+ Kind: ListError,
+ })
+ return
+ }
+ }
+
+ typErr := types.NewChecker(tc, ld.Fset, lpkg.Types, lpkg.TypesInfo).Files(lpkg.Syntax)
+ lpkg.importErrors = nil // no longer needed
+
+ // In go/types go1.21 and go1.22, Checker.Files failed fast with a
+ // a "too new" error, without calling tc.Error and without
+ // proceeding to type-check the package (#66525).
+ // We rely on the runtimeVersion error to give the suggested remedy.
+ if typErr != nil && len(lpkg.Errors) == 0 && len(lpkg.Syntax) > 0 {
+ if msg := typErr.Error(); strings.HasPrefix(msg, "package requires newer Go version") {
+ appendError(types.Error{
+ Fset: ld.Fset,
+ Pos: lpkg.Syntax[0].Package,
+ Msg: msg,
+ })
+ }
+ }
+
+ // If !Cgo, the type-checker uses FakeImportC mode, so
+ // it doesn't invoke the importer for import "C",
+ // nor report an error for the import,
+ // or for any undefined C.f reference.
+ // We must detect this explicitly and correctly
+ // mark the package as IllTyped (by reporting an error).
+ // TODO(adonovan): if these errors are annoying,
+ // we could just set IllTyped quietly.
+ if tc.FakeImportC {
+ outer:
+ for _, f := range lpkg.Syntax {
+ for _, imp := range f.Imports {
+ if imp.Path.Value == `"C"` {
+ err := types.Error{Fset: ld.Fset, Pos: imp.Pos(), Msg: `import "C" ignored`}
+ appendError(err)
+ break outer
+ }
+ }
+ }
+ }
+
+ // If types.Checker.Files had an error that was unreported,
+ // make sure to report the unknown error so the package is illTyped.
+ if typErr != nil && len(lpkg.Errors) == 0 {
+ appendError(typErr)
+ }
+
+ // Record accumulated errors.
+ illTyped := len(lpkg.Errors) > 0
+ if !illTyped {
+ for _, imp := range lpkg.Imports {
+ if imp.IllTyped {
+ illTyped = true
+ break
+ }
+ }
+ }
+ lpkg.IllTyped = illTyped
+}
+
+// An importFunc is an implementation of the single-method
+// types.Importer interface based on a function value.
+type importerFunc func(path string) (*types.Package, error)
+
+func (f importerFunc) Import(path string) (*types.Package, error) { return f(path) }
+
+// We use a counting semaphore to limit
+// the number of parallel I/O calls per process.
+var ioLimit = make(chan bool, 20)
+
+func (ld *loader) parseFile(filename string) (*ast.File, error) {
+ ld.parseCacheMu.Lock()
+ v, ok := ld.parseCache[filename]
+ if ok {
+ // cache hit
+ ld.parseCacheMu.Unlock()
+ <-v.ready
+ } else {
+ // cache miss
+ v = &parseValue{ready: make(chan struct{})}
+ ld.parseCache[filename] = v
+ ld.parseCacheMu.Unlock()
+
+ var src []byte
+ for f, contents := range ld.Config.Overlay {
+ if sameFile(f, filename) {
+ src = contents
+ }
+ }
+ var err error
+ if src == nil {
+ ioLimit <- true // wait
+ src, err = os.ReadFile(filename)
+ <-ioLimit // signal
+ }
+ if err != nil {
+ v.err = err
+ } else {
+ v.f, v.err = ld.ParseFile(ld.Fset, filename, src)
+ }
+
+ close(v.ready)
+ }
+ return v.f, v.err
+}
+
+// parseFiles reads and parses the Go source files and returns the ASTs
+// of the ones that could be at least partially parsed, along with a
+// list of I/O and parse errors encountered.
+//
+// Because files are scanned in parallel, the token.Pos
+// positions of the resulting ast.Files are not ordered.
+func (ld *loader) parseFiles(filenames []string) ([]*ast.File, []error) {
+ var wg sync.WaitGroup
+ n := len(filenames)
+ parsed := make([]*ast.File, n)
+ errors := make([]error, n)
+ for i, file := range filenames {
+ wg.Add(1)
+ go func(i int, filename string) {
+ parsed[i], errors[i] = ld.parseFile(filename)
+ wg.Done()
+ }(i, file)
+ }
+ wg.Wait()
+
+ // Eliminate nils, preserving order.
+ var o int
+ for _, f := range parsed {
+ if f != nil {
+ parsed[o] = f
+ o++
+ }
+ }
+ parsed = parsed[:o]
+
+ o = 0
+ for _, err := range errors {
+ if err != nil {
+ errors[o] = err
+ o++
+ }
+ }
+ errors = errors[:o]
+
+ return parsed, errors
+}
+
+// sameFile returns true if x and y have the same basename and denote
+// the same file.
+func sameFile(x, y string) bool {
+ if x == y {
+ // It could be the case that y doesn't exist.
+ // For instance, it may be an overlay file that
+ // hasn't been written to disk. To handle that case
+ // let x == y through. (We added the exact absolute path
+ // string to the CompiledGoFiles list, so the unwritten
+ // overlay case implies x==y.)
+ return true
+ }
+ if strings.EqualFold(filepath.Base(x), filepath.Base(y)) { // (optimisation)
+ if xi, err := os.Stat(x); err == nil {
+ if yi, err := os.Stat(y); err == nil {
+ return os.SameFile(xi, yi)
+ }
+ }
+ }
+ return false
+}
+
+// loadFromExportData ensures that type information is present for the specified
+// package, loading it from an export data file on the first request.
+// On success it sets lpkg.Types to a new Package.
+func (ld *loader) loadFromExportData(lpkg *loaderPackage) error {
+ if lpkg.PkgPath == "" {
+ log.Fatalf("internal error: Package %s has no PkgPath", lpkg)
+ }
+
+ // Because gcexportdata.Read has the potential to create or
+ // modify the types.Package for each node in the transitive
+ // closure of dependencies of lpkg, all exportdata operations
+ // must be sequential. (Finer-grained locking would require
+ // changes to the gcexportdata API.)
+ //
+ // The exportMu lock guards the lpkg.Types field and the
+ // types.Package it points to, for each loaderPackage in the graph.
+ //
+ // Not all accesses to Package.Pkg need to be protected by exportMu:
+ // graph ordering ensures that direct dependencies of source
+ // packages are fully loaded before the importer reads their Pkg field.
+ ld.exportMu.Lock()
+ defer ld.exportMu.Unlock()
+
+ if tpkg := lpkg.Types; tpkg != nil && tpkg.Complete() {
+ return nil // cache hit
+ }
+
+ lpkg.IllTyped = true // fail safe
+
+ if lpkg.ExportFile == "" {
+ // Errors while building export data will have been printed to stderr.
+ return fmt.Errorf("no export data file")
+ }
+ f, err := os.Open(lpkg.ExportFile)
+ if err != nil {
+ return err
+ }
+ defer f.Close()
+
+ // Read gc export data.
+ //
+ // We don't currently support gccgo export data because all
+ // underlying workspaces use the gc toolchain. (Even build
+ // systems that support gccgo don't use it for workspace
+ // queries.)
+ r, err := gcexportdata.NewReader(f)
+ if err != nil {
+ return fmt.Errorf("reading %s: %v", lpkg.ExportFile, err)
+ }
+
+ // Build the view.
+ //
+ // The gcexportdata machinery has no concept of package ID.
+ // It identifies packages by their PkgPath, which although not
+ // globally unique is unique within the scope of one invocation
+ // of the linker, type-checker, or gcexportdata.
+ //
+ // So, we must build a PkgPath-keyed view of the global
+ // (conceptually ID-keyed) cache of packages and pass it to
+ // gcexportdata. The view must contain every existing
+ // package that might possibly be mentioned by the
+ // current package---its transitive closure.
+ //
+ // In loadPackage, we unconditionally create a types.Package for
+ // each dependency so that export data loading does not
+ // create new ones.
+ //
+ // TODO(adonovan): it would be simpler and more efficient
+ // if the export data machinery invoked a callback to
+ // get-or-create a package instead of a map.
+ //
+ view := make(map[string]*types.Package) // view seen by gcexportdata
+ seen := make(map[*loaderPackage]bool) // all visited packages
+ var visit func(pkgs map[string]*Package)
+ visit = func(pkgs map[string]*Package) {
+ for _, p := range pkgs {
+ lpkg := ld.pkgs[p.ID]
+ if !seen[lpkg] {
+ seen[lpkg] = true
+ view[lpkg.PkgPath] = lpkg.Types
+ visit(lpkg.Imports)
+ }
+ }
+ }
+ visit(lpkg.Imports)
+
+ viewLen := len(view) + 1 // adding the self package
+ // Parse the export data.
+ // (May modify incomplete packages in view but not create new ones.)
+ tpkg, err := gcexportdata.Read(r, ld.Fset, view, lpkg.PkgPath)
+ if err != nil {
+ return fmt.Errorf("reading %s: %v", lpkg.ExportFile, err)
+ }
+ if _, ok := view["go.shape"]; ok {
+ // Account for the pseudopackage "go.shape" that gets
+ // created by generic code.
+ viewLen++
+ }
+ if viewLen != len(view) {
+ log.Panicf("golang.org/x/tools/go/packages: unexpected new packages during load of %s", lpkg.PkgPath)
+ }
+
+ lpkg.Types = tpkg
+ lpkg.IllTyped = false
+ return nil
+}
+
+// impliedLoadMode returns loadMode with its dependencies.
+func impliedLoadMode(loadMode LoadMode) LoadMode {
+ if loadMode&(NeedDeps|NeedTypes|NeedTypesInfo) != 0 {
+ // All these things require knowing the import graph.
+ loadMode |= NeedImports
+ }
+ if loadMode&NeedTypes != 0 {
+ // Types require the GoVersion from Module.
+ loadMode |= NeedModule
+ }
+
+ return loadMode
+}
+
+func usesExportData(cfg *Config) bool {
+ return cfg.Mode&NeedExportFile != 0 || cfg.Mode&NeedTypes != 0 && cfg.Mode&NeedDeps == 0
+}
+
+var _ interface{} = io.Discard // assert build toolchain is go1.16 or later
diff --git a/vendor/golang.org/x/tools/go/packages/visit.go b/vendor/golang.org/x/tools/go/packages/visit.go
new file mode 100644
index 0000000..df14ffd
--- /dev/null
+++ b/vendor/golang.org/x/tools/go/packages/visit.go
@@ -0,0 +1,68 @@
+// Copyright 2018 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package packages
+
+import (
+ "fmt"
+ "os"
+ "sort"
+)
+
+// Visit visits all the packages in the import graph whose roots are
+// pkgs, calling the optional pre function the first time each package
+// is encountered (preorder), and the optional post function after a
+// package's dependencies have been visited (postorder).
+// The boolean result of pre(pkg) determines whether
+// the imports of package pkg are visited.
+func Visit(pkgs []*Package, pre func(*Package) bool, post func(*Package)) {
+ seen := make(map[*Package]bool)
+ var visit func(*Package)
+ visit = func(pkg *Package) {
+ if !seen[pkg] {
+ seen[pkg] = true
+
+ if pre == nil || pre(pkg) {
+ paths := make([]string, 0, len(pkg.Imports))
+ for path := range pkg.Imports {
+ paths = append(paths, path)
+ }
+ sort.Strings(paths) // Imports is a map, this makes visit stable
+ for _, path := range paths {
+ visit(pkg.Imports[path])
+ }
+ }
+
+ if post != nil {
+ post(pkg)
+ }
+ }
+ }
+ for _, pkg := range pkgs {
+ visit(pkg)
+ }
+}
+
+// PrintErrors prints to os.Stderr the accumulated errors of all
+// packages in the import graph rooted at pkgs, dependencies first.
+// PrintErrors returns the number of errors printed.
+func PrintErrors(pkgs []*Package) int {
+ var n int
+ errModules := make(map[*Module]bool)
+ Visit(pkgs, nil, func(pkg *Package) {
+ for _, err := range pkg.Errors {
+ fmt.Fprintln(os.Stderr, err)
+ n++
+ }
+
+ // Print pkg.Module.Error once if present.
+ mod := pkg.Module
+ if mod != nil && mod.Error != nil && !errModules[mod] {
+ errModules[mod] = true
+ fmt.Fprintln(os.Stderr, mod.Error.Err)
+ n++
+ }
+ })
+ return n
+}
diff --git a/vendor/golang.org/x/tools/go/ssa/TODO b/vendor/golang.org/x/tools/go/ssa/TODO
new file mode 100644
index 0000000..6c35253
--- /dev/null
+++ b/vendor/golang.org/x/tools/go/ssa/TODO
@@ -0,0 +1,16 @@
+-*- text -*-
+
+SSA Generics to-do list
+===========================
+
+DOCUMENTATION:
+- Read me for internals
+
+TYPE PARAMETERIZED GENERIC FUNCTIONS:
+- sanity.go updates.
+- Check source functions going to generics.
+- Tests, tests, tests...
+
+USAGE:
+- Back fill users for handling ssa.InstantiateGenerics being off.
+
diff --git a/vendor/golang.org/x/tools/go/ssa/block.go b/vendor/golang.org/x/tools/go/ssa/block.go
new file mode 100644
index 0000000..28170c7
--- /dev/null
+++ b/vendor/golang.org/x/tools/go/ssa/block.go
@@ -0,0 +1,113 @@
+// Copyright 2022 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package ssa
+
+import "fmt"
+
+// This file implements the BasicBlock type.
+
+// addEdge adds a control-flow graph edge from from to to.
+func addEdge(from, to *BasicBlock) {
+ from.Succs = append(from.Succs, to)
+ to.Preds = append(to.Preds, from)
+}
+
+// Parent returns the function that contains block b.
+func (b *BasicBlock) Parent() *Function { return b.parent }
+
+// String returns a human-readable label of this block.
+// It is not guaranteed unique within the function.
+func (b *BasicBlock) String() string {
+ return fmt.Sprintf("%d", b.Index)
+}
+
+// emit appends an instruction to the current basic block.
+// If the instruction defines a Value, it is returned.
+func (b *BasicBlock) emit(i Instruction) Value {
+ i.setBlock(b)
+ b.Instrs = append(b.Instrs, i)
+ v, _ := i.(Value)
+ return v
+}
+
+// predIndex returns the i such that b.Preds[i] == c or panics if
+// there is none.
+func (b *BasicBlock) predIndex(c *BasicBlock) int {
+ for i, pred := range b.Preds {
+ if pred == c {
+ return i
+ }
+ }
+ panic(fmt.Sprintf("no edge %s -> %s", c, b))
+}
+
+// hasPhi returns true if b.Instrs contains φ-nodes.
+func (b *BasicBlock) hasPhi() bool {
+ _, ok := b.Instrs[0].(*Phi)
+ return ok
+}
+
+// phis returns the prefix of b.Instrs containing all the block's φ-nodes.
+func (b *BasicBlock) phis() []Instruction {
+ for i, instr := range b.Instrs {
+ if _, ok := instr.(*Phi); !ok {
+ return b.Instrs[:i]
+ }
+ }
+ return nil // unreachable in well-formed blocks
+}
+
+// replacePred replaces all occurrences of p in b's predecessor list with q.
+// Ordinarily there should be at most one.
+func (b *BasicBlock) replacePred(p, q *BasicBlock) {
+ for i, pred := range b.Preds {
+ if pred == p {
+ b.Preds[i] = q
+ }
+ }
+}
+
+// replaceSucc replaces all occurrences of p in b's successor list with q.
+// Ordinarily there should be at most one.
+func (b *BasicBlock) replaceSucc(p, q *BasicBlock) {
+ for i, succ := range b.Succs {
+ if succ == p {
+ b.Succs[i] = q
+ }
+ }
+}
+
+// removePred removes all occurrences of p in b's
+// predecessor list and φ-nodes.
+// Ordinarily there should be at most one.
+func (b *BasicBlock) removePred(p *BasicBlock) {
+ phis := b.phis()
+
+ // We must preserve edge order for φ-nodes.
+ j := 0
+ for i, pred := range b.Preds {
+ if pred != p {
+ b.Preds[j] = b.Preds[i]
+ // Strike out φ-edge too.
+ for _, instr := range phis {
+ phi := instr.(*Phi)
+ phi.Edges[j] = phi.Edges[i]
+ }
+ j++
+ }
+ }
+ // Nil out b.Preds[j:] and φ-edges[j:] to aid GC.
+ for i := j; i < len(b.Preds); i++ {
+ b.Preds[i] = nil
+ for _, instr := range phis {
+ instr.(*Phi).Edges[i] = nil
+ }
+ }
+ b.Preds = b.Preds[:j]
+ for _, instr := range phis {
+ phi := instr.(*Phi)
+ phi.Edges = phi.Edges[:j]
+ }
+}
diff --git a/vendor/golang.org/x/tools/go/ssa/blockopt.go b/vendor/golang.org/x/tools/go/ssa/blockopt.go
new file mode 100644
index 0000000..7dabce8
--- /dev/null
+++ b/vendor/golang.org/x/tools/go/ssa/blockopt.go
@@ -0,0 +1,183 @@
+// Copyright 2013 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package ssa
+
+// Simple block optimizations to simplify the control flow graph.
+
+// TODO(adonovan): opt: instead of creating several "unreachable" blocks
+// per function in the Builder, reuse a single one (e.g. at Blocks[1])
+// to reduce garbage.
+
+import (
+ "fmt"
+ "os"
+)
+
+// If true, perform sanity checking and show progress at each
+// successive iteration of optimizeBlocks. Very verbose.
+const debugBlockOpt = false
+
+// markReachable sets Index=-1 for all blocks reachable from b.
+func markReachable(b *BasicBlock) {
+ b.Index = -1
+ for _, succ := range b.Succs {
+ if succ.Index == 0 {
+ markReachable(succ)
+ }
+ }
+}
+
+// deleteUnreachableBlocks marks all reachable blocks of f and
+// eliminates (nils) all others, including possibly cyclic subgraphs.
+func deleteUnreachableBlocks(f *Function) {
+ const white, black = 0, -1
+ // We borrow b.Index temporarily as the mark bit.
+ for _, b := range f.Blocks {
+ b.Index = white
+ }
+ markReachable(f.Blocks[0])
+ if f.Recover != nil {
+ markReachable(f.Recover)
+ }
+ for i, b := range f.Blocks {
+ if b.Index == white {
+ for _, c := range b.Succs {
+ if c.Index == black {
+ c.removePred(b) // delete white->black edge
+ }
+ }
+ if debugBlockOpt {
+ fmt.Fprintln(os.Stderr, "unreachable", b)
+ }
+ f.Blocks[i] = nil // delete b
+ }
+ }
+ f.removeNilBlocks()
+}
+
+// jumpThreading attempts to apply simple jump-threading to block b,
+// in which a->b->c become a->c if b is just a Jump.
+// The result is true if the optimization was applied.
+func jumpThreading(f *Function, b *BasicBlock) bool {
+ if b.Index == 0 {
+ return false // don't apply to entry block
+ }
+ if b.Instrs == nil {
+ return false
+ }
+ if _, ok := b.Instrs[0].(*Jump); !ok {
+ return false // not just a jump
+ }
+ c := b.Succs[0]
+ if c == b {
+ return false // don't apply to degenerate jump-to-self.
+ }
+ if c.hasPhi() {
+ return false // not sound without more effort
+ }
+ for j, a := range b.Preds {
+ a.replaceSucc(b, c)
+
+ // If a now has two edges to c, replace its degenerate If by Jump.
+ if len(a.Succs) == 2 && a.Succs[0] == c && a.Succs[1] == c {
+ jump := new(Jump)
+ jump.setBlock(a)
+ a.Instrs[len(a.Instrs)-1] = jump
+ a.Succs = a.Succs[:1]
+ c.removePred(b)
+ } else {
+ if j == 0 {
+ c.replacePred(b, a)
+ } else {
+ c.Preds = append(c.Preds, a)
+ }
+ }
+
+ if debugBlockOpt {
+ fmt.Fprintln(os.Stderr, "jumpThreading", a, b, c)
+ }
+ }
+ f.Blocks[b.Index] = nil // delete b
+ return true
+}
+
+// fuseBlocks attempts to apply the block fusion optimization to block
+// a, in which a->b becomes ab if len(a.Succs)==len(b.Preds)==1.
+// The result is true if the optimization was applied.
+func fuseBlocks(f *Function, a *BasicBlock) bool {
+ if len(a.Succs) != 1 {
+ return false
+ }
+ b := a.Succs[0]
+ if len(b.Preds) != 1 {
+ return false
+ }
+
+ // Degenerate &&/|| ops may result in a straight-line CFG
+ // containing φ-nodes. (Ideally we'd replace such them with
+ // their sole operand but that requires Referrers, built later.)
+ if b.hasPhi() {
+ return false // not sound without further effort
+ }
+
+ // Eliminate jump at end of A, then copy all of B across.
+ a.Instrs = append(a.Instrs[:len(a.Instrs)-1], b.Instrs...)
+ for _, instr := range b.Instrs {
+ instr.setBlock(a)
+ }
+
+ // A inherits B's successors
+ a.Succs = append(a.succs2[:0], b.Succs...)
+
+ // Fix up Preds links of all successors of B.
+ for _, c := range b.Succs {
+ c.replacePred(b, a)
+ }
+
+ if debugBlockOpt {
+ fmt.Fprintln(os.Stderr, "fuseBlocks", a, b)
+ }
+
+ f.Blocks[b.Index] = nil // delete b
+ return true
+}
+
+// optimizeBlocks() performs some simple block optimizations on a
+// completed function: dead block elimination, block fusion, jump
+// threading.
+func optimizeBlocks(f *Function) {
+ deleteUnreachableBlocks(f)
+
+ // Loop until no further progress.
+ changed := true
+ for changed {
+ changed = false
+
+ if debugBlockOpt {
+ f.WriteTo(os.Stderr)
+ mustSanityCheck(f, nil)
+ }
+
+ for _, b := range f.Blocks {
+ // f.Blocks will temporarily contain nils to indicate
+ // deleted blocks; we remove them at the end.
+ if b == nil {
+ continue
+ }
+
+ // Fuse blocks. b->c becomes bc.
+ if fuseBlocks(f, b) {
+ changed = true
+ }
+
+ // a->b->c becomes a->c if b contains only a Jump.
+ if jumpThreading(f, b) {
+ changed = true
+ continue // (b was disconnected)
+ }
+ }
+ }
+ f.removeNilBlocks()
+}
diff --git a/vendor/golang.org/x/tools/go/ssa/builder.go b/vendor/golang.org/x/tools/go/ssa/builder.go
new file mode 100644
index 0000000..55943e4
--- /dev/null
+++ b/vendor/golang.org/x/tools/go/ssa/builder.go
@@ -0,0 +1,3276 @@
+// Copyright 2013 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package ssa
+
+// This file defines the builder, which builds SSA-form IR for function bodies.
+//
+// SSA construction has two phases, "create" and "build". First, one
+// or more packages are created in any order by a sequence of calls to
+// CreatePackage, either from syntax or from mere type information.
+// Each created package has a complete set of Members (const, var,
+// type, func) that can be accessed through methods like
+// Program.FuncValue.
+//
+// It is not necessary to call CreatePackage for all dependencies of
+// each syntax package, only for its direct imports. (In future
+// perhaps even this restriction may be lifted.)
+//
+// Second, packages created from syntax are built, by one or more
+// calls to Package.Build, which may be concurrent; or by a call to
+// Program.Build, which builds all packages in parallel. Building
+// traverses the type-annotated syntax tree of each function body and
+// creates SSA-form IR, a control-flow graph of instructions,
+// populating fields such as Function.Body, .Params, and others.
+//
+// Building may create additional methods, including:
+// - wrapper methods (e.g. for embeddding, or implicit &recv)
+// - bound method closures (e.g. for use(recv.f))
+// - thunks (e.g. for use(I.f) or use(T.f))
+// - generic instances (e.g. to produce f[int] from f[any]).
+// As these methods are created, they are added to the build queue,
+// and then processed in turn, until a fixed point is reached,
+// Since these methods might belong to packages that were not
+// created (by a call to CreatePackage), their Pkg field is unset.
+//
+// Instances of generic functions may be either instantiated (f[int]
+// is a copy of f[T] with substitutions) or wrapped (f[int] delegates
+// to f[T]), depending on the availability of generic syntax and the
+// InstantiateGenerics mode flag.
+//
+// Each package has an initializer function named "init" that calls
+// the initializer functions of each direct import, computes and
+// assigns the initial value of each global variable, and calls each
+// source-level function named "init". (These generate SSA functions
+// named "init#1", "init#2", etc.)
+//
+// Runtime types
+//
+// Each MakeInterface operation is a conversion from a non-interface
+// type to an interface type. The semantics of this operation requires
+// a runtime type descriptor, which is the type portion of an
+// interface, and the value abstracted by reflect.Type.
+//
+// The program accumulates all non-parameterized types that are
+// encountered as MakeInterface operands, along with all types that
+// may be derived from them using reflection. This set is available as
+// Program.RuntimeTypes, and the methods of these types may be
+// reachable via interface calls or reflection even if they are never
+// referenced from the SSA IR. (In practice, algorithms such as RTA
+// that compute reachability from package main perform their own
+// tracking of runtime types at a finer grain, so this feature is not
+// very useful.)
+//
+// Function literals
+//
+// Anonymous functions must be built as soon as they are encountered,
+// as it may affect locals of the enclosing function, but they are not
+// marked 'built' until the end of the outermost enclosing function.
+// (Among other things, this causes them to be logged in top-down order.)
+//
+// The Function.build fields determines the algorithm for building the
+// function body. It is cleared to mark that building is complete.
+
+import (
+ "fmt"
+ "go/ast"
+ "go/constant"
+ "go/token"
+ "go/types"
+ "os"
+ "runtime"
+ "sync"
+
+ "golang.org/x/tools/internal/aliases"
+ "golang.org/x/tools/internal/typeparams"
+ "golang.org/x/tools/internal/versions"
+)
+
+type opaqueType struct{ name string }
+
+func (t *opaqueType) String() string { return t.name }
+func (t *opaqueType) Underlying() types.Type { return t }
+
+var (
+ varOk = newVar("ok", tBool)
+ varIndex = newVar("index", tInt)
+
+ // Type constants.
+ tBool = types.Typ[types.Bool]
+ tByte = types.Typ[types.Byte]
+ tInt = types.Typ[types.Int]
+ tInvalid = types.Typ[types.Invalid]
+ tString = types.Typ[types.String]
+ tUntypedNil = types.Typ[types.UntypedNil]
+
+ tRangeIter = &opaqueType{"iter"} // the type of all "range" iterators
+ tDeferStack = types.NewPointer(&opaqueType{"deferStack"}) // the type of a "deferStack" from ssa:deferstack()
+ tEface = types.NewInterfaceType(nil, nil).Complete()
+
+ // SSA Value constants.
+ vZero = intConst(0)
+ vOne = intConst(1)
+ vTrue = NewConst(constant.MakeBool(true), tBool)
+ vFalse = NewConst(constant.MakeBool(false), tBool)
+
+ jReady = intConst(0) // range-over-func jump is READY
+ jBusy = intConst(-1) // range-over-func jump is BUSY
+ jDone = intConst(-2) // range-over-func jump is DONE
+
+ // The ssa:deferstack intrinsic returns the current function's defer stack.
+ vDeferStack = &Builtin{
+ name: "ssa:deferstack",
+ sig: types.NewSignatureType(nil, nil, nil, nil, types.NewTuple(anonVar(tDeferStack)), false),
+ }
+)
+
+// builder holds state associated with the package currently being built.
+// Its methods contain all the logic for AST-to-SSA conversion.
+//
+// All Functions belong to the same Program.
+//
+// builders are not thread-safe.
+type builder struct {
+ fns []*Function // Functions that have finished their CREATE phases.
+
+ finished int // finished is the length of the prefix of fns containing built functions.
+
+ // The task of building shared functions within the builder.
+ // Shared functions are ones the the builder may either create or lookup.
+ // These may be built by other builders in parallel.
+ // The task is done when the builder has finished iterating, and it
+ // waits for all shared functions to finish building.
+ // nil implies there are no hared functions to wait on.
+ buildshared *task
+}
+
+// shared is done when the builder has built all of the
+// enqueued functions to a fixed-point.
+func (b *builder) shared() *task {
+ if b.buildshared == nil { // lazily-initialize
+ b.buildshared = &task{done: make(chan unit)}
+ }
+ return b.buildshared
+}
+
+// enqueue fn to be built by the builder.
+func (b *builder) enqueue(fn *Function) {
+ b.fns = append(b.fns, fn)
+}
+
+// waitForSharedFunction indicates that the builder should wait until
+// the potentially shared function fn has finished building.
+//
+// This should include any functions that may be built by other
+// builders.
+func (b *builder) waitForSharedFunction(fn *Function) {
+ if fn.buildshared != nil { // maybe need to wait?
+ s := b.shared()
+ s.addEdge(fn.buildshared)
+ }
+}
+
+// cond emits to fn code to evaluate boolean condition e and jump
+// to t or f depending on its value, performing various simplifications.
+//
+// Postcondition: fn.currentBlock is nil.
+func (b *builder) cond(fn *Function, e ast.Expr, t, f *BasicBlock) {
+ switch e := e.(type) {
+ case *ast.ParenExpr:
+ b.cond(fn, e.X, t, f)
+ return
+
+ case *ast.BinaryExpr:
+ switch e.Op {
+ case token.LAND:
+ ltrue := fn.newBasicBlock("cond.true")
+ b.cond(fn, e.X, ltrue, f)
+ fn.currentBlock = ltrue
+ b.cond(fn, e.Y, t, f)
+ return
+
+ case token.LOR:
+ lfalse := fn.newBasicBlock("cond.false")
+ b.cond(fn, e.X, t, lfalse)
+ fn.currentBlock = lfalse
+ b.cond(fn, e.Y, t, f)
+ return
+ }
+
+ case *ast.UnaryExpr:
+ if e.Op == token.NOT {
+ b.cond(fn, e.X, f, t)
+ return
+ }
+ }
+
+ // A traditional compiler would simplify "if false" (etc) here
+ // but we do not, for better fidelity to the source code.
+ //
+ // The value of a constant condition may be platform-specific,
+ // and may cause blocks that are reachable in some configuration
+ // to be hidden from subsequent analyses such as bug-finding tools.
+ emitIf(fn, b.expr(fn, e), t, f)
+}
+
+// logicalBinop emits code to fn to evaluate e, a &&- or
+// ||-expression whose reified boolean value is wanted.
+// The value is returned.
+func (b *builder) logicalBinop(fn *Function, e *ast.BinaryExpr) Value {
+ rhs := fn.newBasicBlock("binop.rhs")
+ done := fn.newBasicBlock("binop.done")
+
+ // T(e) = T(e.X) = T(e.Y) after untyped constants have been
+ // eliminated.
+ // TODO(adonovan): not true; MyBool==MyBool yields UntypedBool.
+ t := fn.typeOf(e)
+
+ var short Value // value of the short-circuit path
+ switch e.Op {
+ case token.LAND:
+ b.cond(fn, e.X, rhs, done)
+ short = NewConst(constant.MakeBool(false), t)
+
+ case token.LOR:
+ b.cond(fn, e.X, done, rhs)
+ short = NewConst(constant.MakeBool(true), t)
+ }
+
+ // Is rhs unreachable?
+ if rhs.Preds == nil {
+ // Simplify false&&y to false, true||y to true.
+ fn.currentBlock = done
+ return short
+ }
+
+ // Is done unreachable?
+ if done.Preds == nil {
+ // Simplify true&&y (or false||y) to y.
+ fn.currentBlock = rhs
+ return b.expr(fn, e.Y)
+ }
+
+ // All edges from e.X to done carry the short-circuit value.
+ var edges []Value
+ for range done.Preds {
+ edges = append(edges, short)
+ }
+
+ // The edge from e.Y to done carries the value of e.Y.
+ fn.currentBlock = rhs
+ edges = append(edges, b.expr(fn, e.Y))
+ emitJump(fn, done)
+ fn.currentBlock = done
+
+ phi := &Phi{Edges: edges, Comment: e.Op.String()}
+ phi.pos = e.OpPos
+ phi.typ = t
+ return done.emit(phi)
+}
+
+// exprN lowers a multi-result expression e to SSA form, emitting code
+// to fn and returning a single Value whose type is a *types.Tuple.
+// The caller must access the components via Extract.
+//
+// Multi-result expressions include CallExprs in a multi-value
+// assignment or return statement, and "value,ok" uses of
+// TypeAssertExpr, IndexExpr (when X is a map), and UnaryExpr (when Op
+// is token.ARROW).
+func (b *builder) exprN(fn *Function, e ast.Expr) Value {
+ typ := fn.typeOf(e).(*types.Tuple)
+ switch e := e.(type) {
+ case *ast.ParenExpr:
+ return b.exprN(fn, e.X)
+
+ case *ast.CallExpr:
+ // Currently, no built-in function nor type conversion
+ // has multiple results, so we can avoid some of the
+ // cases for single-valued CallExpr.
+ var c Call
+ b.setCall(fn, e, &c.Call)
+ c.typ = typ
+ return fn.emit(&c)
+
+ case *ast.IndexExpr:
+ mapt := typeparams.CoreType(fn.typeOf(e.X)).(*types.Map) // ,ok must be a map.
+ lookup := &Lookup{
+ X: b.expr(fn, e.X),
+ Index: emitConv(fn, b.expr(fn, e.Index), mapt.Key()),
+ CommaOk: true,
+ }
+ lookup.setType(typ)
+ lookup.setPos(e.Lbrack)
+ return fn.emit(lookup)
+
+ case *ast.TypeAssertExpr:
+ return emitTypeTest(fn, b.expr(fn, e.X), typ.At(0).Type(), e.Lparen)
+
+ case *ast.UnaryExpr: // must be receive <-
+ unop := &UnOp{
+ Op: token.ARROW,
+ X: b.expr(fn, e.X),
+ CommaOk: true,
+ }
+ unop.setType(typ)
+ unop.setPos(e.OpPos)
+ return fn.emit(unop)
+ }
+ panic(fmt.Sprintf("exprN(%T) in %s", e, fn))
+}
+
+// builtin emits to fn SSA instructions to implement a call to the
+// built-in function obj with the specified arguments
+// and return type. It returns the value defined by the result.
+//
+// The result is nil if no special handling was required; in this case
+// the caller should treat this like an ordinary library function
+// call.
+func (b *builder) builtin(fn *Function, obj *types.Builtin, args []ast.Expr, typ types.Type, pos token.Pos) Value {
+ typ = fn.typ(typ)
+ switch obj.Name() {
+ case "make":
+ switch ct := typeparams.CoreType(typ).(type) {
+ case *types.Slice:
+ n := b.expr(fn, args[1])
+ m := n
+ if len(args) == 3 {
+ m = b.expr(fn, args[2])
+ }
+ if m, ok := m.(*Const); ok {
+ // treat make([]T, n, m) as new([m]T)[:n]
+ cap := m.Int64()
+ at := types.NewArray(ct.Elem(), cap)
+ v := &Slice{
+ X: emitNew(fn, at, pos, "makeslice"),
+ High: n,
+ }
+ v.setPos(pos)
+ v.setType(typ)
+ return fn.emit(v)
+ }
+ v := &MakeSlice{
+ Len: n,
+ Cap: m,
+ }
+ v.setPos(pos)
+ v.setType(typ)
+ return fn.emit(v)
+
+ case *types.Map:
+ var res Value
+ if len(args) == 2 {
+ res = b.expr(fn, args[1])
+ }
+ v := &MakeMap{Reserve: res}
+ v.setPos(pos)
+ v.setType(typ)
+ return fn.emit(v)
+
+ case *types.Chan:
+ var sz Value = vZero
+ if len(args) == 2 {
+ sz = b.expr(fn, args[1])
+ }
+ v := &MakeChan{Size: sz}
+ v.setPos(pos)
+ v.setType(typ)
+ return fn.emit(v)
+ }
+
+ case "new":
+ return emitNew(fn, typeparams.MustDeref(typ), pos, "new")
+
+ case "len", "cap":
+ // Special case: len or cap of an array or *array is
+ // based on the type, not the value which may be nil.
+ // We must still evaluate the value, though. (If it
+ // was side-effect free, the whole call would have
+ // been constant-folded.)
+ t := typeparams.Deref(fn.typeOf(args[0]))
+ if at, ok := typeparams.CoreType(t).(*types.Array); ok {
+ b.expr(fn, args[0]) // for effects only
+ return intConst(at.Len())
+ }
+ // Otherwise treat as normal.
+
+ case "panic":
+ fn.emit(&Panic{
+ X: emitConv(fn, b.expr(fn, args[0]), tEface),
+ pos: pos,
+ })
+ fn.currentBlock = fn.newBasicBlock("unreachable")
+ return vTrue // any non-nil Value will do
+ }
+ return nil // treat all others as a regular function call
+}
+
+// addr lowers a single-result addressable expression e to SSA form,
+// emitting code to fn and returning the location (an lvalue) defined
+// by the expression.
+//
+// If escaping is true, addr marks the base variable of the
+// addressable expression e as being a potentially escaping pointer
+// value. For example, in this code:
+//
+// a := A{
+// b: [1]B{B{c: 1}}
+// }
+// return &a.b[0].c
+//
+// the application of & causes a.b[0].c to have its address taken,
+// which means that ultimately the local variable a must be
+// heap-allocated. This is a simple but very conservative escape
+// analysis.
+//
+// Operations forming potentially escaping pointers include:
+// - &x, including when implicit in method call or composite literals.
+// - a[:] iff a is an array (not *array)
+// - references to variables in lexically enclosing functions.
+func (b *builder) addr(fn *Function, e ast.Expr, escaping bool) lvalue {
+ switch e := e.(type) {
+ case *ast.Ident:
+ if isBlankIdent(e) {
+ return blank{}
+ }
+ obj := fn.objectOf(e).(*types.Var)
+ var v Value
+ if g := fn.Prog.packageLevelMember(obj); g != nil {
+ v = g.(*Global) // var (address)
+ } else {
+ v = fn.lookup(obj, escaping)
+ }
+ return &address{addr: v, pos: e.Pos(), expr: e}
+
+ case *ast.CompositeLit:
+ typ := typeparams.Deref(fn.typeOf(e))
+ var v *Alloc
+ if escaping {
+ v = emitNew(fn, typ, e.Lbrace, "complit")
+ } else {
+ v = emitLocal(fn, typ, e.Lbrace, "complit")
+ }
+ var sb storebuf
+ b.compLit(fn, v, e, true, &sb)
+ sb.emit(fn)
+ return &address{addr: v, pos: e.Lbrace, expr: e}
+
+ case *ast.ParenExpr:
+ return b.addr(fn, e.X, escaping)
+
+ case *ast.SelectorExpr:
+ sel := fn.selection(e)
+ if sel == nil {
+ // qualified identifier
+ return b.addr(fn, e.Sel, escaping)
+ }
+ if sel.kind != types.FieldVal {
+ panic(sel)
+ }
+ wantAddr := true
+ v := b.receiver(fn, e.X, wantAddr, escaping, sel)
+ index := sel.index[len(sel.index)-1]
+ fld := fieldOf(typeparams.MustDeref(v.Type()), index) // v is an addr.
+
+ // Due to the two phases of resolving AssignStmt, a panic from x.f = p()
+ // when x is nil is required to come after the side-effects of
+ // evaluating x and p().
+ emit := func(fn *Function) Value {
+ return emitFieldSelection(fn, v, index, true, e.Sel)
+ }
+ return &lazyAddress{addr: emit, t: fld.Type(), pos: e.Sel.Pos(), expr: e.Sel}
+
+ case *ast.IndexExpr:
+ xt := fn.typeOf(e.X)
+ elem, mode := indexType(xt)
+ var x Value
+ var et types.Type
+ switch mode {
+ case ixArrVar: // array, array|slice, array|*array, or array|*array|slice.
+ x = b.addr(fn, e.X, escaping).address(fn)
+ et = types.NewPointer(elem)
+ case ixVar: // *array, slice, *array|slice
+ x = b.expr(fn, e.X)
+ et = types.NewPointer(elem)
+ case ixMap:
+ mt := typeparams.CoreType(xt).(*types.Map)
+ return &element{
+ m: b.expr(fn, e.X),
+ k: emitConv(fn, b.expr(fn, e.Index), mt.Key()),
+ t: mt.Elem(),
+ pos: e.Lbrack,
+ }
+ default:
+ panic("unexpected container type in IndexExpr: " + xt.String())
+ }
+ index := b.expr(fn, e.Index)
+ if isUntyped(index.Type()) {
+ index = emitConv(fn, index, tInt)
+ }
+ // Due to the two phases of resolving AssignStmt, a panic from x[i] = p()
+ // when x is nil or i is out-of-bounds is required to come after the
+ // side-effects of evaluating x, i and p().
+ emit := func(fn *Function) Value {
+ v := &IndexAddr{
+ X: x,
+ Index: index,
+ }
+ v.setPos(e.Lbrack)
+ v.setType(et)
+ return fn.emit(v)
+ }
+ return &lazyAddress{addr: emit, t: typeparams.MustDeref(et), pos: e.Lbrack, expr: e}
+
+ case *ast.StarExpr:
+ return &address{addr: b.expr(fn, e.X), pos: e.Star, expr: e}
+ }
+
+ panic(fmt.Sprintf("unexpected address expression: %T", e))
+}
+
+type store struct {
+ lhs lvalue
+ rhs Value
+}
+
+type storebuf struct{ stores []store }
+
+func (sb *storebuf) store(lhs lvalue, rhs Value) {
+ sb.stores = append(sb.stores, store{lhs, rhs})
+}
+
+func (sb *storebuf) emit(fn *Function) {
+ for _, s := range sb.stores {
+ s.lhs.store(fn, s.rhs)
+ }
+}
+
+// assign emits to fn code to initialize the lvalue loc with the value
+// of expression e. If isZero is true, assign assumes that loc holds
+// the zero value for its type.
+//
+// This is equivalent to loc.store(fn, b.expr(fn, e)), but may generate
+// better code in some cases, e.g., for composite literals in an
+// addressable location.
+//
+// If sb is not nil, assign generates code to evaluate expression e, but
+// not to update loc. Instead, the necessary stores are appended to the
+// storebuf sb so that they can be executed later. This allows correct
+// in-place update of existing variables when the RHS is a composite
+// literal that may reference parts of the LHS.
+func (b *builder) assign(fn *Function, loc lvalue, e ast.Expr, isZero bool, sb *storebuf) {
+ // Can we initialize it in place?
+ if e, ok := unparen(e).(*ast.CompositeLit); ok {
+ // A CompositeLit never evaluates to a pointer,
+ // so if the type of the location is a pointer,
+ // an &-operation is implied.
+ if !is[blank](loc) && isPointerCore(loc.typ()) { // avoid calling blank.typ()
+ ptr := b.addr(fn, e, true).address(fn)
+ // copy address
+ if sb != nil {
+ sb.store(loc, ptr)
+ } else {
+ loc.store(fn, ptr)
+ }
+ return
+ }
+
+ if _, ok := loc.(*address); ok {
+ if isNonTypeParamInterface(loc.typ()) {
+ // e.g. var x interface{} = T{...}
+ // Can't in-place initialize an interface value.
+ // Fall back to copying.
+ } else {
+ // x = T{...} or x := T{...}
+ addr := loc.address(fn)
+ if sb != nil {
+ b.compLit(fn, addr, e, isZero, sb)
+ } else {
+ var sb storebuf
+ b.compLit(fn, addr, e, isZero, &sb)
+ sb.emit(fn)
+ }
+
+ // Subtle: emit debug ref for aggregate types only;
+ // slice and map are handled by store ops in compLit.
+ switch typeparams.CoreType(loc.typ()).(type) {
+ case *types.Struct, *types.Array:
+ emitDebugRef(fn, e, addr, true)
+ }
+
+ return
+ }
+ }
+ }
+
+ // simple case: just copy
+ rhs := b.expr(fn, e)
+ if sb != nil {
+ sb.store(loc, rhs)
+ } else {
+ loc.store(fn, rhs)
+ }
+}
+
+// expr lowers a single-result expression e to SSA form, emitting code
+// to fn and returning the Value defined by the expression.
+func (b *builder) expr(fn *Function, e ast.Expr) Value {
+ e = unparen(e)
+
+ tv := fn.info.Types[e]
+
+ // Is expression a constant?
+ if tv.Value != nil {
+ return NewConst(tv.Value, fn.typ(tv.Type))
+ }
+
+ var v Value
+ if tv.Addressable() {
+ // Prefer pointer arithmetic ({Index,Field}Addr) followed
+ // by Load over subelement extraction (e.g. Index, Field),
+ // to avoid large copies.
+ v = b.addr(fn, e, false).load(fn)
+ } else {
+ v = b.expr0(fn, e, tv)
+ }
+ if fn.debugInfo() {
+ emitDebugRef(fn, e, v, false)
+ }
+ return v
+}
+
+func (b *builder) expr0(fn *Function, e ast.Expr, tv types.TypeAndValue) Value {
+ switch e := e.(type) {
+ case *ast.BasicLit:
+ panic("non-constant BasicLit") // unreachable
+
+ case *ast.FuncLit:
+ /* function literal */
+ anon := &Function{
+ name: fmt.Sprintf("%s$%d", fn.Name(), 1+len(fn.AnonFuncs)),
+ Signature: fn.typeOf(e.Type).(*types.Signature),
+ pos: e.Type.Func,
+ parent: fn,
+ anonIdx: int32(len(fn.AnonFuncs)),
+ Pkg: fn.Pkg,
+ Prog: fn.Prog,
+ syntax: e,
+ info: fn.info,
+ goversion: fn.goversion,
+ build: (*builder).buildFromSyntax,
+ topLevelOrigin: nil, // use anonIdx to lookup an anon instance's origin.
+ typeparams: fn.typeparams, // share the parent's type parameters.
+ typeargs: fn.typeargs, // share the parent's type arguments.
+ subst: fn.subst, // share the parent's type substitutions.
+ uniq: fn.uniq, // start from parent's unique values
+ }
+ fn.AnonFuncs = append(fn.AnonFuncs, anon)
+ // Build anon immediately, as it may cause fn's locals to escape.
+ // (It is not marked 'built' until the end of the enclosing FuncDecl.)
+ anon.build(b, anon)
+ fn.uniq = anon.uniq // resume after anon's unique values
+ if anon.FreeVars == nil {
+ return anon
+ }
+ v := &MakeClosure{Fn: anon}
+ v.setType(fn.typ(tv.Type))
+ for _, fv := range anon.FreeVars {
+ v.Bindings = append(v.Bindings, fv.outer)
+ fv.outer = nil
+ }
+ return fn.emit(v)
+
+ case *ast.TypeAssertExpr: // single-result form only
+ return emitTypeAssert(fn, b.expr(fn, e.X), fn.typ(tv.Type), e.Lparen)
+
+ case *ast.CallExpr:
+ if fn.info.Types[e.Fun].IsType() {
+ // Explicit type conversion, e.g. string(x) or big.Int(x)
+ x := b.expr(fn, e.Args[0])
+ y := emitConv(fn, x, fn.typ(tv.Type))
+ if y != x {
+ switch y := y.(type) {
+ case *Convert:
+ y.pos = e.Lparen
+ case *ChangeType:
+ y.pos = e.Lparen
+ case *MakeInterface:
+ y.pos = e.Lparen
+ case *SliceToArrayPointer:
+ y.pos = e.Lparen
+ case *UnOp: // conversion from slice to array.
+ y.pos = e.Lparen
+ }
+ }
+ return y
+ }
+ // Call to "intrinsic" built-ins, e.g. new, make, panic.
+ if id, ok := unparen(e.Fun).(*ast.Ident); ok {
+ if obj, ok := fn.info.Uses[id].(*types.Builtin); ok {
+ if v := b.builtin(fn, obj, e.Args, fn.typ(tv.Type), e.Lparen); v != nil {
+ return v
+ }
+ }
+ }
+ // Regular function call.
+ var v Call
+ b.setCall(fn, e, &v.Call)
+ v.setType(fn.typ(tv.Type))
+ return fn.emit(&v)
+
+ case *ast.UnaryExpr:
+ switch e.Op {
+ case token.AND: // &X --- potentially escaping.
+ addr := b.addr(fn, e.X, true)
+ if _, ok := unparen(e.X).(*ast.StarExpr); ok {
+ // &*p must panic if p is nil (http://golang.org/s/go12nil).
+ // For simplicity, we'll just (suboptimally) rely
+ // on the side effects of a load.
+ // TODO(adonovan): emit dedicated nilcheck.
+ addr.load(fn)
+ }
+ return addr.address(fn)
+ case token.ADD:
+ return b.expr(fn, e.X)
+ case token.NOT, token.ARROW, token.SUB, token.XOR: // ! <- - ^
+ v := &UnOp{
+ Op: e.Op,
+ X: b.expr(fn, e.X),
+ }
+ v.setPos(e.OpPos)
+ v.setType(fn.typ(tv.Type))
+ return fn.emit(v)
+ default:
+ panic(e.Op)
+ }
+
+ case *ast.BinaryExpr:
+ switch e.Op {
+ case token.LAND, token.LOR:
+ return b.logicalBinop(fn, e)
+ case token.SHL, token.SHR:
+ fallthrough
+ case token.ADD, token.SUB, token.MUL, token.QUO, token.REM, token.AND, token.OR, token.XOR, token.AND_NOT:
+ return emitArith(fn, e.Op, b.expr(fn, e.X), b.expr(fn, e.Y), fn.typ(tv.Type), e.OpPos)
+
+ case token.EQL, token.NEQ, token.GTR, token.LSS, token.LEQ, token.GEQ:
+ cmp := emitCompare(fn, e.Op, b.expr(fn, e.X), b.expr(fn, e.Y), e.OpPos)
+ // The type of x==y may be UntypedBool.
+ return emitConv(fn, cmp, types.Default(fn.typ(tv.Type)))
+ default:
+ panic("illegal op in BinaryExpr: " + e.Op.String())
+ }
+
+ case *ast.SliceExpr:
+ var low, high, max Value
+ var x Value
+ xtyp := fn.typeOf(e.X)
+ switch typeparams.CoreType(xtyp).(type) {
+ case *types.Array:
+ // Potentially escaping.
+ x = b.addr(fn, e.X, true).address(fn)
+ case *types.Basic, *types.Slice, *types.Pointer: // *array
+ x = b.expr(fn, e.X)
+ default:
+ // core type exception?
+ if isBytestring(xtyp) {
+ x = b.expr(fn, e.X) // bytestring is handled as string and []byte.
+ } else {
+ panic("unexpected sequence type in SliceExpr")
+ }
+ }
+ if e.Low != nil {
+ low = b.expr(fn, e.Low)
+ }
+ if e.High != nil {
+ high = b.expr(fn, e.High)
+ }
+ if e.Slice3 {
+ max = b.expr(fn, e.Max)
+ }
+ v := &Slice{
+ X: x,
+ Low: low,
+ High: high,
+ Max: max,
+ }
+ v.setPos(e.Lbrack)
+ v.setType(fn.typ(tv.Type))
+ return fn.emit(v)
+
+ case *ast.Ident:
+ obj := fn.info.Uses[e]
+ // Universal built-in or nil?
+ switch obj := obj.(type) {
+ case *types.Builtin:
+ return &Builtin{name: obj.Name(), sig: fn.instanceType(e).(*types.Signature)}
+ case *types.Nil:
+ return zeroConst(fn.instanceType(e))
+ }
+
+ // Package-level func or var?
+ // (obj must belong to same package or a direct import.)
+ if v := fn.Prog.packageLevelMember(obj); v != nil {
+ if g, ok := v.(*Global); ok {
+ return emitLoad(fn, g) // var (address)
+ }
+ callee := v.(*Function) // (func)
+ if callee.typeparams.Len() > 0 {
+ targs := fn.subst.types(instanceArgs(fn.info, e))
+ callee = callee.instance(targs, b)
+ }
+ return callee
+ }
+ // Local var.
+ return emitLoad(fn, fn.lookup(obj.(*types.Var), false)) // var (address)
+
+ case *ast.SelectorExpr:
+ sel := fn.selection(e)
+ if sel == nil {
+ // builtin unsafe.{Add,Slice}
+ if obj, ok := fn.info.Uses[e.Sel].(*types.Builtin); ok {
+ return &Builtin{name: obj.Name(), sig: fn.typ(tv.Type).(*types.Signature)}
+ }
+ // qualified identifier
+ return b.expr(fn, e.Sel)
+ }
+ switch sel.kind {
+ case types.MethodExpr:
+ // (*T).f or T.f, the method f from the method-set of type T.
+ // The result is a "thunk".
+ thunk := createThunk(fn.Prog, sel)
+ b.enqueue(thunk)
+ return emitConv(fn, thunk, fn.typ(tv.Type))
+
+ case types.MethodVal:
+ // e.f where e is an expression and f is a method.
+ // The result is a "bound".
+ obj := sel.obj.(*types.Func)
+ rt := fn.typ(recvType(obj))
+ wantAddr := isPointer(rt)
+ escaping := true
+ v := b.receiver(fn, e.X, wantAddr, escaping, sel)
+
+ if types.IsInterface(rt) {
+ // If v may be an interface type I (after instantiating),
+ // we must emit a check that v is non-nil.
+ if recv, ok := aliases.Unalias(sel.recv).(*types.TypeParam); ok {
+ // Emit a nil check if any possible instantiation of the
+ // type parameter is an interface type.
+ if typeSetOf(recv).Len() > 0 {
+ // recv has a concrete term its typeset.
+ // So it cannot be instantiated as an interface.
+ //
+ // Example:
+ // func _[T interface{~int; Foo()}] () {
+ // var v T
+ // _ = v.Foo // <-- MethodVal
+ // }
+ } else {
+ // rt may be instantiated as an interface.
+ // Emit nil check: typeassert (any(v)).(any).
+ emitTypeAssert(fn, emitConv(fn, v, tEface), tEface, token.NoPos)
+ }
+ } else {
+ // non-type param interface
+ // Emit nil check: typeassert v.(I).
+ emitTypeAssert(fn, v, rt, e.Sel.Pos())
+ }
+ }
+ if targs := receiverTypeArgs(obj); len(targs) > 0 {
+ // obj is generic.
+ obj = fn.Prog.canon.instantiateMethod(obj, fn.subst.types(targs), fn.Prog.ctxt)
+ }
+ bound := createBound(fn.Prog, obj)
+ b.enqueue(bound)
+
+ c := &MakeClosure{
+ Fn: bound,
+ Bindings: []Value{v},
+ }
+ c.setPos(e.Sel.Pos())
+ c.setType(fn.typ(tv.Type))
+ return fn.emit(c)
+
+ case types.FieldVal:
+ indices := sel.index
+ last := len(indices) - 1
+ v := b.expr(fn, e.X)
+ v = emitImplicitSelections(fn, v, indices[:last], e.Pos())
+ v = emitFieldSelection(fn, v, indices[last], false, e.Sel)
+ return v
+ }
+
+ panic("unexpected expression-relative selector")
+
+ case *ast.IndexListExpr:
+ // f[X, Y] must be a generic function
+ if !instance(fn.info, e.X) {
+ panic("unexpected expression-could not match index list to instantiation")
+ }
+ return b.expr(fn, e.X) // Handle instantiation within the *Ident or *SelectorExpr cases.
+
+ case *ast.IndexExpr:
+ if instance(fn.info, e.X) {
+ return b.expr(fn, e.X) // Handle instantiation within the *Ident or *SelectorExpr cases.
+ }
+ // not a generic instantiation.
+ xt := fn.typeOf(e.X)
+ switch et, mode := indexType(xt); mode {
+ case ixVar:
+ // Addressable slice/array; use IndexAddr and Load.
+ return b.addr(fn, e, false).load(fn)
+
+ case ixArrVar, ixValue:
+ // An array in a register, a string or a combined type that contains
+ // either an [_]array (ixArrVar) or string (ixValue).
+
+ // Note: for ixArrVar and CoreType(xt)==nil can be IndexAddr and Load.
+ index := b.expr(fn, e.Index)
+ if isUntyped(index.Type()) {
+ index = emitConv(fn, index, tInt)
+ }
+ v := &Index{
+ X: b.expr(fn, e.X),
+ Index: index,
+ }
+ v.setPos(e.Lbrack)
+ v.setType(et)
+ return fn.emit(v)
+
+ case ixMap:
+ ct := typeparams.CoreType(xt).(*types.Map)
+ v := &Lookup{
+ X: b.expr(fn, e.X),
+ Index: emitConv(fn, b.expr(fn, e.Index), ct.Key()),
+ }
+ v.setPos(e.Lbrack)
+ v.setType(ct.Elem())
+ return fn.emit(v)
+ default:
+ panic("unexpected container type in IndexExpr: " + xt.String())
+ }
+
+ case *ast.CompositeLit, *ast.StarExpr:
+ // Addressable types (lvalues)
+ return b.addr(fn, e, false).load(fn)
+ }
+
+ panic(fmt.Sprintf("unexpected expr: %T", e))
+}
+
+// stmtList emits to fn code for all statements in list.
+func (b *builder) stmtList(fn *Function, list []ast.Stmt) {
+ for _, s := range list {
+ b.stmt(fn, s)
+ }
+}
+
+// receiver emits to fn code for expression e in the "receiver"
+// position of selection e.f (where f may be a field or a method) and
+// returns the effective receiver after applying the implicit field
+// selections of sel.
+//
+// wantAddr requests that the result is an address. If
+// !sel.indirect, this may require that e be built in addr() mode; it
+// must thus be addressable.
+//
+// escaping is defined as per builder.addr().
+func (b *builder) receiver(fn *Function, e ast.Expr, wantAddr, escaping bool, sel *selection) Value {
+ var v Value
+ if wantAddr && !sel.indirect && !isPointerCore(fn.typeOf(e)) {
+ v = b.addr(fn, e, escaping).address(fn)
+ } else {
+ v = b.expr(fn, e)
+ }
+
+ last := len(sel.index) - 1
+ // The position of implicit selection is the position of the inducing receiver expression.
+ v = emitImplicitSelections(fn, v, sel.index[:last], e.Pos())
+ if types.IsInterface(v.Type()) {
+ // When v is an interface, sel.Kind()==MethodValue and v.f is invoked.
+ // So v is not loaded, even if v has a pointer core type.
+ } else if !wantAddr && isPointerCore(v.Type()) {
+ v = emitLoad(fn, v)
+ }
+ return v
+}
+
+// setCallFunc populates the function parts of a CallCommon structure
+// (Func, Method, Recv, Args[0]) based on the kind of invocation
+// occurring in e.
+func (b *builder) setCallFunc(fn *Function, e *ast.CallExpr, c *CallCommon) {
+ c.pos = e.Lparen
+
+ // Is this a method call?
+ if selector, ok := unparen(e.Fun).(*ast.SelectorExpr); ok {
+ sel := fn.selection(selector)
+ if sel != nil && sel.kind == types.MethodVal {
+ obj := sel.obj.(*types.Func)
+ recv := recvType(obj)
+
+ wantAddr := isPointer(recv)
+ escaping := true
+ v := b.receiver(fn, selector.X, wantAddr, escaping, sel)
+ if types.IsInterface(recv) {
+ // Invoke-mode call.
+ c.Value = v // possibly type param
+ c.Method = obj
+ } else {
+ // "Call"-mode call.
+ c.Value = fn.Prog.objectMethod(obj, b)
+ c.Args = append(c.Args, v)
+ }
+ return
+ }
+
+ // sel.kind==MethodExpr indicates T.f() or (*T).f():
+ // a statically dispatched call to the method f in the
+ // method-set of T or *T. T may be an interface.
+ //
+ // e.Fun would evaluate to a concrete method, interface
+ // wrapper function, or promotion wrapper.
+ //
+ // For now, we evaluate it in the usual way.
+ //
+ // TODO(adonovan): opt: inline expr() here, to make the
+ // call static and to avoid generation of wrappers.
+ // It's somewhat tricky as it may consume the first
+ // actual parameter if the call is "invoke" mode.
+ //
+ // Examples:
+ // type T struct{}; func (T) f() {} // "call" mode
+ // type T interface { f() } // "invoke" mode
+ //
+ // type S struct{ T }
+ //
+ // var s S
+ // S.f(s)
+ // (*S).f(&s)
+ //
+ // Suggested approach:
+ // - consume the first actual parameter expression
+ // and build it with b.expr().
+ // - apply implicit field selections.
+ // - use MethodVal logic to populate fields of c.
+ }
+
+ // Evaluate the function operand in the usual way.
+ c.Value = b.expr(fn, e.Fun)
+}
+
+// emitCallArgs emits to f code for the actual parameters of call e to
+// a (possibly built-in) function of effective type sig.
+// The argument values are appended to args, which is then returned.
+func (b *builder) emitCallArgs(fn *Function, sig *types.Signature, e *ast.CallExpr, args []Value) []Value {
+ // f(x, y, z...): pass slice z straight through.
+ if e.Ellipsis != 0 {
+ for i, arg := range e.Args {
+ v := emitConv(fn, b.expr(fn, arg), sig.Params().At(i).Type())
+ args = append(args, v)
+ }
+ return args
+ }
+
+ offset := len(args) // 1 if call has receiver, 0 otherwise
+
+ // Evaluate actual parameter expressions.
+ //
+ // If this is a chained call of the form f(g()) where g has
+ // multiple return values (MRV), they are flattened out into
+ // args; a suffix of them may end up in a varargs slice.
+ for _, arg := range e.Args {
+ v := b.expr(fn, arg)
+ if ttuple, ok := v.Type().(*types.Tuple); ok { // MRV chain
+ for i, n := 0, ttuple.Len(); i < n; i++ {
+ args = append(args, emitExtract(fn, v, i))
+ }
+ } else {
+ args = append(args, v)
+ }
+ }
+
+ // Actual->formal assignability conversions for normal parameters.
+ np := sig.Params().Len() // number of normal parameters
+ if sig.Variadic() {
+ np--
+ }
+ for i := 0; i < np; i++ {
+ args[offset+i] = emitConv(fn, args[offset+i], sig.Params().At(i).Type())
+ }
+
+ // Actual->formal assignability conversions for variadic parameter,
+ // and construction of slice.
+ if sig.Variadic() {
+ varargs := args[offset+np:]
+ st := sig.Params().At(np).Type().(*types.Slice)
+ vt := st.Elem()
+ if len(varargs) == 0 {
+ args = append(args, zeroConst(st))
+ } else {
+ // Replace a suffix of args with a slice containing it.
+ at := types.NewArray(vt, int64(len(varargs)))
+ a := emitNew(fn, at, token.NoPos, "varargs")
+ a.setPos(e.Rparen)
+ for i, arg := range varargs {
+ iaddr := &IndexAddr{
+ X: a,
+ Index: intConst(int64(i)),
+ }
+ iaddr.setType(types.NewPointer(vt))
+ fn.emit(iaddr)
+ emitStore(fn, iaddr, arg, arg.Pos())
+ }
+ s := &Slice{X: a}
+ s.setType(st)
+ args[offset+np] = fn.emit(s)
+ args = args[:offset+np+1]
+ }
+ }
+ return args
+}
+
+// setCall emits to fn code to evaluate all the parameters of a function
+// call e, and populates *c with those values.
+func (b *builder) setCall(fn *Function, e *ast.CallExpr, c *CallCommon) {
+ // First deal with the f(...) part and optional receiver.
+ b.setCallFunc(fn, e, c)
+
+ // Then append the other actual parameters.
+ sig, _ := typeparams.CoreType(fn.typeOf(e.Fun)).(*types.Signature)
+ if sig == nil {
+ panic(fmt.Sprintf("no signature for call of %s", e.Fun))
+ }
+ c.Args = b.emitCallArgs(fn, sig, e, c.Args)
+}
+
+// assignOp emits to fn code to perform loc <op>= val.
+func (b *builder) assignOp(fn *Function, loc lvalue, val Value, op token.Token, pos token.Pos) {
+ loc.store(fn, emitArith(fn, op, loc.load(fn), val, loc.typ(), pos))
+}
+
+// localValueSpec emits to fn code to define all of the vars in the
+// function-local ValueSpec, spec.
+func (b *builder) localValueSpec(fn *Function, spec *ast.ValueSpec) {
+ switch {
+ case len(spec.Values) == len(spec.Names):
+ // e.g. var x, y = 0, 1
+ // 1:1 assignment
+ for i, id := range spec.Names {
+ if !isBlankIdent(id) {
+ emitLocalVar(fn, identVar(fn, id))
+ }
+ lval := b.addr(fn, id, false) // non-escaping
+ b.assign(fn, lval, spec.Values[i], true, nil)
+ }
+
+ case len(spec.Values) == 0:
+ // e.g. var x, y int
+ // Locals are implicitly zero-initialized.
+ for _, id := range spec.Names {
+ if !isBlankIdent(id) {
+ lhs := emitLocalVar(fn, identVar(fn, id))
+ if fn.debugInfo() {
+ emitDebugRef(fn, id, lhs, true)
+ }
+ }
+ }
+
+ default:
+ // e.g. var x, y = pos()
+ tuple := b.exprN(fn, spec.Values[0])
+ for i, id := range spec.Names {
+ if !isBlankIdent(id) {
+ emitLocalVar(fn, identVar(fn, id))
+ lhs := b.addr(fn, id, false) // non-escaping
+ lhs.store(fn, emitExtract(fn, tuple, i))
+ }
+ }
+ }
+}
+
+// assignStmt emits code to fn for a parallel assignment of rhss to lhss.
+// isDef is true if this is a short variable declaration (:=).
+//
+// Note the similarity with localValueSpec.
+func (b *builder) assignStmt(fn *Function, lhss, rhss []ast.Expr, isDef bool) {
+ // Side effects of all LHSs and RHSs must occur in left-to-right order.
+ lvals := make([]lvalue, len(lhss))
+ isZero := make([]bool, len(lhss))
+ for i, lhs := range lhss {
+ var lval lvalue = blank{}
+ if !isBlankIdent(lhs) {
+ if isDef {
+ if obj, ok := fn.info.Defs[lhs.(*ast.Ident)].(*types.Var); ok {
+ emitLocalVar(fn, obj)
+ isZero[i] = true
+ }
+ }
+ lval = b.addr(fn, lhs, false) // non-escaping
+ }
+ lvals[i] = lval
+ }
+ if len(lhss) == len(rhss) {
+ // Simple assignment: x = f() (!isDef)
+ // Parallel assignment: x, y = f(), g() (!isDef)
+ // or short var decl: x, y := f(), g() (isDef)
+ //
+ // In all cases, the RHSs may refer to the LHSs,
+ // so we need a storebuf.
+ var sb storebuf
+ for i := range rhss {
+ b.assign(fn, lvals[i], rhss[i], isZero[i], &sb)
+ }
+ sb.emit(fn)
+ } else {
+ // e.g. x, y = pos()
+ tuple := b.exprN(fn, rhss[0])
+ emitDebugRef(fn, rhss[0], tuple, false)
+ for i, lval := range lvals {
+ lval.store(fn, emitExtract(fn, tuple, i))
+ }
+ }
+}
+
+// arrayLen returns the length of the array whose composite literal elements are elts.
+func (b *builder) arrayLen(fn *Function, elts []ast.Expr) int64 {
+ var max int64 = -1
+ var i int64 = -1
+ for _, e := range elts {
+ if kv, ok := e.(*ast.KeyValueExpr); ok {
+ i = b.expr(fn, kv.Key).(*Const).Int64()
+ } else {
+ i++
+ }
+ if i > max {
+ max = i
+ }
+ }
+ return max + 1
+}
+
+// compLit emits to fn code to initialize a composite literal e at
+// address addr with type typ.
+//
+// Nested composite literals are recursively initialized in place
+// where possible. If isZero is true, compLit assumes that addr
+// holds the zero value for typ.
+//
+// Because the elements of a composite literal may refer to the
+// variables being updated, as in the second line below,
+//
+// x := T{a: 1}
+// x = T{a: x.a}
+//
+// all the reads must occur before all the writes. Thus all stores to
+// loc are emitted to the storebuf sb for later execution.
+//
+// A CompositeLit may have pointer type only in the recursive (nested)
+// case when the type name is implicit. e.g. in []*T{{}}, the inner
+// literal has type *T behaves like &T{}.
+// In that case, addr must hold a T, not a *T.
+func (b *builder) compLit(fn *Function, addr Value, e *ast.CompositeLit, isZero bool, sb *storebuf) {
+ typ := typeparams.Deref(fn.typeOf(e)) // retain the named/alias/param type, if any
+ switch t := typeparams.CoreType(typ).(type) {
+ case *types.Struct:
+ if !isZero && len(e.Elts) != t.NumFields() {
+ // memclear
+ zt := typeparams.MustDeref(addr.Type())
+ sb.store(&address{addr, e.Lbrace, nil}, zeroConst(zt))
+ isZero = true
+ }
+ for i, e := range e.Elts {
+ fieldIndex := i
+ pos := e.Pos()
+ if kv, ok := e.(*ast.KeyValueExpr); ok {
+ fname := kv.Key.(*ast.Ident).Name
+ for i, n := 0, t.NumFields(); i < n; i++ {
+ sf := t.Field(i)
+ if sf.Name() == fname {
+ fieldIndex = i
+ pos = kv.Colon
+ e = kv.Value
+ break
+ }
+ }
+ }
+ sf := t.Field(fieldIndex)
+ faddr := &FieldAddr{
+ X: addr,
+ Field: fieldIndex,
+ }
+ faddr.setPos(pos)
+ faddr.setType(types.NewPointer(sf.Type()))
+ fn.emit(faddr)
+ b.assign(fn, &address{addr: faddr, pos: pos, expr: e}, e, isZero, sb)
+ }
+
+ case *types.Array, *types.Slice:
+ var at *types.Array
+ var array Value
+ switch t := t.(type) {
+ case *types.Slice:
+ at = types.NewArray(t.Elem(), b.arrayLen(fn, e.Elts))
+ array = emitNew(fn, at, e.Lbrace, "slicelit")
+ case *types.Array:
+ at = t
+ array = addr
+
+ if !isZero && int64(len(e.Elts)) != at.Len() {
+ // memclear
+ zt := typeparams.MustDeref(array.Type())
+ sb.store(&address{array, e.Lbrace, nil}, zeroConst(zt))
+ }
+ }
+
+ var idx *Const
+ for _, e := range e.Elts {
+ pos := e.Pos()
+ if kv, ok := e.(*ast.KeyValueExpr); ok {
+ idx = b.expr(fn, kv.Key).(*Const)
+ pos = kv.Colon
+ e = kv.Value
+ } else {
+ var idxval int64
+ if idx != nil {
+ idxval = idx.Int64() + 1
+ }
+ idx = intConst(idxval)
+ }
+ iaddr := &IndexAddr{
+ X: array,
+ Index: idx,
+ }
+ iaddr.setType(types.NewPointer(at.Elem()))
+ fn.emit(iaddr)
+ if t != at { // slice
+ // backing array is unaliased => storebuf not needed.
+ b.assign(fn, &address{addr: iaddr, pos: pos, expr: e}, e, true, nil)
+ } else {
+ b.assign(fn, &address{addr: iaddr, pos: pos, expr: e}, e, true, sb)
+ }
+ }
+
+ if t != at { // slice
+ s := &Slice{X: array}
+ s.setPos(e.Lbrace)
+ s.setType(typ)
+ sb.store(&address{addr: addr, pos: e.Lbrace, expr: e}, fn.emit(s))
+ }
+
+ case *types.Map:
+ m := &MakeMap{Reserve: intConst(int64(len(e.Elts)))}
+ m.setPos(e.Lbrace)
+ m.setType(typ)
+ fn.emit(m)
+ for _, e := range e.Elts {
+ e := e.(*ast.KeyValueExpr)
+
+ // If a key expression in a map literal is itself a
+ // composite literal, the type may be omitted.
+ // For example:
+ // map[*struct{}]bool{{}: true}
+ // An &-operation may be implied:
+ // map[*struct{}]bool{&struct{}{}: true}
+ wantAddr := false
+ if _, ok := unparen(e.Key).(*ast.CompositeLit); ok {
+ wantAddr = isPointerCore(t.Key())
+ }
+
+ var key Value
+ if wantAddr {
+ // A CompositeLit never evaluates to a pointer,
+ // so if the type of the location is a pointer,
+ // an &-operation is implied.
+ key = b.addr(fn, e.Key, true).address(fn)
+ } else {
+ key = b.expr(fn, e.Key)
+ }
+
+ loc := element{
+ m: m,
+ k: emitConv(fn, key, t.Key()),
+ t: t.Elem(),
+ pos: e.Colon,
+ }
+
+ // We call assign() only because it takes care
+ // of any &-operation required in the recursive
+ // case, e.g.,
+ // map[int]*struct{}{0: {}} implies &struct{}{}.
+ // In-place update is of course impossible,
+ // and no storebuf is needed.
+ b.assign(fn, &loc, e.Value, true, nil)
+ }
+ sb.store(&address{addr: addr, pos: e.Lbrace, expr: e}, m)
+
+ default:
+ panic("unexpected CompositeLit type: " + typ.String())
+ }
+}
+
+// switchStmt emits to fn code for the switch statement s, optionally
+// labelled by label.
+func (b *builder) switchStmt(fn *Function, s *ast.SwitchStmt, label *lblock) {
+ // We treat SwitchStmt like a sequential if-else chain.
+ // Multiway dispatch can be recovered later by ssautil.Switches()
+ // to those cases that are free of side effects.
+ if s.Init != nil {
+ b.stmt(fn, s.Init)
+ }
+ var tag Value = vTrue
+ if s.Tag != nil {
+ tag = b.expr(fn, s.Tag)
+ }
+ done := fn.newBasicBlock("switch.done")
+ if label != nil {
+ label._break = done
+ }
+ // We pull the default case (if present) down to the end.
+ // But each fallthrough label must point to the next
+ // body block in source order, so we preallocate a
+ // body block (fallthru) for the next case.
+ // Unfortunately this makes for a confusing block order.
+ var dfltBody *[]ast.Stmt
+ var dfltFallthrough *BasicBlock
+ var fallthru, dfltBlock *BasicBlock
+ ncases := len(s.Body.List)
+ for i, clause := range s.Body.List {
+ body := fallthru
+ if body == nil {
+ body = fn.newBasicBlock("switch.body") // first case only
+ }
+
+ // Preallocate body block for the next case.
+ fallthru = done
+ if i+1 < ncases {
+ fallthru = fn.newBasicBlock("switch.body")
+ }
+
+ cc := clause.(*ast.CaseClause)
+ if cc.List == nil {
+ // Default case.
+ dfltBody = &cc.Body
+ dfltFallthrough = fallthru
+ dfltBlock = body
+ continue
+ }
+
+ var nextCond *BasicBlock
+ for _, cond := range cc.List {
+ nextCond = fn.newBasicBlock("switch.next")
+ // TODO(adonovan): opt: when tag==vTrue, we'd
+ // get better code if we use b.cond(cond)
+ // instead of BinOp(EQL, tag, b.expr(cond))
+ // followed by If. Don't forget conversions
+ // though.
+ cond := emitCompare(fn, token.EQL, tag, b.expr(fn, cond), cond.Pos())
+ emitIf(fn, cond, body, nextCond)
+ fn.currentBlock = nextCond
+ }
+ fn.currentBlock = body
+ fn.targets = &targets{
+ tail: fn.targets,
+ _break: done,
+ _fallthrough: fallthru,
+ }
+ b.stmtList(fn, cc.Body)
+ fn.targets = fn.targets.tail
+ emitJump(fn, done)
+ fn.currentBlock = nextCond
+ }
+ if dfltBlock != nil {
+ emitJump(fn, dfltBlock)
+ fn.currentBlock = dfltBlock
+ fn.targets = &targets{
+ tail: fn.targets,
+ _break: done,
+ _fallthrough: dfltFallthrough,
+ }
+ b.stmtList(fn, *dfltBody)
+ fn.targets = fn.targets.tail
+ }
+ emitJump(fn, done)
+ fn.currentBlock = done
+}
+
+// typeSwitchStmt emits to fn code for the type switch statement s, optionally
+// labelled by label.
+func (b *builder) typeSwitchStmt(fn *Function, s *ast.TypeSwitchStmt, label *lblock) {
+ // We treat TypeSwitchStmt like a sequential if-else chain.
+ // Multiway dispatch can be recovered later by ssautil.Switches().
+
+ // Typeswitch lowering:
+ //
+ // var x X
+ // switch y := x.(type) {
+ // case T1, T2: S1 // >1 (y := x)
+ // case nil: SN // nil (y := x)
+ // default: SD // 0 types (y := x)
+ // case T3: S3 // 1 type (y := x.(T3))
+ // }
+ //
+ // ...s.Init...
+ // x := eval x
+ // .caseT1:
+ // t1, ok1 := typeswitch,ok x <T1>
+ // if ok1 then goto S1 else goto .caseT2
+ // .caseT2:
+ // t2, ok2 := typeswitch,ok x <T2>
+ // if ok2 then goto S1 else goto .caseNil
+ // .S1:
+ // y := x
+ // ...S1...
+ // goto done
+ // .caseNil:
+ // if t2, ok2 := typeswitch,ok x <T2>
+ // if x == nil then goto SN else goto .caseT3
+ // .SN:
+ // y := x
+ // ...SN...
+ // goto done
+ // .caseT3:
+ // t3, ok3 := typeswitch,ok x <T3>
+ // if ok3 then goto S3 else goto default
+ // .S3:
+ // y := t3
+ // ...S3...
+ // goto done
+ // .default:
+ // y := x
+ // ...SD...
+ // goto done
+ // .done:
+ if s.Init != nil {
+ b.stmt(fn, s.Init)
+ }
+
+ var x Value
+ switch ass := s.Assign.(type) {
+ case *ast.ExprStmt: // x.(type)
+ x = b.expr(fn, unparen(ass.X).(*ast.TypeAssertExpr).X)
+ case *ast.AssignStmt: // y := x.(type)
+ x = b.expr(fn, unparen(ass.Rhs[0]).(*ast.TypeAssertExpr).X)
+ }
+
+ done := fn.newBasicBlock("typeswitch.done")
+ if label != nil {
+ label._break = done
+ }
+ var default_ *ast.CaseClause
+ for _, clause := range s.Body.List {
+ cc := clause.(*ast.CaseClause)
+ if cc.List == nil {
+ default_ = cc
+ continue
+ }
+ body := fn.newBasicBlock("typeswitch.body")
+ var next *BasicBlock
+ var casetype types.Type
+ var ti Value // ti, ok := typeassert,ok x <Ti>
+ for _, cond := range cc.List {
+ next = fn.newBasicBlock("typeswitch.next")
+ casetype = fn.typeOf(cond)
+ var condv Value
+ if casetype == tUntypedNil {
+ condv = emitCompare(fn, token.EQL, x, zeroConst(x.Type()), cond.Pos())
+ ti = x
+ } else {
+ yok := emitTypeTest(fn, x, casetype, cc.Case)
+ ti = emitExtract(fn, yok, 0)
+ condv = emitExtract(fn, yok, 1)
+ }
+ emitIf(fn, condv, body, next)
+ fn.currentBlock = next
+ }
+ if len(cc.List) != 1 {
+ ti = x
+ }
+ fn.currentBlock = body
+ b.typeCaseBody(fn, cc, ti, done)
+ fn.currentBlock = next
+ }
+ if default_ != nil {
+ b.typeCaseBody(fn, default_, x, done)
+ } else {
+ emitJump(fn, done)
+ }
+ fn.currentBlock = done
+}
+
+func (b *builder) typeCaseBody(fn *Function, cc *ast.CaseClause, x Value, done *BasicBlock) {
+ if obj, ok := fn.info.Implicits[cc].(*types.Var); ok {
+ // In a switch y := x.(type), each case clause
+ // implicitly declares a distinct object y.
+ // In a single-type case, y has that type.
+ // In multi-type cases, 'case nil' and default,
+ // y has the same type as the interface operand.
+ emitStore(fn, emitLocalVar(fn, obj), x, obj.Pos())
+ }
+ fn.targets = &targets{
+ tail: fn.targets,
+ _break: done,
+ }
+ b.stmtList(fn, cc.Body)
+ fn.targets = fn.targets.tail
+ emitJump(fn, done)
+}
+
+// selectStmt emits to fn code for the select statement s, optionally
+// labelled by label.
+func (b *builder) selectStmt(fn *Function, s *ast.SelectStmt, label *lblock) {
+ // A blocking select of a single case degenerates to a
+ // simple send or receive.
+ // TODO(adonovan): opt: is this optimization worth its weight?
+ if len(s.Body.List) == 1 {
+ clause := s.Body.List[0].(*ast.CommClause)
+ if clause.Comm != nil {
+ b.stmt(fn, clause.Comm)
+ done := fn.newBasicBlock("select.done")
+ if label != nil {
+ label._break = done
+ }
+ fn.targets = &targets{
+ tail: fn.targets,
+ _break: done,
+ }
+ b.stmtList(fn, clause.Body)
+ fn.targets = fn.targets.tail
+ emitJump(fn, done)
+ fn.currentBlock = done
+ return
+ }
+ }
+
+ // First evaluate all channels in all cases, and find
+ // the directions of each state.
+ var states []*SelectState
+ blocking := true
+ debugInfo := fn.debugInfo()
+ for _, clause := range s.Body.List {
+ var st *SelectState
+ switch comm := clause.(*ast.CommClause).Comm.(type) {
+ case nil: // default case
+ blocking = false
+ continue
+
+ case *ast.SendStmt: // ch<- i
+ ch := b.expr(fn, comm.Chan)
+ chtyp := typeparams.CoreType(fn.typ(ch.Type())).(*types.Chan)
+ st = &SelectState{
+ Dir: types.SendOnly,
+ Chan: ch,
+ Send: emitConv(fn, b.expr(fn, comm.Value), chtyp.Elem()),
+ Pos: comm.Arrow,
+ }
+ if debugInfo {
+ st.DebugNode = comm
+ }
+
+ case *ast.AssignStmt: // x := <-ch
+ recv := unparen(comm.Rhs[0]).(*ast.UnaryExpr)
+ st = &SelectState{
+ Dir: types.RecvOnly,
+ Chan: b.expr(fn, recv.X),
+ Pos: recv.OpPos,
+ }
+ if debugInfo {
+ st.DebugNode = recv
+ }
+
+ case *ast.ExprStmt: // <-ch
+ recv := unparen(comm.X).(*ast.UnaryExpr)
+ st = &SelectState{
+ Dir: types.RecvOnly,
+ Chan: b.expr(fn, recv.X),
+ Pos: recv.OpPos,
+ }
+ if debugInfo {
+ st.DebugNode = recv
+ }
+ }
+ states = append(states, st)
+ }
+
+ // We dispatch on the (fair) result of Select using a
+ // sequential if-else chain, in effect:
+ //
+ // idx, recvOk, r0...r_n-1 := select(...)
+ // if idx == 0 { // receive on channel 0 (first receive => r0)
+ // x, ok := r0, recvOk
+ // ...state0...
+ // } else if v == 1 { // send on channel 1
+ // ...state1...
+ // } else {
+ // ...default...
+ // }
+ sel := &Select{
+ States: states,
+ Blocking: blocking,
+ }
+ sel.setPos(s.Select)
+ var vars []*types.Var
+ vars = append(vars, varIndex, varOk)
+ for _, st := range states {
+ if st.Dir == types.RecvOnly {
+ chtyp := typeparams.CoreType(fn.typ(st.Chan.Type())).(*types.Chan)
+ vars = append(vars, anonVar(chtyp.Elem()))
+ }
+ }
+ sel.setType(types.NewTuple(vars...))
+
+ fn.emit(sel)
+ idx := emitExtract(fn, sel, 0)
+
+ done := fn.newBasicBlock("select.done")
+ if label != nil {
+ label._break = done
+ }
+
+ var defaultBody *[]ast.Stmt
+ state := 0
+ r := 2 // index in 'sel' tuple of value; increments if st.Dir==RECV
+ for _, cc := range s.Body.List {
+ clause := cc.(*ast.CommClause)
+ if clause.Comm == nil {
+ defaultBody = &clause.Body
+ continue
+ }
+ body := fn.newBasicBlock("select.body")
+ next := fn.newBasicBlock("select.next")
+ emitIf(fn, emitCompare(fn, token.EQL, idx, intConst(int64(state)), token.NoPos), body, next)
+ fn.currentBlock = body
+ fn.targets = &targets{
+ tail: fn.targets,
+ _break: done,
+ }
+ switch comm := clause.Comm.(type) {
+ case *ast.ExprStmt: // <-ch
+ if debugInfo {
+ v := emitExtract(fn, sel, r)
+ emitDebugRef(fn, states[state].DebugNode.(ast.Expr), v, false)
+ }
+ r++
+
+ case *ast.AssignStmt: // x := <-states[state].Chan
+ if comm.Tok == token.DEFINE {
+ emitLocalVar(fn, identVar(fn, comm.Lhs[0].(*ast.Ident)))
+ }
+ x := b.addr(fn, comm.Lhs[0], false) // non-escaping
+ v := emitExtract(fn, sel, r)
+ if debugInfo {
+ emitDebugRef(fn, states[state].DebugNode.(ast.Expr), v, false)
+ }
+ x.store(fn, v)
+
+ if len(comm.Lhs) == 2 { // x, ok := ...
+ if comm.Tok == token.DEFINE {
+ emitLocalVar(fn, identVar(fn, comm.Lhs[1].(*ast.Ident)))
+ }
+ ok := b.addr(fn, comm.Lhs[1], false) // non-escaping
+ ok.store(fn, emitExtract(fn, sel, 1))
+ }
+ r++
+ }
+ b.stmtList(fn, clause.Body)
+ fn.targets = fn.targets.tail
+ emitJump(fn, done)
+ fn.currentBlock = next
+ state++
+ }
+ if defaultBody != nil {
+ fn.targets = &targets{
+ tail: fn.targets,
+ _break: done,
+ }
+ b.stmtList(fn, *defaultBody)
+ fn.targets = fn.targets.tail
+ } else {
+ // A blocking select must match some case.
+ // (This should really be a runtime.errorString, not a string.)
+ fn.emit(&Panic{
+ X: emitConv(fn, stringConst("blocking select matched no case"), tEface),
+ })
+ fn.currentBlock = fn.newBasicBlock("unreachable")
+ }
+ emitJump(fn, done)
+ fn.currentBlock = done
+}
+
+// forStmt emits to fn code for the for statement s, optionally
+// labelled by label.
+func (b *builder) forStmt(fn *Function, s *ast.ForStmt, label *lblock) {
+ // Use forStmtGo122 instead if it applies.
+ if s.Init != nil {
+ if assign, ok := s.Init.(*ast.AssignStmt); ok && assign.Tok == token.DEFINE {
+ if versions.AtLeast(fn.goversion, versions.Go1_22) {
+ b.forStmtGo122(fn, s, label)
+ return
+ }
+ }
+ }
+
+ // ...init...
+ // jump loop
+ // loop:
+ // if cond goto body else done
+ // body:
+ // ...body...
+ // jump post
+ // post: (target of continue)
+ // ...post...
+ // jump loop
+ // done: (target of break)
+ if s.Init != nil {
+ b.stmt(fn, s.Init)
+ }
+
+ body := fn.newBasicBlock("for.body")
+ done := fn.newBasicBlock("for.done") // target of 'break'
+ loop := body // target of back-edge
+ if s.Cond != nil {
+ loop = fn.newBasicBlock("for.loop")
+ }
+ cont := loop // target of 'continue'
+ if s.Post != nil {
+ cont = fn.newBasicBlock("for.post")
+ }
+ if label != nil {
+ label._break = done
+ label._continue = cont
+ }
+ emitJump(fn, loop)
+ fn.currentBlock = loop
+ if loop != body {
+ b.cond(fn, s.Cond, body, done)
+ fn.currentBlock = body
+ }
+ fn.targets = &targets{
+ tail: fn.targets,
+ _break: done,
+ _continue: cont,
+ }
+ b.stmt(fn, s.Body)
+ fn.targets = fn.targets.tail
+ emitJump(fn, cont)
+
+ if s.Post != nil {
+ fn.currentBlock = cont
+ b.stmt(fn, s.Post)
+ emitJump(fn, loop) // back-edge
+ }
+ fn.currentBlock = done
+}
+
+// forStmtGo122 emits to fn code for the for statement s, optionally
+// labelled by label. s must define its variables.
+//
+// This allocates once per loop iteration. This is only correct in
+// GoVersions >= go1.22.
+func (b *builder) forStmtGo122(fn *Function, s *ast.ForStmt, label *lblock) {
+ // i_outer = alloc[T]
+ // *i_outer = ...init... // under objects[i] = i_outer
+ // jump loop
+ // loop:
+ // i = phi [head: i_outer, loop: i_next]
+ // ...cond... // under objects[i] = i
+ // if cond goto body else done
+ // body:
+ // ...body... // under objects[i] = i (same as loop)
+ // jump post
+ // post:
+ // tmp = *i
+ // i_next = alloc[T]
+ // *i_next = tmp
+ // ...post... // under objects[i] = i_next
+ // goto loop
+ // done:
+
+ init := s.Init.(*ast.AssignStmt)
+ startingBlocks := len(fn.Blocks)
+
+ pre := fn.currentBlock // current block before starting
+ loop := fn.newBasicBlock("for.loop") // target of back-edge
+ body := fn.newBasicBlock("for.body")
+ post := fn.newBasicBlock("for.post") // target of 'continue'
+ done := fn.newBasicBlock("for.done") // target of 'break'
+
+ // For each of the n loop variables, we create five SSA values,
+ // outer, phi, next, load, and store in pre, loop, and post.
+ // There is no limit on n.
+ type loopVar struct {
+ obj *types.Var
+ outer *Alloc
+ phi *Phi
+ load *UnOp
+ next *Alloc
+ store *Store
+ }
+ vars := make([]loopVar, len(init.Lhs))
+ for i, lhs := range init.Lhs {
+ v := identVar(fn, lhs.(*ast.Ident))
+ typ := fn.typ(v.Type())
+
+ fn.currentBlock = pre
+ outer := emitLocal(fn, typ, v.Pos(), v.Name())
+
+ fn.currentBlock = loop
+ phi := &Phi{Comment: v.Name()}
+ phi.pos = v.Pos()
+ phi.typ = outer.Type()
+ fn.emit(phi)
+
+ fn.currentBlock = post
+ // If next is local, it reuses the address and zeroes the old value so
+ // load before allocating next.
+ load := emitLoad(fn, phi)
+ next := emitLocal(fn, typ, v.Pos(), v.Name())
+ store := emitStore(fn, next, load, token.NoPos)
+
+ phi.Edges = []Value{outer, next} // pre edge is emitted before post edge.
+
+ vars[i] = loopVar{v, outer, phi, load, next, store}
+ }
+
+ // ...init... under fn.objects[v] = i_outer
+ fn.currentBlock = pre
+ for _, v := range vars {
+ fn.vars[v.obj] = v.outer
+ }
+ const isDef = false // assign to already-allocated outers
+ b.assignStmt(fn, init.Lhs, init.Rhs, isDef)
+ if label != nil {
+ label._break = done
+ label._continue = post
+ }
+ emitJump(fn, loop)
+
+ // ...cond... under fn.objects[v] = i
+ fn.currentBlock = loop
+ for _, v := range vars {
+ fn.vars[v.obj] = v.phi
+ }
+ if s.Cond != nil {
+ b.cond(fn, s.Cond, body, done)
+ } else {
+ emitJump(fn, body)
+ }
+
+ // ...body... under fn.objects[v] = i
+ fn.currentBlock = body
+ fn.targets = &targets{
+ tail: fn.targets,
+ _break: done,
+ _continue: post,
+ }
+ b.stmt(fn, s.Body)
+ fn.targets = fn.targets.tail
+ emitJump(fn, post)
+
+ // ...post... under fn.objects[v] = i_next
+ for _, v := range vars {
+ fn.vars[v.obj] = v.next
+ }
+ fn.currentBlock = post
+ if s.Post != nil {
+ b.stmt(fn, s.Post)
+ }
+ emitJump(fn, loop) // back-edge
+ fn.currentBlock = done
+
+ // For each loop variable that does not escape,
+ // (the common case), fuse its next cells into its
+ // (local) outer cell as they have disjoint live ranges.
+ //
+ // It is sufficient to test whether i_next escapes,
+ // because its Heap flag will be marked true if either
+ // the cond or post expression causes i to escape
+ // (because escape distributes over phi).
+ var nlocals int
+ for _, v := range vars {
+ if !v.next.Heap {
+ nlocals++
+ }
+ }
+ if nlocals > 0 {
+ replace := make(map[Value]Value, 2*nlocals)
+ dead := make(map[Instruction]bool, 4*nlocals)
+ for _, v := range vars {
+ if !v.next.Heap {
+ replace[v.next] = v.outer
+ replace[v.phi] = v.outer
+ dead[v.phi], dead[v.next], dead[v.load], dead[v.store] = true, true, true, true
+ }
+ }
+
+ // Replace all uses of i_next and phi with i_outer.
+ // Referrers have not been built for fn yet so only update Instruction operands.
+ // We need only look within the blocks added by the loop.
+ var operands []*Value // recycle storage
+ for _, b := range fn.Blocks[startingBlocks:] {
+ for _, instr := range b.Instrs {
+ operands = instr.Operands(operands[:0])
+ for _, ptr := range operands {
+ k := *ptr
+ if v := replace[k]; v != nil {
+ *ptr = v
+ }
+ }
+ }
+ }
+
+ // Remove instructions for phi, load, and store.
+ // lift() will remove the unused i_next *Alloc.
+ isDead := func(i Instruction) bool { return dead[i] }
+ loop.Instrs = removeInstrsIf(loop.Instrs, isDead)
+ post.Instrs = removeInstrsIf(post.Instrs, isDead)
+ }
+}
+
+// rangeIndexed emits to fn the header for an integer-indexed loop
+// over array, *array or slice value x.
+// The v result is defined only if tv is non-nil.
+// forPos is the position of the "for" token.
+func (b *builder) rangeIndexed(fn *Function, x Value, tv types.Type, pos token.Pos) (k, v Value, loop, done *BasicBlock) {
+ //
+ // length = len(x)
+ // index = -1
+ // loop: (target of continue)
+ // index++
+ // if index < length goto body else done
+ // body:
+ // k = index
+ // v = x[index]
+ // ...body...
+ // jump loop
+ // done: (target of break)
+
+ // Determine number of iterations.
+ var length Value
+ dt := typeparams.Deref(x.Type())
+ if arr, ok := typeparams.CoreType(dt).(*types.Array); ok {
+ // For array or *array, the number of iterations is
+ // known statically thanks to the type. We avoid a
+ // data dependence upon x, permitting later dead-code
+ // elimination if x is pure, static unrolling, etc.
+ // Ranging over a nil *array may have >0 iterations.
+ // We still generate code for x, in case it has effects.
+ length = intConst(arr.Len())
+ } else {
+ // length = len(x).
+ var c Call
+ c.Call.Value = makeLen(x.Type())
+ c.Call.Args = []Value{x}
+ c.setType(tInt)
+ length = fn.emit(&c)
+ }
+
+ index := emitLocal(fn, tInt, token.NoPos, "rangeindex")
+ emitStore(fn, index, intConst(-1), pos)
+
+ loop = fn.newBasicBlock("rangeindex.loop")
+ emitJump(fn, loop)
+ fn.currentBlock = loop
+
+ incr := &BinOp{
+ Op: token.ADD,
+ X: emitLoad(fn, index),
+ Y: vOne,
+ }
+ incr.setType(tInt)
+ emitStore(fn, index, fn.emit(incr), pos)
+
+ body := fn.newBasicBlock("rangeindex.body")
+ done = fn.newBasicBlock("rangeindex.done")
+ emitIf(fn, emitCompare(fn, token.LSS, incr, length, token.NoPos), body, done)
+ fn.currentBlock = body
+
+ k = emitLoad(fn, index)
+ if tv != nil {
+ switch t := typeparams.CoreType(x.Type()).(type) {
+ case *types.Array:
+ instr := &Index{
+ X: x,
+ Index: k,
+ }
+ instr.setType(t.Elem())
+ instr.setPos(x.Pos())
+ v = fn.emit(instr)
+
+ case *types.Pointer: // *array
+ instr := &IndexAddr{
+ X: x,
+ Index: k,
+ }
+ instr.setType(types.NewPointer(t.Elem().Underlying().(*types.Array).Elem()))
+ instr.setPos(x.Pos())
+ v = emitLoad(fn, fn.emit(instr))
+
+ case *types.Slice:
+ instr := &IndexAddr{
+ X: x,
+ Index: k,
+ }
+ instr.setType(types.NewPointer(t.Elem()))
+ instr.setPos(x.Pos())
+ v = emitLoad(fn, fn.emit(instr))
+
+ default:
+ panic("rangeIndexed x:" + t.String())
+ }
+ }
+ return
+}
+
+// rangeIter emits to fn the header for a loop using
+// Range/Next/Extract to iterate over map or string value x.
+// tk and tv are the types of the key/value results k and v, or nil
+// if the respective component is not wanted.
+func (b *builder) rangeIter(fn *Function, x Value, tk, tv types.Type, pos token.Pos) (k, v Value, loop, done *BasicBlock) {
+ //
+ // it = range x
+ // loop: (target of continue)
+ // okv = next it (ok, key, value)
+ // ok = extract okv #0
+ // if ok goto body else done
+ // body:
+ // k = extract okv #1
+ // v = extract okv #2
+ // ...body...
+ // jump loop
+ // done: (target of break)
+ //
+
+ if tk == nil {
+ tk = tInvalid
+ }
+ if tv == nil {
+ tv = tInvalid
+ }
+
+ rng := &Range{X: x}
+ rng.setPos(pos)
+ rng.setType(tRangeIter)
+ it := fn.emit(rng)
+
+ loop = fn.newBasicBlock("rangeiter.loop")
+ emitJump(fn, loop)
+ fn.currentBlock = loop
+
+ okv := &Next{
+ Iter: it,
+ IsString: isBasic(typeparams.CoreType(x.Type())),
+ }
+ okv.setType(types.NewTuple(
+ varOk,
+ newVar("k", tk),
+ newVar("v", tv),
+ ))
+ fn.emit(okv)
+
+ body := fn.newBasicBlock("rangeiter.body")
+ done = fn.newBasicBlock("rangeiter.done")
+ emitIf(fn, emitExtract(fn, okv, 0), body, done)
+ fn.currentBlock = body
+
+ if tk != tInvalid {
+ k = emitExtract(fn, okv, 1)
+ }
+ if tv != tInvalid {
+ v = emitExtract(fn, okv, 2)
+ }
+ return
+}
+
+// rangeChan emits to fn the header for a loop that receives from
+// channel x until it fails.
+// tk is the channel's element type, or nil if the k result is
+// not wanted
+// pos is the position of the '=' or ':=' token.
+func (b *builder) rangeChan(fn *Function, x Value, tk types.Type, pos token.Pos) (k Value, loop, done *BasicBlock) {
+ //
+ // loop: (target of continue)
+ // ko = <-x (key, ok)
+ // ok = extract ko #1
+ // if ok goto body else done
+ // body:
+ // k = extract ko #0
+ // ...body...
+ // goto loop
+ // done: (target of break)
+
+ loop = fn.newBasicBlock("rangechan.loop")
+ emitJump(fn, loop)
+ fn.currentBlock = loop
+ recv := &UnOp{
+ Op: token.ARROW,
+ X: x,
+ CommaOk: true,
+ }
+ recv.setPos(pos)
+ recv.setType(types.NewTuple(
+ newVar("k", typeparams.CoreType(x.Type()).(*types.Chan).Elem()),
+ varOk,
+ ))
+ ko := fn.emit(recv)
+ body := fn.newBasicBlock("rangechan.body")
+ done = fn.newBasicBlock("rangechan.done")
+ emitIf(fn, emitExtract(fn, ko, 1), body, done)
+ fn.currentBlock = body
+ if tk != nil {
+ k = emitExtract(fn, ko, 0)
+ }
+ return
+}
+
+// rangeInt emits to fn the header for a range loop with an integer operand.
+// tk is the key value's type, or nil if the k result is not wanted.
+// pos is the position of the "for" token.
+func (b *builder) rangeInt(fn *Function, x Value, tk types.Type, pos token.Pos) (k Value, loop, done *BasicBlock) {
+ //
+ // iter = 0
+ // if 0 < x goto body else done
+ // loop: (target of continue)
+ // iter++
+ // if iter < x goto body else done
+ // body:
+ // k = x
+ // ...body...
+ // jump loop
+ // done: (target of break)
+
+ if isUntyped(x.Type()) {
+ x = emitConv(fn, x, tInt)
+ }
+
+ T := x.Type()
+ iter := emitLocal(fn, T, token.NoPos, "rangeint.iter")
+ // x may be unsigned. Avoid initializing x to -1.
+
+ body := fn.newBasicBlock("rangeint.body")
+ done = fn.newBasicBlock("rangeint.done")
+ emitIf(fn, emitCompare(fn, token.LSS, zeroConst(T), x, token.NoPos), body, done)
+
+ loop = fn.newBasicBlock("rangeint.loop")
+ fn.currentBlock = loop
+
+ incr := &BinOp{
+ Op: token.ADD,
+ X: emitLoad(fn, iter),
+ Y: emitConv(fn, vOne, T),
+ }
+ incr.setType(T)
+ emitStore(fn, iter, fn.emit(incr), pos)
+ emitIf(fn, emitCompare(fn, token.LSS, incr, x, token.NoPos), body, done)
+ fn.currentBlock = body
+
+ if tk != nil {
+ // Integer types (int, uint8, etc.) are named and
+ // we know that k is assignable to x when tk != nil.
+ // This implies tk and T are identical so no conversion is needed.
+ k = emitLoad(fn, iter)
+ }
+
+ return
+}
+
+// rangeStmt emits to fn code for the range statement s, optionally
+// labelled by label.
+func (b *builder) rangeStmt(fn *Function, s *ast.RangeStmt, label *lblock) {
+ var tk, tv types.Type
+ if s.Key != nil && !isBlankIdent(s.Key) {
+ tk = fn.typeOf(s.Key)
+ }
+ if s.Value != nil && !isBlankIdent(s.Value) {
+ tv = fn.typeOf(s.Value)
+ }
+
+ // create locals for s.Key and s.Value.
+ createVars := func() {
+ // Unlike a short variable declaration, a RangeStmt
+ // using := never redeclares an existing variable; it
+ // always creates a new one.
+ if tk != nil {
+ emitLocalVar(fn, identVar(fn, s.Key.(*ast.Ident)))
+ }
+ if tv != nil {
+ emitLocalVar(fn, identVar(fn, s.Value.(*ast.Ident)))
+ }
+ }
+
+ afterGo122 := versions.AtLeast(fn.goversion, versions.Go1_22)
+ if s.Tok == token.DEFINE && !afterGo122 {
+ // pre-go1.22: If iteration variables are defined (:=), this
+ // occurs once outside the loop.
+ createVars()
+ }
+
+ x := b.expr(fn, s.X)
+
+ var k, v Value
+ var loop, done *BasicBlock
+ switch rt := typeparams.CoreType(x.Type()).(type) {
+ case *types.Slice, *types.Array, *types.Pointer: // *array
+ k, v, loop, done = b.rangeIndexed(fn, x, tv, s.For)
+
+ case *types.Chan:
+ k, loop, done = b.rangeChan(fn, x, tk, s.For)
+
+ case *types.Map:
+ k, v, loop, done = b.rangeIter(fn, x, tk, tv, s.For)
+
+ case *types.Basic:
+ switch {
+ case rt.Info()&types.IsString != 0:
+ k, v, loop, done = b.rangeIter(fn, x, tk, tv, s.For)
+
+ case rt.Info()&types.IsInteger != 0:
+ k, loop, done = b.rangeInt(fn, x, tk, s.For)
+
+ default:
+ panic("Cannot range over basic type: " + rt.String())
+ }
+
+ case *types.Signature:
+ // Special case rewrite (fn.goversion >= go1.23):
+ // for x := range f { ... }
+ // into
+ // f(func(x T) bool { ... })
+ b.rangeFunc(fn, x, tk, tv, s, label)
+ return
+
+ default:
+ panic("Cannot range over: " + rt.String())
+ }
+
+ if s.Tok == token.DEFINE && afterGo122 {
+ // go1.22: If iteration variables are defined (:=), this occurs inside the loop.
+ createVars()
+ }
+
+ // Evaluate both LHS expressions before we update either.
+ var kl, vl lvalue
+ if tk != nil {
+ kl = b.addr(fn, s.Key, false) // non-escaping
+ }
+ if tv != nil {
+ vl = b.addr(fn, s.Value, false) // non-escaping
+ }
+ if tk != nil {
+ kl.store(fn, k)
+ }
+ if tv != nil {
+ vl.store(fn, v)
+ }
+
+ if label != nil {
+ label._break = done
+ label._continue = loop
+ }
+
+ fn.targets = &targets{
+ tail: fn.targets,
+ _break: done,
+ _continue: loop,
+ }
+ b.stmt(fn, s.Body)
+ fn.targets = fn.targets.tail
+ emitJump(fn, loop) // back-edge
+ fn.currentBlock = done
+}
+
+// rangeFunc emits to fn code for the range-over-func rng.Body of the iterator
+// function x, optionally labelled by label. It creates a new anonymous function
+// yield for rng and builds the function.
+func (b *builder) rangeFunc(fn *Function, x Value, tk, tv types.Type, rng *ast.RangeStmt, label *lblock) {
+ // Consider the SSA code for the outermost range-over-func in fn:
+ //
+ // func fn(...) (ret R) {
+ // ...
+ // for k, v = range x {
+ // ...
+ // }
+ // ...
+ // }
+ //
+ // The code emitted into fn will look something like this.
+ //
+ // loop:
+ // jump := READY
+ // y := make closure yield [ret, deferstack, jump, k, v]
+ // x(y)
+ // switch jump {
+ // [see resuming execution]
+ // }
+ // goto done
+ // done:
+ // ...
+ //
+ // where yield is a new synthetic yield function:
+ //
+ // func yield(_k tk, _v tv) bool
+ // free variables: [ret, stack, jump, k, v]
+ // {
+ // entry:
+ // if jump != READY then goto invalid else valid
+ // invalid:
+ // panic("iterator called when it is not in a ready state")
+ // valid:
+ // jump = BUSY
+ // k = _k
+ // v = _v
+ // ...
+ // cont:
+ // jump = READY
+ // return true
+ // }
+ //
+ // Yield state:
+ //
+ // Each range loop has an associated jump variable that records
+ // the state of the iterator. A yield function is initially
+ // in a READY (0) and callable state. If the yield function is called
+ // and is not in READY state, it panics. When it is called in a callable
+ // state, it becomes BUSY. When execution reaches the end of the body
+ // of the loop (or a continue statement targeting the loop is executed),
+ // the yield function returns true and resumes being in a READY state.
+ // After the iterator function x(y) returns, then if the yield function
+ // is in a READY state, the yield enters the DONE state.
+ //
+ // Each lowered control statement (break X, continue X, goto Z, or return)
+ // that exits the loop sets the variable to a unique positive EXIT value,
+ // before returning false from the yield function.
+ //
+ // If the yield function returns abruptly due to a panic or GoExit,
+ // it remains in a BUSY state. The generated code asserts that, after
+ // the iterator call x(y) returns normally, the jump variable state
+ // is DONE.
+ //
+ // Resuming execution:
+ //
+ // The code generated for the range statement checks the jump
+ // variable to determine how to resume execution.
+ //
+ // switch jump {
+ // case BUSY: panic("...")
+ // case DONE: goto done
+ // case READY: state = DONE; goto done
+ // case 123: ... // action for exit 123.
+ // case 456: ... // action for exit 456.
+ // ...
+ // }
+ //
+ // Forward goto statements within a yield are jumps to labels that
+ // have not yet been traversed in fn. They may be in the Body of the
+ // function. What we emit for these is:
+ //
+ // goto target
+ // target:
+ // ...
+ //
+ // We leave an unresolved exit in yield.exits to check at the end
+ // of building yield if it encountered target in the body. If it
+ // encountered target, no additional work is required. Otherwise,
+ // the yield emits a new early exit in the basic block for target.
+ // We expect that blockopt will fuse the early exit into the case
+ // block later. The unresolved exit is then added to yield.parent.exits.
+
+ loop := fn.newBasicBlock("rangefunc.loop")
+ done := fn.newBasicBlock("rangefunc.done")
+
+ // These are targets within y.
+ fn.targets = &targets{
+ tail: fn.targets,
+ _break: done,
+ // _continue is within y.
+ }
+ if label != nil {
+ label._break = done
+ // _continue is within y
+ }
+
+ emitJump(fn, loop)
+ fn.currentBlock = loop
+
+ // loop:
+ // jump := READY
+
+ anonIdx := len(fn.AnonFuncs)
+
+ jump := newVar(fmt.Sprintf("jump$%d", anonIdx+1), tInt)
+ emitLocalVar(fn, jump) // zero value is READY
+
+ xsig := typeparams.CoreType(x.Type()).(*types.Signature)
+ ysig := typeparams.CoreType(xsig.Params().At(0).Type()).(*types.Signature)
+
+ /* synthetic yield function for body of range-over-func loop */
+ y := &Function{
+ name: fmt.Sprintf("%s$%d", fn.Name(), anonIdx+1),
+ Signature: ysig,
+ Synthetic: "range-over-func yield",
+ pos: rangePosition(rng),
+ parent: fn,
+ anonIdx: int32(len(fn.AnonFuncs)),
+ Pkg: fn.Pkg,
+ Prog: fn.Prog,
+ syntax: rng,
+ info: fn.info,
+ goversion: fn.goversion,
+ build: (*builder).buildYieldFunc,
+ topLevelOrigin: nil,
+ typeparams: fn.typeparams,
+ typeargs: fn.typeargs,
+ subst: fn.subst,
+ jump: jump,
+ deferstack: fn.deferstack,
+ returnVars: fn.returnVars, // use the parent's return variables
+ uniq: fn.uniq, // start from parent's unique values
+ }
+
+ // If the RangeStmt has a label, this is how it is passed to buildYieldFunc.
+ if label != nil {
+ y.lblocks = map[*types.Label]*lblock{label.label: nil}
+ }
+ fn.AnonFuncs = append(fn.AnonFuncs, y)
+
+ // Build y immediately. It may:
+ // * cause fn's locals to escape, and
+ // * create new exit nodes in exits.
+ // (y is not marked 'built' until the end of the enclosing FuncDecl.)
+ unresolved := len(fn.exits)
+ y.build(b, y)
+ fn.uniq = y.uniq // resume after y's unique values
+
+ // Emit the call of y.
+ // c := MakeClosure y
+ // x(c)
+ c := &MakeClosure{Fn: y}
+ c.setType(ysig)
+ for _, fv := range y.FreeVars {
+ c.Bindings = append(c.Bindings, fv.outer)
+ fv.outer = nil
+ }
+ fn.emit(c)
+ call := Call{
+ Call: CallCommon{
+ Value: x,
+ Args: []Value{c},
+ pos: token.NoPos,
+ },
+ }
+ call.setType(xsig.Results())
+ fn.emit(&call)
+
+ exits := fn.exits[unresolved:]
+ b.buildYieldResume(fn, jump, exits, done)
+
+ emitJump(fn, done)
+ fn.currentBlock = done
+}
+
+// buildYieldResume emits to fn code for how to resume execution once a call to
+// the iterator function over the yield function returns x(y). It does this by building
+// a switch over the value of jump for when it is READY, BUSY, or EXIT(id).
+func (b *builder) buildYieldResume(fn *Function, jump *types.Var, exits []*exit, done *BasicBlock) {
+ // v := *jump
+ // switch v {
+ // case BUSY: panic("...")
+ // case READY: jump = DONE; goto done
+ // case EXIT(a): ...
+ // case EXIT(b): ...
+ // ...
+ // }
+ v := emitLoad(fn, fn.lookup(jump, false))
+
+ // case BUSY: panic("...")
+ isbusy := fn.newBasicBlock("rangefunc.resume.busy")
+ ifready := fn.newBasicBlock("rangefunc.resume.ready.check")
+ emitIf(fn, emitCompare(fn, token.EQL, v, jBusy, token.NoPos), isbusy, ifready)
+ fn.currentBlock = isbusy
+ fn.emit(&Panic{
+ X: emitConv(fn, stringConst("iterator call did not preserve panic"), tEface),
+ })
+ fn.currentBlock = ifready
+
+ // case READY: jump = DONE; goto done
+ isready := fn.newBasicBlock("rangefunc.resume.ready")
+ ifexit := fn.newBasicBlock("rangefunc.resume.exits")
+ emitIf(fn, emitCompare(fn, token.EQL, v, jReady, token.NoPos), isready, ifexit)
+ fn.currentBlock = isready
+ storeVar(fn, jump, jDone, token.NoPos)
+ emitJump(fn, done)
+ fn.currentBlock = ifexit
+
+ for _, e := range exits {
+ id := intConst(e.id)
+
+ // case EXIT(id): { /* do e */ }
+ cond := emitCompare(fn, token.EQL, v, id, e.pos)
+ matchb := fn.newBasicBlock("rangefunc.resume.match")
+ cndb := fn.newBasicBlock("rangefunc.resume.cnd")
+ emitIf(fn, cond, matchb, cndb)
+ fn.currentBlock = matchb
+
+ // Cases to fill in the { /* do e */ } bit.
+ switch {
+ case e.label != nil: // forward goto?
+ // case EXIT(id): goto lb // label
+ lb := fn.lblockOf(e.label)
+ // Do not mark lb as resolved.
+ // If fn does not contain label, lb remains unresolved and
+ // fn must itself be a range-over-func function. lb will be:
+ // lb:
+ // fn.jump = id
+ // return false
+ emitJump(fn, lb._goto)
+
+ case e.to != fn: // e jumps to an ancestor of fn?
+ // case EXIT(id): { fn.jump = id; return false }
+ // fn is a range-over-func function.
+ storeVar(fn, fn.jump, id, token.NoPos)
+ fn.emit(&Return{Results: []Value{vFalse}, pos: e.pos})
+
+ case e.block == nil && e.label == nil: // return from fn?
+ // case EXIT(id): { return ... }
+ fn.emit(new(RunDefers))
+ results := make([]Value, len(fn.results))
+ for i, r := range fn.results {
+ results[i] = emitLoad(fn, r)
+ }
+ fn.emit(&Return{Results: results, pos: e.pos})
+
+ case e.block != nil:
+ // case EXIT(id): goto block
+ emitJump(fn, e.block)
+
+ default:
+ panic("unreachable")
+ }
+ fn.currentBlock = cndb
+ }
+}
+
+// stmt lowers statement s to SSA form, emitting code to fn.
+func (b *builder) stmt(fn *Function, _s ast.Stmt) {
+ // The label of the current statement. If non-nil, its _goto
+ // target is always set; its _break and _continue are set only
+ // within the body of switch/typeswitch/select/for/range.
+ // It is effectively an additional default-nil parameter of stmt().
+ var label *lblock
+start:
+ switch s := _s.(type) {
+ case *ast.EmptyStmt:
+ // ignore. (Usually removed by gofmt.)
+
+ case *ast.DeclStmt: // Con, Var or Typ
+ d := s.Decl.(*ast.GenDecl)
+ if d.Tok == token.VAR {
+ for _, spec := range d.Specs {
+ if vs, ok := spec.(*ast.ValueSpec); ok {
+ b.localValueSpec(fn, vs)
+ }
+ }
+ }
+
+ case *ast.LabeledStmt:
+ if s.Label.Name == "_" {
+ // Blank labels can't be the target of a goto, break,
+ // or continue statement, so we don't need a new block.
+ _s = s.Stmt
+ goto start
+ }
+ label = fn.lblockOf(fn.label(s.Label))
+ label.resolved = true
+ emitJump(fn, label._goto)
+ fn.currentBlock = label._goto
+ _s = s.Stmt
+ goto start // effectively: tailcall stmt(fn, s.Stmt, label)
+
+ case *ast.ExprStmt:
+ b.expr(fn, s.X)
+
+ case *ast.SendStmt:
+ chtyp := typeparams.CoreType(fn.typeOf(s.Chan)).(*types.Chan)
+ fn.emit(&Send{
+ Chan: b.expr(fn, s.Chan),
+ X: emitConv(fn, b.expr(fn, s.Value), chtyp.Elem()),
+ pos: s.Arrow,
+ })
+
+ case *ast.IncDecStmt:
+ op := token.ADD
+ if s.Tok == token.DEC {
+ op = token.SUB
+ }
+ loc := b.addr(fn, s.X, false)
+ b.assignOp(fn, loc, NewConst(constant.MakeInt64(1), loc.typ()), op, s.Pos())
+
+ case *ast.AssignStmt:
+ switch s.Tok {
+ case token.ASSIGN, token.DEFINE:
+ b.assignStmt(fn, s.Lhs, s.Rhs, s.Tok == token.DEFINE)
+
+ default: // +=, etc.
+ op := s.Tok + token.ADD - token.ADD_ASSIGN
+ b.assignOp(fn, b.addr(fn, s.Lhs[0], false), b.expr(fn, s.Rhs[0]), op, s.Pos())
+ }
+
+ case *ast.GoStmt:
+ // The "intrinsics" new/make/len/cap are forbidden here.
+ // panic is treated like an ordinary function call.
+ v := Go{pos: s.Go}
+ b.setCall(fn, s.Call, &v.Call)
+ fn.emit(&v)
+
+ case *ast.DeferStmt:
+ // The "intrinsics" new/make/len/cap are forbidden here.
+ // panic is treated like an ordinary function call.
+ deferstack := emitLoad(fn, fn.lookup(fn.deferstack, false))
+ v := Defer{pos: s.Defer, DeferStack: deferstack}
+ b.setCall(fn, s.Call, &v.Call)
+ fn.emit(&v)
+
+ // A deferred call can cause recovery from panic,
+ // and control resumes at the Recover block.
+ createRecoverBlock(fn.source)
+
+ case *ast.ReturnStmt:
+ b.returnStmt(fn, s)
+
+ case *ast.BranchStmt:
+ b.branchStmt(fn, s)
+
+ case *ast.BlockStmt:
+ b.stmtList(fn, s.List)
+
+ case *ast.IfStmt:
+ if s.Init != nil {
+ b.stmt(fn, s.Init)
+ }
+ then := fn.newBasicBlock("if.then")
+ done := fn.newBasicBlock("if.done")
+ els := done
+ if s.Else != nil {
+ els = fn.newBasicBlock("if.else")
+ }
+ b.cond(fn, s.Cond, then, els)
+ fn.currentBlock = then
+ b.stmt(fn, s.Body)
+ emitJump(fn, done)
+
+ if s.Else != nil {
+ fn.currentBlock = els
+ b.stmt(fn, s.Else)
+ emitJump(fn, done)
+ }
+
+ fn.currentBlock = done
+
+ case *ast.SwitchStmt:
+ b.switchStmt(fn, s, label)
+
+ case *ast.TypeSwitchStmt:
+ b.typeSwitchStmt(fn, s, label)
+
+ case *ast.SelectStmt:
+ b.selectStmt(fn, s, label)
+
+ case *ast.ForStmt:
+ b.forStmt(fn, s, label)
+
+ case *ast.RangeStmt:
+ b.rangeStmt(fn, s, label)
+
+ default:
+ panic(fmt.Sprintf("unexpected statement kind: %T", s))
+ }
+}
+
+func (b *builder) branchStmt(fn *Function, s *ast.BranchStmt) {
+ var block *BasicBlock
+ if s.Label == nil {
+ block = targetedBlock(fn, s.Tok)
+ } else {
+ target := fn.label(s.Label)
+ block = labelledBlock(fn, target, s.Tok)
+ if block == nil { // forward goto
+ lb := fn.lblockOf(target)
+ block = lb._goto // jump to lb._goto
+ if fn.jump != nil {
+ // fn is a range-over-func and the goto may exit fn.
+ // Create an exit and resolve it at the end of
+ // builder.buildYieldFunc.
+ labelExit(fn, target, s.Pos())
+ }
+ }
+ }
+ to := block.parent
+
+ if to == fn {
+ emitJump(fn, block)
+ } else { // break outside of fn.
+ // fn must be a range-over-func
+ e := blockExit(fn, block, s.Pos())
+ storeVar(fn, fn.jump, intConst(e.id), e.pos)
+ fn.emit(&Return{Results: []Value{vFalse}, pos: e.pos})
+ }
+ fn.currentBlock = fn.newBasicBlock("unreachable")
+}
+
+func (b *builder) returnStmt(fn *Function, s *ast.ReturnStmt) {
+ var results []Value
+
+ sig := fn.source.Signature // signature of the enclosing source function
+
+ // Convert return operands to result type.
+ if len(s.Results) == 1 && sig.Results().Len() > 1 {
+ // Return of one expression in a multi-valued function.
+ tuple := b.exprN(fn, s.Results[0])
+ ttuple := tuple.Type().(*types.Tuple)
+ for i, n := 0, ttuple.Len(); i < n; i++ {
+ results = append(results,
+ emitConv(fn, emitExtract(fn, tuple, i),
+ sig.Results().At(i).Type()))
+ }
+ } else {
+ // 1:1 return, or no-arg return in non-void function.
+ for i, r := range s.Results {
+ v := emitConv(fn, b.expr(fn, r), sig.Results().At(i).Type())
+ results = append(results, v)
+ }
+ }
+
+ // Store the results.
+ for i, r := range results {
+ var result Value // fn.source.result[i] conceptually
+ if fn == fn.source {
+ result = fn.results[i]
+ } else { // lookup needed?
+ result = fn.lookup(fn.returnVars[i], false)
+ }
+ emitStore(fn, result, r, s.Return)
+ }
+
+ if fn.jump != nil {
+ // Return from body of a range-over-func.
+ // The return statement is syntactically within the loop,
+ // but the generated code is in the 'switch jump {...}' after it.
+ e := returnExit(fn, s.Pos())
+ storeVar(fn, fn.jump, intConst(e.id), e.pos)
+ fn.emit(&Return{Results: []Value{vFalse}, pos: e.pos})
+ fn.currentBlock = fn.newBasicBlock("unreachable")
+ return
+ }
+
+ // Run function calls deferred in this
+ // function when explicitly returning from it.
+ fn.emit(new(RunDefers))
+ // Reload (potentially) named result variables to form the result tuple.
+ results = results[:0]
+ for _, nr := range fn.results {
+ results = append(results, emitLoad(fn, nr))
+ }
+ fn.emit(&Return{Results: results, pos: s.Return})
+ fn.currentBlock = fn.newBasicBlock("unreachable")
+}
+
+// A buildFunc is a strategy for building the SSA body for a function.
+type buildFunc = func(*builder, *Function)
+
+// iterate causes all created but unbuilt functions to be built. As
+// this may create new methods, the process is iterated until it
+// converges.
+//
+// Waits for any dependencies to finish building.
+func (b *builder) iterate() {
+ for ; b.finished < len(b.fns); b.finished++ {
+ fn := b.fns[b.finished]
+ b.buildFunction(fn)
+ }
+
+ b.buildshared.markDone()
+ b.buildshared.wait()
+}
+
+// buildFunction builds SSA code for the body of function fn. Idempotent.
+func (b *builder) buildFunction(fn *Function) {
+ if fn.build != nil {
+ assert(fn.parent == nil, "anonymous functions should not be built by buildFunction()")
+
+ if fn.Prog.mode&LogSource != 0 {
+ defer logStack("build %s @ %s", fn, fn.Prog.Fset.Position(fn.pos))()
+ }
+ fn.build(b, fn)
+ fn.done()
+ }
+}
+
+// buildParamsOnly builds fn.Params from fn.Signature, but does not build fn.Body.
+func (b *builder) buildParamsOnly(fn *Function) {
+ // For external (C, asm) functions or functions loaded from
+ // export data, we must set fn.Params even though there is no
+ // body code to reference them.
+ if recv := fn.Signature.Recv(); recv != nil {
+ fn.addParamVar(recv)
+ }
+ params := fn.Signature.Params()
+ for i, n := 0, params.Len(); i < n; i++ {
+ fn.addParamVar(params.At(i))
+ }
+}
+
+// buildFromSyntax builds fn.Body from fn.syntax, which must be non-nil.
+func (b *builder) buildFromSyntax(fn *Function) {
+ var (
+ recvField *ast.FieldList
+ body *ast.BlockStmt
+ functype *ast.FuncType
+ )
+ switch syntax := fn.syntax.(type) {
+ case *ast.FuncDecl:
+ functype = syntax.Type
+ recvField = syntax.Recv
+ body = syntax.Body
+ if body == nil {
+ b.buildParamsOnly(fn) // no body (non-Go function)
+ return
+ }
+ case *ast.FuncLit:
+ functype = syntax.Type
+ body = syntax.Body
+ case nil:
+ panic("no syntax")
+ default:
+ panic(syntax) // unexpected syntax
+ }
+ fn.source = fn
+ fn.startBody()
+ fn.createSyntacticParams(recvField, functype)
+ fn.createDeferStack()
+ b.stmt(fn, body)
+ if cb := fn.currentBlock; cb != nil && (cb == fn.Blocks[0] || cb == fn.Recover || cb.Preds != nil) {
+ // Control fell off the end of the function's body block.
+ //
+ // Block optimizations eliminate the current block, if
+ // unreachable. It is a builder invariant that
+ // if this no-arg return is ill-typed for
+ // fn.Signature.Results, this block must be
+ // unreachable. The sanity checker checks this.
+ fn.emit(new(RunDefers))
+ fn.emit(new(Return))
+ }
+ fn.finishBody()
+}
+
+// buildYieldFunc builds the body of the yield function created
+// from a range-over-func *ast.RangeStmt.
+func (b *builder) buildYieldFunc(fn *Function) {
+ // See builder.rangeFunc for detailed documentation on how fn is set up.
+ //
+ // In psuedo-Go this roughly builds:
+ // func yield(_k tk, _v tv) bool {
+ // if jump != READY { panic("yield function called after range loop exit") }
+ // jump = BUSY
+ // k, v = _k, _v // assign the iterator variable (if needed)
+ // ... // rng.Body
+ // continue:
+ // jump = READY
+ // return true
+ // }
+ s := fn.syntax.(*ast.RangeStmt)
+ fn.source = fn.parent.source
+ fn.startBody()
+ params := fn.Signature.Params()
+ for i := 0; i < params.Len(); i++ {
+ fn.addParamVar(params.At(i))
+ }
+
+ // Initial targets
+ ycont := fn.newBasicBlock("yield-continue")
+ // lblocks is either {} or is {label: nil} where label is the label of syntax.
+ for label := range fn.lblocks {
+ fn.lblocks[label] = &lblock{
+ label: label,
+ resolved: true,
+ _goto: ycont,
+ _continue: ycont,
+ // `break label` statement targets fn.parent.targets._break
+ }
+ }
+ fn.targets = &targets{
+ _continue: ycont,
+ // `break` statement targets fn.parent.targets._break.
+ }
+
+ // continue:
+ // jump = READY
+ // return true
+ saved := fn.currentBlock
+ fn.currentBlock = ycont
+ storeVar(fn, fn.jump, jReady, s.Body.Rbrace)
+ // A yield function's own deferstack is always empty, so rundefers is not needed.
+ fn.emit(&Return{Results: []Value{vTrue}, pos: token.NoPos})
+
+ // Emit header:
+ //
+ // if jump != READY { panic("yield iterator accessed after exit") }
+ // jump = BUSY
+ // k, v = _k, _v
+ fn.currentBlock = saved
+ yloop := fn.newBasicBlock("yield-loop")
+ invalid := fn.newBasicBlock("yield-invalid")
+
+ jumpVal := emitLoad(fn, fn.lookup(fn.jump, true))
+ emitIf(fn, emitCompare(fn, token.EQL, jumpVal, jReady, token.NoPos), yloop, invalid)
+ fn.currentBlock = invalid
+ fn.emit(&Panic{
+ X: emitConv(fn, stringConst("yield function called after range loop exit"), tEface),
+ })
+
+ fn.currentBlock = yloop
+ storeVar(fn, fn.jump, jBusy, s.Body.Rbrace)
+
+ // Initialize k and v from params.
+ var tk, tv types.Type
+ if s.Key != nil && !isBlankIdent(s.Key) {
+ tk = fn.typeOf(s.Key) // fn.parent.typeOf is identical
+ }
+ if s.Value != nil && !isBlankIdent(s.Value) {
+ tv = fn.typeOf(s.Value)
+ }
+ if s.Tok == token.DEFINE {
+ if tk != nil {
+ emitLocalVar(fn, identVar(fn, s.Key.(*ast.Ident)))
+ }
+ if tv != nil {
+ emitLocalVar(fn, identVar(fn, s.Value.(*ast.Ident)))
+ }
+ }
+ var k, v Value
+ if len(fn.Params) > 0 {
+ k = fn.Params[0]
+ }
+ if len(fn.Params) > 1 {
+ v = fn.Params[1]
+ }
+ var kl, vl lvalue
+ if tk != nil {
+ kl = b.addr(fn, s.Key, false) // non-escaping
+ }
+ if tv != nil {
+ vl = b.addr(fn, s.Value, false) // non-escaping
+ }
+ if tk != nil {
+ kl.store(fn, k)
+ }
+ if tv != nil {
+ vl.store(fn, v)
+ }
+
+ // Build the body of the range loop.
+ b.stmt(fn, s.Body)
+ if cb := fn.currentBlock; cb != nil && (cb == fn.Blocks[0] || cb == fn.Recover || cb.Preds != nil) {
+ // Control fell off the end of the function's body block.
+ // Block optimizations eliminate the current block, if
+ // unreachable.
+ emitJump(fn, ycont)
+ }
+
+ // Clean up exits and promote any unresolved exits to fn.parent.
+ for _, e := range fn.exits {
+ if e.label != nil {
+ lb := fn.lblocks[e.label]
+ if lb.resolved {
+ // label was resolved. Do not turn lb into an exit.
+ // e does not need to be handled by the parent.
+ continue
+ }
+
+ // _goto becomes an exit.
+ // _goto:
+ // jump = id
+ // return false
+ fn.currentBlock = lb._goto
+ id := intConst(e.id)
+ storeVar(fn, fn.jump, id, e.pos)
+ fn.emit(&Return{Results: []Value{vFalse}, pos: e.pos})
+ }
+
+ if e.to != fn { // e needs to be handled by the parent too.
+ fn.parent.exits = append(fn.parent.exits, e)
+ }
+ }
+
+ fn.finishBody()
+}
+
+// addRuntimeType records t as a runtime type,
+// along with all types derivable from it using reflection.
+//
+// Acquires prog.runtimeTypesMu.
+func addRuntimeType(prog *Program, t types.Type) {
+ prog.runtimeTypesMu.Lock()
+ defer prog.runtimeTypesMu.Unlock()
+ forEachReachable(&prog.MethodSets, t, func(t types.Type) bool {
+ prev, _ := prog.runtimeTypes.Set(t, true).(bool)
+ return !prev // already seen?
+ })
+}
+
+// Build calls Package.Build for each package in prog.
+// Building occurs in parallel unless the BuildSerially mode flag was set.
+//
+// Build is intended for whole-program analysis; a typical compiler
+// need only build a single package.
+//
+// Build is idempotent and thread-safe.
+func (prog *Program) Build() {
+ var wg sync.WaitGroup
+ for _, p := range prog.packages {
+ if prog.mode&BuildSerially != 0 {
+ p.Build()
+ } else {
+ wg.Add(1)
+ cpuLimit <- unit{} // acquire a token
+ go func(p *Package) {
+ p.Build()
+ wg.Done()
+ <-cpuLimit // release a token
+ }(p)
+ }
+ }
+ wg.Wait()
+}
+
+// cpuLimit is a counting semaphore to limit CPU parallelism.
+var cpuLimit = make(chan unit, runtime.GOMAXPROCS(0))
+
+// Build builds SSA code for all functions and vars in package p.
+//
+// CreatePackage must have been called for all of p's direct imports
+// (and hence its direct imports must have been error-free). It is not
+// necessary to call CreatePackage for indirect dependencies.
+// Functions will be created for all necessary methods in those
+// packages on demand.
+//
+// Build is idempotent and thread-safe.
+func (p *Package) Build() { p.buildOnce.Do(p.build) }
+
+func (p *Package) build() {
+ if p.info == nil {
+ return // synthetic package, e.g. "testmain"
+ }
+ if p.Prog.mode&LogSource != 0 {
+ defer logStack("build %s", p)()
+ }
+
+ b := builder{fns: p.created}
+ b.iterate()
+
+ // We no longer need transient information: ASTs or go/types deductions.
+ p.info = nil
+ p.created = nil
+ p.files = nil
+ p.initVersion = nil
+
+ if p.Prog.mode&SanityCheckFunctions != 0 {
+ sanityCheckPackage(p)
+ }
+}
+
+// buildPackageInit builds fn.Body for the synthetic package initializer.
+func (b *builder) buildPackageInit(fn *Function) {
+ p := fn.Pkg
+ fn.startBody()
+
+ var done *BasicBlock
+
+ if p.Prog.mode&BareInits == 0 {
+ // Make init() skip if package is already initialized.
+ initguard := p.Var("init$guard")
+ doinit := fn.newBasicBlock("init.start")
+ done = fn.newBasicBlock("init.done")
+ emitIf(fn, emitLoad(fn, initguard), done, doinit)
+ fn.currentBlock = doinit
+ emitStore(fn, initguard, vTrue, token.NoPos)
+
+ // Call the init() function of each package we import.
+ for _, pkg := range p.Pkg.Imports() {
+ prereq := p.Prog.packages[pkg]
+ if prereq == nil {
+ panic(fmt.Sprintf("Package(%q).Build(): unsatisfied import: Program.CreatePackage(%q) was not called", p.Pkg.Path(), pkg.Path()))
+ }
+ var v Call
+ v.Call.Value = prereq.init
+ v.Call.pos = fn.pos
+ v.setType(types.NewTuple())
+ fn.emit(&v)
+ }
+ }
+
+ // Initialize package-level vars in correct order.
+ if len(p.info.InitOrder) > 0 && len(p.files) == 0 {
+ panic("no source files provided for package. cannot initialize globals")
+ }
+
+ for _, varinit := range p.info.InitOrder {
+ if fn.Prog.mode&LogSource != 0 {
+ fmt.Fprintf(os.Stderr, "build global initializer %v @ %s\n",
+ varinit.Lhs, p.Prog.Fset.Position(varinit.Rhs.Pos()))
+ }
+ // Initializers for global vars are evaluated in dependency
+ // order, but may come from arbitrary files of the package
+ // with different versions, so we transiently update
+ // fn.goversion for each one. (Since init is a synthetic
+ // function it has no syntax of its own that needs a version.)
+ fn.goversion = p.initVersion[varinit.Rhs]
+ if len(varinit.Lhs) == 1 {
+ // 1:1 initialization: var x, y = a(), b()
+ var lval lvalue
+ if v := varinit.Lhs[0]; v.Name() != "_" {
+ lval = &address{addr: p.objects[v].(*Global), pos: v.Pos()}
+ } else {
+ lval = blank{}
+ }
+ b.assign(fn, lval, varinit.Rhs, true, nil)
+ } else {
+ // n:1 initialization: var x, y := f()
+ tuple := b.exprN(fn, varinit.Rhs)
+ for i, v := range varinit.Lhs {
+ if v.Name() == "_" {
+ continue
+ }
+ emitStore(fn, p.objects[v].(*Global), emitExtract(fn, tuple, i), v.Pos())
+ }
+ }
+ }
+
+ // The rest of the init function is synthetic:
+ // no syntax, info, goversion.
+ fn.info = nil
+ fn.goversion = ""
+
+ // Call all of the declared init() functions in source order.
+ for _, file := range p.files {
+ for _, decl := range file.Decls {
+ if decl, ok := decl.(*ast.FuncDecl); ok {
+ id := decl.Name
+ if !isBlankIdent(id) && id.Name == "init" && decl.Recv == nil {
+ declaredInit := p.objects[p.info.Defs[id]].(*Function)
+ var v Call
+ v.Call.Value = declaredInit
+ v.setType(types.NewTuple())
+ p.init.emit(&v)
+ }
+ }
+ }
+ }
+
+ // Finish up init().
+ if p.Prog.mode&BareInits == 0 {
+ emitJump(fn, done)
+ fn.currentBlock = done
+ }
+ fn.emit(new(Return))
+ fn.finishBody()
+}
diff --git a/vendor/golang.org/x/tools/go/ssa/const.go b/vendor/golang.org/x/tools/go/ssa/const.go
new file mode 100644
index 0000000..2a4e0dd
--- /dev/null
+++ b/vendor/golang.org/x/tools/go/ssa/const.go
@@ -0,0 +1,232 @@
+// Copyright 2013 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package ssa
+
+// This file defines the Const SSA value type.
+
+import (
+ "fmt"
+ "go/constant"
+ "go/token"
+ "go/types"
+ "strconv"
+ "strings"
+
+ "golang.org/x/tools/internal/aliases"
+ "golang.org/x/tools/internal/typeparams"
+)
+
+// NewConst returns a new constant of the specified value and type.
+// val must be valid according to the specification of Const.Value.
+func NewConst(val constant.Value, typ types.Type) *Const {
+ if val == nil {
+ switch soleTypeKind(typ) {
+ case types.IsBoolean:
+ val = constant.MakeBool(false)
+ case types.IsInteger:
+ val = constant.MakeInt64(0)
+ case types.IsString:
+ val = constant.MakeString("")
+ }
+ }
+ return &Const{typ, val}
+}
+
+// soleTypeKind returns a BasicInfo for which constant.Value can
+// represent all zero values for the types in the type set.
+//
+// types.IsBoolean for false is a representative.
+// types.IsInteger for 0
+// types.IsString for ""
+// 0 otherwise.
+func soleTypeKind(typ types.Type) types.BasicInfo {
+ // State records the set of possible zero values (false, 0, "").
+ // Candidates (perhaps all) are eliminated during the type-set
+ // iteration, which executes at least once.
+ state := types.IsBoolean | types.IsInteger | types.IsString
+ underIs(typeSetOf(typ), func(ut types.Type) bool {
+ var c types.BasicInfo
+ if t, ok := ut.(*types.Basic); ok {
+ c = t.Info()
+ }
+ if c&types.IsNumeric != 0 { // int/float/complex
+ c = types.IsInteger
+ }
+ state = state & c
+ return state != 0
+ })
+ return state
+}
+
+// intConst returns an 'int' constant that evaluates to i.
+// (i is an int64 in case the host is narrower than the target.)
+func intConst(i int64) *Const {
+ return NewConst(constant.MakeInt64(i), tInt)
+}
+
+// stringConst returns a 'string' constant that evaluates to s.
+func stringConst(s string) *Const {
+ return NewConst(constant.MakeString(s), tString)
+}
+
+// zeroConst returns a new "zero" constant of the specified type.
+func zeroConst(t types.Type) *Const {
+ return NewConst(nil, t)
+}
+
+func (c *Const) RelString(from *types.Package) string {
+ var s string
+ if c.Value == nil {
+ s = zeroString(c.typ, from)
+ } else if c.Value.Kind() == constant.String {
+ s = constant.StringVal(c.Value)
+ const max = 20
+ // TODO(adonovan): don't cut a rune in half.
+ if len(s) > max {
+ s = s[:max-3] + "..." // abbreviate
+ }
+ s = strconv.Quote(s)
+ } else {
+ s = c.Value.String()
+ }
+ return s + ":" + relType(c.Type(), from)
+}
+
+// zeroString returns the string representation of the "zero" value of the type t.
+func zeroString(t types.Type, from *types.Package) string {
+ switch t := t.(type) {
+ case *types.Basic:
+ switch {
+ case t.Info()&types.IsBoolean != 0:
+ return "false"
+ case t.Info()&types.IsNumeric != 0:
+ return "0"
+ case t.Info()&types.IsString != 0:
+ return `""`
+ case t.Kind() == types.UnsafePointer:
+ fallthrough
+ case t.Kind() == types.UntypedNil:
+ return "nil"
+ default:
+ panic(fmt.Sprint("zeroString for unexpected type:", t))
+ }
+ case *types.Pointer, *types.Slice, *types.Interface, *types.Chan, *types.Map, *types.Signature:
+ return "nil"
+ case *types.Named, *aliases.Alias:
+ return zeroString(t.Underlying(), from)
+ case *types.Array, *types.Struct:
+ return relType(t, from) + "{}"
+ case *types.Tuple:
+ // Tuples are not normal values.
+ // We are currently format as "(t[0], ..., t[n])". Could be something else.
+ components := make([]string, t.Len())
+ for i := 0; i < t.Len(); i++ {
+ components[i] = zeroString(t.At(i).Type(), from)
+ }
+ return "(" + strings.Join(components, ", ") + ")"
+ case *types.TypeParam:
+ return "*new(" + relType(t, from) + ")"
+ }
+ panic(fmt.Sprint("zeroString: unexpected ", t))
+}
+
+func (c *Const) Name() string {
+ return c.RelString(nil)
+}
+
+func (c *Const) String() string {
+ return c.Name()
+}
+
+func (c *Const) Type() types.Type {
+ return c.typ
+}
+
+func (c *Const) Referrers() *[]Instruction {
+ return nil
+}
+
+func (c *Const) Parent() *Function { return nil }
+
+func (c *Const) Pos() token.Pos {
+ return token.NoPos
+}
+
+// IsNil returns true if this constant is a nil value of
+// a nillable reference type (pointer, slice, channel, map, or function),
+// a basic interface type, or
+// a type parameter all of whose possible instantiations are themselves nillable.
+func (c *Const) IsNil() bool {
+ return c.Value == nil && nillable(c.typ)
+}
+
+// nillable reports whether *new(T) == nil is legal for type T.
+func nillable(t types.Type) bool {
+ if typeparams.IsTypeParam(t) {
+ return underIs(typeSetOf(t), func(u types.Type) bool {
+ // empty type set (u==nil) => any underlying types => not nillable
+ return u != nil && nillable(u)
+ })
+ }
+ switch t.Underlying().(type) {
+ case *types.Pointer, *types.Slice, *types.Chan, *types.Map, *types.Signature:
+ return true
+ case *types.Interface:
+ return true // basic interface.
+ default:
+ return false
+ }
+}
+
+// TODO(adonovan): move everything below into golang.org/x/tools/go/ssa/interp.
+
+// Int64 returns the numeric value of this constant truncated to fit
+// a signed 64-bit integer.
+func (c *Const) Int64() int64 {
+ switch x := constant.ToInt(c.Value); x.Kind() {
+ case constant.Int:
+ if i, ok := constant.Int64Val(x); ok {
+ return i
+ }
+ return 0
+ case constant.Float:
+ f, _ := constant.Float64Val(x)
+ return int64(f)
+ }
+ panic(fmt.Sprintf("unexpected constant value: %T", c.Value))
+}
+
+// Uint64 returns the numeric value of this constant truncated to fit
+// an unsigned 64-bit integer.
+func (c *Const) Uint64() uint64 {
+ switch x := constant.ToInt(c.Value); x.Kind() {
+ case constant.Int:
+ if u, ok := constant.Uint64Val(x); ok {
+ return u
+ }
+ return 0
+ case constant.Float:
+ f, _ := constant.Float64Val(x)
+ return uint64(f)
+ }
+ panic(fmt.Sprintf("unexpected constant value: %T", c.Value))
+}
+
+// Float64 returns the numeric value of this constant truncated to fit
+// a float64.
+func (c *Const) Float64() float64 {
+ x := constant.ToFloat(c.Value) // (c.Value == nil) => x.Kind() == Unknown
+ f, _ := constant.Float64Val(x)
+ return f
+}
+
+// Complex128 returns the complex value of this constant truncated to
+// fit a complex128.
+func (c *Const) Complex128() complex128 {
+ x := constant.ToComplex(c.Value) // (c.Value == nil) => x.Kind() == Unknown
+ re, _ := constant.Float64Val(constant.Real(x))
+ im, _ := constant.Float64Val(constant.Imag(x))
+ return complex(re, im)
+}
diff --git a/vendor/golang.org/x/tools/go/ssa/coretype.go b/vendor/golang.org/x/tools/go/ssa/coretype.go
new file mode 100644
index 0000000..8c218f9
--- /dev/null
+++ b/vendor/golang.org/x/tools/go/ssa/coretype.go
@@ -0,0 +1,161 @@
+// Copyright 2022 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package ssa
+
+import (
+ "go/types"
+
+ "golang.org/x/tools/internal/aliases"
+ "golang.org/x/tools/internal/typeparams"
+)
+
+// Utilities for dealing with core types.
+
+// isBytestring returns true if T has the same terms as interface{[]byte | string}.
+// These act like a core type for some operations: slice expressions, append and copy.
+//
+// See https://go.dev/ref/spec#Core_types for the details on bytestring.
+func isBytestring(T types.Type) bool {
+ U := T.Underlying()
+ if _, ok := U.(*types.Interface); !ok {
+ return false
+ }
+
+ tset := typeSetOf(U)
+ if tset.Len() != 2 {
+ return false
+ }
+ hasBytes, hasString := false, false
+ underIs(tset, func(t types.Type) bool {
+ switch {
+ case isString(t):
+ hasString = true
+ case isByteSlice(t):
+ hasBytes = true
+ }
+ return hasBytes || hasString
+ })
+ return hasBytes && hasString
+}
+
+// termList is a list of types.
+type termList []*types.Term // type terms of the type set
+func (s termList) Len() int { return len(s) }
+func (s termList) At(i int) types.Type { return s[i].Type() }
+
+// typeSetOf returns the type set of typ. Returns an empty typeset on an error.
+func typeSetOf(typ types.Type) termList {
+ // This is a adaptation of x/exp/typeparams.NormalTerms which x/tools cannot depend on.
+ var terms []*types.Term
+ var err error
+ // typeSetOf(t) == typeSetOf(Unalias(t))
+ switch typ := aliases.Unalias(typ).(type) {
+ case *types.TypeParam:
+ terms, err = typeparams.StructuralTerms(typ)
+ case *types.Union:
+ terms, err = typeparams.UnionTermSet(typ)
+ case *types.Interface:
+ terms, err = typeparams.InterfaceTermSet(typ)
+ default:
+ // Common case.
+ // Specializing the len=1 case to avoid a slice
+ // had no measurable space/time benefit.
+ terms = []*types.Term{types.NewTerm(false, typ)}
+ }
+
+ if err != nil {
+ return termList(nil)
+ }
+ return termList(terms)
+}
+
+// underIs calls f with the underlying types of the specific type terms
+// of s and reports whether all calls to f returned true. If there are
+// no specific terms, underIs returns the result of f(nil).
+func underIs(s termList, f func(types.Type) bool) bool {
+ if s.Len() == 0 {
+ return f(nil)
+ }
+ for i := 0; i < s.Len(); i++ {
+ u := s.At(i).Underlying()
+ if !f(u) {
+ return false
+ }
+ }
+ return true
+}
+
+// indexType returns the element type and index mode of a IndexExpr over a type.
+// It returns (nil, invalid) if the type is not indexable; this should never occur in a well-typed program.
+func indexType(typ types.Type) (types.Type, indexMode) {
+ switch U := typ.Underlying().(type) {
+ case *types.Array:
+ return U.Elem(), ixArrVar
+ case *types.Pointer:
+ if arr, ok := U.Elem().Underlying().(*types.Array); ok {
+ return arr.Elem(), ixVar
+ }
+ case *types.Slice:
+ return U.Elem(), ixVar
+ case *types.Map:
+ return U.Elem(), ixMap
+ case *types.Basic:
+ return tByte, ixValue // must be a string
+ case *types.Interface:
+ tset := typeSetOf(U)
+ if tset.Len() == 0 {
+ return nil, ixInvalid // no underlying terms or error is empty.
+ }
+
+ elem, mode := indexType(tset.At(0))
+ for i := 1; i < tset.Len() && mode != ixInvalid; i++ {
+ e, m := indexType(tset.At(i))
+ if !types.Identical(elem, e) { // if type checked, just a sanity check
+ return nil, ixInvalid
+ }
+ // Update the mode to the most constrained address type.
+ mode = mode.meet(m)
+ }
+ if mode != ixInvalid {
+ return elem, mode
+ }
+ }
+ return nil, ixInvalid
+}
+
+// An indexMode specifies the (addressing) mode of an index operand.
+//
+// Addressing mode of an index operation is based on the set of
+// underlying types.
+// Hasse diagram of the indexMode meet semi-lattice:
+//
+// ixVar ixMap
+// | |
+// ixArrVar |
+// | |
+// ixValue |
+// \ /
+// ixInvalid
+type indexMode byte
+
+const (
+ ixInvalid indexMode = iota // index is invalid
+ ixValue // index is a computed value (not addressable)
+ ixArrVar // like ixVar, but index operand contains an array
+ ixVar // index is an addressable variable
+ ixMap // index is a map index expression (acts like a variable on lhs, commaok on rhs of an assignment)
+)
+
+// meet is the address type that is constrained by both x and y.
+func (x indexMode) meet(y indexMode) indexMode {
+ if (x == ixMap || y == ixMap) && x != y {
+ return ixInvalid
+ }
+ // Use int representation and return min.
+ if x < y {
+ return y
+ }
+ return x
+}
diff --git a/vendor/golang.org/x/tools/go/ssa/create.go b/vendor/golang.org/x/tools/go/ssa/create.go
new file mode 100644
index 0000000..423bce8
--- /dev/null
+++ b/vendor/golang.org/x/tools/go/ssa/create.go
@@ -0,0 +1,318 @@
+// Copyright 2013 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package ssa
+
+// This file implements the CREATE phase of SSA construction.
+// See builder.go for explanation.
+
+import (
+ "fmt"
+ "go/ast"
+ "go/token"
+ "go/types"
+ "os"
+ "sync"
+
+ "golang.org/x/tools/internal/versions"
+)
+
+// NewProgram returns a new SSA Program.
+//
+// mode controls diagnostics and checking during SSA construction.
+//
+// To construct an SSA program:
+//
+// - Call NewProgram to create an empty Program.
+// - Call CreatePackage providing typed syntax for each package
+// you want to build, and call it with types but not
+// syntax for each of those package's direct dependencies.
+// - Call [Package.Build] on each syntax package you wish to build,
+// or [Program.Build] to build all of them.
+//
+// See the Example tests for simple examples.
+func NewProgram(fset *token.FileSet, mode BuilderMode) *Program {
+ return &Program{
+ Fset: fset,
+ imported: make(map[string]*Package),
+ packages: make(map[*types.Package]*Package),
+ mode: mode,
+ canon: newCanonizer(),
+ ctxt: types.NewContext(),
+ }
+}
+
+// memberFromObject populates package pkg with a member for the
+// typechecker object obj.
+//
+// For objects from Go source code, syntax is the associated syntax
+// tree (for funcs and vars only) and goversion defines the
+// appropriate interpretation; they will be used during the build
+// phase.
+func memberFromObject(pkg *Package, obj types.Object, syntax ast.Node, goversion string) {
+ name := obj.Name()
+ switch obj := obj.(type) {
+ case *types.Builtin:
+ if pkg.Pkg != types.Unsafe {
+ panic("unexpected builtin object: " + obj.String())
+ }
+
+ case *types.TypeName:
+ if name != "_" {
+ pkg.Members[name] = &Type{
+ object: obj,
+ pkg: pkg,
+ }
+ }
+
+ case *types.Const:
+ c := &NamedConst{
+ object: obj,
+ Value: NewConst(obj.Val(), obj.Type()),
+ pkg: pkg,
+ }
+ pkg.objects[obj] = c
+ if name != "_" {
+ pkg.Members[name] = c
+ }
+
+ case *types.Var:
+ g := &Global{
+ Pkg: pkg,
+ name: name,
+ object: obj,
+ typ: types.NewPointer(obj.Type()), // address
+ pos: obj.Pos(),
+ }
+ pkg.objects[obj] = g
+ if name != "_" {
+ pkg.Members[name] = g
+ }
+
+ case *types.Func:
+ sig := obj.Type().(*types.Signature)
+ if sig.Recv() == nil && name == "init" {
+ pkg.ninit++
+ name = fmt.Sprintf("init#%d", pkg.ninit)
+ }
+ fn := createFunction(pkg.Prog, obj, name, syntax, pkg.info, goversion)
+ fn.Pkg = pkg
+ pkg.created = append(pkg.created, fn)
+ pkg.objects[obj] = fn
+ if name != "_" && sig.Recv() == nil {
+ pkg.Members[name] = fn // package-level function
+ }
+
+ default: // (incl. *types.Package)
+ panic("unexpected Object type: " + obj.String())
+ }
+}
+
+// createFunction creates a function or method. It supports both
+// CreatePackage (with or without syntax) and the on-demand creation
+// of methods in non-created packages based on their types.Func.
+func createFunction(prog *Program, obj *types.Func, name string, syntax ast.Node, info *types.Info, goversion string) *Function {
+ sig := obj.Type().(*types.Signature)
+
+ // Collect type parameters.
+ var tparams *types.TypeParamList
+ if rtparams := sig.RecvTypeParams(); rtparams.Len() > 0 {
+ tparams = rtparams // method of generic type
+ } else if sigparams := sig.TypeParams(); sigparams.Len() > 0 {
+ tparams = sigparams // generic function
+ }
+
+ /* declared function/method (from syntax or export data) */
+ fn := &Function{
+ name: name,
+ object: obj,
+ Signature: sig,
+ build: (*builder).buildFromSyntax,
+ syntax: syntax,
+ info: info,
+ goversion: goversion,
+ pos: obj.Pos(),
+ Pkg: nil, // may be set by caller
+ Prog: prog,
+ typeparams: tparams,
+ }
+ if fn.syntax == nil {
+ fn.Synthetic = "from type information"
+ fn.build = (*builder).buildParamsOnly
+ }
+ if tparams.Len() > 0 {
+ fn.generic = new(generic)
+ }
+ return fn
+}
+
+// membersFromDecl populates package pkg with members for each
+// typechecker object (var, func, const or type) associated with the
+// specified decl.
+func membersFromDecl(pkg *Package, decl ast.Decl, goversion string) {
+ switch decl := decl.(type) {
+ case *ast.GenDecl: // import, const, type or var
+ switch decl.Tok {
+ case token.CONST:
+ for _, spec := range decl.Specs {
+ for _, id := range spec.(*ast.ValueSpec).Names {
+ memberFromObject(pkg, pkg.info.Defs[id], nil, "")
+ }
+ }
+
+ case token.VAR:
+ for _, spec := range decl.Specs {
+ for _, rhs := range spec.(*ast.ValueSpec).Values {
+ pkg.initVersion[rhs] = goversion
+ }
+ for _, id := range spec.(*ast.ValueSpec).Names {
+ memberFromObject(pkg, pkg.info.Defs[id], spec, goversion)
+ }
+ }
+
+ case token.TYPE:
+ for _, spec := range decl.Specs {
+ id := spec.(*ast.TypeSpec).Name
+ memberFromObject(pkg, pkg.info.Defs[id], nil, "")
+ }
+ }
+
+ case *ast.FuncDecl:
+ id := decl.Name
+ memberFromObject(pkg, pkg.info.Defs[id], decl, goversion)
+ }
+}
+
+// CreatePackage creates and returns an SSA Package from the
+// specified type-checked, error-free file ASTs, and populates its
+// Members mapping.
+//
+// importable determines whether this package should be returned by a
+// subsequent call to ImportedPackage(pkg.Path()).
+//
+// The real work of building SSA form for each function is not done
+// until a subsequent call to Package.Build.
+//
+// CreatePackage should not be called after building any package in
+// the program.
+func (prog *Program) CreatePackage(pkg *types.Package, files []*ast.File, info *types.Info, importable bool) *Package {
+ // TODO(adonovan): assert that no package has yet been built.
+ if pkg == nil {
+ panic("nil pkg") // otherwise pkg.Scope below returns types.Universe!
+ }
+ p := &Package{
+ Prog: prog,
+ Members: make(map[string]Member),
+ objects: make(map[types.Object]Member),
+ Pkg: pkg,
+ syntax: info != nil,
+ // transient values (cleared after Package.Build)
+ info: info,
+ files: files,
+ initVersion: make(map[ast.Expr]string),
+ }
+
+ /* synthesized package initializer */
+ p.init = &Function{
+ name: "init",
+ Signature: new(types.Signature),
+ Synthetic: "package initializer",
+ Pkg: p,
+ Prog: prog,
+ build: (*builder).buildPackageInit,
+ info: p.info,
+ goversion: "", // See Package.build for details.
+ }
+ p.Members[p.init.name] = p.init
+ p.created = append(p.created, p.init)
+
+ // Allocate all package members: vars, funcs, consts and types.
+ if len(files) > 0 {
+ // Go source package.
+ for _, file := range files {
+ goversion := versions.Lang(versions.FileVersion(p.info, file))
+ for _, decl := range file.Decls {
+ membersFromDecl(p, decl, goversion)
+ }
+ }
+ } else {
+ // GC-compiled binary package (or "unsafe")
+ // No code.
+ // No position information.
+ scope := p.Pkg.Scope()
+ for _, name := range scope.Names() {
+ obj := scope.Lookup(name)
+ memberFromObject(p, obj, nil, "")
+ if obj, ok := obj.(*types.TypeName); ok {
+ // No Unalias: aliases should not duplicate methods.
+ if named, ok := obj.Type().(*types.Named); ok {
+ for i, n := 0, named.NumMethods(); i < n; i++ {
+ memberFromObject(p, named.Method(i), nil, "")
+ }
+ }
+ }
+ }
+ }
+
+ if prog.mode&BareInits == 0 {
+ // Add initializer guard variable.
+ initguard := &Global{
+ Pkg: p,
+ name: "init$guard",
+ typ: types.NewPointer(tBool),
+ }
+ p.Members[initguard.Name()] = initguard
+ }
+
+ if prog.mode&GlobalDebug != 0 {
+ p.SetDebugMode(true)
+ }
+
+ if prog.mode&PrintPackages != 0 {
+ printMu.Lock()
+ p.WriteTo(os.Stdout)
+ printMu.Unlock()
+ }
+
+ if importable {
+ prog.imported[p.Pkg.Path()] = p
+ }
+ prog.packages[p.Pkg] = p
+
+ return p
+}
+
+// printMu serializes printing of Packages/Functions to stdout.
+var printMu sync.Mutex
+
+// AllPackages returns a new slice containing all packages created by
+// prog.CreatePackage in unspecified order.
+func (prog *Program) AllPackages() []*Package {
+ pkgs := make([]*Package, 0, len(prog.packages))
+ for _, pkg := range prog.packages {
+ pkgs = append(pkgs, pkg)
+ }
+ return pkgs
+}
+
+// ImportedPackage returns the importable Package whose PkgPath
+// is path, or nil if no such Package has been created.
+//
+// A parameter to CreatePackage determines whether a package should be
+// considered importable. For example, no import declaration can resolve
+// to the ad-hoc main package created by 'go build foo.go'.
+//
+// TODO(adonovan): rethink this function and the "importable" concept;
+// most packages are importable. This function assumes that all
+// types.Package.Path values are unique within the ssa.Program, which is
+// false---yet this function remains very convenient.
+// Clients should use (*Program).Package instead where possible.
+// SSA doesn't really need a string-keyed map of packages.
+//
+// Furthermore, the graph of packages may contain multiple variants
+// (e.g. "p" vs "p as compiled for q.test"), and each has a different
+// view of its dependencies.
+func (prog *Program) ImportedPackage(path string) *Package {
+ return prog.imported[path]
+}
diff --git a/vendor/golang.org/x/tools/go/ssa/doc.go b/vendor/golang.org/x/tools/go/ssa/doc.go
new file mode 100644
index 0000000..3310b55
--- /dev/null
+++ b/vendor/golang.org/x/tools/go/ssa/doc.go
@@ -0,0 +1,122 @@
+// Copyright 2013 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// Package ssa defines a representation of the elements of Go programs
+// (packages, types, functions, variables and constants) using a
+// static single-assignment (SSA) form intermediate representation
+// (IR) for the bodies of functions.
+//
+// For an introduction to SSA form, see
+// http://en.wikipedia.org/wiki/Static_single_assignment_form.
+// This page provides a broader reading list:
+// http://www.dcs.gla.ac.uk/~jsinger/ssa.html.
+//
+// The level of abstraction of the SSA form is intentionally close to
+// the source language to facilitate construction of source analysis
+// tools. It is not intended for machine code generation.
+//
+// All looping, branching and switching constructs are replaced with
+// unstructured control flow. Higher-level control flow constructs
+// such as multi-way branch can be reconstructed as needed; see
+// [golang.org/x/tools/go/ssa/ssautil.Switches] for an example.
+//
+// The simplest way to create the SSA representation of a package is
+// to load typed syntax trees using [golang.org/x/tools/go/packages], then
+// invoke the [golang.org/x/tools/go/ssa/ssautil.Packages] helper function.
+// (See the package-level Examples named LoadPackages and LoadWholeProgram.)
+// The resulting [ssa.Program] contains all the packages and their
+// members, but SSA code is not created for function bodies until a
+// subsequent call to [Package.Build] or [Program.Build].
+//
+// The builder initially builds a naive SSA form in which all local
+// variables are addresses of stack locations with explicit loads and
+// stores. Registerisation of eligible locals and φ-node insertion
+// using dominance and dataflow are then performed as a second pass
+// called "lifting" to improve the accuracy and performance of
+// subsequent analyses; this pass can be skipped by setting the
+// NaiveForm builder flag.
+//
+// The primary interfaces of this package are:
+//
+// - [Member]: a named member of a Go package.
+// - [Value]: an expression that yields a value.
+// - [Instruction]: a statement that consumes values and performs computation.
+// - [Node]: a [Value] or [Instruction] (emphasizing its membership in the SSA value graph)
+//
+// A computation that yields a result implements both the [Value] and
+// [Instruction] interfaces. The following table shows for each
+// concrete type which of these interfaces it implements.
+//
+// Value? Instruction? Member?
+// *Alloc ✔ ✔
+// *BinOp ✔ ✔
+// *Builtin ✔
+// *Call ✔ ✔
+// *ChangeInterface ✔ ✔
+// *ChangeType ✔ ✔
+// *Const ✔
+// *Convert ✔ ✔
+// *DebugRef ✔
+// *Defer ✔
+// *Extract ✔ ✔
+// *Field ✔ ✔
+// *FieldAddr ✔ ✔
+// *FreeVar ✔
+// *Function ✔ ✔ (func)
+// *Global ✔ ✔ (var)
+// *Go ✔
+// *If ✔
+// *Index ✔ ✔
+// *IndexAddr ✔ ✔
+// *Jump ✔
+// *Lookup ✔ ✔
+// *MakeChan ✔ ✔
+// *MakeClosure ✔ ✔
+// *MakeInterface ✔ ✔
+// *MakeMap ✔ ✔
+// *MakeSlice ✔ ✔
+// *MapUpdate ✔
+// *MultiConvert ✔ ✔
+// *NamedConst ✔ (const)
+// *Next ✔ ✔
+// *Panic ✔
+// *Parameter ✔
+// *Phi ✔ ✔
+// *Range ✔ ✔
+// *Return ✔
+// *RunDefers ✔
+// *Select ✔ ✔
+// *Send ✔
+// *Slice ✔ ✔
+// *SliceToArrayPointer ✔ ✔
+// *Store ✔
+// *Type ✔ (type)
+// *TypeAssert ✔ ✔
+// *UnOp ✔ ✔
+//
+// Other key types in this package include: [Program], [Package], [Function]
+// and [BasicBlock].
+//
+// The program representation constructed by this package is fully
+// resolved internally, i.e. it does not rely on the names of Values,
+// Packages, Functions, Types or BasicBlocks for the correct
+// interpretation of the program. Only the identities of objects and
+// the topology of the SSA and type graphs are semantically
+// significant. (There is one exception: [types.Id] values, which identify field
+// and method names, contain strings.) Avoidance of name-based
+// operations simplifies the implementation of subsequent passes and
+// can make them very efficient. Many objects are nonetheless named
+// to aid in debugging, but it is not essential that the names be
+// either accurate or unambiguous. The public API exposes a number of
+// name-based maps for client convenience.
+//
+// The [golang.org/x/tools/go/ssa/ssautil] package provides various
+// helper functions, for example to simplify loading a Go program into
+// SSA form.
+//
+// TODO(adonovan): write a how-to document for all the various cases
+// of trying to determine corresponding elements across the four
+// domains of source locations, ast.Nodes, types.Objects,
+// ssa.Values/Instructions.
+package ssa // import "golang.org/x/tools/go/ssa"
diff --git a/vendor/golang.org/x/tools/go/ssa/dom.go b/vendor/golang.org/x/tools/go/ssa/dom.go
new file mode 100644
index 0000000..02c1ae8
--- /dev/null
+++ b/vendor/golang.org/x/tools/go/ssa/dom.go
@@ -0,0 +1,340 @@
+// Copyright 2013 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package ssa
+
+// This file defines algorithms related to dominance.
+
+// Dominator tree construction ----------------------------------------
+//
+// We use the algorithm described in Lengauer & Tarjan. 1979. A fast
+// algorithm for finding dominators in a flowgraph.
+// http://doi.acm.org/10.1145/357062.357071
+//
+// We also apply the optimizations to SLT described in Georgiadis et
+// al, Finding Dominators in Practice, JGAA 2006,
+// http://jgaa.info/accepted/2006/GeorgiadisTarjanWerneck2006.10.1.pdf
+// to avoid the need for buckets of size > 1.
+
+import (
+ "bytes"
+ "fmt"
+ "math/big"
+ "os"
+ "sort"
+)
+
+// Idom returns the block that immediately dominates b:
+// its parent in the dominator tree, if any.
+// Neither the entry node (b.Index==0) nor recover node
+// (b==b.Parent().Recover()) have a parent.
+func (b *BasicBlock) Idom() *BasicBlock { return b.dom.idom }
+
+// Dominees returns the list of blocks that b immediately dominates:
+// its children in the dominator tree.
+func (b *BasicBlock) Dominees() []*BasicBlock { return b.dom.children }
+
+// Dominates reports whether b dominates c.
+func (b *BasicBlock) Dominates(c *BasicBlock) bool {
+ return b.dom.pre <= c.dom.pre && c.dom.post <= b.dom.post
+}
+
+// DomPreorder returns a new slice containing the blocks of f
+// in a preorder traversal of the dominator tree.
+func (f *Function) DomPreorder() []*BasicBlock {
+ slice := append([]*BasicBlock(nil), f.Blocks...)
+ sort.Slice(slice, func(i, j int) bool {
+ return slice[i].dom.pre < slice[j].dom.pre
+ })
+ return slice
+}
+
+// DomPostorder returns a new slice containing the blocks of f
+// in a postorder traversal of the dominator tree.
+// (This is not the same as a postdominance order.)
+func (f *Function) DomPostorder() []*BasicBlock {
+ slice := append([]*BasicBlock(nil), f.Blocks...)
+ sort.Slice(slice, func(i, j int) bool {
+ return slice[i].dom.post < slice[j].dom.post
+ })
+ return slice
+}
+
+// domInfo contains a BasicBlock's dominance information.
+type domInfo struct {
+ idom *BasicBlock // immediate dominator (parent in domtree)
+ children []*BasicBlock // nodes immediately dominated by this one
+ pre, post int32 // pre- and post-order numbering within domtree
+}
+
+// ltState holds the working state for Lengauer-Tarjan algorithm
+// (during which domInfo.pre is repurposed for CFG DFS preorder number).
+type ltState struct {
+ // Each slice is indexed by b.Index.
+ sdom []*BasicBlock // b's semidominator
+ parent []*BasicBlock // b's parent in DFS traversal of CFG
+ ancestor []*BasicBlock // b's ancestor with least sdom
+}
+
+// dfs implements the depth-first search part of the LT algorithm.
+func (lt *ltState) dfs(v *BasicBlock, i int32, preorder []*BasicBlock) int32 {
+ preorder[i] = v
+ v.dom.pre = i // For now: DFS preorder of spanning tree of CFG
+ i++
+ lt.sdom[v.Index] = v
+ lt.link(nil, v)
+ for _, w := range v.Succs {
+ if lt.sdom[w.Index] == nil {
+ lt.parent[w.Index] = v
+ i = lt.dfs(w, i, preorder)
+ }
+ }
+ return i
+}
+
+// eval implements the EVAL part of the LT algorithm.
+func (lt *ltState) eval(v *BasicBlock) *BasicBlock {
+ // TODO(adonovan): opt: do path compression per simple LT.
+ u := v
+ for ; lt.ancestor[v.Index] != nil; v = lt.ancestor[v.Index] {
+ if lt.sdom[v.Index].dom.pre < lt.sdom[u.Index].dom.pre {
+ u = v
+ }
+ }
+ return u
+}
+
+// link implements the LINK part of the LT algorithm.
+func (lt *ltState) link(v, w *BasicBlock) {
+ lt.ancestor[w.Index] = v
+}
+
+// buildDomTree computes the dominator tree of f using the LT algorithm.
+// Precondition: all blocks are reachable (e.g. optimizeBlocks has been run).
+func buildDomTree(f *Function) {
+ // The step numbers refer to the original LT paper; the
+ // reordering is due to Georgiadis.
+
+ // Clear any previous domInfo.
+ for _, b := range f.Blocks {
+ b.dom = domInfo{}
+ }
+
+ n := len(f.Blocks)
+ // Allocate space for 5 contiguous [n]*BasicBlock arrays:
+ // sdom, parent, ancestor, preorder, buckets.
+ space := make([]*BasicBlock, 5*n)
+ lt := ltState{
+ sdom: space[0:n],
+ parent: space[n : 2*n],
+ ancestor: space[2*n : 3*n],
+ }
+
+ // Step 1. Number vertices by depth-first preorder.
+ preorder := space[3*n : 4*n]
+ root := f.Blocks[0]
+ prenum := lt.dfs(root, 0, preorder)
+ recover := f.Recover
+ if recover != nil {
+ lt.dfs(recover, prenum, preorder)
+ }
+
+ buckets := space[4*n : 5*n]
+ copy(buckets, preorder)
+
+ // In reverse preorder...
+ for i := int32(n) - 1; i > 0; i-- {
+ w := preorder[i]
+
+ // Step 3. Implicitly define the immediate dominator of each node.
+ for v := buckets[i]; v != w; v = buckets[v.dom.pre] {
+ u := lt.eval(v)
+ if lt.sdom[u.Index].dom.pre < i {
+ v.dom.idom = u
+ } else {
+ v.dom.idom = w
+ }
+ }
+
+ // Step 2. Compute the semidominators of all nodes.
+ lt.sdom[w.Index] = lt.parent[w.Index]
+ for _, v := range w.Preds {
+ u := lt.eval(v)
+ if lt.sdom[u.Index].dom.pre < lt.sdom[w.Index].dom.pre {
+ lt.sdom[w.Index] = lt.sdom[u.Index]
+ }
+ }
+
+ lt.link(lt.parent[w.Index], w)
+
+ if lt.parent[w.Index] == lt.sdom[w.Index] {
+ w.dom.idom = lt.parent[w.Index]
+ } else {
+ buckets[i] = buckets[lt.sdom[w.Index].dom.pre]
+ buckets[lt.sdom[w.Index].dom.pre] = w
+ }
+ }
+
+ // The final 'Step 3' is now outside the loop.
+ for v := buckets[0]; v != root; v = buckets[v.dom.pre] {
+ v.dom.idom = root
+ }
+
+ // Step 4. Explicitly define the immediate dominator of each
+ // node, in preorder.
+ for _, w := range preorder[1:] {
+ if w == root || w == recover {
+ w.dom.idom = nil
+ } else {
+ if w.dom.idom != lt.sdom[w.Index] {
+ w.dom.idom = w.dom.idom.dom.idom
+ }
+ // Calculate Children relation as inverse of Idom.
+ w.dom.idom.dom.children = append(w.dom.idom.dom.children, w)
+ }
+ }
+
+ pre, post := numberDomTree(root, 0, 0)
+ if recover != nil {
+ numberDomTree(recover, pre, post)
+ }
+
+ // printDomTreeDot(os.Stderr, f) // debugging
+ // printDomTreeText(os.Stderr, root, 0) // debugging
+
+ if f.Prog.mode&SanityCheckFunctions != 0 {
+ sanityCheckDomTree(f)
+ }
+}
+
+// numberDomTree sets the pre- and post-order numbers of a depth-first
+// traversal of the dominator tree rooted at v. These are used to
+// answer dominance queries in constant time.
+func numberDomTree(v *BasicBlock, pre, post int32) (int32, int32) {
+ v.dom.pre = pre
+ pre++
+ for _, child := range v.dom.children {
+ pre, post = numberDomTree(child, pre, post)
+ }
+ v.dom.post = post
+ post++
+ return pre, post
+}
+
+// Testing utilities ----------------------------------------
+
+// sanityCheckDomTree checks the correctness of the dominator tree
+// computed by the LT algorithm by comparing against the dominance
+// relation computed by a naive Kildall-style forward dataflow
+// analysis (Algorithm 10.16 from the "Dragon" book).
+func sanityCheckDomTree(f *Function) {
+ n := len(f.Blocks)
+
+ // D[i] is the set of blocks that dominate f.Blocks[i],
+ // represented as a bit-set of block indices.
+ D := make([]big.Int, n)
+
+ one := big.NewInt(1)
+
+ // all is the set of all blocks; constant.
+ var all big.Int
+ all.Set(one).Lsh(&all, uint(n)).Sub(&all, one)
+
+ // Initialization.
+ for i, b := range f.Blocks {
+ if i == 0 || b == f.Recover {
+ // A root is dominated only by itself.
+ D[i].SetBit(&D[0], 0, 1)
+ } else {
+ // All other blocks are (initially) dominated
+ // by every block.
+ D[i].Set(&all)
+ }
+ }
+
+ // Iteration until fixed point.
+ for changed := true; changed; {
+ changed = false
+ for i, b := range f.Blocks {
+ if i == 0 || b == f.Recover {
+ continue
+ }
+ // Compute intersection across predecessors.
+ var x big.Int
+ x.Set(&all)
+ for _, pred := range b.Preds {
+ x.And(&x, &D[pred.Index])
+ }
+ x.SetBit(&x, i, 1) // a block always dominates itself.
+ if D[i].Cmp(&x) != 0 {
+ D[i].Set(&x)
+ changed = true
+ }
+ }
+ }
+
+ // Check the entire relation. O(n^2).
+ // The Recover block (if any) must be treated specially so we skip it.
+ ok := true
+ for i := 0; i < n; i++ {
+ for j := 0; j < n; j++ {
+ b, c := f.Blocks[i], f.Blocks[j]
+ if c == f.Recover {
+ continue
+ }
+ actual := b.Dominates(c)
+ expected := D[j].Bit(i) == 1
+ if actual != expected {
+ fmt.Fprintf(os.Stderr, "dominates(%s, %s)==%t, want %t\n", b, c, actual, expected)
+ ok = false
+ }
+ }
+ }
+
+ preorder := f.DomPreorder()
+ for _, b := range f.Blocks {
+ if got := preorder[b.dom.pre]; got != b {
+ fmt.Fprintf(os.Stderr, "preorder[%d]==%s, want %s\n", b.dom.pre, got, b)
+ ok = false
+ }
+ }
+
+ if !ok {
+ panic("sanityCheckDomTree failed for " + f.String())
+ }
+
+}
+
+// Printing functions ----------------------------------------
+
+// printDomTreeText prints the dominator tree as text, using indentation.
+func printDomTreeText(buf *bytes.Buffer, v *BasicBlock, indent int) {
+ fmt.Fprintf(buf, "%*s%s\n", 4*indent, "", v)
+ for _, child := range v.dom.children {
+ printDomTreeText(buf, child, indent+1)
+ }
+}
+
+// printDomTreeDot prints the dominator tree of f in AT&T GraphViz
+// (.dot) format.
+func printDomTreeDot(buf *bytes.Buffer, f *Function) {
+ fmt.Fprintln(buf, "//", f)
+ fmt.Fprintln(buf, "digraph domtree {")
+ for i, b := range f.Blocks {
+ v := b.dom
+ fmt.Fprintf(buf, "\tn%d [label=\"%s (%d, %d)\",shape=\"rectangle\"];\n", v.pre, b, v.pre, v.post)
+ // TODO(adonovan): improve appearance of edges
+ // belonging to both dominator tree and CFG.
+
+ // Dominator tree edge.
+ if i != 0 {
+ fmt.Fprintf(buf, "\tn%d -> n%d [style=\"solid\",weight=100];\n", v.idom.dom.pre, v.pre)
+ }
+ // CFG edges.
+ for _, pred := range b.Preds {
+ fmt.Fprintf(buf, "\tn%d -> n%d [style=\"dotted\",weight=0];\n", pred.dom.pre, v.pre)
+ }
+ }
+ fmt.Fprintln(buf, "}")
+}
diff --git a/vendor/golang.org/x/tools/go/ssa/emit.go b/vendor/golang.org/x/tools/go/ssa/emit.go
new file mode 100644
index 0000000..c664ff8
--- /dev/null
+++ b/vendor/golang.org/x/tools/go/ssa/emit.go
@@ -0,0 +1,614 @@
+// Copyright 2013 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package ssa
+
+// Helpers for emitting SSA instructions.
+
+import (
+ "fmt"
+ "go/ast"
+ "go/token"
+ "go/types"
+
+ "golang.org/x/tools/internal/typeparams"
+)
+
+// emitAlloc emits to f a new Alloc instruction allocating a variable
+// of type typ.
+//
+// The caller must set Alloc.Heap=true (for an heap-allocated variable)
+// or add the Alloc to f.Locals (for a frame-allocated variable).
+//
+// During building, a variable in f.Locals may have its Heap flag
+// set when it is discovered that its address is taken.
+// These Allocs are removed from f.Locals at the end.
+//
+// The builder should generally call one of the emit{New,Local,LocalVar} wrappers instead.
+func emitAlloc(f *Function, typ types.Type, pos token.Pos, comment string) *Alloc {
+ v := &Alloc{Comment: comment}
+ v.setType(types.NewPointer(typ))
+ v.setPos(pos)
+ f.emit(v)
+ return v
+}
+
+// emitNew emits to f a new Alloc instruction heap-allocating a
+// variable of type typ. pos is the optional source location.
+func emitNew(f *Function, typ types.Type, pos token.Pos, comment string) *Alloc {
+ alloc := emitAlloc(f, typ, pos, comment)
+ alloc.Heap = true
+ return alloc
+}
+
+// emitLocal creates a local var for (t, pos, comment) and
+// emits an Alloc instruction for it.
+//
+// (Use this function or emitNew for synthetic variables;
+// for source-level variables in the same function, use emitLocalVar.)
+func emitLocal(f *Function, t types.Type, pos token.Pos, comment string) *Alloc {
+ local := emitAlloc(f, t, pos, comment)
+ f.Locals = append(f.Locals, local)
+ return local
+}
+
+// emitLocalVar creates a local var for v and emits an Alloc instruction for it.
+// Subsequent calls to f.lookup(v) return it.
+// It applies the appropriate generic instantiation to the type.
+func emitLocalVar(f *Function, v *types.Var) *Alloc {
+ alloc := emitLocal(f, f.typ(v.Type()), v.Pos(), v.Name())
+ f.vars[v] = alloc
+ return alloc
+}
+
+// emitLoad emits to f an instruction to load the address addr into a
+// new temporary, and returns the value so defined.
+func emitLoad(f *Function, addr Value) *UnOp {
+ v := &UnOp{Op: token.MUL, X: addr}
+ v.setType(typeparams.MustDeref(addr.Type()))
+ f.emit(v)
+ return v
+}
+
+// emitDebugRef emits to f a DebugRef pseudo-instruction associating
+// expression e with value v.
+func emitDebugRef(f *Function, e ast.Expr, v Value, isAddr bool) {
+ if !f.debugInfo() {
+ return // debugging not enabled
+ }
+ if v == nil || e == nil {
+ panic("nil")
+ }
+ var obj types.Object
+ e = unparen(e)
+ if id, ok := e.(*ast.Ident); ok {
+ if isBlankIdent(id) {
+ return
+ }
+ obj = f.objectOf(id)
+ switch obj.(type) {
+ case *types.Nil, *types.Const, *types.Builtin:
+ return
+ }
+ }
+ f.emit(&DebugRef{
+ X: v,
+ Expr: e,
+ IsAddr: isAddr,
+ object: obj,
+ })
+}
+
+// emitArith emits to f code to compute the binary operation op(x, y)
+// where op is an eager shift, logical or arithmetic operation.
+// (Use emitCompare() for comparisons and Builder.logicalBinop() for
+// non-eager operations.)
+func emitArith(f *Function, op token.Token, x, y Value, t types.Type, pos token.Pos) Value {
+ switch op {
+ case token.SHL, token.SHR:
+ x = emitConv(f, x, t)
+ // y may be signed or an 'untyped' constant.
+
+ // There is a runtime panic if y is signed and <0. Instead of inserting a check for y<0
+ // and converting to an unsigned value (like the compiler) leave y as is.
+
+ if isUntyped(y.Type().Underlying()) {
+ // Untyped conversion:
+ // Spec https://go.dev/ref/spec#Operators:
+ // The right operand in a shift expression must have integer type or be an untyped constant
+ // representable by a value of type uint.
+ y = emitConv(f, y, types.Typ[types.Uint])
+ }
+
+ case token.ADD, token.SUB, token.MUL, token.QUO, token.REM, token.AND, token.OR, token.XOR, token.AND_NOT:
+ x = emitConv(f, x, t)
+ y = emitConv(f, y, t)
+
+ default:
+ panic("illegal op in emitArith: " + op.String())
+
+ }
+ v := &BinOp{
+ Op: op,
+ X: x,
+ Y: y,
+ }
+ v.setPos(pos)
+ v.setType(t)
+ return f.emit(v)
+}
+
+// emitCompare emits to f code compute the boolean result of
+// comparison 'x op y'.
+func emitCompare(f *Function, op token.Token, x, y Value, pos token.Pos) Value {
+ xt := x.Type().Underlying()
+ yt := y.Type().Underlying()
+
+ // Special case to optimise a tagless SwitchStmt so that
+ // these are equivalent
+ // switch { case e: ...}
+ // switch true { case e: ... }
+ // if e==true { ... }
+ // even in the case when e's type is an interface.
+ // TODO(adonovan): opt: generalise to x==true, false!=y, etc.
+ if x == vTrue && op == token.EQL {
+ if yt, ok := yt.(*types.Basic); ok && yt.Info()&types.IsBoolean != 0 {
+ return y
+ }
+ }
+
+ if types.Identical(xt, yt) {
+ // no conversion necessary
+ } else if isNonTypeParamInterface(x.Type()) {
+ y = emitConv(f, y, x.Type())
+ } else if isNonTypeParamInterface(y.Type()) {
+ x = emitConv(f, x, y.Type())
+ } else if _, ok := x.(*Const); ok {
+ x = emitConv(f, x, y.Type())
+ } else if _, ok := y.(*Const); ok {
+ y = emitConv(f, y, x.Type())
+ } else {
+ // other cases, e.g. channels. No-op.
+ }
+
+ v := &BinOp{
+ Op: op,
+ X: x,
+ Y: y,
+ }
+ v.setPos(pos)
+ v.setType(tBool)
+ return f.emit(v)
+}
+
+// isValuePreserving returns true if a conversion from ut_src to
+// ut_dst is value-preserving, i.e. just a change of type.
+// Precondition: neither argument is a named or alias type.
+func isValuePreserving(ut_src, ut_dst types.Type) bool {
+ // Identical underlying types?
+ if types.IdenticalIgnoreTags(ut_dst, ut_src) {
+ return true
+ }
+
+ switch ut_dst.(type) {
+ case *types.Chan:
+ // Conversion between channel types?
+ _, ok := ut_src.(*types.Chan)
+ return ok
+
+ case *types.Pointer:
+ // Conversion between pointers with identical base types?
+ _, ok := ut_src.(*types.Pointer)
+ return ok
+ }
+ return false
+}
+
+// emitConv emits to f code to convert Value val to exactly type typ,
+// and returns the converted value. Implicit conversions are required
+// by language assignability rules in assignments, parameter passing,
+// etc.
+func emitConv(f *Function, val Value, typ types.Type) Value {
+ t_src := val.Type()
+
+ // Identical types? Conversion is a no-op.
+ if types.Identical(t_src, typ) {
+ return val
+ }
+ ut_dst := typ.Underlying()
+ ut_src := t_src.Underlying()
+
+ // Conversion to, or construction of a value of, an interface type?
+ if isNonTypeParamInterface(typ) {
+ // Interface name change?
+ if isValuePreserving(ut_src, ut_dst) {
+ c := &ChangeType{X: val}
+ c.setType(typ)
+ return f.emit(c)
+ }
+
+ // Assignment from one interface type to another?
+ if isNonTypeParamInterface(t_src) {
+ c := &ChangeInterface{X: val}
+ c.setType(typ)
+ return f.emit(c)
+ }
+
+ // Untyped nil constant? Return interface-typed nil constant.
+ if ut_src == tUntypedNil {
+ return zeroConst(typ)
+ }
+
+ // Convert (non-nil) "untyped" literals to their default type.
+ if t, ok := ut_src.(*types.Basic); ok && t.Info()&types.IsUntyped != 0 {
+ val = emitConv(f, val, types.Default(ut_src))
+ }
+
+ // Record the types of operands to MakeInterface, if
+ // non-parameterized, as they are the set of runtime types.
+ t := val.Type()
+ if f.typeparams.Len() == 0 || !f.Prog.isParameterized(t) {
+ addRuntimeType(f.Prog, t)
+ }
+
+ mi := &MakeInterface{X: val}
+ mi.setType(typ)
+ return f.emit(mi)
+ }
+
+ // In the common case, the typesets of src and dst are singletons
+ // and we emit an appropriate conversion. But if either contains
+ // a type parameter, the conversion may represent a cross product,
+ // in which case which we emit a MultiConvert.
+ dst_terms := typeSetOf(ut_dst)
+ src_terms := typeSetOf(ut_src)
+
+ // conversionCase describes an instruction pattern that maybe emitted to
+ // model d <- s for d in dst_terms and s in src_terms.
+ // Multiple conversions can match the same pattern.
+ type conversionCase uint8
+ const (
+ changeType conversionCase = 1 << iota
+ sliceToArray
+ sliceToArrayPtr
+ sliceTo0Array
+ sliceTo0ArrayPtr
+ convert
+ )
+ // classify the conversion case of a source type us to a destination type ud.
+ // us and ud are underlying types (not *Named or *Alias)
+ classify := func(us, ud types.Type) conversionCase {
+ // Just a change of type, but not value or representation?
+ if isValuePreserving(us, ud) {
+ return changeType
+ }
+
+ // Conversion from slice to array or slice to array pointer?
+ if slice, ok := us.(*types.Slice); ok {
+ var arr *types.Array
+ var ptr bool
+ // Conversion from slice to array pointer?
+ switch d := ud.(type) {
+ case *types.Array:
+ arr = d
+ case *types.Pointer:
+ arr, _ = d.Elem().Underlying().(*types.Array)
+ ptr = true
+ }
+ if arr != nil && types.Identical(slice.Elem(), arr.Elem()) {
+ if arr.Len() == 0 {
+ if ptr {
+ return sliceTo0ArrayPtr
+ } else {
+ return sliceTo0Array
+ }
+ }
+ if ptr {
+ return sliceToArrayPtr
+ } else {
+ return sliceToArray
+ }
+ }
+ }
+
+ // The only remaining case in well-typed code is a representation-
+ // changing conversion of basic types (possibly with []byte/[]rune).
+ if !isBasic(us) && !isBasic(ud) {
+ panic(fmt.Sprintf("in %s: cannot convert term %s (%s [within %s]) to type %s [within %s]", f, val, val.Type(), us, typ, ud))
+ }
+ return convert
+ }
+
+ var classifications conversionCase
+ for _, s := range src_terms {
+ us := s.Type().Underlying()
+ for _, d := range dst_terms {
+ ud := d.Type().Underlying()
+ classifications |= classify(us, ud)
+ }
+ }
+ if classifications == 0 {
+ panic(fmt.Sprintf("in %s: cannot convert %s (%s) to %s", f, val, val.Type(), typ))
+ }
+
+ // Conversion of a compile-time constant value?
+ if c, ok := val.(*Const); ok {
+ // Conversion to a basic type?
+ if isBasic(ut_dst) {
+ // Conversion of a compile-time constant to
+ // another constant type results in a new
+ // constant of the destination type and
+ // (initially) the same abstract value.
+ // We don't truncate the value yet.
+ return NewConst(c.Value, typ)
+ }
+ // Can we always convert from zero value without panicking?
+ const mayPanic = sliceToArray | sliceToArrayPtr
+ if c.Value == nil && classifications&mayPanic == 0 {
+ return NewConst(nil, typ)
+ }
+
+ // We're converting from constant to non-constant type,
+ // e.g. string -> []byte/[]rune.
+ }
+
+ switch classifications {
+ case changeType: // representation-preserving change
+ c := &ChangeType{X: val}
+ c.setType(typ)
+ return f.emit(c)
+
+ case sliceToArrayPtr, sliceTo0ArrayPtr: // slice to array pointer
+ c := &SliceToArrayPointer{X: val}
+ c.setType(typ)
+ return f.emit(c)
+
+ case sliceToArray: // slice to arrays (not zero-length)
+ ptype := types.NewPointer(typ)
+ p := &SliceToArrayPointer{X: val}
+ p.setType(ptype)
+ x := f.emit(p)
+ unOp := &UnOp{Op: token.MUL, X: x}
+ unOp.setType(typ)
+ return f.emit(unOp)
+
+ case sliceTo0Array: // slice to zero-length arrays (constant)
+ return zeroConst(typ)
+
+ case convert: // representation-changing conversion
+ c := &Convert{X: val}
+ c.setType(typ)
+ return f.emit(c)
+
+ default: // multiple conversion
+ c := &MultiConvert{X: val, from: src_terms, to: dst_terms}
+ c.setType(typ)
+ return f.emit(c)
+ }
+}
+
+// emitTypeCoercion emits to f code to coerce the type of a
+// Value v to exactly type typ, and returns the coerced value.
+//
+// Requires that coercing v.Typ() to typ is a value preserving change.
+//
+// Currently used only when v.Type() is a type instance of typ or vice versa.
+// A type v is a type instance of a type t if there exists a
+// type parameter substitution σ s.t. σ(v) == t. Example:
+//
+// σ(func(T) T) == func(int) int for σ == [T ↦ int]
+//
+// This happens in instantiation wrappers for conversion
+// from an instantiation to a parameterized type (and vice versa)
+// with σ substituting f.typeparams by f.typeargs.
+func emitTypeCoercion(f *Function, v Value, typ types.Type) Value {
+ if types.Identical(v.Type(), typ) {
+ return v // no coercion needed
+ }
+ // TODO(taking): for instances should we record which side is the instance?
+ c := &ChangeType{
+ X: v,
+ }
+ c.setType(typ)
+ f.emit(c)
+ return c
+}
+
+// emitStore emits to f an instruction to store value val at location
+// addr, applying implicit conversions as required by assignability rules.
+func emitStore(f *Function, addr, val Value, pos token.Pos) *Store {
+ typ := typeparams.MustDeref(addr.Type())
+ s := &Store{
+ Addr: addr,
+ Val: emitConv(f, val, typ),
+ pos: pos,
+ }
+ f.emit(s)
+ return s
+}
+
+// emitJump emits to f a jump to target, and updates the control-flow graph.
+// Postcondition: f.currentBlock is nil.
+func emitJump(f *Function, target *BasicBlock) {
+ b := f.currentBlock
+ b.emit(new(Jump))
+ addEdge(b, target)
+ f.currentBlock = nil
+}
+
+// emitIf emits to f a conditional jump to tblock or fblock based on
+// cond, and updates the control-flow graph.
+// Postcondition: f.currentBlock is nil.
+func emitIf(f *Function, cond Value, tblock, fblock *BasicBlock) {
+ b := f.currentBlock
+ b.emit(&If{Cond: cond})
+ addEdge(b, tblock)
+ addEdge(b, fblock)
+ f.currentBlock = nil
+}
+
+// emitExtract emits to f an instruction to extract the index'th
+// component of tuple. It returns the extracted value.
+func emitExtract(f *Function, tuple Value, index int) Value {
+ e := &Extract{Tuple: tuple, Index: index}
+ e.setType(tuple.Type().(*types.Tuple).At(index).Type())
+ return f.emit(e)
+}
+
+// emitTypeAssert emits to f a type assertion value := x.(t) and
+// returns the value. x.Type() must be an interface.
+func emitTypeAssert(f *Function, x Value, t types.Type, pos token.Pos) Value {
+ a := &TypeAssert{X: x, AssertedType: t}
+ a.setPos(pos)
+ a.setType(t)
+ return f.emit(a)
+}
+
+// emitTypeTest emits to f a type test value,ok := x.(t) and returns
+// a (value, ok) tuple. x.Type() must be an interface.
+func emitTypeTest(f *Function, x Value, t types.Type, pos token.Pos) Value {
+ a := &TypeAssert{
+ X: x,
+ AssertedType: t,
+ CommaOk: true,
+ }
+ a.setPos(pos)
+ a.setType(types.NewTuple(
+ newVar("value", t),
+ varOk,
+ ))
+ return f.emit(a)
+}
+
+// emitTailCall emits to f a function call in tail position. The
+// caller is responsible for all fields of 'call' except its type.
+// Intended for wrapper methods.
+// Precondition: f does/will not use deferred procedure calls.
+// Postcondition: f.currentBlock is nil.
+func emitTailCall(f *Function, call *Call) {
+ tresults := f.Signature.Results()
+ nr := tresults.Len()
+ if nr == 1 {
+ call.typ = tresults.At(0).Type()
+ } else {
+ call.typ = tresults
+ }
+ tuple := f.emit(call)
+ var ret Return
+ switch nr {
+ case 0:
+ // no-op
+ case 1:
+ ret.Results = []Value{tuple}
+ default:
+ for i := 0; i < nr; i++ {
+ v := emitExtract(f, tuple, i)
+ // TODO(adonovan): in principle, this is required:
+ // v = emitConv(f, o.Type, f.Signature.Results[i].Type)
+ // but in practice emitTailCall is only used when
+ // the types exactly match.
+ ret.Results = append(ret.Results, v)
+ }
+ }
+ f.emit(&ret)
+ f.currentBlock = nil
+}
+
+// emitImplicitSelections emits to f code to apply the sequence of
+// implicit field selections specified by indices to base value v, and
+// returns the selected value.
+//
+// If v is the address of a struct, the result will be the address of
+// a field; if it is the value of a struct, the result will be the
+// value of a field.
+func emitImplicitSelections(f *Function, v Value, indices []int, pos token.Pos) Value {
+ for _, index := range indices {
+ if isPointerCore(v.Type()) {
+ fld := fieldOf(typeparams.MustDeref(v.Type()), index)
+ instr := &FieldAddr{
+ X: v,
+ Field: index,
+ }
+ instr.setPos(pos)
+ instr.setType(types.NewPointer(fld.Type()))
+ v = f.emit(instr)
+ // Load the field's value iff indirectly embedded.
+ if isPointerCore(fld.Type()) {
+ v = emitLoad(f, v)
+ }
+ } else {
+ fld := fieldOf(v.Type(), index)
+ instr := &Field{
+ X: v,
+ Field: index,
+ }
+ instr.setPos(pos)
+ instr.setType(fld.Type())
+ v = f.emit(instr)
+ }
+ }
+ return v
+}
+
+// emitFieldSelection emits to f code to select the index'th field of v.
+//
+// If wantAddr, the input must be a pointer-to-struct and the result
+// will be the field's address; otherwise the result will be the
+// field's value.
+// Ident id is used for position and debug info.
+func emitFieldSelection(f *Function, v Value, index int, wantAddr bool, id *ast.Ident) Value {
+ if isPointerCore(v.Type()) {
+ fld := fieldOf(typeparams.MustDeref(v.Type()), index)
+ instr := &FieldAddr{
+ X: v,
+ Field: index,
+ }
+ instr.setPos(id.Pos())
+ instr.setType(types.NewPointer(fld.Type()))
+ v = f.emit(instr)
+ // Load the field's value iff we don't want its address.
+ if !wantAddr {
+ v = emitLoad(f, v)
+ }
+ } else {
+ fld := fieldOf(v.Type(), index)
+ instr := &Field{
+ X: v,
+ Field: index,
+ }
+ instr.setPos(id.Pos())
+ instr.setType(fld.Type())
+ v = f.emit(instr)
+ }
+ emitDebugRef(f, id, v, wantAddr)
+ return v
+}
+
+// createRecoverBlock emits to f a block of code to return after a
+// recovered panic, and sets f.Recover to it.
+//
+// If f's result parameters are named, the code loads and returns
+// their current values, otherwise it returns the zero values of their
+// type.
+//
+// Idempotent.
+func createRecoverBlock(f *Function) {
+ if f.Recover != nil {
+ return // already created
+ }
+ saved := f.currentBlock
+
+ f.Recover = f.newBasicBlock("recover")
+ f.currentBlock = f.Recover
+
+ var results []Value
+ // Reload NRPs to form value tuple.
+ for _, nr := range f.results {
+ results = append(results, emitLoad(f, nr))
+ }
+
+ f.emit(&Return{Results: results})
+
+ f.currentBlock = saved
+}
diff --git a/vendor/golang.org/x/tools/go/ssa/func.go b/vendor/golang.org/x/tools/go/ssa/func.go
new file mode 100644
index 0000000..2ed63bf
--- /dev/null
+++ b/vendor/golang.org/x/tools/go/ssa/func.go
@@ -0,0 +1,816 @@
+// Copyright 2013 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package ssa
+
+// This file implements the Function type.
+
+import (
+ "bytes"
+ "fmt"
+ "go/ast"
+ "go/token"
+ "go/types"
+ "io"
+ "os"
+ "strings"
+
+ "golang.org/x/tools/internal/typeparams"
+)
+
+// Like ObjectOf, but panics instead of returning nil.
+// Only valid during f's create and build phases.
+func (f *Function) objectOf(id *ast.Ident) types.Object {
+ if o := f.info.ObjectOf(id); o != nil {
+ return o
+ }
+ panic(fmt.Sprintf("no types.Object for ast.Ident %s @ %s",
+ id.Name, f.Prog.Fset.Position(id.Pos())))
+}
+
+// Like TypeOf, but panics instead of returning nil.
+// Only valid during f's create and build phases.
+func (f *Function) typeOf(e ast.Expr) types.Type {
+ if T := f.info.TypeOf(e); T != nil {
+ return f.typ(T)
+ }
+ panic(fmt.Sprintf("no type for %T @ %s", e, f.Prog.Fset.Position(e.Pos())))
+}
+
+// typ is the locally instantiated type of T.
+// If f is not an instantiation, then f.typ(T)==T.
+func (f *Function) typ(T types.Type) types.Type {
+ return f.subst.typ(T)
+}
+
+// If id is an Instance, returns info.Instances[id].Type.
+// Otherwise returns f.typeOf(id).
+func (f *Function) instanceType(id *ast.Ident) types.Type {
+ if t, ok := f.info.Instances[id]; ok {
+ return t.Type
+ }
+ return f.typeOf(id)
+}
+
+// selection returns a *selection corresponding to f.info.Selections[selector]
+// with potential updates for type substitution.
+func (f *Function) selection(selector *ast.SelectorExpr) *selection {
+ sel := f.info.Selections[selector]
+ if sel == nil {
+ return nil
+ }
+
+ switch sel.Kind() {
+ case types.MethodExpr, types.MethodVal:
+ if recv := f.typ(sel.Recv()); recv != sel.Recv() {
+ // recv changed during type substitution.
+ pkg := f.declaredPackage().Pkg
+ obj, index, indirect := types.LookupFieldOrMethod(recv, true, pkg, sel.Obj().Name())
+
+ // sig replaces sel.Type(). See (types.Selection).Typ() for details.
+ sig := obj.Type().(*types.Signature)
+ sig = changeRecv(sig, newVar(sig.Recv().Name(), recv))
+ if sel.Kind() == types.MethodExpr {
+ sig = recvAsFirstArg(sig)
+ }
+ return &selection{
+ kind: sel.Kind(),
+ recv: recv,
+ typ: sig,
+ obj: obj,
+ index: index,
+ indirect: indirect,
+ }
+ }
+ }
+ return toSelection(sel)
+}
+
+// Destinations associated with unlabelled for/switch/select stmts.
+// We push/pop one of these as we enter/leave each construct and for
+// each BranchStmt we scan for the innermost target of the right type.
+type targets struct {
+ tail *targets // rest of stack
+ _break *BasicBlock
+ _continue *BasicBlock
+ _fallthrough *BasicBlock
+}
+
+// Destinations associated with a labelled block.
+// We populate these as labels are encountered in forward gotos or
+// labelled statements.
+// Forward gotos are resolved once it is known which statement they
+// are associated with inside the Function.
+type lblock struct {
+ label *types.Label // Label targeted by the blocks.
+ resolved bool // _goto block encountered (back jump or resolved fwd jump)
+ _goto *BasicBlock
+ _break *BasicBlock
+ _continue *BasicBlock
+}
+
+// label returns the symbol denoted by a label identifier.
+//
+// label should be a non-blank identifier (label.Name != "_").
+func (f *Function) label(label *ast.Ident) *types.Label {
+ return f.objectOf(label).(*types.Label)
+}
+
+// lblockOf returns the branch target associated with the
+// specified label, creating it if needed.
+func (f *Function) lblockOf(label *types.Label) *lblock {
+ lb := f.lblocks[label]
+ if lb == nil {
+ lb = &lblock{
+ label: label,
+ _goto: f.newBasicBlock(label.Name()),
+ }
+ if f.lblocks == nil {
+ f.lblocks = make(map[*types.Label]*lblock)
+ }
+ f.lblocks[label] = lb
+ }
+ return lb
+}
+
+// labelledBlock searches f for the block of the specified label.
+//
+// If f is a yield function, it additionally searches ancestor Functions
+// corresponding to enclosing range-over-func statements within the
+// same source function, so the returned block may belong to a different Function.
+func labelledBlock(f *Function, label *types.Label, tok token.Token) *BasicBlock {
+ if lb := f.lblocks[label]; lb != nil {
+ var block *BasicBlock
+ switch tok {
+ case token.BREAK:
+ block = lb._break
+ case token.CONTINUE:
+ block = lb._continue
+ case token.GOTO:
+ block = lb._goto
+ }
+ if block != nil {
+ return block
+ }
+ }
+ // Search ancestors if this is a yield function.
+ if f.jump != nil {
+ return labelledBlock(f.parent, label, tok)
+ }
+ return nil
+}
+
+// targetedBlock looks for the nearest block in f.targets
+// (and f's ancestors) that matches tok's type, and returns
+// the block and function it was found in.
+func targetedBlock(f *Function, tok token.Token) *BasicBlock {
+ if f == nil {
+ return nil
+ }
+ for t := f.targets; t != nil; t = t.tail {
+ var block *BasicBlock
+ switch tok {
+ case token.BREAK:
+ block = t._break
+ case token.CONTINUE:
+ block = t._continue
+ case token.FALLTHROUGH:
+ block = t._fallthrough
+ }
+ if block != nil {
+ return block
+ }
+ }
+ // Search f's ancestors (in case f is a yield function).
+ return targetedBlock(f.parent, tok)
+}
+
+// addResultVar adds a result for a variable v to f.results and v to f.returnVars.
+func (f *Function) addResultVar(v *types.Var) {
+ result := emitLocalVar(f, v)
+ f.results = append(f.results, result)
+ f.returnVars = append(f.returnVars, v)
+}
+
+// addParamVar adds a parameter to f.Params.
+func (f *Function) addParamVar(v *types.Var) *Parameter {
+ name := v.Name()
+ if name == "" {
+ name = fmt.Sprintf("arg%d", len(f.Params))
+ }
+ param := &Parameter{
+ name: name,
+ object: v,
+ typ: f.typ(v.Type()),
+ parent: f,
+ }
+ f.Params = append(f.Params, param)
+ return param
+}
+
+// addSpilledParam declares a parameter that is pre-spilled to the
+// stack; the function body will load/store the spilled location.
+// Subsequent lifting will eliminate spills where possible.
+func (f *Function) addSpilledParam(obj *types.Var) {
+ param := f.addParamVar(obj)
+ spill := emitLocalVar(f, obj)
+ f.emit(&Store{Addr: spill, Val: param})
+}
+
+// startBody initializes the function prior to generating SSA code for its body.
+// Precondition: f.Type() already set.
+func (f *Function) startBody() {
+ f.currentBlock = f.newBasicBlock("entry")
+ f.vars = make(map[*types.Var]Value) // needed for some synthetics, e.g. init
+}
+
+// createSyntacticParams populates f.Params and generates code (spills
+// and named result locals) for all the parameters declared in the
+// syntax. In addition it populates the f.objects mapping.
+//
+// Preconditions:
+// f.startBody() was called. f.info != nil.
+// Postcondition:
+// len(f.Params) == len(f.Signature.Params) + (f.Signature.Recv() ? 1 : 0)
+func (f *Function) createSyntacticParams(recv *ast.FieldList, functype *ast.FuncType) {
+ // Receiver (at most one inner iteration).
+ if recv != nil {
+ for _, field := range recv.List {
+ for _, n := range field.Names {
+ f.addSpilledParam(identVar(f, n))
+ }
+ // Anonymous receiver? No need to spill.
+ if field.Names == nil {
+ f.addParamVar(f.Signature.Recv())
+ }
+ }
+ }
+
+ // Parameters.
+ if functype.Params != nil {
+ n := len(f.Params) // 1 if has recv, 0 otherwise
+ for _, field := range functype.Params.List {
+ for _, n := range field.Names {
+ f.addSpilledParam(identVar(f, n))
+ }
+ // Anonymous parameter? No need to spill.
+ if field.Names == nil {
+ f.addParamVar(f.Signature.Params().At(len(f.Params) - n))
+ }
+ }
+ }
+
+ // Results.
+ if functype.Results != nil {
+ for _, field := range functype.Results.List {
+ // Implicit "var" decl of locals for named results.
+ for _, n := range field.Names {
+ v := identVar(f, n)
+ f.addResultVar(v)
+ }
+ // Implicit "var" decl of local for an unnamed result.
+ if field.Names == nil {
+ v := f.Signature.Results().At(len(f.results))
+ f.addResultVar(v)
+ }
+ }
+ }
+}
+
+// createDeferStack initializes fn.deferstack to local variable
+// initialized to a ssa:deferstack() call.
+func (fn *Function) createDeferStack() {
+ // Each syntactic function makes a call to ssa:deferstack,
+ // which is spilled to a local. Unused ones are later removed.
+ fn.deferstack = newVar("defer$stack", tDeferStack)
+ call := &Call{Call: CallCommon{Value: vDeferStack}}
+ call.setType(tDeferStack)
+ deferstack := fn.emit(call)
+ spill := emitLocalVar(fn, fn.deferstack)
+ emitStore(fn, spill, deferstack, token.NoPos)
+}
+
+type setNumable interface {
+ setNum(int)
+}
+
+// numberRegisters assigns numbers to all SSA registers
+// (value-defining Instructions) in f, to aid debugging.
+// (Non-Instruction Values are named at construction.)
+func numberRegisters(f *Function) {
+ v := 0
+ for _, b := range f.Blocks {
+ for _, instr := range b.Instrs {
+ switch instr.(type) {
+ case Value:
+ instr.(setNumable).setNum(v)
+ v++
+ }
+ }
+ }
+}
+
+// buildReferrers populates the def/use information in all non-nil
+// Value.Referrers slice.
+// Precondition: all such slices are initially empty.
+func buildReferrers(f *Function) {
+ var rands []*Value
+ for _, b := range f.Blocks {
+ for _, instr := range b.Instrs {
+ rands = instr.Operands(rands[:0]) // recycle storage
+ for _, rand := range rands {
+ if r := *rand; r != nil {
+ if ref := r.Referrers(); ref != nil {
+ *ref = append(*ref, instr)
+ }
+ }
+ }
+ }
+ }
+}
+
+// finishBody() finalizes the contents of the function after SSA code generation of its body.
+//
+// The function is not done being built until done() is called.
+func (f *Function) finishBody() {
+ f.currentBlock = nil
+ f.lblocks = nil
+ f.returnVars = nil
+ f.jump = nil
+ f.source = nil
+ f.exits = nil
+
+ // Remove from f.Locals any Allocs that escape to the heap.
+ j := 0
+ for _, l := range f.Locals {
+ if !l.Heap {
+ f.Locals[j] = l
+ j++
+ }
+ }
+ // Nil out f.Locals[j:] to aid GC.
+ for i := j; i < len(f.Locals); i++ {
+ f.Locals[i] = nil
+ }
+ f.Locals = f.Locals[:j]
+
+ optimizeBlocks(f)
+
+ buildReferrers(f)
+
+ buildDomTree(f)
+
+ if f.Prog.mode&NaiveForm == 0 {
+ // For debugging pre-state of lifting pass:
+ // numberRegisters(f)
+ // f.WriteTo(os.Stderr)
+ lift(f)
+ }
+
+ // clear remaining builder state
+ f.results = nil // (used by lifting)
+ f.deferstack = nil // (used by lifting)
+ f.vars = nil // (used by lifting)
+ f.subst = nil
+
+ numberRegisters(f) // uses f.namedRegisters
+}
+
+// done marks the building of f's SSA body complete,
+// along with any nested functions, and optionally prints them.
+func (f *Function) done() {
+ assert(f.parent == nil, "done called on an anonymous function")
+
+ var visit func(*Function)
+ visit = func(f *Function) {
+ for _, anon := range f.AnonFuncs {
+ visit(anon) // anon is done building before f.
+ }
+
+ f.uniq = 0 // done with uniq
+ f.build = nil // function is built
+
+ if f.Prog.mode&PrintFunctions != 0 {
+ printMu.Lock()
+ f.WriteTo(os.Stdout)
+ printMu.Unlock()
+ }
+
+ if f.Prog.mode&SanityCheckFunctions != 0 {
+ mustSanityCheck(f, nil)
+ }
+ }
+ visit(f)
+}
+
+// removeNilBlocks eliminates nils from f.Blocks and updates each
+// BasicBlock.Index. Use this after any pass that may delete blocks.
+func (f *Function) removeNilBlocks() {
+ j := 0
+ for _, b := range f.Blocks {
+ if b != nil {
+ b.Index = j
+ f.Blocks[j] = b
+ j++
+ }
+ }
+ // Nil out f.Blocks[j:] to aid GC.
+ for i := j; i < len(f.Blocks); i++ {
+ f.Blocks[i] = nil
+ }
+ f.Blocks = f.Blocks[:j]
+}
+
+// SetDebugMode sets the debug mode for package pkg. If true, all its
+// functions will include full debug info. This greatly increases the
+// size of the instruction stream, and causes Functions to depend upon
+// the ASTs, potentially keeping them live in memory for longer.
+func (pkg *Package) SetDebugMode(debug bool) {
+ pkg.debug = debug
+}
+
+// debugInfo reports whether debug info is wanted for this function.
+func (f *Function) debugInfo() bool {
+ // debug info for instantiations follows the debug info of their origin.
+ p := f.declaredPackage()
+ return p != nil && p.debug
+}
+
+// lookup returns the address of the named variable identified by obj
+// that is local to function f or one of its enclosing functions.
+// If escaping, the reference comes from a potentially escaping pointer
+// expression and the referent must be heap-allocated.
+// We assume the referent is a *Alloc or *Phi.
+// (The only Phis at this stage are those created directly by go1.22 "for" loops.)
+func (f *Function) lookup(obj *types.Var, escaping bool) Value {
+ if v, ok := f.vars[obj]; ok {
+ if escaping {
+ switch v := v.(type) {
+ case *Alloc:
+ v.Heap = true
+ case *Phi:
+ for _, edge := range v.Edges {
+ if alloc, ok := edge.(*Alloc); ok {
+ alloc.Heap = true
+ }
+ }
+ }
+ }
+ return v // function-local var (address)
+ }
+
+ // Definition must be in an enclosing function;
+ // plumb it through intervening closures.
+ if f.parent == nil {
+ panic("no ssa.Value for " + obj.String())
+ }
+ outer := f.parent.lookup(obj, true) // escaping
+ v := &FreeVar{
+ name: obj.Name(),
+ typ: outer.Type(),
+ pos: outer.Pos(),
+ outer: outer,
+ parent: f,
+ }
+ f.vars[obj] = v
+ f.FreeVars = append(f.FreeVars, v)
+ return v
+}
+
+// emit emits the specified instruction to function f.
+func (f *Function) emit(instr Instruction) Value {
+ return f.currentBlock.emit(instr)
+}
+
+// RelString returns the full name of this function, qualified by
+// package name, receiver type, etc.
+//
+// The specific formatting rules are not guaranteed and may change.
+//
+// Examples:
+//
+// "math.IsNaN" // a package-level function
+// "(*bytes.Buffer).Bytes" // a declared method or a wrapper
+// "(*bytes.Buffer).Bytes$thunk" // thunk (func wrapping method; receiver is param 0)
+// "(*bytes.Buffer).Bytes$bound" // bound (func wrapping method; receiver supplied by closure)
+// "main.main$1" // an anonymous function in main
+// "main.init#1" // a declared init function
+// "main.init" // the synthesized package initializer
+//
+// When these functions are referred to from within the same package
+// (i.e. from == f.Pkg.Object), they are rendered without the package path.
+// For example: "IsNaN", "(*Buffer).Bytes", etc.
+//
+// All non-synthetic functions have distinct package-qualified names.
+// (But two methods may have the same name "(T).f" if one is a synthetic
+// wrapper promoting a non-exported method "f" from another package; in
+// that case, the strings are equal but the identifiers "f" are distinct.)
+func (f *Function) RelString(from *types.Package) string {
+ // Anonymous?
+ if f.parent != nil {
+ // An anonymous function's Name() looks like "parentName$1",
+ // but its String() should include the type/package/etc.
+ parent := f.parent.RelString(from)
+ for i, anon := range f.parent.AnonFuncs {
+ if anon == f {
+ return fmt.Sprintf("%s$%d", parent, 1+i)
+ }
+ }
+
+ return f.name // should never happen
+ }
+
+ // Method (declared or wrapper)?
+ if recv := f.Signature.Recv(); recv != nil {
+ return f.relMethod(from, recv.Type())
+ }
+
+ // Thunk?
+ if f.method != nil {
+ return f.relMethod(from, f.method.recv)
+ }
+
+ // Bound?
+ if len(f.FreeVars) == 1 && strings.HasSuffix(f.name, "$bound") {
+ return f.relMethod(from, f.FreeVars[0].Type())
+ }
+
+ // Package-level function?
+ // Prefix with package name for cross-package references only.
+ if p := f.relPkg(); p != nil && p != from {
+ return fmt.Sprintf("%s.%s", p.Path(), f.name)
+ }
+
+ // Unknown.
+ return f.name
+}
+
+func (f *Function) relMethod(from *types.Package, recv types.Type) string {
+ return fmt.Sprintf("(%s).%s", relType(recv, from), f.name)
+}
+
+// writeSignature writes to buf the signature sig in declaration syntax.
+func writeSignature(buf *bytes.Buffer, from *types.Package, name string, sig *types.Signature) {
+ buf.WriteString("func ")
+ if recv := sig.Recv(); recv != nil {
+ buf.WriteString("(")
+ if name := recv.Name(); name != "" {
+ buf.WriteString(name)
+ buf.WriteString(" ")
+ }
+ types.WriteType(buf, recv.Type(), types.RelativeTo(from))
+ buf.WriteString(") ")
+ }
+ buf.WriteString(name)
+ types.WriteSignature(buf, sig, types.RelativeTo(from))
+}
+
+// declaredPackage returns the package fn is declared in or nil if the
+// function is not declared in a package.
+func (fn *Function) declaredPackage() *Package {
+ switch {
+ case fn.Pkg != nil:
+ return fn.Pkg // non-generic function (does that follow??)
+ case fn.topLevelOrigin != nil:
+ return fn.topLevelOrigin.Pkg // instance of a named generic function
+ case fn.parent != nil:
+ return fn.parent.declaredPackage() // instance of an anonymous [generic] function
+ default:
+ return nil // function is not declared in a package, e.g. a wrapper.
+ }
+}
+
+// relPkg returns types.Package fn is printed in relationship to.
+func (fn *Function) relPkg() *types.Package {
+ if p := fn.declaredPackage(); p != nil {
+ return p.Pkg
+ }
+ return nil
+}
+
+var _ io.WriterTo = (*Function)(nil) // *Function implements io.Writer
+
+func (f *Function) WriteTo(w io.Writer) (int64, error) {
+ var buf bytes.Buffer
+ WriteFunction(&buf, f)
+ n, err := w.Write(buf.Bytes())
+ return int64(n), err
+}
+
+// WriteFunction writes to buf a human-readable "disassembly" of f.
+func WriteFunction(buf *bytes.Buffer, f *Function) {
+ fmt.Fprintf(buf, "# Name: %s\n", f.String())
+ if f.Pkg != nil {
+ fmt.Fprintf(buf, "# Package: %s\n", f.Pkg.Pkg.Path())
+ }
+ if syn := f.Synthetic; syn != "" {
+ fmt.Fprintln(buf, "# Synthetic:", syn)
+ }
+ if pos := f.Pos(); pos.IsValid() {
+ fmt.Fprintf(buf, "# Location: %s\n", f.Prog.Fset.Position(pos))
+ }
+
+ if f.parent != nil {
+ fmt.Fprintf(buf, "# Parent: %s\n", f.parent.Name())
+ }
+
+ if f.Recover != nil {
+ fmt.Fprintf(buf, "# Recover: %s\n", f.Recover)
+ }
+
+ from := f.relPkg()
+
+ if f.FreeVars != nil {
+ buf.WriteString("# Free variables:\n")
+ for i, fv := range f.FreeVars {
+ fmt.Fprintf(buf, "# % 3d:\t%s %s\n", i, fv.Name(), relType(fv.Type(), from))
+ }
+ }
+
+ if len(f.Locals) > 0 {
+ buf.WriteString("# Locals:\n")
+ for i, l := range f.Locals {
+ fmt.Fprintf(buf, "# % 3d:\t%s %s\n", i, l.Name(), relType(typeparams.MustDeref(l.Type()), from))
+ }
+ }
+ writeSignature(buf, from, f.Name(), f.Signature)
+ buf.WriteString(":\n")
+
+ if f.Blocks == nil {
+ buf.WriteString("\t(external)\n")
+ }
+
+ // NB. column calculations are confused by non-ASCII
+ // characters and assume 8-space tabs.
+ const punchcard = 80 // for old time's sake.
+ const tabwidth = 8
+ for _, b := range f.Blocks {
+ if b == nil {
+ // Corrupt CFG.
+ fmt.Fprintf(buf, ".nil:\n")
+ continue
+ }
+ n, _ := fmt.Fprintf(buf, "%d:", b.Index)
+ bmsg := fmt.Sprintf("%s P:%d S:%d", b.Comment, len(b.Preds), len(b.Succs))
+ fmt.Fprintf(buf, "%*s%s\n", punchcard-1-n-len(bmsg), "", bmsg)
+
+ if false { // CFG debugging
+ fmt.Fprintf(buf, "\t# CFG: %s --> %s --> %s\n", b.Preds, b, b.Succs)
+ }
+ for _, instr := range b.Instrs {
+ buf.WriteString("\t")
+ switch v := instr.(type) {
+ case Value:
+ l := punchcard - tabwidth
+ // Left-align the instruction.
+ if name := v.Name(); name != "" {
+ n, _ := fmt.Fprintf(buf, "%s = ", name)
+ l -= n
+ }
+ n, _ := buf.WriteString(instr.String())
+ l -= n
+ // Right-align the type if there's space.
+ if t := v.Type(); t != nil {
+ buf.WriteByte(' ')
+ ts := relType(t, from)
+ l -= len(ts) + len(" ") // (spaces before and after type)
+ if l > 0 {
+ fmt.Fprintf(buf, "%*s", l, "")
+ }
+ buf.WriteString(ts)
+ }
+ case nil:
+ // Be robust against bad transforms.
+ buf.WriteString("<deleted>")
+ default:
+ buf.WriteString(instr.String())
+ }
+ // -mode=S: show line numbers
+ if f.Prog.mode&LogSource != 0 {
+ if pos := instr.Pos(); pos.IsValid() {
+ fmt.Fprintf(buf, " L%d", f.Prog.Fset.Position(pos).Line)
+ }
+ }
+ buf.WriteString("\n")
+ }
+ }
+ fmt.Fprintf(buf, "\n")
+}
+
+// newBasicBlock adds to f a new basic block and returns it. It does
+// not automatically become the current block for subsequent calls to emit.
+// comment is an optional string for more readable debugging output.
+func (f *Function) newBasicBlock(comment string) *BasicBlock {
+ b := &BasicBlock{
+ Index: len(f.Blocks),
+ Comment: comment,
+ parent: f,
+ }
+ b.Succs = b.succs2[:0]
+ f.Blocks = append(f.Blocks, b)
+ return b
+}
+
+// NewFunction returns a new synthetic Function instance belonging to
+// prog, with its name and signature fields set as specified.
+//
+// The caller is responsible for initializing the remaining fields of
+// the function object, e.g. Pkg, Params, Blocks.
+//
+// It is practically impossible for clients to construct well-formed
+// SSA functions/packages/programs directly, so we assume this is the
+// job of the Builder alone. NewFunction exists to provide clients a
+// little flexibility. For example, analysis tools may wish to
+// construct fake Functions for the root of the callgraph, a fake
+// "reflect" package, etc.
+//
+// TODO(adonovan): think harder about the API here.
+func (prog *Program) NewFunction(name string, sig *types.Signature, provenance string) *Function {
+ return &Function{Prog: prog, name: name, Signature: sig, Synthetic: provenance}
+}
+
+// Syntax returns the function's syntax (*ast.Func{Decl,Lit})
+// if it was produced from syntax or an *ast.RangeStmt if
+// it is a range-over-func yield function.
+func (f *Function) Syntax() ast.Node { return f.syntax }
+
+// identVar returns the variable defined by id.
+func identVar(fn *Function, id *ast.Ident) *types.Var {
+ return fn.info.Defs[id].(*types.Var)
+}
+
+// unique returns a unique positive int within the source tree of f.
+// The source tree of f includes all of f's ancestors by parent and all
+// of the AnonFuncs contained within these.
+func unique(f *Function) int64 {
+ f.uniq++
+ return f.uniq
+}
+
+// exit is a change of control flow going from a range-over-func
+// yield function to an ancestor function caused by a break, continue,
+// goto, or return statement.
+//
+// There are 3 types of exits:
+// * return from the source function (from ReturnStmt),
+// * jump to a block (from break and continue statements [labelled/unlabelled]),
+// * go to a label (from goto statements).
+//
+// As the builder does one pass over the ast, it is unclear whether
+// a forward goto statement will leave a range-over-func body.
+// The function being exited to is unresolved until the end
+// of building the range-over-func body.
+type exit struct {
+ id int64 // unique value for exit within from and to
+ from *Function // the function the exit starts from
+ to *Function // the function being exited to (nil if unresolved)
+ pos token.Pos
+
+ block *BasicBlock // basic block within to being jumped to.
+ label *types.Label // forward label being jumped to via goto.
+ // block == nil && label == nil => return
+}
+
+// storeVar emits to function f code to store a value v to a *types.Var x.
+func storeVar(f *Function, x *types.Var, v Value, pos token.Pos) {
+ emitStore(f, f.lookup(x, true), v, pos)
+}
+
+// labelExit creates a new exit to a yield fn to exit the function using a label.
+func labelExit(fn *Function, label *types.Label, pos token.Pos) *exit {
+ e := &exit{
+ id: unique(fn),
+ from: fn,
+ to: nil,
+ pos: pos,
+ label: label,
+ }
+ fn.exits = append(fn.exits, e)
+ return e
+}
+
+// blockExit creates a new exit to a yield fn that jumps to a basic block.
+func blockExit(fn *Function, block *BasicBlock, pos token.Pos) *exit {
+ e := &exit{
+ id: unique(fn),
+ from: fn,
+ to: block.parent,
+ pos: pos,
+ block: block,
+ }
+ fn.exits = append(fn.exits, e)
+ return e
+}
+
+// blockExit creates a new exit to a yield fn that returns the source function.
+func returnExit(fn *Function, pos token.Pos) *exit {
+ e := &exit{
+ id: unique(fn),
+ from: fn,
+ to: fn.source,
+ pos: pos,
+ }
+ fn.exits = append(fn.exits, e)
+ return e
+}
diff --git a/vendor/golang.org/x/tools/go/ssa/instantiate.go b/vendor/golang.org/x/tools/go/ssa/instantiate.go
new file mode 100644
index 0000000..2512f32
--- /dev/null
+++ b/vendor/golang.org/x/tools/go/ssa/instantiate.go
@@ -0,0 +1,131 @@
+// Copyright 2022 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package ssa
+
+import (
+ "fmt"
+ "go/types"
+ "sync"
+)
+
+// A generic records information about a generic origin function,
+// including a cache of existing instantiations.
+type generic struct {
+ instancesMu sync.Mutex
+ instances map[*typeList]*Function // canonical type arguments to an instance.
+}
+
+// instance returns a Function that is the instantiation of generic
+// origin function fn with the type arguments targs.
+//
+// Any created instance is added to cr.
+//
+// Acquires fn.generic.instancesMu.
+func (fn *Function) instance(targs []types.Type, b *builder) *Function {
+ key := fn.Prog.canon.List(targs)
+
+ gen := fn.generic
+
+ gen.instancesMu.Lock()
+ defer gen.instancesMu.Unlock()
+ inst, ok := gen.instances[key]
+ if !ok {
+ inst = createInstance(fn, targs)
+ inst.buildshared = b.shared()
+ b.enqueue(inst)
+
+ if gen.instances == nil {
+ gen.instances = make(map[*typeList]*Function)
+ }
+ gen.instances[key] = inst
+ } else {
+ b.waitForSharedFunction(inst)
+ }
+ return inst
+}
+
+// createInstance returns the instantiation of generic function fn using targs.
+//
+// Requires fn.generic.instancesMu.
+func createInstance(fn *Function, targs []types.Type) *Function {
+ prog := fn.Prog
+
+ // Compute signature.
+ var sig *types.Signature
+ var obj *types.Func
+ if recv := fn.Signature.Recv(); recv != nil {
+ // method
+ obj = prog.canon.instantiateMethod(fn.object, targs, prog.ctxt)
+ sig = obj.Type().(*types.Signature)
+ } else {
+ // function
+ instSig, err := types.Instantiate(prog.ctxt, fn.Signature, targs, false)
+ if err != nil {
+ panic(err)
+ }
+ instance, ok := instSig.(*types.Signature)
+ if !ok {
+ panic("Instantiate of a Signature returned a non-signature")
+ }
+ obj = fn.object // instantiation does not exist yet
+ sig = prog.canon.Type(instance).(*types.Signature)
+ }
+
+ // Choose strategy (instance or wrapper).
+ var (
+ synthetic string
+ subst *subster
+ build buildFunc
+ )
+ if prog.mode&InstantiateGenerics != 0 && !prog.isParameterized(targs...) {
+ synthetic = fmt.Sprintf("instance of %s", fn.Name())
+ if fn.syntax != nil {
+ subst = makeSubster(prog.ctxt, obj, fn.typeparams, targs, false)
+ build = (*builder).buildFromSyntax
+ } else {
+ build = (*builder).buildParamsOnly
+ }
+ } else {
+ synthetic = fmt.Sprintf("instantiation wrapper of %s", fn.Name())
+ build = (*builder).buildInstantiationWrapper
+ }
+
+ /* generic instance or instantiation wrapper */
+ return &Function{
+ name: fmt.Sprintf("%s%s", fn.Name(), targs), // may not be unique
+ object: obj,
+ Signature: sig,
+ Synthetic: synthetic,
+ syntax: fn.syntax, // \
+ info: fn.info, // } empty for non-created packages
+ goversion: fn.goversion, // /
+ build: build,
+ topLevelOrigin: fn,
+ pos: obj.Pos(),
+ Pkg: nil,
+ Prog: fn.Prog,
+ typeparams: fn.typeparams, // share with origin
+ typeargs: targs,
+ subst: subst,
+ }
+}
+
+// isParameterized reports whether any of the specified types contains
+// a free type parameter. It is safe to call concurrently.
+func (prog *Program) isParameterized(ts ...types.Type) bool {
+ prog.hasParamsMu.Lock()
+ defer prog.hasParamsMu.Unlock()
+
+ // TODO(adonovan): profile. If this operation is expensive,
+ // handle the most common but shallow cases such as T, pkg.T,
+ // *T without consulting the cache under the lock.
+
+ for _, t := range ts {
+ if prog.hasParams.Has(t) {
+ return true
+ }
+ }
+ return false
+}
diff --git a/vendor/golang.org/x/tools/go/ssa/lift.go b/vendor/golang.org/x/tools/go/ssa/lift.go
new file mode 100644
index 0000000..aada3dc
--- /dev/null
+++ b/vendor/golang.org/x/tools/go/ssa/lift.go
@@ -0,0 +1,688 @@
+// Copyright 2013 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package ssa
+
+// This file defines the lifting pass which tries to "lift" Alloc
+// cells (new/local variables) into SSA registers, replacing loads
+// with the dominating stored value, eliminating loads and stores, and
+// inserting φ-nodes as needed.
+
+// Cited papers and resources:
+//
+// Ron Cytron et al. 1991. Efficiently computing SSA form...
+// http://doi.acm.org/10.1145/115372.115320
+//
+// Cooper, Harvey, Kennedy. 2001. A Simple, Fast Dominance Algorithm.
+// Software Practice and Experience 2001, 4:1-10.
+// http://www.hipersoft.rice.edu/grads/publications/dom14.pdf
+//
+// Daniel Berlin, llvmdev mailing list, 2012.
+// http://lists.cs.uiuc.edu/pipermail/llvmdev/2012-January/046638.html
+// (Be sure to expand the whole thread.)
+
+// TODO(adonovan): opt: there are many optimizations worth evaluating, and
+// the conventional wisdom for SSA construction is that a simple
+// algorithm well engineered often beats those of better asymptotic
+// complexity on all but the most egregious inputs.
+//
+// Danny Berlin suggests that the Cooper et al. algorithm for
+// computing the dominance frontier is superior to Cytron et al.
+// Furthermore he recommends that rather than computing the DF for the
+// whole function then renaming all alloc cells, it may be cheaper to
+// compute the DF for each alloc cell separately and throw it away.
+//
+// Consider exploiting liveness information to avoid creating dead
+// φ-nodes which we then immediately remove.
+//
+// Also see many other "TODO: opt" suggestions in the code.
+
+import (
+ "fmt"
+ "go/token"
+ "math/big"
+ "os"
+
+ "golang.org/x/tools/internal/typeparams"
+)
+
+// If true, show diagnostic information at each step of lifting.
+// Very verbose.
+const debugLifting = false
+
+// domFrontier maps each block to the set of blocks in its dominance
+// frontier. The outer slice is conceptually a map keyed by
+// Block.Index. The inner slice is conceptually a set, possibly
+// containing duplicates.
+//
+// TODO(adonovan): opt: measure impact of dups; consider a packed bit
+// representation, e.g. big.Int, and bitwise parallel operations for
+// the union step in the Children loop.
+//
+// domFrontier's methods mutate the slice's elements but not its
+// length, so their receivers needn't be pointers.
+type domFrontier [][]*BasicBlock
+
+func (df domFrontier) add(u, v *BasicBlock) {
+ p := &df[u.Index]
+ *p = append(*p, v)
+}
+
+// build builds the dominance frontier df for the dominator (sub)tree
+// rooted at u, using the Cytron et al. algorithm.
+//
+// TODO(adonovan): opt: consider Berlin approach, computing pruned SSA
+// by pruning the entire IDF computation, rather than merely pruning
+// the DF -> IDF step.
+func (df domFrontier) build(u *BasicBlock) {
+ // Encounter each node u in postorder of dom tree.
+ for _, child := range u.dom.children {
+ df.build(child)
+ }
+ for _, vb := range u.Succs {
+ if v := vb.dom; v.idom != u {
+ df.add(u, vb)
+ }
+ }
+ for _, w := range u.dom.children {
+ for _, vb := range df[w.Index] {
+ // TODO(adonovan): opt: use word-parallel bitwise union.
+ if v := vb.dom; v.idom != u {
+ df.add(u, vb)
+ }
+ }
+ }
+}
+
+func buildDomFrontier(fn *Function) domFrontier {
+ df := make(domFrontier, len(fn.Blocks))
+ df.build(fn.Blocks[0])
+ if fn.Recover != nil {
+ df.build(fn.Recover)
+ }
+ return df
+}
+
+func removeInstr(refs []Instruction, instr Instruction) []Instruction {
+ return removeInstrsIf(refs, func(i Instruction) bool { return i == instr })
+}
+
+func removeInstrsIf(refs []Instruction, p func(Instruction) bool) []Instruction {
+ // TODO(taking): replace with go1.22 slices.DeleteFunc.
+ i := 0
+ for _, ref := range refs {
+ if p(ref) {
+ continue
+ }
+ refs[i] = ref
+ i++
+ }
+ for j := i; j != len(refs); j++ {
+ refs[j] = nil // aid GC
+ }
+ return refs[:i]
+}
+
+// lift replaces local and new Allocs accessed only with
+// load/store by SSA registers, inserting φ-nodes where necessary.
+// The result is a program in classical pruned SSA form.
+//
+// Preconditions:
+// - fn has no dead blocks (blockopt has run).
+// - Def/use info (Operands and Referrers) is up-to-date.
+// - The dominator tree is up-to-date.
+func lift(fn *Function) {
+ // TODO(adonovan): opt: lots of little optimizations may be
+ // worthwhile here, especially if they cause us to avoid
+ // buildDomFrontier. For example:
+ //
+ // - Alloc never loaded? Eliminate.
+ // - Alloc never stored? Replace all loads with a zero constant.
+ // - Alloc stored once? Replace loads with dominating store;
+ // don't forget that an Alloc is itself an effective store
+ // of zero.
+ // - Alloc used only within a single block?
+ // Use degenerate algorithm avoiding φ-nodes.
+ // - Consider synergy with scalar replacement of aggregates (SRA).
+ // e.g. *(&x.f) where x is an Alloc.
+ // Perhaps we'd get better results if we generated this as x.f
+ // i.e. Field(x, .f) instead of Load(FieldIndex(x, .f)).
+ // Unclear.
+ //
+ // But we will start with the simplest correct code.
+ df := buildDomFrontier(fn)
+
+ if debugLifting {
+ title := false
+ for i, blocks := range df {
+ if blocks != nil {
+ if !title {
+ fmt.Fprintf(os.Stderr, "Dominance frontier of %s:\n", fn)
+ title = true
+ }
+ fmt.Fprintf(os.Stderr, "\t%s: %s\n", fn.Blocks[i], blocks)
+ }
+ }
+ }
+
+ newPhis := make(newPhiMap)
+
+ // During this pass we will replace some BasicBlock.Instrs
+ // (allocs, loads and stores) with nil, keeping a count in
+ // BasicBlock.gaps. At the end we will reset Instrs to the
+ // concatenation of all non-dead newPhis and non-nil Instrs
+ // for the block, reusing the original array if space permits.
+
+ // While we're here, we also eliminate 'rundefers'
+ // instructions and ssa:deferstack() in functions that contain no
+ // 'defer' instructions. For now, we also eliminate
+ // 's = ssa:deferstack()' calls if s doesn't escape, replacing s
+ // with nil in Defer{DeferStack: s}. This has the same meaning,
+ // but allows eliminating the intrinsic function `ssa:deferstack()`
+ // (unless it is needed due to range-over-func instances). This gives
+ // ssa users more time to support range-over-func.
+ usesDefer := false
+ deferstackAlloc, deferstackCall := deferstackPreamble(fn)
+ eliminateDeferStack := deferstackAlloc != nil && !deferstackAlloc.Heap
+
+ // A counter used to generate ~unique ids for Phi nodes, as an
+ // aid to debugging. We use large numbers to make them highly
+ // visible. All nodes are renumbered later.
+ fresh := 1000
+
+ // Determine which allocs we can lift and number them densely.
+ // The renaming phase uses this numbering for compact maps.
+ numAllocs := 0
+ for _, b := range fn.Blocks {
+ b.gaps = 0
+ b.rundefers = 0
+ for _, instr := range b.Instrs {
+ switch instr := instr.(type) {
+ case *Alloc:
+ index := -1
+ if liftAlloc(df, instr, newPhis, &fresh) {
+ index = numAllocs
+ numAllocs++
+ }
+ instr.index = index
+ case *Defer:
+ usesDefer = true
+ if eliminateDeferStack {
+ // Clear DeferStack and remove references to loads
+ if instr.DeferStack != nil {
+ if refs := instr.DeferStack.Referrers(); refs != nil {
+ *refs = removeInstr(*refs, instr)
+ }
+ instr.DeferStack = nil
+ }
+ }
+ case *RunDefers:
+ b.rundefers++
+ }
+ }
+ }
+
+ // renaming maps an alloc (keyed by index) to its replacement
+ // value. Initially the renaming contains nil, signifying the
+ // zero constant of the appropriate type; we construct the
+ // Const lazily at most once on each path through the domtree.
+ // TODO(adonovan): opt: cache per-function not per subtree.
+ renaming := make([]Value, numAllocs)
+
+ // Renaming.
+ rename(fn.Blocks[0], renaming, newPhis)
+
+ // Eliminate dead φ-nodes.
+ removeDeadPhis(fn.Blocks, newPhis)
+
+ // Eliminate ssa:deferstack() call.
+ if eliminateDeferStack {
+ b := deferstackCall.block
+ for i, instr := range b.Instrs {
+ if instr == deferstackCall {
+ b.Instrs[i] = nil
+ b.gaps++
+ break
+ }
+ }
+ }
+
+ // Prepend remaining live φ-nodes to each block.
+ for _, b := range fn.Blocks {
+ nps := newPhis[b]
+ j := len(nps)
+
+ rundefersToKill := b.rundefers
+ if usesDefer {
+ rundefersToKill = 0
+ }
+
+ if j+b.gaps+rundefersToKill == 0 {
+ continue // fast path: no new phis or gaps
+ }
+
+ // Compact nps + non-nil Instrs into a new slice.
+ // TODO(adonovan): opt: compact in situ (rightwards)
+ // if Instrs has sufficient space or slack.
+ dst := make([]Instruction, len(b.Instrs)+j-b.gaps-rundefersToKill)
+ for i, np := range nps {
+ dst[i] = np.phi
+ }
+ for _, instr := range b.Instrs {
+ if instr == nil {
+ continue
+ }
+ if !usesDefer {
+ if _, ok := instr.(*RunDefers); ok {
+ continue
+ }
+ }
+ dst[j] = instr
+ j++
+ }
+ b.Instrs = dst
+ }
+
+ // Remove any fn.Locals that were lifted.
+ j := 0
+ for _, l := range fn.Locals {
+ if l.index < 0 {
+ fn.Locals[j] = l
+ j++
+ }
+ }
+ // Nil out fn.Locals[j:] to aid GC.
+ for i := j; i < len(fn.Locals); i++ {
+ fn.Locals[i] = nil
+ }
+ fn.Locals = fn.Locals[:j]
+}
+
+// removeDeadPhis removes φ-nodes not transitively needed by a
+// non-Phi, non-DebugRef instruction.
+func removeDeadPhis(blocks []*BasicBlock, newPhis newPhiMap) {
+ // First pass: find the set of "live" φ-nodes: those reachable
+ // from some non-Phi instruction.
+ //
+ // We compute reachability in reverse, starting from each φ,
+ // rather than forwards, starting from each live non-Phi
+ // instruction, because this way visits much less of the
+ // Value graph.
+ livePhis := make(map[*Phi]bool)
+ for _, npList := range newPhis {
+ for _, np := range npList {
+ phi := np.phi
+ if !livePhis[phi] && phiHasDirectReferrer(phi) {
+ markLivePhi(livePhis, phi)
+ }
+ }
+ }
+
+ // Existing φ-nodes due to && and || operators
+ // are all considered live (see Go issue 19622).
+ for _, b := range blocks {
+ for _, phi := range b.phis() {
+ markLivePhi(livePhis, phi.(*Phi))
+ }
+ }
+
+ // Second pass: eliminate unused phis from newPhis.
+ for block, npList := range newPhis {
+ j := 0
+ for _, np := range npList {
+ if livePhis[np.phi] {
+ npList[j] = np
+ j++
+ } else {
+ // discard it, first removing it from referrers
+ for _, val := range np.phi.Edges {
+ if refs := val.Referrers(); refs != nil {
+ *refs = removeInstr(*refs, np.phi)
+ }
+ }
+ np.phi.block = nil
+ }
+ }
+ newPhis[block] = npList[:j]
+ }
+}
+
+// markLivePhi marks phi, and all φ-nodes transitively reachable via
+// its Operands, live.
+func markLivePhi(livePhis map[*Phi]bool, phi *Phi) {
+ livePhis[phi] = true
+ for _, rand := range phi.Operands(nil) {
+ if q, ok := (*rand).(*Phi); ok {
+ if !livePhis[q] {
+ markLivePhi(livePhis, q)
+ }
+ }
+ }
+}
+
+// phiHasDirectReferrer reports whether phi is directly referred to by
+// a non-Phi instruction. Such instructions are the
+// roots of the liveness traversal.
+func phiHasDirectReferrer(phi *Phi) bool {
+ for _, instr := range *phi.Referrers() {
+ if _, ok := instr.(*Phi); !ok {
+ return true
+ }
+ }
+ return false
+}
+
+type blockSet struct{ big.Int } // (inherit methods from Int)
+
+// add adds b to the set and returns true if the set changed.
+func (s *blockSet) add(b *BasicBlock) bool {
+ i := b.Index
+ if s.Bit(i) != 0 {
+ return false
+ }
+ s.SetBit(&s.Int, i, 1)
+ return true
+}
+
+// take removes an arbitrary element from a set s and
+// returns its index, or returns -1 if empty.
+func (s *blockSet) take() int {
+ l := s.BitLen()
+ for i := 0; i < l; i++ {
+ if s.Bit(i) == 1 {
+ s.SetBit(&s.Int, i, 0)
+ return i
+ }
+ }
+ return -1
+}
+
+// newPhi is a pair of a newly introduced φ-node and the lifted Alloc
+// it replaces.
+type newPhi struct {
+ phi *Phi
+ alloc *Alloc
+}
+
+// newPhiMap records for each basic block, the set of newPhis that
+// must be prepended to the block.
+type newPhiMap map[*BasicBlock][]newPhi
+
+// liftAlloc determines whether alloc can be lifted into registers,
+// and if so, it populates newPhis with all the φ-nodes it may require
+// and returns true.
+//
+// fresh is a source of fresh ids for phi nodes.
+func liftAlloc(df domFrontier, alloc *Alloc, newPhis newPhiMap, fresh *int) bool {
+ // Don't lift result values in functions that defer
+ // calls that may recover from panic.
+ if fn := alloc.Parent(); fn.Recover != nil {
+ for _, nr := range fn.results {
+ if nr == alloc {
+ return false
+ }
+ }
+ }
+
+ // Compute defblocks, the set of blocks containing a
+ // definition of the alloc cell.
+ var defblocks blockSet
+ for _, instr := range *alloc.Referrers() {
+ // Bail out if we discover the alloc is not liftable;
+ // the only operations permitted to use the alloc are
+ // loads/stores into the cell, and DebugRef.
+ switch instr := instr.(type) {
+ case *Store:
+ if instr.Val == alloc {
+ return false // address used as value
+ }
+ if instr.Addr != alloc {
+ panic("Alloc.Referrers is inconsistent")
+ }
+ defblocks.add(instr.Block())
+ case *UnOp:
+ if instr.Op != token.MUL {
+ return false // not a load
+ }
+ if instr.X != alloc {
+ panic("Alloc.Referrers is inconsistent")
+ }
+ case *DebugRef:
+ // ok
+ default:
+ return false // some other instruction
+ }
+ }
+ // The Alloc itself counts as a (zero) definition of the cell.
+ defblocks.add(alloc.Block())
+
+ if debugLifting {
+ fmt.Fprintln(os.Stderr, "\tlifting ", alloc, alloc.Name())
+ }
+
+ fn := alloc.Parent()
+
+ // Φ-insertion.
+ //
+ // What follows is the body of the main loop of the insert-φ
+ // function described by Cytron et al, but instead of using
+ // counter tricks, we just reset the 'hasAlready' and 'work'
+ // sets each iteration. These are bitmaps so it's pretty cheap.
+ //
+ // TODO(adonovan): opt: recycle slice storage for W,
+ // hasAlready, defBlocks across liftAlloc calls.
+ var hasAlready blockSet
+
+ // Initialize W and work to defblocks.
+ var work blockSet = defblocks // blocks seen
+ var W blockSet // blocks to do
+ W.Set(&defblocks.Int)
+
+ // Traverse iterated dominance frontier, inserting φ-nodes.
+ for i := W.take(); i != -1; i = W.take() {
+ u := fn.Blocks[i]
+ for _, v := range df[u.Index] {
+ if hasAlready.add(v) {
+ // Create φ-node.
+ // It will be prepended to v.Instrs later, if needed.
+ phi := &Phi{
+ Edges: make([]Value, len(v.Preds)),
+ Comment: alloc.Comment,
+ }
+ // This is merely a debugging aid:
+ phi.setNum(*fresh)
+ *fresh++
+
+ phi.pos = alloc.Pos()
+ phi.setType(typeparams.MustDeref(alloc.Type()))
+ phi.block = v
+ if debugLifting {
+ fmt.Fprintf(os.Stderr, "\tplace %s = %s at block %s\n", phi.Name(), phi, v)
+ }
+ newPhis[v] = append(newPhis[v], newPhi{phi, alloc})
+
+ if work.add(v) {
+ W.add(v)
+ }
+ }
+ }
+ }
+
+ return true
+}
+
+// replaceAll replaces all intraprocedural uses of x with y,
+// updating x.Referrers and y.Referrers.
+// Precondition: x.Referrers() != nil, i.e. x must be local to some function.
+func replaceAll(x, y Value) {
+ var rands []*Value
+ pxrefs := x.Referrers()
+ pyrefs := y.Referrers()
+ for _, instr := range *pxrefs {
+ rands = instr.Operands(rands[:0]) // recycle storage
+ for _, rand := range rands {
+ if *rand != nil {
+ if *rand == x {
+ *rand = y
+ }
+ }
+ }
+ if pyrefs != nil {
+ *pyrefs = append(*pyrefs, instr) // dups ok
+ }
+ }
+ *pxrefs = nil // x is now unreferenced
+}
+
+// renamed returns the value to which alloc is being renamed,
+// constructing it lazily if it's the implicit zero initialization.
+func renamed(renaming []Value, alloc *Alloc) Value {
+ v := renaming[alloc.index]
+ if v == nil {
+ v = zeroConst(typeparams.MustDeref(alloc.Type()))
+ renaming[alloc.index] = v
+ }
+ return v
+}
+
+// rename implements the (Cytron et al) SSA renaming algorithm, a
+// preorder traversal of the dominator tree replacing all loads of
+// Alloc cells with the value stored to that cell by the dominating
+// store instruction. For lifting, we need only consider loads,
+// stores and φ-nodes.
+//
+// renaming is a map from *Alloc (keyed by index number) to its
+// dominating stored value; newPhis[x] is the set of new φ-nodes to be
+// prepended to block x.
+func rename(u *BasicBlock, renaming []Value, newPhis newPhiMap) {
+ // Each φ-node becomes the new name for its associated Alloc.
+ for _, np := range newPhis[u] {
+ phi := np.phi
+ alloc := np.alloc
+ renaming[alloc.index] = phi
+ }
+
+ // Rename loads and stores of allocs.
+ for i, instr := range u.Instrs {
+ switch instr := instr.(type) {
+ case *Alloc:
+ if instr.index >= 0 { // store of zero to Alloc cell
+ // Replace dominated loads by the zero value.
+ renaming[instr.index] = nil
+ if debugLifting {
+ fmt.Fprintf(os.Stderr, "\tkill alloc %s\n", instr)
+ }
+ // Delete the Alloc.
+ u.Instrs[i] = nil
+ u.gaps++
+ }
+
+ case *Store:
+ if alloc, ok := instr.Addr.(*Alloc); ok && alloc.index >= 0 { // store to Alloc cell
+ // Replace dominated loads by the stored value.
+ renaming[alloc.index] = instr.Val
+ if debugLifting {
+ fmt.Fprintf(os.Stderr, "\tkill store %s; new value: %s\n",
+ instr, instr.Val.Name())
+ }
+ // Remove the store from the referrer list of the stored value.
+ if refs := instr.Val.Referrers(); refs != nil {
+ *refs = removeInstr(*refs, instr)
+ }
+ // Delete the Store.
+ u.Instrs[i] = nil
+ u.gaps++
+ }
+
+ case *UnOp:
+ if instr.Op == token.MUL {
+ if alloc, ok := instr.X.(*Alloc); ok && alloc.index >= 0 { // load of Alloc cell
+ newval := renamed(renaming, alloc)
+ if debugLifting {
+ fmt.Fprintf(os.Stderr, "\tupdate load %s = %s with %s\n",
+ instr.Name(), instr, newval.Name())
+ }
+ // Replace all references to
+ // the loaded value by the
+ // dominating stored value.
+ replaceAll(instr, newval)
+ // Delete the Load.
+ u.Instrs[i] = nil
+ u.gaps++
+ }
+ }
+
+ case *DebugRef:
+ if alloc, ok := instr.X.(*Alloc); ok && alloc.index >= 0 { // ref of Alloc cell
+ if instr.IsAddr {
+ instr.X = renamed(renaming, alloc)
+ instr.IsAddr = false
+
+ // Add DebugRef to instr.X's referrers.
+ if refs := instr.X.Referrers(); refs != nil {
+ *refs = append(*refs, instr)
+ }
+ } else {
+ // A source expression denotes the address
+ // of an Alloc that was optimized away.
+ instr.X = nil
+
+ // Delete the DebugRef.
+ u.Instrs[i] = nil
+ u.gaps++
+ }
+ }
+ }
+ }
+
+ // For each φ-node in a CFG successor, rename the edge.
+ for _, v := range u.Succs {
+ phis := newPhis[v]
+ if len(phis) == 0 {
+ continue
+ }
+ i := v.predIndex(u)
+ for _, np := range phis {
+ phi := np.phi
+ alloc := np.alloc
+ newval := renamed(renaming, alloc)
+ if debugLifting {
+ fmt.Fprintf(os.Stderr, "\tsetphi %s edge %s -> %s (#%d) (alloc=%s) := %s\n",
+ phi.Name(), u, v, i, alloc.Name(), newval.Name())
+ }
+ phi.Edges[i] = newval
+ if prefs := newval.Referrers(); prefs != nil {
+ *prefs = append(*prefs, phi)
+ }
+ }
+ }
+
+ // Continue depth-first recursion over domtree, pushing a
+ // fresh copy of the renaming map for each subtree.
+ for i, v := range u.dom.children {
+ r := renaming
+ if i < len(u.dom.children)-1 {
+ // On all but the final iteration, we must make
+ // a copy to avoid destructive update.
+ r = make([]Value, len(renaming))
+ copy(r, renaming)
+ }
+ rename(v, r, newPhis)
+ }
+
+}
+
+// deferstackPreamble returns the *Alloc and ssa:deferstack() call for fn.deferstack.
+func deferstackPreamble(fn *Function) (*Alloc, *Call) {
+ if alloc, _ := fn.vars[fn.deferstack].(*Alloc); alloc != nil {
+ for _, ref := range *alloc.Referrers() {
+ if ref, _ := ref.(*Store); ref != nil && ref.Addr == alloc {
+ if call, _ := ref.Val.(*Call); call != nil {
+ return alloc, call
+ }
+ }
+ }
+ }
+ return nil, nil
+}
diff --git a/vendor/golang.org/x/tools/go/ssa/lvalue.go b/vendor/golang.org/x/tools/go/ssa/lvalue.go
new file mode 100644
index 0000000..eede307
--- /dev/null
+++ b/vendor/golang.org/x/tools/go/ssa/lvalue.go
@@ -0,0 +1,155 @@
+// Copyright 2013 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package ssa
+
+// lvalues are the union of addressable expressions and map-index
+// expressions.
+
+import (
+ "go/ast"
+ "go/token"
+ "go/types"
+
+ "golang.org/x/tools/internal/typeparams"
+)
+
+// An lvalue represents an assignable location that may appear on the
+// left-hand side of an assignment. This is a generalization of a
+// pointer to permit updates to elements of maps.
+type lvalue interface {
+ store(fn *Function, v Value) // stores v into the location
+ load(fn *Function) Value // loads the contents of the location
+ address(fn *Function) Value // address of the location
+ typ() types.Type // returns the type of the location
+}
+
+// An address is an lvalue represented by a true pointer.
+type address struct {
+ addr Value // must have a pointer core type.
+ pos token.Pos // source position
+ expr ast.Expr // source syntax of the value (not address) [debug mode]
+}
+
+func (a *address) load(fn *Function) Value {
+ load := emitLoad(fn, a.addr)
+ load.pos = a.pos
+ return load
+}
+
+func (a *address) store(fn *Function, v Value) {
+ store := emitStore(fn, a.addr, v, a.pos)
+ if a.expr != nil {
+ // store.Val is v, converted for assignability.
+ emitDebugRef(fn, a.expr, store.Val, false)
+ }
+}
+
+func (a *address) address(fn *Function) Value {
+ if a.expr != nil {
+ emitDebugRef(fn, a.expr, a.addr, true)
+ }
+ return a.addr
+}
+
+func (a *address) typ() types.Type {
+ return typeparams.MustDeref(a.addr.Type())
+}
+
+// An element is an lvalue represented by m[k], the location of an
+// element of a map. These locations are not addressable
+// since pointers cannot be formed from them, but they do support
+// load() and store().
+type element struct {
+ m, k Value // map
+ t types.Type // map element type
+ pos token.Pos // source position of colon ({k:v}) or lbrack (m[k]=v)
+}
+
+func (e *element) load(fn *Function) Value {
+ l := &Lookup{
+ X: e.m,
+ Index: e.k,
+ }
+ l.setPos(e.pos)
+ l.setType(e.t)
+ return fn.emit(l)
+}
+
+func (e *element) store(fn *Function, v Value) {
+ up := &MapUpdate{
+ Map: e.m,
+ Key: e.k,
+ Value: emitConv(fn, v, e.t),
+ }
+ up.pos = e.pos
+ fn.emit(up)
+}
+
+func (e *element) address(fn *Function) Value {
+ panic("map elements are not addressable")
+}
+
+func (e *element) typ() types.Type {
+ return e.t
+}
+
+// A lazyAddress is an lvalue whose address is the result of an instruction.
+// These work like an *address except a new address.address() Value
+// is created on each load, store and address call.
+// A lazyAddress can be used to control when a side effect (nil pointer
+// dereference, index out of bounds) of using a location happens.
+type lazyAddress struct {
+ addr func(fn *Function) Value // emit to fn the computation of the address
+ t types.Type // type of the location
+ pos token.Pos // source position
+ expr ast.Expr // source syntax of the value (not address) [debug mode]
+}
+
+func (l *lazyAddress) load(fn *Function) Value {
+ load := emitLoad(fn, l.addr(fn))
+ load.pos = l.pos
+ return load
+}
+
+func (l *lazyAddress) store(fn *Function, v Value) {
+ store := emitStore(fn, l.addr(fn), v, l.pos)
+ if l.expr != nil {
+ // store.Val is v, converted for assignability.
+ emitDebugRef(fn, l.expr, store.Val, false)
+ }
+}
+
+func (l *lazyAddress) address(fn *Function) Value {
+ addr := l.addr(fn)
+ if l.expr != nil {
+ emitDebugRef(fn, l.expr, addr, true)
+ }
+ return addr
+}
+
+func (l *lazyAddress) typ() types.Type { return l.t }
+
+// A blank is a dummy variable whose name is "_".
+// It is not reified: loads are illegal and stores are ignored.
+type blank struct{}
+
+func (bl blank) load(fn *Function) Value {
+ panic("blank.load is illegal")
+}
+
+func (bl blank) store(fn *Function, v Value) {
+ // no-op
+}
+
+func (bl blank) address(fn *Function) Value {
+ panic("blank var is not addressable")
+}
+
+func (bl blank) typ() types.Type {
+ // This should be the type of the blank Ident; the typechecker
+ // doesn't provide this yet, but fortunately, we don't need it
+ // yet either.
+ panic("blank.typ is unimplemented")
+}
diff --git a/vendor/golang.org/x/tools/go/ssa/methods.go b/vendor/golang.org/x/tools/go/ssa/methods.go
new file mode 100644
index 0000000..b956018
--- /dev/null
+++ b/vendor/golang.org/x/tools/go/ssa/methods.go
@@ -0,0 +1,281 @@
+// Copyright 2013 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package ssa
+
+// This file defines utilities for population of method sets.
+
+import (
+ "fmt"
+ "go/types"
+
+ "golang.org/x/tools/go/types/typeutil"
+ "golang.org/x/tools/internal/aliases"
+)
+
+// MethodValue returns the Function implementing method sel, building
+// wrapper methods on demand. It returns nil if sel denotes an
+// interface or generic method.
+//
+// Precondition: sel.Kind() == MethodVal.
+//
+// Thread-safe.
+//
+// Acquires prog.methodsMu.
+func (prog *Program) MethodValue(sel *types.Selection) *Function {
+ if sel.Kind() != types.MethodVal {
+ panic(fmt.Sprintf("MethodValue(%s) kind != MethodVal", sel))
+ }
+ T := sel.Recv()
+ if types.IsInterface(T) {
+ return nil // interface method or type parameter
+ }
+
+ if prog.isParameterized(T) {
+ return nil // generic method
+ }
+
+ if prog.mode&LogSource != 0 {
+ defer logStack("MethodValue %s %v", T, sel)()
+ }
+
+ var b builder
+
+ m := func() *Function {
+ prog.methodsMu.Lock()
+ defer prog.methodsMu.Unlock()
+
+ // Get or create SSA method set.
+ mset, ok := prog.methodSets.At(T).(*methodSet)
+ if !ok {
+ mset = &methodSet{mapping: make(map[string]*Function)}
+ prog.methodSets.Set(T, mset)
+ }
+
+ // Get or create SSA method.
+ id := sel.Obj().Id()
+ fn, ok := mset.mapping[id]
+ if !ok {
+ obj := sel.Obj().(*types.Func)
+ needsPromotion := len(sel.Index()) > 1
+ needsIndirection := !isPointer(recvType(obj)) && isPointer(T)
+ if needsPromotion || needsIndirection {
+ fn = createWrapper(prog, toSelection(sel))
+ fn.buildshared = b.shared()
+ b.enqueue(fn)
+ } else {
+ fn = prog.objectMethod(obj, &b)
+ }
+ if fn.Signature.Recv() == nil {
+ panic(fn)
+ }
+ mset.mapping[id] = fn
+ } else {
+ b.waitForSharedFunction(fn)
+ }
+
+ return fn
+ }()
+
+ b.iterate()
+
+ return m
+}
+
+// objectMethod returns the Function for a given method symbol.
+// The symbol may be an instance of a generic function. It need not
+// belong to an existing SSA package created by a call to
+// prog.CreatePackage.
+//
+// objectMethod panics if the function is not a method.
+//
+// Acquires prog.objectMethodsMu.
+func (prog *Program) objectMethod(obj *types.Func, b *builder) *Function {
+ sig := obj.Type().(*types.Signature)
+ if sig.Recv() == nil {
+ panic("not a method: " + obj.String())
+ }
+
+ // Belongs to a created package?
+ if fn := prog.FuncValue(obj); fn != nil {
+ return fn
+ }
+
+ // Instantiation of generic?
+ if originObj := obj.Origin(); originObj != obj {
+ origin := prog.objectMethod(originObj, b)
+ assert(origin.typeparams.Len() > 0, "origin is not generic")
+ targs := receiverTypeArgs(obj)
+ return origin.instance(targs, b)
+ }
+
+ // Consult/update cache of methods created from types.Func.
+ prog.objectMethodsMu.Lock()
+ defer prog.objectMethodsMu.Unlock()
+ fn, ok := prog.objectMethods[obj]
+ if !ok {
+ fn = createFunction(prog, obj, obj.Name(), nil, nil, "")
+ fn.Synthetic = "from type information (on demand)"
+ fn.buildshared = b.shared()
+ b.enqueue(fn)
+
+ if prog.objectMethods == nil {
+ prog.objectMethods = make(map[*types.Func]*Function)
+ }
+ prog.objectMethods[obj] = fn
+ } else {
+ b.waitForSharedFunction(fn)
+ }
+ return fn
+}
+
+// LookupMethod returns the implementation of the method of type T
+// identified by (pkg, name). It returns nil if the method exists but
+// is an interface method or generic method, and panics if T has no such method.
+func (prog *Program) LookupMethod(T types.Type, pkg *types.Package, name string) *Function {
+ sel := prog.MethodSets.MethodSet(T).Lookup(pkg, name)
+ if sel == nil {
+ panic(fmt.Sprintf("%s has no method %s", T, types.Id(pkg, name)))
+ }
+ return prog.MethodValue(sel)
+}
+
+// methodSet contains the (concrete) methods of a concrete type (non-interface, non-parameterized).
+type methodSet struct {
+ mapping map[string]*Function // populated lazily
+}
+
+// RuntimeTypes returns a new unordered slice containing all types in
+// the program for which a runtime type is required.
+//
+// A runtime type is required for any non-parameterized, non-interface
+// type that is converted to an interface, or for any type (including
+// interface types) derivable from one through reflection.
+//
+// The methods of such types may be reachable through reflection or
+// interface calls even if they are never called directly.
+//
+// Thread-safe.
+//
+// Acquires prog.runtimeTypesMu.
+func (prog *Program) RuntimeTypes() []types.Type {
+ prog.runtimeTypesMu.Lock()
+ defer prog.runtimeTypesMu.Unlock()
+ return prog.runtimeTypes.Keys()
+}
+
+// forEachReachable calls f for type T and each type reachable from
+// its type through reflection.
+//
+// The function f must use memoization to break cycles and
+// return false when the type has already been visited.
+//
+// TODO(adonovan): publish in typeutil and share with go/callgraph/rta.
+func forEachReachable(msets *typeutil.MethodSetCache, T types.Type, f func(types.Type) bool) {
+ var visit func(T types.Type, skip bool)
+ visit = func(T types.Type, skip bool) {
+ if !skip {
+ if !f(T) {
+ return
+ }
+ }
+
+ // Recursion over signatures of each method.
+ tmset := msets.MethodSet(T)
+ for i := 0; i < tmset.Len(); i++ {
+ sig := tmset.At(i).Type().(*types.Signature)
+ // It is tempting to call visit(sig, false)
+ // but, as noted in golang.org/cl/65450043,
+ // the Signature.Recv field is ignored by
+ // types.Identical and typeutil.Map, which
+ // is confusing at best.
+ //
+ // More importantly, the true signature rtype
+ // reachable from a method using reflection
+ // has no receiver but an extra ordinary parameter.
+ // For the Read method of io.Reader we want:
+ // func(Reader, []byte) (int, error)
+ // but here sig is:
+ // func([]byte) (int, error)
+ // with .Recv = Reader (though it is hard to
+ // notice because it doesn't affect Signature.String
+ // or types.Identical).
+ //
+ // TODO(adonovan): construct and visit the correct
+ // non-method signature with an extra parameter
+ // (though since unnamed func types have no methods
+ // there is essentially no actual demand for this).
+ //
+ // TODO(adonovan): document whether or not it is
+ // safe to skip non-exported methods (as RTA does).
+ visit(sig.Params(), true) // skip the Tuple
+ visit(sig.Results(), true) // skip the Tuple
+ }
+
+ switch T := T.(type) {
+ case *aliases.Alias:
+ visit(aliases.Unalias(T), skip) // emulates the pre-Alias behavior
+
+ case *types.Basic:
+ // nop
+
+ case *types.Interface:
+ // nop---handled by recursion over method set.
+
+ case *types.Pointer:
+ visit(T.Elem(), false)
+
+ case *types.Slice:
+ visit(T.Elem(), false)
+
+ case *types.Chan:
+ visit(T.Elem(), false)
+
+ case *types.Map:
+ visit(T.Key(), false)
+ visit(T.Elem(), false)
+
+ case *types.Signature:
+ if T.Recv() != nil {
+ panic(fmt.Sprintf("Signature %s has Recv %s", T, T.Recv()))
+ }
+ visit(T.Params(), true) // skip the Tuple
+ visit(T.Results(), true) // skip the Tuple
+
+ case *types.Named:
+ // A pointer-to-named type can be derived from a named
+ // type via reflection. It may have methods too.
+ visit(types.NewPointer(T), false)
+
+ // Consider 'type T struct{S}' where S has methods.
+ // Reflection provides no way to get from T to struct{S},
+ // only to S, so the method set of struct{S} is unwanted,
+ // so set 'skip' flag during recursion.
+ visit(T.Underlying(), true) // skip the unnamed type
+
+ case *types.Array:
+ visit(T.Elem(), false)
+
+ case *types.Struct:
+ for i, n := 0, T.NumFields(); i < n; i++ {
+ // TODO(adonovan): document whether or not
+ // it is safe to skip non-exported fields.
+ visit(T.Field(i).Type(), false)
+ }
+
+ case *types.Tuple:
+ for i, n := 0, T.Len(); i < n; i++ {
+ visit(T.At(i).Type(), false)
+ }
+
+ case *types.TypeParam, *types.Union:
+ // forEachReachable must not be called on parameterized types.
+ panic(T)
+
+ default:
+ panic(T)
+ }
+ }
+ visit(T, false)
+}
diff --git a/vendor/golang.org/x/tools/go/ssa/mode.go b/vendor/golang.org/x/tools/go/ssa/mode.go
new file mode 100644
index 0000000..8381639
--- /dev/null
+++ b/vendor/golang.org/x/tools/go/ssa/mode.go
@@ -0,0 +1,111 @@
+// Copyright 2015 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package ssa
+
+// This file defines the BuilderMode type and its command-line flag.
+
+import (
+ "bytes"
+ "fmt"
+)
+
+// BuilderMode is a bitmask of options for diagnostics and checking.
+//
+// *BuilderMode satisfies the flag.Value interface. Example:
+//
+// var mode = ssa.BuilderMode(0)
+// func init() { flag.Var(&mode, "build", ssa.BuilderModeDoc) }
+type BuilderMode uint
+
+const (
+ PrintPackages BuilderMode = 1 << iota // Print package inventory to stdout
+ PrintFunctions // Print function SSA code to stdout
+ LogSource // Log source locations as SSA builder progresses
+ SanityCheckFunctions // Perform sanity checking of function bodies
+ NaiveForm // Build naïve SSA form: don't replace local loads/stores with registers
+ BuildSerially // Build packages serially, not in parallel.
+ GlobalDebug // Enable debug info for all packages
+ BareInits // Build init functions without guards or calls to dependent inits
+ InstantiateGenerics // Instantiate generics functions (monomorphize) while building
+)
+
+const BuilderModeDoc = `Options controlling the SSA builder.
+The value is a sequence of zero or more of these letters:
+C perform sanity [C]hecking of the SSA form.
+D include [D]ebug info for every function.
+P print [P]ackage inventory.
+F print [F]unction SSA code.
+S log [S]ource locations as SSA builder progresses.
+L build distinct packages seria[L]ly instead of in parallel.
+N build [N]aive SSA form: don't replace local loads/stores with registers.
+I build bare [I]nit functions: no init guards or calls to dependent inits.
+G instantiate [G]eneric function bodies via monomorphization
+`
+
+func (m BuilderMode) String() string {
+ var buf bytes.Buffer
+ if m&GlobalDebug != 0 {
+ buf.WriteByte('D')
+ }
+ if m&PrintPackages != 0 {
+ buf.WriteByte('P')
+ }
+ if m&PrintFunctions != 0 {
+ buf.WriteByte('F')
+ }
+ if m&LogSource != 0 {
+ buf.WriteByte('S')
+ }
+ if m&SanityCheckFunctions != 0 {
+ buf.WriteByte('C')
+ }
+ if m&NaiveForm != 0 {
+ buf.WriteByte('N')
+ }
+ if m&BuildSerially != 0 {
+ buf.WriteByte('L')
+ }
+ if m&BareInits != 0 {
+ buf.WriteByte('I')
+ }
+ if m&InstantiateGenerics != 0 {
+ buf.WriteByte('G')
+ }
+ return buf.String()
+}
+
+// Set parses the flag characters in s and updates *m.
+func (m *BuilderMode) Set(s string) error {
+ var mode BuilderMode
+ for _, c := range s {
+ switch c {
+ case 'D':
+ mode |= GlobalDebug
+ case 'P':
+ mode |= PrintPackages
+ case 'F':
+ mode |= PrintFunctions
+ case 'S':
+ mode |= LogSource | BuildSerially
+ case 'C':
+ mode |= SanityCheckFunctions
+ case 'N':
+ mode |= NaiveForm
+ case 'L':
+ mode |= BuildSerially
+ case 'I':
+ mode |= BareInits
+ case 'G':
+ mode |= InstantiateGenerics
+ default:
+ return fmt.Errorf("unknown BuilderMode option: %q", c)
+ }
+ }
+ *m = mode
+ return nil
+}
+
+// Get returns m.
+func (m BuilderMode) Get() interface{} { return m }
diff --git a/vendor/golang.org/x/tools/go/ssa/print.go b/vendor/golang.org/x/tools/go/ssa/print.go
new file mode 100644
index 0000000..c890d7e
--- /dev/null
+++ b/vendor/golang.org/x/tools/go/ssa/print.go
@@ -0,0 +1,470 @@
+// Copyright 2013 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package ssa
+
+// This file implements the String() methods for all Value and
+// Instruction types.
+
+import (
+ "bytes"
+ "fmt"
+ "go/types"
+ "io"
+ "reflect"
+ "sort"
+ "strings"
+
+ "golang.org/x/tools/go/types/typeutil"
+ "golang.org/x/tools/internal/typeparams"
+)
+
+// relName returns the name of v relative to i.
+// In most cases, this is identical to v.Name(), but references to
+// Functions (including methods) and Globals use RelString and
+// all types are displayed with relType, so that only cross-package
+// references are package-qualified.
+func relName(v Value, i Instruction) string {
+ var from *types.Package
+ if i != nil {
+ from = i.Parent().relPkg()
+ }
+ switch v := v.(type) {
+ case Member: // *Function or *Global
+ return v.RelString(from)
+ case *Const:
+ return v.RelString(from)
+ }
+ return v.Name()
+}
+
+// normalizeAnyForTesting controls whether we replace occurrences of
+// interface{} with any. It is only used for normalizing test output.
+var normalizeAnyForTesting bool
+
+func relType(t types.Type, from *types.Package) string {
+ s := types.TypeString(t, types.RelativeTo(from))
+ if normalizeAnyForTesting {
+ s = strings.ReplaceAll(s, "interface{}", "any")
+ }
+ return s
+}
+
+func relTerm(term *types.Term, from *types.Package) string {
+ s := relType(term.Type(), from)
+ if term.Tilde() {
+ return "~" + s
+ }
+ return s
+}
+
+func relString(m Member, from *types.Package) string {
+ // NB: not all globals have an Object (e.g. init$guard),
+ // so use Package().Object not Object.Package().
+ if pkg := m.Package().Pkg; pkg != nil && pkg != from {
+ return fmt.Sprintf("%s.%s", pkg.Path(), m.Name())
+ }
+ return m.Name()
+}
+
+// Value.String()
+//
+// This method is provided only for debugging.
+// It never appears in disassembly, which uses Value.Name().
+
+func (v *Parameter) String() string {
+ from := v.Parent().relPkg()
+ return fmt.Sprintf("parameter %s : %s", v.Name(), relType(v.Type(), from))
+}
+
+func (v *FreeVar) String() string {
+ from := v.Parent().relPkg()
+ return fmt.Sprintf("freevar %s : %s", v.Name(), relType(v.Type(), from))
+}
+
+func (v *Builtin) String() string {
+ return fmt.Sprintf("builtin %s", v.Name())
+}
+
+// Instruction.String()
+
+func (v *Alloc) String() string {
+ op := "local"
+ if v.Heap {
+ op = "new"
+ }
+ from := v.Parent().relPkg()
+ return fmt.Sprintf("%s %s (%s)", op, relType(typeparams.MustDeref(v.Type()), from), v.Comment)
+}
+
+func (v *Phi) String() string {
+ var b bytes.Buffer
+ b.WriteString("phi [")
+ for i, edge := range v.Edges {
+ if i > 0 {
+ b.WriteString(", ")
+ }
+ // Be robust against malformed CFG.
+ if v.block == nil {
+ b.WriteString("??")
+ continue
+ }
+ block := -1
+ if i < len(v.block.Preds) {
+ block = v.block.Preds[i].Index
+ }
+ fmt.Fprintf(&b, "%d: ", block)
+ edgeVal := "<nil>" // be robust
+ if edge != nil {
+ edgeVal = relName(edge, v)
+ }
+ b.WriteString(edgeVal)
+ }
+ b.WriteString("]")
+ if v.Comment != "" {
+ b.WriteString(" #")
+ b.WriteString(v.Comment)
+ }
+ return b.String()
+}
+
+func printCall(v *CallCommon, prefix string, instr Instruction) string {
+ var b bytes.Buffer
+ b.WriteString(prefix)
+ if !v.IsInvoke() {
+ b.WriteString(relName(v.Value, instr))
+ } else {
+ fmt.Fprintf(&b, "invoke %s.%s", relName(v.Value, instr), v.Method.Name())
+ }
+ b.WriteString("(")
+ for i, arg := range v.Args {
+ if i > 0 {
+ b.WriteString(", ")
+ }
+ b.WriteString(relName(arg, instr))
+ }
+ if v.Signature().Variadic() {
+ b.WriteString("...")
+ }
+ b.WriteString(")")
+ return b.String()
+}
+
+func (c *CallCommon) String() string {
+ return printCall(c, "", nil)
+}
+
+func (v *Call) String() string {
+ return printCall(&v.Call, "", v)
+}
+
+func (v *BinOp) String() string {
+ return fmt.Sprintf("%s %s %s", relName(v.X, v), v.Op.String(), relName(v.Y, v))
+}
+
+func (v *UnOp) String() string {
+ return fmt.Sprintf("%s%s%s", v.Op, relName(v.X, v), commaOk(v.CommaOk))
+}
+
+func printConv(prefix string, v, x Value) string {
+ from := v.Parent().relPkg()
+ return fmt.Sprintf("%s %s <- %s (%s)",
+ prefix,
+ relType(v.Type(), from),
+ relType(x.Type(), from),
+ relName(x, v.(Instruction)))
+}
+
+func (v *ChangeType) String() string { return printConv("changetype", v, v.X) }
+func (v *Convert) String() string { return printConv("convert", v, v.X) }
+func (v *ChangeInterface) String() string { return printConv("change interface", v, v.X) }
+func (v *SliceToArrayPointer) String() string { return printConv("slice to array pointer", v, v.X) }
+func (v *MakeInterface) String() string { return printConv("make", v, v.X) }
+
+func (v *MultiConvert) String() string {
+ from := v.Parent().relPkg()
+
+ var b strings.Builder
+ b.WriteString(printConv("multiconvert", v, v.X))
+ b.WriteString(" [")
+ for i, s := range v.from {
+ for j, d := range v.to {
+ if i != 0 || j != 0 {
+ b.WriteString(" | ")
+ }
+ fmt.Fprintf(&b, "%s <- %s", relTerm(d, from), relTerm(s, from))
+ }
+ }
+ b.WriteString("]")
+ return b.String()
+}
+
+func (v *MakeClosure) String() string {
+ var b bytes.Buffer
+ fmt.Fprintf(&b, "make closure %s", relName(v.Fn, v))
+ if v.Bindings != nil {
+ b.WriteString(" [")
+ for i, c := range v.Bindings {
+ if i > 0 {
+ b.WriteString(", ")
+ }
+ b.WriteString(relName(c, v))
+ }
+ b.WriteString("]")
+ }
+ return b.String()
+}
+
+func (v *MakeSlice) String() string {
+ from := v.Parent().relPkg()
+ return fmt.Sprintf("make %s %s %s",
+ relType(v.Type(), from),
+ relName(v.Len, v),
+ relName(v.Cap, v))
+}
+
+func (v *Slice) String() string {
+ var b bytes.Buffer
+ b.WriteString("slice ")
+ b.WriteString(relName(v.X, v))
+ b.WriteString("[")
+ if v.Low != nil {
+ b.WriteString(relName(v.Low, v))
+ }
+ b.WriteString(":")
+ if v.High != nil {
+ b.WriteString(relName(v.High, v))
+ }
+ if v.Max != nil {
+ b.WriteString(":")
+ b.WriteString(relName(v.Max, v))
+ }
+ b.WriteString("]")
+ return b.String()
+}
+
+func (v *MakeMap) String() string {
+ res := ""
+ if v.Reserve != nil {
+ res = relName(v.Reserve, v)
+ }
+ from := v.Parent().relPkg()
+ return fmt.Sprintf("make %s %s", relType(v.Type(), from), res)
+}
+
+func (v *MakeChan) String() string {
+ from := v.Parent().relPkg()
+ return fmt.Sprintf("make %s %s", relType(v.Type(), from), relName(v.Size, v))
+}
+
+func (v *FieldAddr) String() string {
+ // Be robust against a bad index.
+ name := "?"
+ if fld := fieldOf(typeparams.MustDeref(v.X.Type()), v.Field); fld != nil {
+ name = fld.Name()
+ }
+ return fmt.Sprintf("&%s.%s [#%d]", relName(v.X, v), name, v.Field)
+}
+
+func (v *Field) String() string {
+ // Be robust against a bad index.
+ name := "?"
+ if fld := fieldOf(v.X.Type(), v.Field); fld != nil {
+ name = fld.Name()
+ }
+ return fmt.Sprintf("%s.%s [#%d]", relName(v.X, v), name, v.Field)
+}
+
+func (v *IndexAddr) String() string {
+ return fmt.Sprintf("&%s[%s]", relName(v.X, v), relName(v.Index, v))
+}
+
+func (v *Index) String() string {
+ return fmt.Sprintf("%s[%s]", relName(v.X, v), relName(v.Index, v))
+}
+
+func (v *Lookup) String() string {
+ return fmt.Sprintf("%s[%s]%s", relName(v.X, v), relName(v.Index, v), commaOk(v.CommaOk))
+}
+
+func (v *Range) String() string {
+ return "range " + relName(v.X, v)
+}
+
+func (v *Next) String() string {
+ return "next " + relName(v.Iter, v)
+}
+
+func (v *TypeAssert) String() string {
+ from := v.Parent().relPkg()
+ return fmt.Sprintf("typeassert%s %s.(%s)", commaOk(v.CommaOk), relName(v.X, v), relType(v.AssertedType, from))
+}
+
+func (v *Extract) String() string {
+ return fmt.Sprintf("extract %s #%d", relName(v.Tuple, v), v.Index)
+}
+
+func (s *Jump) String() string {
+ // Be robust against malformed CFG.
+ block := -1
+ if s.block != nil && len(s.block.Succs) == 1 {
+ block = s.block.Succs[0].Index
+ }
+ return fmt.Sprintf("jump %d", block)
+}
+
+func (s *If) String() string {
+ // Be robust against malformed CFG.
+ tblock, fblock := -1, -1
+ if s.block != nil && len(s.block.Succs) == 2 {
+ tblock = s.block.Succs[0].Index
+ fblock = s.block.Succs[1].Index
+ }
+ return fmt.Sprintf("if %s goto %d else %d", relName(s.Cond, s), tblock, fblock)
+}
+
+func (s *Go) String() string {
+ return printCall(&s.Call, "go ", s)
+}
+
+func (s *Panic) String() string {
+ return "panic " + relName(s.X, s)
+}
+
+func (s *Return) String() string {
+ var b bytes.Buffer
+ b.WriteString("return")
+ for i, r := range s.Results {
+ if i == 0 {
+ b.WriteString(" ")
+ } else {
+ b.WriteString(", ")
+ }
+ b.WriteString(relName(r, s))
+ }
+ return b.String()
+}
+
+func (*RunDefers) String() string {
+ return "rundefers"
+}
+
+func (s *Send) String() string {
+ return fmt.Sprintf("send %s <- %s", relName(s.Chan, s), relName(s.X, s))
+}
+
+func (s *Defer) String() string {
+ prefix := "defer "
+ if s.DeferStack != nil {
+ prefix += "[" + relName(s.DeferStack, s) + "] "
+ }
+ c := printCall(&s.Call, prefix, s)
+ return c
+}
+
+func (s *Select) String() string {
+ var b bytes.Buffer
+ for i, st := range s.States {
+ if i > 0 {
+ b.WriteString(", ")
+ }
+ if st.Dir == types.RecvOnly {
+ b.WriteString("<-")
+ b.WriteString(relName(st.Chan, s))
+ } else {
+ b.WriteString(relName(st.Chan, s))
+ b.WriteString("<-")
+ b.WriteString(relName(st.Send, s))
+ }
+ }
+ non := ""
+ if !s.Blocking {
+ non = "non"
+ }
+ return fmt.Sprintf("select %sblocking [%s]", non, b.String())
+}
+
+func (s *Store) String() string {
+ return fmt.Sprintf("*%s = %s", relName(s.Addr, s), relName(s.Val, s))
+}
+
+func (s *MapUpdate) String() string {
+ return fmt.Sprintf("%s[%s] = %s", relName(s.Map, s), relName(s.Key, s), relName(s.Value, s))
+}
+
+func (s *DebugRef) String() string {
+ p := s.Parent().Prog.Fset.Position(s.Pos())
+ var descr interface{}
+ if s.object != nil {
+ descr = s.object // e.g. "var x int"
+ } else {
+ descr = reflect.TypeOf(s.Expr) // e.g. "*ast.CallExpr"
+ }
+ var addr string
+ if s.IsAddr {
+ addr = "address of "
+ }
+ return fmt.Sprintf("; %s%s @ %d:%d is %s", addr, descr, p.Line, p.Column, s.X.Name())
+}
+
+func (p *Package) String() string {
+ return "package " + p.Pkg.Path()
+}
+
+var _ io.WriterTo = (*Package)(nil) // *Package implements io.Writer
+
+func (p *Package) WriteTo(w io.Writer) (int64, error) {
+ var buf bytes.Buffer
+ WritePackage(&buf, p)
+ n, err := w.Write(buf.Bytes())
+ return int64(n), err
+}
+
+// WritePackage writes to buf a human-readable summary of p.
+func WritePackage(buf *bytes.Buffer, p *Package) {
+ fmt.Fprintf(buf, "%s:\n", p)
+
+ var names []string
+ maxname := 0
+ for name := range p.Members {
+ if l := len(name); l > maxname {
+ maxname = l
+ }
+ names = append(names, name)
+ }
+
+ from := p.Pkg
+ sort.Strings(names)
+ for _, name := range names {
+ switch mem := p.Members[name].(type) {
+ case *NamedConst:
+ fmt.Fprintf(buf, " const %-*s %s = %s\n",
+ maxname, name, mem.Name(), mem.Value.RelString(from))
+
+ case *Function:
+ fmt.Fprintf(buf, " func %-*s %s\n",
+ maxname, name, relType(mem.Type(), from))
+
+ case *Type:
+ fmt.Fprintf(buf, " type %-*s %s\n",
+ maxname, name, relType(mem.Type().Underlying(), from))
+ for _, meth := range typeutil.IntuitiveMethodSet(mem.Type(), &p.Prog.MethodSets) {
+ fmt.Fprintf(buf, " %s\n", types.SelectionString(meth, types.RelativeTo(from)))
+ }
+
+ case *Global:
+ fmt.Fprintf(buf, " var %-*s %s\n",
+ maxname, name, relType(typeparams.MustDeref(mem.Type()), from))
+ }
+ }
+
+ fmt.Fprintf(buf, "\n")
+}
+
+func commaOk(x bool) string {
+ if x {
+ return ",ok"
+ }
+ return ""
+}
diff --git a/vendor/golang.org/x/tools/go/ssa/sanity.go b/vendor/golang.org/x/tools/go/ssa/sanity.go
new file mode 100644
index 0000000..285cba0
--- /dev/null
+++ b/vendor/golang.org/x/tools/go/ssa/sanity.go
@@ -0,0 +1,560 @@
+// Copyright 2013 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package ssa
+
+// An optional pass for sanity-checking invariants of the SSA representation.
+// Currently it checks CFG invariants but little at the instruction level.
+
+import (
+ "bytes"
+ "fmt"
+ "go/ast"
+ "go/types"
+ "io"
+ "os"
+ "strings"
+)
+
+type sanity struct {
+ reporter io.Writer
+ fn *Function
+ block *BasicBlock
+ instrs map[Instruction]unit
+ insane bool
+}
+
+// sanityCheck performs integrity checking of the SSA representation
+// of the function fn and returns true if it was valid. Diagnostics
+// are written to reporter if non-nil, os.Stderr otherwise. Some
+// diagnostics are only warnings and do not imply a negative result.
+//
+// Sanity-checking is intended to facilitate the debugging of code
+// transformation passes.
+func sanityCheck(fn *Function, reporter io.Writer) bool {
+ if reporter == nil {
+ reporter = os.Stderr
+ }
+ return (&sanity{reporter: reporter}).checkFunction(fn)
+}
+
+// mustSanityCheck is like sanityCheck but panics instead of returning
+// a negative result.
+func mustSanityCheck(fn *Function, reporter io.Writer) {
+ if !sanityCheck(fn, reporter) {
+ fn.WriteTo(os.Stderr)
+ panic("SanityCheck failed")
+ }
+}
+
+func (s *sanity) diagnostic(prefix, format string, args ...interface{}) {
+ fmt.Fprintf(s.reporter, "%s: function %s", prefix, s.fn)
+ if s.block != nil {
+ fmt.Fprintf(s.reporter, ", block %s", s.block)
+ }
+ io.WriteString(s.reporter, ": ")
+ fmt.Fprintf(s.reporter, format, args...)
+ io.WriteString(s.reporter, "\n")
+}
+
+func (s *sanity) errorf(format string, args ...interface{}) {
+ s.insane = true
+ s.diagnostic("Error", format, args...)
+}
+
+func (s *sanity) warnf(format string, args ...interface{}) {
+ s.diagnostic("Warning", format, args...)
+}
+
+// findDuplicate returns an arbitrary basic block that appeared more
+// than once in blocks, or nil if all were unique.
+func findDuplicate(blocks []*BasicBlock) *BasicBlock {
+ if len(blocks) < 2 {
+ return nil
+ }
+ if blocks[0] == blocks[1] {
+ return blocks[0]
+ }
+ // Slow path:
+ m := make(map[*BasicBlock]bool)
+ for _, b := range blocks {
+ if m[b] {
+ return b
+ }
+ m[b] = true
+ }
+ return nil
+}
+
+func (s *sanity) checkInstr(idx int, instr Instruction) {
+ switch instr := instr.(type) {
+ case *If, *Jump, *Return, *Panic:
+ s.errorf("control flow instruction not at end of block")
+ case *Phi:
+ if idx == 0 {
+ // It suffices to apply this check to just the first phi node.
+ if dup := findDuplicate(s.block.Preds); dup != nil {
+ s.errorf("phi node in block with duplicate predecessor %s", dup)
+ }
+ } else {
+ prev := s.block.Instrs[idx-1]
+ if _, ok := prev.(*Phi); !ok {
+ s.errorf("Phi instruction follows a non-Phi: %T", prev)
+ }
+ }
+ if ne, np := len(instr.Edges), len(s.block.Preds); ne != np {
+ s.errorf("phi node has %d edges but %d predecessors", ne, np)
+
+ } else {
+ for i, e := range instr.Edges {
+ if e == nil {
+ s.errorf("phi node '%s' has no value for edge #%d from %s", instr.Comment, i, s.block.Preds[i])
+ } else if !types.Identical(instr.typ, e.Type()) {
+ s.errorf("phi node '%s' has a different type (%s) for edge #%d from %s (%s)",
+ instr.Comment, instr.Type(), i, s.block.Preds[i], e.Type())
+ }
+ }
+ }
+
+ case *Alloc:
+ if !instr.Heap {
+ found := false
+ for _, l := range s.fn.Locals {
+ if l == instr {
+ found = true
+ break
+ }
+ }
+ if !found {
+ s.errorf("local alloc %s = %s does not appear in Function.Locals", instr.Name(), instr)
+ }
+ }
+
+ case *BinOp:
+ case *Call:
+ if common := instr.Call; common.IsInvoke() {
+ if !types.IsInterface(common.Value.Type()) {
+ s.errorf("invoke on %s (%s) which is not an interface type (or type param)", common.Value, common.Value.Type())
+ }
+ }
+ case *ChangeInterface:
+ case *ChangeType:
+ case *SliceToArrayPointer:
+ case *Convert:
+ if from := instr.X.Type(); !isBasicConvTypes(typeSetOf(from)) {
+ if to := instr.Type(); !isBasicConvTypes(typeSetOf(to)) {
+ s.errorf("convert %s -> %s: at least one type must be basic (or all basic, []byte, or []rune)", from, to)
+ }
+ }
+ case *MultiConvert:
+ case *Defer:
+ case *Extract:
+ case *Field:
+ case *FieldAddr:
+ case *Go:
+ case *Index:
+ case *IndexAddr:
+ case *Lookup:
+ case *MakeChan:
+ case *MakeClosure:
+ numFree := len(instr.Fn.(*Function).FreeVars)
+ numBind := len(instr.Bindings)
+ if numFree != numBind {
+ s.errorf("MakeClosure has %d Bindings for function %s with %d free vars",
+ numBind, instr.Fn, numFree)
+
+ }
+ if recv := instr.Type().(*types.Signature).Recv(); recv != nil {
+ s.errorf("MakeClosure's type includes receiver %s", recv.Type())
+ }
+
+ case *MakeInterface:
+ case *MakeMap:
+ case *MakeSlice:
+ case *MapUpdate:
+ case *Next:
+ case *Range:
+ case *RunDefers:
+ case *Select:
+ case *Send:
+ case *Slice:
+ case *Store:
+ case *TypeAssert:
+ case *UnOp:
+ case *DebugRef:
+ // TODO(adonovan): implement checks.
+ default:
+ panic(fmt.Sprintf("Unknown instruction type: %T", instr))
+ }
+
+ if call, ok := instr.(CallInstruction); ok {
+ if call.Common().Signature() == nil {
+ s.errorf("nil signature: %s", call)
+ }
+ }
+
+ // Check that value-defining instructions have valid types
+ // and a valid referrer list.
+ if v, ok := instr.(Value); ok {
+ t := v.Type()
+ if t == nil {
+ s.errorf("no type: %s = %s", v.Name(), v)
+ } else if t == tRangeIter || t == tDeferStack {
+ // not a proper type; ignore.
+ } else if b, ok := t.Underlying().(*types.Basic); ok && b.Info()&types.IsUntyped != 0 {
+ s.errorf("instruction has 'untyped' result: %s = %s : %s", v.Name(), v, t)
+ }
+ s.checkReferrerList(v)
+ }
+
+ // Untyped constants are legal as instruction Operands(),
+ // for example:
+ // _ = "foo"[0]
+ // or:
+ // if wordsize==64 {...}
+
+ // All other non-Instruction Values can be found via their
+ // enclosing Function or Package.
+}
+
+func (s *sanity) checkFinalInstr(instr Instruction) {
+ switch instr := instr.(type) {
+ case *If:
+ if nsuccs := len(s.block.Succs); nsuccs != 2 {
+ s.errorf("If-terminated block has %d successors; expected 2", nsuccs)
+ return
+ }
+ if s.block.Succs[0] == s.block.Succs[1] {
+ s.errorf("If-instruction has same True, False target blocks: %s", s.block.Succs[0])
+ return
+ }
+
+ case *Jump:
+ if nsuccs := len(s.block.Succs); nsuccs != 1 {
+ s.errorf("Jump-terminated block has %d successors; expected 1", nsuccs)
+ return
+ }
+
+ case *Return:
+ if nsuccs := len(s.block.Succs); nsuccs != 0 {
+ s.errorf("Return-terminated block has %d successors; expected none", nsuccs)
+ return
+ }
+ if na, nf := len(instr.Results), s.fn.Signature.Results().Len(); nf != na {
+ s.errorf("%d-ary return in %d-ary function", na, nf)
+ }
+
+ case *Panic:
+ if nsuccs := len(s.block.Succs); nsuccs != 0 {
+ s.errorf("Panic-terminated block has %d successors; expected none", nsuccs)
+ return
+ }
+
+ default:
+ s.errorf("non-control flow instruction at end of block")
+ }
+}
+
+func (s *sanity) checkBlock(b *BasicBlock, index int) {
+ s.block = b
+
+ if b.Index != index {
+ s.errorf("block has incorrect Index %d", b.Index)
+ }
+ if b.parent != s.fn {
+ s.errorf("block has incorrect parent %s", b.parent)
+ }
+
+ // Check all blocks are reachable.
+ // (The entry block is always implicitly reachable,
+ // as is the Recover block, if any.)
+ if (index > 0 && b != b.parent.Recover) && len(b.Preds) == 0 {
+ s.warnf("unreachable block")
+ if b.Instrs == nil {
+ // Since this block is about to be pruned,
+ // tolerating transient problems in it
+ // simplifies other optimizations.
+ return
+ }
+ }
+
+ // Check predecessor and successor relations are dual,
+ // and that all blocks in CFG belong to same function.
+ for _, a := range b.Preds {
+ found := false
+ for _, bb := range a.Succs {
+ if bb == b {
+ found = true
+ break
+ }
+ }
+ if !found {
+ s.errorf("expected successor edge in predecessor %s; found only: %s", a, a.Succs)
+ }
+ if a.parent != s.fn {
+ s.errorf("predecessor %s belongs to different function %s", a, a.parent)
+ }
+ }
+ for _, c := range b.Succs {
+ found := false
+ for _, bb := range c.Preds {
+ if bb == b {
+ found = true
+ break
+ }
+ }
+ if !found {
+ s.errorf("expected predecessor edge in successor %s; found only: %s", c, c.Preds)
+ }
+ if c.parent != s.fn {
+ s.errorf("successor %s belongs to different function %s", c, c.parent)
+ }
+ }
+
+ // Check each instruction is sane.
+ n := len(b.Instrs)
+ if n == 0 {
+ s.errorf("basic block contains no instructions")
+ }
+ var rands [10]*Value // reuse storage
+ for j, instr := range b.Instrs {
+ if instr == nil {
+ s.errorf("nil instruction at index %d", j)
+ continue
+ }
+ if b2 := instr.Block(); b2 == nil {
+ s.errorf("nil Block() for instruction at index %d", j)
+ continue
+ } else if b2 != b {
+ s.errorf("wrong Block() (%s) for instruction at index %d ", b2, j)
+ continue
+ }
+ if j < n-1 {
+ s.checkInstr(j, instr)
+ } else {
+ s.checkFinalInstr(instr)
+ }
+
+ // Check Instruction.Operands.
+ operands:
+ for i, op := range instr.Operands(rands[:0]) {
+ if op == nil {
+ s.errorf("nil operand pointer %d of %s", i, instr)
+ continue
+ }
+ val := *op
+ if val == nil {
+ continue // a nil operand is ok
+ }
+
+ // Check that "untyped" types only appear on constant operands.
+ if _, ok := (*op).(*Const); !ok {
+ if basic, ok := (*op).Type().Underlying().(*types.Basic); ok {
+ if basic.Info()&types.IsUntyped != 0 {
+ s.errorf("operand #%d of %s is untyped: %s", i, instr, basic)
+ }
+ }
+ }
+
+ // Check that Operands that are also Instructions belong to same function.
+ // TODO(adonovan): also check their block dominates block b.
+ if val, ok := val.(Instruction); ok {
+ if val.Block() == nil {
+ s.errorf("operand %d of %s is an instruction (%s) that belongs to no block", i, instr, val)
+ } else if val.Parent() != s.fn {
+ s.errorf("operand %d of %s is an instruction (%s) from function %s", i, instr, val, val.Parent())
+ }
+ }
+
+ // Check that each function-local operand of
+ // instr refers back to instr. (NB: quadratic)
+ switch val := val.(type) {
+ case *Const, *Global, *Builtin:
+ continue // not local
+ case *Function:
+ if val.parent == nil {
+ continue // only anon functions are local
+ }
+ }
+
+ // TODO(adonovan): check val.Parent() != nil <=> val.Referrers() is defined.
+
+ if refs := val.Referrers(); refs != nil {
+ for _, ref := range *refs {
+ if ref == instr {
+ continue operands
+ }
+ }
+ s.errorf("operand %d of %s (%s) does not refer to us", i, instr, val)
+ } else {
+ s.errorf("operand %d of %s (%s) has no referrers", i, instr, val)
+ }
+ }
+ }
+}
+
+func (s *sanity) checkReferrerList(v Value) {
+ refs := v.Referrers()
+ if refs == nil {
+ s.errorf("%s has missing referrer list", v.Name())
+ return
+ }
+ for i, ref := range *refs {
+ if _, ok := s.instrs[ref]; !ok {
+ s.errorf("%s.Referrers()[%d] = %s is not an instruction belonging to this function", v.Name(), i, ref)
+ }
+ }
+}
+
+func (s *sanity) checkFunction(fn *Function) bool {
+ // TODO(adonovan): check Function invariants:
+ // - check params match signature
+ // - check transient fields are nil
+ // - warn if any fn.Locals do not appear among block instructions.
+
+ // TODO(taking): Sanity check origin, typeparams, and typeargs.
+ s.fn = fn
+ if fn.Prog == nil {
+ s.errorf("nil Prog")
+ }
+
+ var buf bytes.Buffer
+ _ = fn.String() // must not crash
+ _ = fn.RelString(fn.relPkg()) // must not crash
+ WriteFunction(&buf, fn) // must not crash
+
+ // All functions have a package, except delegates (which are
+ // shared across packages, or duplicated as weak symbols in a
+ // separate-compilation model), and error.Error.
+ if fn.Pkg == nil {
+ if strings.HasPrefix(fn.Synthetic, "from type information (on demand)") ||
+ strings.HasPrefix(fn.Synthetic, "wrapper ") ||
+ strings.HasPrefix(fn.Synthetic, "bound ") ||
+ strings.HasPrefix(fn.Synthetic, "thunk ") ||
+ strings.HasSuffix(fn.name, "Error") ||
+ strings.HasPrefix(fn.Synthetic, "instance ") ||
+ strings.HasPrefix(fn.Synthetic, "instantiation ") ||
+ (fn.parent != nil && len(fn.typeargs) > 0) /* anon fun in instance */ {
+ // ok
+ } else {
+ s.errorf("nil Pkg")
+ }
+ }
+ if src, syn := fn.Synthetic == "", fn.Syntax() != nil; src != syn {
+ if len(fn.typeargs) > 0 && fn.Prog.mode&InstantiateGenerics != 0 {
+ // ok (instantiation with InstantiateGenerics on)
+ } else if fn.topLevelOrigin != nil && len(fn.typeargs) > 0 {
+ // ok (we always have the syntax set for instantiation)
+ } else if _, rng := fn.syntax.(*ast.RangeStmt); rng && fn.Synthetic == "range-over-func yield" {
+ // ok (range-func-yields are both synthetic and keep syntax)
+ } else {
+ s.errorf("got fromSource=%t, hasSyntax=%t; want same values", src, syn)
+ }
+ }
+ for i, l := range fn.Locals {
+ if l.Parent() != fn {
+ s.errorf("Local %s at index %d has wrong parent", l.Name(), i)
+ }
+ if l.Heap {
+ s.errorf("Local %s at index %d has Heap flag set", l.Name(), i)
+ }
+ }
+ // Build the set of valid referrers.
+ s.instrs = make(map[Instruction]unit)
+ for _, b := range fn.Blocks {
+ for _, instr := range b.Instrs {
+ s.instrs[instr] = unit{}
+ }
+ }
+ for i, p := range fn.Params {
+ if p.Parent() != fn {
+ s.errorf("Param %s at index %d has wrong parent", p.Name(), i)
+ }
+ // Check common suffix of Signature and Params match type.
+ if sig := fn.Signature; sig != nil {
+ j := i - len(fn.Params) + sig.Params().Len() // index within sig.Params
+ if j < 0 {
+ continue
+ }
+ if !types.Identical(p.Type(), sig.Params().At(j).Type()) {
+ s.errorf("Param %s at index %d has wrong type (%s, versus %s in Signature)", p.Name(), i, p.Type(), sig.Params().At(j).Type())
+
+ }
+ }
+ s.checkReferrerList(p)
+ }
+ for i, fv := range fn.FreeVars {
+ if fv.Parent() != fn {
+ s.errorf("FreeVar %s at index %d has wrong parent", fv.Name(), i)
+ }
+ s.checkReferrerList(fv)
+ }
+
+ if fn.Blocks != nil && len(fn.Blocks) == 0 {
+ // Function _had_ blocks (so it's not external) but
+ // they were "optimized" away, even the entry block.
+ s.errorf("Blocks slice is non-nil but empty")
+ }
+ for i, b := range fn.Blocks {
+ if b == nil {
+ s.warnf("nil *BasicBlock at f.Blocks[%d]", i)
+ continue
+ }
+ s.checkBlock(b, i)
+ }
+ if fn.Recover != nil && fn.Blocks[fn.Recover.Index] != fn.Recover {
+ s.errorf("Recover block is not in Blocks slice")
+ }
+
+ s.block = nil
+ for i, anon := range fn.AnonFuncs {
+ if anon.Parent() != fn {
+ s.errorf("AnonFuncs[%d]=%s but %s.Parent()=%s", i, anon, anon, anon.Parent())
+ }
+ if i != int(anon.anonIdx) {
+ s.errorf("AnonFuncs[%d]=%s but %s.anonIdx=%d", i, anon, anon, anon.anonIdx)
+ }
+ }
+ s.fn = nil
+ return !s.insane
+}
+
+// sanityCheckPackage checks invariants of packages upon creation.
+// It does not require that the package is built.
+// Unlike sanityCheck (for functions), it just panics at the first error.
+func sanityCheckPackage(pkg *Package) {
+ if pkg.Pkg == nil {
+ panic(fmt.Sprintf("Package %s has no Object", pkg))
+ }
+ _ = pkg.String() // must not crash
+
+ for name, mem := range pkg.Members {
+ if name != mem.Name() {
+ panic(fmt.Sprintf("%s: %T.Name() = %s, want %s",
+ pkg.Pkg.Path(), mem, mem.Name(), name))
+ }
+ obj := mem.Object()
+ if obj == nil {
+ // This check is sound because fields
+ // {Global,Function}.object have type
+ // types.Object. (If they were declared as
+ // *types.{Var,Func}, we'd have a non-empty
+ // interface containing a nil pointer.)
+
+ continue // not all members have typechecker objects
+ }
+ if obj.Name() != name {
+ if obj.Name() == "init" && strings.HasPrefix(mem.Name(), "init#") {
+ // Ok. The name of a declared init function varies between
+ // its types.Func ("init") and its ssa.Function ("init#%d").
+ } else {
+ panic(fmt.Sprintf("%s: %T.Object().Name() = %s, want %s",
+ pkg.Pkg.Path(), mem, obj.Name(), name))
+ }
+ }
+ if obj.Pos() != mem.Pos() {
+ panic(fmt.Sprintf("%s Pos=%d obj.Pos=%d", mem, mem.Pos(), obj.Pos()))
+ }
+ }
+}
diff --git a/vendor/golang.org/x/tools/go/ssa/source.go b/vendor/golang.org/x/tools/go/ssa/source.go
new file mode 100644
index 0000000..7b71c88
--- /dev/null
+++ b/vendor/golang.org/x/tools/go/ssa/source.go
@@ -0,0 +1,288 @@
+// Copyright 2013 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package ssa
+
+// This file defines utilities for working with source positions
+// or source-level named entities ("objects").
+
+// TODO(adonovan): test that {Value,Instruction}.Pos() positions match
+// the originating syntax, as specified.
+
+import (
+ "go/ast"
+ "go/token"
+ "go/types"
+)
+
+// EnclosingFunction returns the function that contains the syntax
+// node denoted by path.
+//
+// Syntax associated with package-level variable specifications is
+// enclosed by the package's init() function.
+//
+// Returns nil if not found; reasons might include:
+// - the node is not enclosed by any function.
+// - the node is within an anonymous function (FuncLit) and
+// its SSA function has not been created yet
+// (pkg.Build() has not yet been called).
+func EnclosingFunction(pkg *Package, path []ast.Node) *Function {
+ // Start with package-level function...
+ fn := findEnclosingPackageLevelFunction(pkg, path)
+ if fn == nil {
+ return nil // not in any function
+ }
+
+ // ...then walk down the nested anonymous functions.
+ n := len(path)
+outer:
+ for i := range path {
+ if lit, ok := path[n-1-i].(*ast.FuncLit); ok {
+ for _, anon := range fn.AnonFuncs {
+ if anon.Pos() == lit.Type.Func {
+ fn = anon
+ continue outer
+ }
+ }
+ // SSA function not found:
+ // - package not yet built, or maybe
+ // - builder skipped FuncLit in dead block
+ // (in principle; but currently the Builder
+ // generates even dead FuncLits).
+ return nil
+ }
+ }
+ return fn
+}
+
+// HasEnclosingFunction returns true if the AST node denoted by path
+// is contained within the declaration of some function or
+// package-level variable.
+//
+// Unlike EnclosingFunction, the behaviour of this function does not
+// depend on whether SSA code for pkg has been built, so it can be
+// used to quickly reject check inputs that will cause
+// EnclosingFunction to fail, prior to SSA building.
+func HasEnclosingFunction(pkg *Package, path []ast.Node) bool {
+ return findEnclosingPackageLevelFunction(pkg, path) != nil
+}
+
+// findEnclosingPackageLevelFunction returns the Function
+// corresponding to the package-level function enclosing path.
+func findEnclosingPackageLevelFunction(pkg *Package, path []ast.Node) *Function {
+ if n := len(path); n >= 2 { // [... {Gen,Func}Decl File]
+ switch decl := path[n-2].(type) {
+ case *ast.GenDecl:
+ if decl.Tok == token.VAR && n >= 3 {
+ // Package-level 'var' initializer.
+ return pkg.init
+ }
+
+ case *ast.FuncDecl:
+ if decl.Recv == nil && decl.Name.Name == "init" {
+ // Explicit init() function.
+ for _, b := range pkg.init.Blocks {
+ for _, instr := range b.Instrs {
+ if instr, ok := instr.(*Call); ok {
+ if callee, ok := instr.Call.Value.(*Function); ok && callee.Pkg == pkg && callee.Pos() == decl.Name.NamePos {
+ return callee
+ }
+ }
+ }
+ }
+ // Hack: return non-nil when SSA is not yet
+ // built so that HasEnclosingFunction works.
+ return pkg.init
+ }
+ // Declared function/method.
+ return findNamedFunc(pkg, decl.Name.NamePos)
+ }
+ }
+ return nil // not in any function
+}
+
+// findNamedFunc returns the named function whose FuncDecl.Ident is at
+// position pos.
+func findNamedFunc(pkg *Package, pos token.Pos) *Function {
+ // Look at all package members and method sets of named types.
+ // Not very efficient.
+ for _, mem := range pkg.Members {
+ switch mem := mem.(type) {
+ case *Function:
+ if mem.Pos() == pos {
+ return mem
+ }
+ case *Type:
+ mset := pkg.Prog.MethodSets.MethodSet(types.NewPointer(mem.Type()))
+ for i, n := 0, mset.Len(); i < n; i++ {
+ // Don't call Program.Method: avoid creating wrappers.
+ obj := mset.At(i).Obj().(*types.Func)
+ if obj.Pos() == pos {
+ // obj from MethodSet may not be the origin type.
+ m := obj.Origin()
+ return pkg.objects[m].(*Function)
+ }
+ }
+ }
+ }
+ return nil
+}
+
+// ValueForExpr returns the SSA Value that corresponds to non-constant
+// expression e.
+//
+// It returns nil if no value was found, e.g.
+// - the expression is not lexically contained within f;
+// - f was not built with debug information; or
+// - e is a constant expression. (For efficiency, no debug
+// information is stored for constants. Use
+// go/types.Info.Types[e].Value instead.)
+// - e is a reference to nil or a built-in function.
+// - the value was optimised away.
+//
+// If e is an addressable expression used in an lvalue context,
+// value is the address denoted by e, and isAddr is true.
+//
+// The types of e (or &e, if isAddr) and the result are equal
+// (modulo "untyped" bools resulting from comparisons).
+//
+// (Tip: to find the ssa.Value given a source position, use
+// astutil.PathEnclosingInterval to locate the ast.Node, then
+// EnclosingFunction to locate the Function, then ValueForExpr to find
+// the ssa.Value.)
+func (f *Function) ValueForExpr(e ast.Expr) (value Value, isAddr bool) {
+ if f.debugInfo() { // (opt)
+ e = unparen(e)
+ for _, b := range f.Blocks {
+ for _, instr := range b.Instrs {
+ if ref, ok := instr.(*DebugRef); ok {
+ if ref.Expr == e {
+ return ref.X, ref.IsAddr
+ }
+ }
+ }
+ }
+ }
+ return
+}
+
+// --- Lookup functions for source-level named entities (types.Objects) ---
+
+// Package returns the SSA Package corresponding to the specified
+// type-checker package. It returns nil if no such Package was
+// created by a prior call to prog.CreatePackage.
+func (prog *Program) Package(pkg *types.Package) *Package {
+ return prog.packages[pkg]
+}
+
+// packageLevelMember returns the package-level member corresponding
+// to the specified symbol, which may be a package-level const
+// (*NamedConst), var (*Global) or func/method (*Function) of some
+// package in prog.
+//
+// It returns nil if the object belongs to a package that has not been
+// created by prog.CreatePackage.
+func (prog *Program) packageLevelMember(obj types.Object) Member {
+ if pkg, ok := prog.packages[obj.Pkg()]; ok {
+ return pkg.objects[obj]
+ }
+ return nil
+}
+
+// FuncValue returns the SSA function or (non-interface) method
+// denoted by the specified func symbol. It returns nil id the symbol
+// denotes an interface method, or belongs to a package that was not
+// created by prog.CreatePackage.
+func (prog *Program) FuncValue(obj *types.Func) *Function {
+ fn, _ := prog.packageLevelMember(obj).(*Function)
+ return fn
+}
+
+// ConstValue returns the SSA constant denoted by the specified const symbol.
+func (prog *Program) ConstValue(obj *types.Const) *Const {
+ // TODO(adonovan): opt: share (don't reallocate)
+ // Consts for const objects and constant ast.Exprs.
+
+ // Universal constant? {true,false,nil}
+ if obj.Parent() == types.Universe {
+ return NewConst(obj.Val(), obj.Type())
+ }
+ // Package-level named constant?
+ if v := prog.packageLevelMember(obj); v != nil {
+ return v.(*NamedConst).Value
+ }
+ return NewConst(obj.Val(), obj.Type())
+}
+
+// VarValue returns the SSA Value that corresponds to a specific
+// identifier denoting the specified var symbol.
+//
+// VarValue returns nil if a local variable was not found, perhaps
+// because its package was not built, the debug information was not
+// requested during SSA construction, or the value was optimized away.
+//
+// ref is the path to an ast.Ident (e.g. from PathEnclosingInterval),
+// and that ident must resolve to obj.
+//
+// pkg is the package enclosing the reference. (A reference to a var
+// always occurs within a function, so we need to know where to find it.)
+//
+// If the identifier is a field selector and its base expression is
+// non-addressable, then VarValue returns the value of that field.
+// For example:
+//
+// func f() struct {x int}
+// f().x // VarValue(x) returns a *Field instruction of type int
+//
+// All other identifiers denote addressable locations (variables).
+// For them, VarValue may return either the variable's address or its
+// value, even when the expression is evaluated only for its value; the
+// situation is reported by isAddr, the second component of the result.
+//
+// If !isAddr, the returned value is the one associated with the
+// specific identifier. For example,
+//
+// var x int // VarValue(x) returns Const 0 here
+// x = 1 // VarValue(x) returns Const 1 here
+//
+// It is not specified whether the value or the address is returned in
+// any particular case, as it may depend upon optimizations performed
+// during SSA code generation, such as registerization, constant
+// folding, avoidance of materialization of subexpressions, etc.
+func (prog *Program) VarValue(obj *types.Var, pkg *Package, ref []ast.Node) (value Value, isAddr bool) {
+ // All references to a var are local to some function, possibly init.
+ fn := EnclosingFunction(pkg, ref)
+ if fn == nil {
+ return // e.g. def of struct field; SSA not built?
+ }
+
+ id := ref[0].(*ast.Ident)
+
+ // Defining ident of a parameter?
+ if id.Pos() == obj.Pos() {
+ for _, param := range fn.Params {
+ if param.Object() == obj {
+ return param, false
+ }
+ }
+ }
+
+ // Other ident?
+ for _, b := range fn.Blocks {
+ for _, instr := range b.Instrs {
+ if dr, ok := instr.(*DebugRef); ok {
+ if dr.Pos() == id.Pos() {
+ return dr.X, dr.IsAddr
+ }
+ }
+ }
+ }
+
+ // Defining ident of package-level var?
+ if v := prog.packageLevelMember(obj); v != nil {
+ return v.(*Global), true
+ }
+
+ return // e.g. debug info not requested, or var optimized away
+}
diff --git a/vendor/golang.org/x/tools/go/ssa/ssa.go b/vendor/golang.org/x/tools/go/ssa/ssa.go
new file mode 100644
index 0000000..1231afd
--- /dev/null
+++ b/vendor/golang.org/x/tools/go/ssa/ssa.go
@@ -0,0 +1,1871 @@
+// Copyright 2013 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package ssa
+
+// This package defines a high-level intermediate representation for
+// Go programs using static single-assignment (SSA) form.
+
+import (
+ "fmt"
+ "go/ast"
+ "go/constant"
+ "go/token"
+ "go/types"
+ "sync"
+
+ "golang.org/x/tools/go/types/typeutil"
+ "golang.org/x/tools/internal/typeparams"
+)
+
+// A Program is a partial or complete Go program converted to SSA form.
+type Program struct {
+ Fset *token.FileSet // position information for the files of this Program
+ imported map[string]*Package // all importable Packages, keyed by import path
+ packages map[*types.Package]*Package // all created Packages
+ mode BuilderMode // set of mode bits for SSA construction
+ MethodSets typeutil.MethodSetCache // cache of type-checker's method-sets
+
+ canon *canonizer // type canonicalization map
+ ctxt *types.Context // cache for type checking instantiations
+
+ methodsMu sync.Mutex
+ methodSets typeutil.Map // maps type to its concrete *methodSet
+
+ // memoization of whether a type refers to type parameters
+ hasParamsMu sync.Mutex
+ hasParams typeparams.Free
+
+ runtimeTypesMu sync.Mutex
+ runtimeTypes typeutil.Map // set of runtime types (from MakeInterface)
+
+ // objectMethods is a memoization of objectMethod
+ // to avoid creation of duplicate methods from type information.
+ objectMethodsMu sync.Mutex
+ objectMethods map[*types.Func]*Function
+}
+
+// A Package is a single analyzed Go package containing Members for
+// all package-level functions, variables, constants and types it
+// declares. These may be accessed directly via Members, or via the
+// type-specific accessor methods Func, Type, Var and Const.
+//
+// Members also contains entries for "init" (the synthetic package
+// initializer) and "init#%d", the nth declared init function,
+// and unspecified other things too.
+type Package struct {
+ Prog *Program // the owning program
+ Pkg *types.Package // the corresponding go/types.Package
+ Members map[string]Member // all package members keyed by name (incl. init and init#%d)
+ objects map[types.Object]Member // mapping of package objects to members (incl. methods). Contains *NamedConst, *Global, *Function (values but not types)
+ init *Function // Func("init"); the package's init function
+ debug bool // include full debug info in this package
+ syntax bool // package was loaded from syntax
+
+ // The following fields are set transiently, then cleared
+ // after building.
+ buildOnce sync.Once // ensures package building occurs once
+ ninit int32 // number of init functions
+ info *types.Info // package type information
+ files []*ast.File // package ASTs
+ created []*Function // members created as a result of building this package (includes declared functions, wrappers)
+ initVersion map[ast.Expr]string // goversion to use for each global var init expr
+}
+
+// A Member is a member of a Go package, implemented by *NamedConst,
+// *Global, *Function, or *Type; they are created by package-level
+// const, var, func and type declarations respectively.
+type Member interface {
+ Name() string // declared name of the package member
+ String() string // package-qualified name of the package member
+ RelString(*types.Package) string // like String, but relative refs are unqualified
+ Object() types.Object // typechecker's object for this member, if any
+ Pos() token.Pos // position of member's declaration, if known
+ Type() types.Type // type of the package member
+ Token() token.Token // token.{VAR,FUNC,CONST,TYPE}
+ Package() *Package // the containing package
+}
+
+// A Type is a Member of a Package representing a package-level named type.
+type Type struct {
+ object *types.TypeName
+ pkg *Package
+}
+
+// A NamedConst is a Member of a Package representing a package-level
+// named constant.
+//
+// Pos() returns the position of the declaring ast.ValueSpec.Names[*]
+// identifier.
+//
+// NB: a NamedConst is not a Value; it contains a constant Value, which
+// it augments with the name and position of its 'const' declaration.
+type NamedConst struct {
+ object *types.Const
+ Value *Const
+ pkg *Package
+}
+
+// A Value is an SSA value that can be referenced by an instruction.
+type Value interface {
+ // Name returns the name of this value, and determines how
+ // this Value appears when used as an operand of an
+ // Instruction.
+ //
+ // This is the same as the source name for Parameters,
+ // Builtins, Functions, FreeVars, Globals.
+ // For constants, it is a representation of the constant's value
+ // and type. For all other Values this is the name of the
+ // virtual register defined by the instruction.
+ //
+ // The name of an SSA Value is not semantically significant,
+ // and may not even be unique within a function.
+ Name() string
+
+ // If this value is an Instruction, String returns its
+ // disassembled form; otherwise it returns unspecified
+ // human-readable information about the Value, such as its
+ // kind, name and type.
+ String() string
+
+ // Type returns the type of this value. Many instructions
+ // (e.g. IndexAddr) change their behaviour depending on the
+ // types of their operands.
+ Type() types.Type
+
+ // Parent returns the function to which this Value belongs.
+ // It returns nil for named Functions, Builtin, Const and Global.
+ Parent() *Function
+
+ // Referrers returns the list of instructions that have this
+ // value as one of their operands; it may contain duplicates
+ // if an instruction has a repeated operand.
+ //
+ // Referrers actually returns a pointer through which the
+ // caller may perform mutations to the object's state.
+ //
+ // Referrers is currently only defined if Parent()!=nil,
+ // i.e. for the function-local values FreeVar, Parameter,
+ // Functions (iff anonymous) and all value-defining instructions.
+ // It returns nil for named Functions, Builtin, Const and Global.
+ //
+ // Instruction.Operands contains the inverse of this relation.
+ Referrers() *[]Instruction
+
+ // Pos returns the location of the AST token most closely
+ // associated with the operation that gave rise to this value,
+ // or token.NoPos if it was not explicit in the source.
+ //
+ // For each ast.Node type, a particular token is designated as
+ // the closest location for the expression, e.g. the Lparen
+ // for an *ast.CallExpr. This permits a compact but
+ // approximate mapping from Values to source positions for use
+ // in diagnostic messages, for example.
+ //
+ // (Do not use this position to determine which Value
+ // corresponds to an ast.Expr; use Function.ValueForExpr
+ // instead. NB: it requires that the function was built with
+ // debug information.)
+ Pos() token.Pos
+}
+
+// An Instruction is an SSA instruction that computes a new Value or
+// has some effect.
+//
+// An Instruction that defines a value (e.g. BinOp) also implements
+// the Value interface; an Instruction that only has an effect (e.g. Store)
+// does not.
+type Instruction interface {
+ // String returns the disassembled form of this value.
+ //
+ // Examples of Instructions that are Values:
+ // "x + y" (BinOp)
+ // "len([])" (Call)
+ // Note that the name of the Value is not printed.
+ //
+ // Examples of Instructions that are not Values:
+ // "return x" (Return)
+ // "*y = x" (Store)
+ //
+ // (The separation Value.Name() from Value.String() is useful
+ // for some analyses which distinguish the operation from the
+ // value it defines, e.g., 'y = local int' is both an allocation
+ // of memory 'local int' and a definition of a pointer y.)
+ String() string
+
+ // Parent returns the function to which this instruction
+ // belongs.
+ Parent() *Function
+
+ // Block returns the basic block to which this instruction
+ // belongs.
+ Block() *BasicBlock
+
+ // setBlock sets the basic block to which this instruction belongs.
+ setBlock(*BasicBlock)
+
+ // Operands returns the operands of this instruction: the
+ // set of Values it references.
+ //
+ // Specifically, it appends their addresses to rands, a
+ // user-provided slice, and returns the resulting slice,
+ // permitting avoidance of memory allocation.
+ //
+ // The operands are appended in undefined order, but the order
+ // is consistent for a given Instruction; the addresses are
+ // always non-nil but may point to a nil Value. Clients may
+ // store through the pointers, e.g. to effect a value
+ // renaming.
+ //
+ // Value.Referrers is a subset of the inverse of this
+ // relation. (Referrers are not tracked for all types of
+ // Values.)
+ Operands(rands []*Value) []*Value
+
+ // Pos returns the location of the AST token most closely
+ // associated with the operation that gave rise to this
+ // instruction, or token.NoPos if it was not explicit in the
+ // source.
+ //
+ // For each ast.Node type, a particular token is designated as
+ // the closest location for the expression, e.g. the Go token
+ // for an *ast.GoStmt. This permits a compact but approximate
+ // mapping from Instructions to source positions for use in
+ // diagnostic messages, for example.
+ //
+ // (Do not use this position to determine which Instruction
+ // corresponds to an ast.Expr; see the notes for Value.Pos.
+ // This position may be used to determine which non-Value
+ // Instruction corresponds to some ast.Stmts, but not all: If
+ // and Jump instructions have no Pos(), for example.)
+ Pos() token.Pos
+}
+
+// A Node is a node in the SSA value graph. Every concrete type that
+// implements Node is also either a Value, an Instruction, or both.
+//
+// Node contains the methods common to Value and Instruction, plus the
+// Operands and Referrers methods generalized to return nil for
+// non-Instructions and non-Values, respectively.
+//
+// Node is provided to simplify SSA graph algorithms. Clients should
+// use the more specific and informative Value or Instruction
+// interfaces where appropriate.
+type Node interface {
+ // Common methods:
+ String() string
+ Pos() token.Pos
+ Parent() *Function
+
+ // Partial methods:
+ Operands(rands []*Value) []*Value // nil for non-Instructions
+ Referrers() *[]Instruction // nil for non-Values
+}
+
+// Function represents the parameters, results, and code of a function
+// or method.
+//
+// If Blocks is nil, this indicates an external function for which no
+// Go source code is available. In this case, FreeVars, Locals, and
+// Params are nil too. Clients performing whole-program analysis must
+// handle external functions specially.
+//
+// Blocks contains the function's control-flow graph (CFG).
+// Blocks[0] is the function entry point; block order is not otherwise
+// semantically significant, though it may affect the readability of
+// the disassembly.
+// To iterate over the blocks in dominance order, use DomPreorder().
+//
+// Recover is an optional second entry point to which control resumes
+// after a recovered panic. The Recover block may contain only a return
+// statement, preceded by a load of the function's named return
+// parameters, if any.
+//
+// A nested function (Parent()!=nil) that refers to one or more
+// lexically enclosing local variables ("free variables") has FreeVars.
+// Such functions cannot be called directly but require a
+// value created by MakeClosure which, via its Bindings, supplies
+// values for these parameters.
+//
+// If the function is a method (Signature.Recv() != nil) then the first
+// element of Params is the receiver parameter.
+//
+// A Go package may declare many functions called "init".
+// For each one, Object().Name() returns "init" but Name() returns
+// "init#1", etc, in declaration order.
+//
+// Pos() returns the declaring ast.FuncLit.Type.Func or the position
+// of the ast.FuncDecl.Name, if the function was explicit in the
+// source. Synthetic wrappers, for which Synthetic != "", may share
+// the same position as the function they wrap.
+// Syntax.Pos() always returns the position of the declaring "func" token.
+//
+// When the operand of a range statement is an iterator function,
+// the loop body is transformed into a synthetic anonymous function
+// that is passed as the yield argument in a call to the iterator.
+// In that case, Function.Pos is the position of the "range" token,
+// and Function.Syntax is the ast.RangeStmt.
+//
+// Synthetic functions, for which Synthetic != "", are functions
+// that do not appear in the source AST. These include:
+// - method wrappers,
+// - thunks,
+// - bound functions,
+// - empty functions built from loaded type information,
+// - yield functions created from range-over-func loops,
+// - package init functions, and
+// - instantiations of generic functions.
+//
+// Synthetic wrapper functions may share the same position
+// as the function they wrap.
+//
+// Type() returns the function's Signature.
+//
+// A generic function is a function or method that has uninstantiated type
+// parameters (TypeParams() != nil). Consider a hypothetical generic
+// method, (*Map[K,V]).Get. It may be instantiated with all
+// non-parameterized types as (*Map[string,int]).Get or with
+// parameterized types as (*Map[string,U]).Get, where U is a type parameter.
+// In both instantiations, Origin() refers to the instantiated generic
+// method, (*Map[K,V]).Get, TypeParams() refers to the parameters [K,V] of
+// the generic method. TypeArgs() refers to [string,U] or [string,int],
+// respectively, and is nil in the generic method.
+type Function struct {
+ name string
+ object *types.Func // symbol for declared function (nil for FuncLit or synthetic init)
+ method *selection // info about provenance of synthetic methods; thunk => non-nil
+ Signature *types.Signature
+ pos token.Pos
+
+ // source information
+ Synthetic string // provenance of synthetic function; "" for true source functions
+ syntax ast.Node // *ast.Func{Decl,Lit}, if from syntax (incl. generic instances) or (*ast.RangeStmt if a yield function)
+ info *types.Info // type annotations (iff syntax != nil)
+ goversion string // Go version of syntax (NB: init is special)
+
+ parent *Function // enclosing function if anon; nil if global
+ Pkg *Package // enclosing package; nil for shared funcs (wrappers and error.Error)
+ Prog *Program // enclosing program
+
+ buildshared *task // wait for a shared function to be done building (may be nil if <=1 builder ever needs to wait)
+
+ // These fields are populated only when the function body is built:
+
+ Params []*Parameter // function parameters; for methods, includes receiver
+ FreeVars []*FreeVar // free variables whose values must be supplied by closure
+ Locals []*Alloc // frame-allocated variables of this function
+ Blocks []*BasicBlock // basic blocks of the function; nil => external
+ Recover *BasicBlock // optional; control transfers here after recovered panic
+ AnonFuncs []*Function // anonymous functions (from FuncLit,RangeStmt) directly beneath this one
+ referrers []Instruction // referring instructions (iff Parent() != nil)
+ anonIdx int32 // position of a nested function in parent's AnonFuncs. fn.Parent()!=nil => fn.Parent().AnonFunc[fn.anonIdx] == fn.
+
+ typeparams *types.TypeParamList // type parameters of this function. typeparams.Len() > 0 => generic or instance of generic function
+ typeargs []types.Type // type arguments that instantiated typeparams. len(typeargs) > 0 => instance of generic function
+ topLevelOrigin *Function // the origin function if this is an instance of a source function. nil if Parent()!=nil.
+ generic *generic // instances of this function, if generic
+
+ // The following fields are cleared after building.
+ build buildFunc // algorithm to build function body (nil => built)
+ currentBlock *BasicBlock // where to emit code
+ vars map[*types.Var]Value // addresses of local variables
+ results []*Alloc // result allocations of the current function
+ returnVars []*types.Var // variables for a return statement. Either results or for range-over-func a parent's results
+ targets *targets // linked stack of branch targets
+ lblocks map[*types.Label]*lblock // labelled blocks
+ subst *subster // type parameter substitutions (if non-nil)
+ jump *types.Var // synthetic variable for the yield state (non-nil => range-over-func)
+ deferstack *types.Var // synthetic variable holding enclosing ssa:deferstack()
+ source *Function // nearest enclosing source function
+ exits []*exit // exits of the function that need to be resolved
+ uniq int64 // source of unique ints within the source tree while building
+}
+
+// BasicBlock represents an SSA basic block.
+//
+// The final element of Instrs is always an explicit transfer of
+// control (If, Jump, Return, or Panic).
+//
+// A block may contain no Instructions only if it is unreachable,
+// i.e., Preds is nil. Empty blocks are typically pruned.
+//
+// BasicBlocks and their Preds/Succs relation form a (possibly cyclic)
+// graph independent of the SSA Value graph: the control-flow graph or
+// CFG. It is illegal for multiple edges to exist between the same
+// pair of blocks.
+//
+// Each BasicBlock is also a node in the dominator tree of the CFG.
+// The tree may be navigated using Idom()/Dominees() and queried using
+// Dominates().
+//
+// The order of Preds and Succs is significant (to Phi and If
+// instructions, respectively).
+type BasicBlock struct {
+ Index int // index of this block within Parent().Blocks
+ Comment string // optional label; no semantic significance
+ parent *Function // parent function
+ Instrs []Instruction // instructions in order
+ Preds, Succs []*BasicBlock // predecessors and successors
+ succs2 [2]*BasicBlock // initial space for Succs
+ dom domInfo // dominator tree info
+ gaps int // number of nil Instrs (transient)
+ rundefers int // number of rundefers (transient)
+}
+
+// Pure values ----------------------------------------
+
+// A FreeVar represents a free variable of the function to which it
+// belongs.
+//
+// FreeVars are used to implement anonymous functions, whose free
+// variables are lexically captured in a closure formed by
+// MakeClosure. The value of such a free var is an Alloc or another
+// FreeVar and is considered a potentially escaping heap address, with
+// pointer type.
+//
+// FreeVars are also used to implement bound method closures. Such a
+// free var represents the receiver value and may be of any type that
+// has concrete methods.
+//
+// Pos() returns the position of the value that was captured, which
+// belongs to an enclosing function.
+type FreeVar struct {
+ name string
+ typ types.Type
+ pos token.Pos
+ parent *Function
+ referrers []Instruction
+
+ // Transiently needed during building.
+ outer Value // the Value captured from the enclosing context.
+}
+
+// A Parameter represents an input parameter of a function.
+type Parameter struct {
+ name string
+ object *types.Var // non-nil
+ typ types.Type
+ parent *Function
+ referrers []Instruction
+}
+
+// A Const represents a value known at build time.
+//
+// Consts include true constants of boolean, numeric, and string types, as
+// defined by the Go spec; these are represented by a non-nil Value field.
+//
+// Consts also include the "zero" value of any type, of which the nil values
+// of various pointer-like types are a special case; these are represented
+// by a nil Value field.
+//
+// Pos() returns token.NoPos.
+//
+// Example printed forms:
+//
+// 42:int
+// "hello":untyped string
+// 3+4i:MyComplex
+// nil:*int
+// nil:[]string
+// [3]int{}:[3]int
+// struct{x string}{}:struct{x string}
+// 0:interface{int|int64}
+// nil:interface{bool|int} // no go/constant representation
+type Const struct {
+ typ types.Type
+ Value constant.Value
+}
+
+// A Global is a named Value holding the address of a package-level
+// variable.
+//
+// Pos() returns the position of the ast.ValueSpec.Names[*]
+// identifier.
+type Global struct {
+ name string
+ object types.Object // a *types.Var; may be nil for synthetics e.g. init$guard
+ typ types.Type
+ pos token.Pos
+
+ Pkg *Package
+}
+
+// A Builtin represents a specific use of a built-in function, e.g. len.
+//
+// Builtins are immutable values. Builtins do not have addresses.
+// Builtins can only appear in CallCommon.Value.
+//
+// Name() indicates the function: one of the built-in functions from the
+// Go spec (excluding "make" and "new") or one of these ssa-defined
+// intrinsics:
+//
+// // wrapnilchk returns ptr if non-nil, panics otherwise.
+// // (For use in indirection wrappers.)
+// func ssa:wrapnilchk(ptr *T, recvType, methodName string) *T
+//
+// Object() returns a *types.Builtin for built-ins defined by the spec,
+// nil for others.
+//
+// Type() returns a *types.Signature representing the effective
+// signature of the built-in for this call.
+type Builtin struct {
+ name string
+ sig *types.Signature
+}
+
+// Value-defining instructions ----------------------------------------
+
+// The Alloc instruction reserves space for a variable of the given type,
+// zero-initializes it, and yields its address.
+//
+// Alloc values are always addresses, and have pointer types, so the
+// type of the allocated variable is actually
+// Type().Underlying().(*types.Pointer).Elem().
+//
+// If Heap is false, Alloc zero-initializes the same local variable in
+// the call frame and returns its address; in this case the Alloc must
+// be present in Function.Locals. We call this a "local" alloc.
+//
+// If Heap is true, Alloc allocates a new zero-initialized variable
+// each time the instruction is executed. We call this a "new" alloc.
+//
+// When Alloc is applied to a channel, map or slice type, it returns
+// the address of an uninitialized (nil) reference of that kind; store
+// the result of MakeSlice, MakeMap or MakeChan in that location to
+// instantiate these types.
+//
+// Pos() returns the ast.CompositeLit.Lbrace for a composite literal,
+// or the ast.CallExpr.Rparen for a call to new() or for a call that
+// allocates a varargs slice.
+//
+// Example printed form:
+//
+// t0 = local int
+// t1 = new int
+type Alloc struct {
+ register
+ Comment string
+ Heap bool
+ index int // dense numbering; for lifting
+}
+
+// The Phi instruction represents an SSA φ-node, which combines values
+// that differ across incoming control-flow edges and yields a new
+// value. Within a block, all φ-nodes must appear before all non-φ
+// nodes.
+//
+// Pos() returns the position of the && or || for short-circuit
+// control-flow joins, or that of the *Alloc for φ-nodes inserted
+// during SSA renaming.
+//
+// Example printed form:
+//
+// t2 = phi [0: t0, 1: t1]
+type Phi struct {
+ register
+ Comment string // a hint as to its purpose
+ Edges []Value // Edges[i] is value for Block().Preds[i]
+}
+
+// The Call instruction represents a function or method call.
+//
+// The Call instruction yields the function result if there is exactly
+// one. Otherwise it returns a tuple, the components of which are
+// accessed via Extract.
+//
+// See CallCommon for generic function call documentation.
+//
+// Pos() returns the ast.CallExpr.Lparen, if explicit in the source.
+//
+// Example printed form:
+//
+// t2 = println(t0, t1)
+// t4 = t3()
+// t7 = invoke t5.Println(...t6)
+type Call struct {
+ register
+ Call CallCommon
+}
+
+// The BinOp instruction yields the result of binary operation X Op Y.
+//
+// Pos() returns the ast.BinaryExpr.OpPos, if explicit in the source.
+//
+// Example printed form:
+//
+// t1 = t0 + 1:int
+type BinOp struct {
+ register
+ // One of:
+ // ADD SUB MUL QUO REM + - * / %
+ // AND OR XOR SHL SHR AND_NOT & | ^ << >> &^
+ // EQL NEQ LSS LEQ GTR GEQ == != < <= < >=
+ Op token.Token
+ X, Y Value
+}
+
+// The UnOp instruction yields the result of Op X.
+// ARROW is channel receive.
+// MUL is pointer indirection (load).
+// XOR is bitwise complement.
+// SUB is negation.
+// NOT is logical negation.
+//
+// If CommaOk and Op=ARROW, the result is a 2-tuple of the value above
+// and a boolean indicating the success of the receive. The
+// components of the tuple are accessed using Extract.
+//
+// Pos() returns the ast.UnaryExpr.OpPos, if explicit in the source.
+// For receive operations (ARROW) implicit in ranging over a channel,
+// Pos() returns the ast.RangeStmt.For.
+// For implicit memory loads (STAR), Pos() returns the position of the
+// most closely associated source-level construct; the details are not
+// specified.
+//
+// Example printed form:
+//
+// t0 = *x
+// t2 = <-t1,ok
+type UnOp struct {
+ register
+ Op token.Token // One of: NOT SUB ARROW MUL XOR ! - <- * ^
+ X Value
+ CommaOk bool
+}
+
+// The ChangeType instruction applies to X a value-preserving type
+// change to Type().
+//
+// Type changes are permitted:
+// - between a named type and its underlying type.
+// - between two named types of the same underlying type.
+// - between (possibly named) pointers to identical base types.
+// - from a bidirectional channel to a read- or write-channel,
+// optionally adding/removing a name.
+// - between a type (t) and an instance of the type (tσ), i.e.
+// Type() == σ(X.Type()) (or X.Type()== σ(Type())) where
+// σ is the type substitution of Parent().TypeParams by
+// Parent().TypeArgs.
+//
+// This operation cannot fail dynamically.
+//
+// Type changes may to be to or from a type parameter (or both). All
+// types in the type set of X.Type() have a value-preserving type
+// change to all types in the type set of Type().
+//
+// Pos() returns the ast.CallExpr.Lparen, if the instruction arose
+// from an explicit conversion in the source.
+//
+// Example printed form:
+//
+// t1 = changetype *int <- IntPtr (t0)
+type ChangeType struct {
+ register
+ X Value
+}
+
+// The Convert instruction yields the conversion of value X to type
+// Type(). One or both of those types is basic (but possibly named).
+//
+// A conversion may change the value and representation of its operand.
+// Conversions are permitted:
+// - between real numeric types.
+// - between complex numeric types.
+// - between string and []byte or []rune.
+// - between pointers and unsafe.Pointer.
+// - between unsafe.Pointer and uintptr.
+// - from (Unicode) integer to (UTF-8) string.
+//
+// A conversion may imply a type name change also.
+//
+// Conversions may to be to or from a type parameter. All types in
+// the type set of X.Type() can be converted to all types in the type
+// set of Type().
+//
+// This operation cannot fail dynamically.
+//
+// Conversions of untyped string/number/bool constants to a specific
+// representation are eliminated during SSA construction.
+//
+// Pos() returns the ast.CallExpr.Lparen, if the instruction arose
+// from an explicit conversion in the source.
+//
+// Example printed form:
+//
+// t1 = convert []byte <- string (t0)
+type Convert struct {
+ register
+ X Value
+}
+
+// The MultiConvert instruction yields the conversion of value X to type
+// Type(). Either X.Type() or Type() must be a type parameter. Each
+// type in the type set of X.Type() can be converted to each type in the
+// type set of Type().
+//
+// See the documentation for Convert, ChangeType, and SliceToArrayPointer
+// for the conversions that are permitted. Additionally conversions of
+// slices to arrays are permitted.
+//
+// This operation can fail dynamically (see SliceToArrayPointer).
+//
+// Pos() returns the ast.CallExpr.Lparen, if the instruction arose
+// from an explicit conversion in the source.
+//
+// Example printed form:
+//
+// t1 = multiconvert D <- S (t0) [*[2]rune <- []rune | string <- []rune]
+type MultiConvert struct {
+ register
+ X Value
+ from []*types.Term
+ to []*types.Term
+}
+
+// ChangeInterface constructs a value of one interface type from a
+// value of another interface type known to be assignable to it.
+// This operation cannot fail.
+//
+// Pos() returns the ast.CallExpr.Lparen if the instruction arose from
+// an explicit T(e) conversion; the ast.TypeAssertExpr.Lparen if the
+// instruction arose from an explicit e.(T) operation; or token.NoPos
+// otherwise.
+//
+// Example printed form:
+//
+// t1 = change interface interface{} <- I (t0)
+type ChangeInterface struct {
+ register
+ X Value
+}
+
+// The SliceToArrayPointer instruction yields the conversion of slice X to
+// array pointer.
+//
+// Pos() returns the ast.CallExpr.Lparen, if the instruction arose
+// from an explicit conversion in the source.
+//
+// Conversion may to be to or from a type parameter. All types in
+// the type set of X.Type() must be a slice types that can be converted to
+// all types in the type set of Type() which must all be pointer to array
+// types.
+//
+// This operation can fail dynamically if the length of the slice is less
+// than the length of the array.
+//
+// Example printed form:
+//
+// t1 = slice to array pointer *[4]byte <- []byte (t0)
+type SliceToArrayPointer struct {
+ register
+ X Value
+}
+
+// MakeInterface constructs an instance of an interface type from a
+// value of a concrete type.
+//
+// Use Program.MethodSets.MethodSet(X.Type()) to find the method-set
+// of X, and Program.MethodValue(m) to find the implementation of a method.
+//
+// To construct the zero value of an interface type T, use:
+//
+// NewConst(constant.MakeNil(), T, pos)
+//
+// Pos() returns the ast.CallExpr.Lparen, if the instruction arose
+// from an explicit conversion in the source.
+//
+// Example printed form:
+//
+// t1 = make interface{} <- int (42:int)
+// t2 = make Stringer <- t0
+type MakeInterface struct {
+ register
+ X Value
+}
+
+// The MakeClosure instruction yields a closure value whose code is
+// Fn and whose free variables' values are supplied by Bindings.
+//
+// Type() returns a (possibly named) *types.Signature.
+//
+// Pos() returns the ast.FuncLit.Type.Func for a function literal
+// closure or the ast.SelectorExpr.Sel for a bound method closure.
+//
+// Example printed form:
+//
+// t0 = make closure anon@1.2 [x y z]
+// t1 = make closure bound$(main.I).add [i]
+type MakeClosure struct {
+ register
+ Fn Value // always a *Function
+ Bindings []Value // values for each free variable in Fn.FreeVars
+}
+
+// The MakeMap instruction creates a new hash-table-based map object
+// and yields a value of kind map.
+//
+// Type() returns a (possibly named) *types.Map.
+//
+// Pos() returns the ast.CallExpr.Lparen, if created by make(map), or
+// the ast.CompositeLit.Lbrack if created by a literal.
+//
+// Example printed form:
+//
+// t1 = make map[string]int t0
+// t1 = make StringIntMap t0
+type MakeMap struct {
+ register
+ Reserve Value // initial space reservation; nil => default
+}
+
+// The MakeChan instruction creates a new channel object and yields a
+// value of kind chan.
+//
+// Type() returns a (possibly named) *types.Chan.
+//
+// Pos() returns the ast.CallExpr.Lparen for the make(chan) that
+// created it.
+//
+// Example printed form:
+//
+// t0 = make chan int 0
+// t0 = make IntChan 0
+type MakeChan struct {
+ register
+ Size Value // int; size of buffer; zero => synchronous.
+}
+
+// The MakeSlice instruction yields a slice of length Len backed by a
+// newly allocated array of length Cap.
+//
+// Both Len and Cap must be non-nil Values of integer type.
+//
+// (Alloc(types.Array) followed by Slice will not suffice because
+// Alloc can only create arrays of constant length.)
+//
+// Type() returns a (possibly named) *types.Slice.
+//
+// Pos() returns the ast.CallExpr.Lparen for the make([]T) that
+// created it.
+//
+// Example printed form:
+//
+// t1 = make []string 1:int t0
+// t1 = make StringSlice 1:int t0
+type MakeSlice struct {
+ register
+ Len Value
+ Cap Value
+}
+
+// The Slice instruction yields a slice of an existing string, slice
+// or *array X between optional integer bounds Low and High.
+//
+// Dynamically, this instruction panics if X evaluates to a nil *array
+// pointer.
+//
+// Type() returns string if the type of X was string, otherwise a
+// *types.Slice with the same element type as X.
+//
+// Pos() returns the ast.SliceExpr.Lbrack if created by a x[:] slice
+// operation, the ast.CompositeLit.Lbrace if created by a literal, or
+// NoPos if not explicit in the source (e.g. a variadic argument slice).
+//
+// Example printed form:
+//
+// t1 = slice t0[1:]
+type Slice struct {
+ register
+ X Value // slice, string, or *array
+ Low, High, Max Value // each may be nil
+}
+
+// The FieldAddr instruction yields the address of Field of *struct X.
+//
+// The field is identified by its index within the field list of the
+// struct type of X.
+//
+// Dynamically, this instruction panics if X evaluates to a nil
+// pointer.
+//
+// Type() returns a (possibly named) *types.Pointer.
+//
+// Pos() returns the position of the ast.SelectorExpr.Sel for the
+// field, if explicit in the source. For implicit selections, returns
+// the position of the inducing explicit selection. If produced for a
+// struct literal S{f: e}, it returns the position of the colon; for
+// S{e} it returns the start of expression e.
+//
+// Example printed form:
+//
+// t1 = &t0.name [#1]
+type FieldAddr struct {
+ register
+ X Value // *struct
+ Field int // index into CoreType(CoreType(X.Type()).(*types.Pointer).Elem()).(*types.Struct).Fields
+}
+
+// The Field instruction yields the Field of struct X.
+//
+// The field is identified by its index within the field list of the
+// struct type of X; by using numeric indices we avoid ambiguity of
+// package-local identifiers and permit compact representations.
+//
+// Pos() returns the position of the ast.SelectorExpr.Sel for the
+// field, if explicit in the source. For implicit selections, returns
+// the position of the inducing explicit selection.
+
+// Example printed form:
+//
+// t1 = t0.name [#1]
+type Field struct {
+ register
+ X Value // struct
+ Field int // index into CoreType(X.Type()).(*types.Struct).Fields
+}
+
+// The IndexAddr instruction yields the address of the element at
+// index Index of collection X. Index is an integer expression.
+//
+// The elements of maps and strings are not addressable; use Lookup (map),
+// Index (string), or MapUpdate instead.
+//
+// Dynamically, this instruction panics if X evaluates to a nil *array
+// pointer.
+//
+// Type() returns a (possibly named) *types.Pointer.
+//
+// Pos() returns the ast.IndexExpr.Lbrack for the index operation, if
+// explicit in the source.
+//
+// Example printed form:
+//
+// t2 = &t0[t1]
+type IndexAddr struct {
+ register
+ X Value // *array, slice or type parameter with types array, *array, or slice.
+ Index Value // numeric index
+}
+
+// The Index instruction yields element Index of collection X, an array,
+// string or type parameter containing an array, a string, a pointer to an,
+// array or a slice.
+//
+// Pos() returns the ast.IndexExpr.Lbrack for the index operation, if
+// explicit in the source.
+//
+// Example printed form:
+//
+// t2 = t0[t1]
+type Index struct {
+ register
+ X Value // array, string or type parameter with types array, *array, slice, or string.
+ Index Value // integer index
+}
+
+// The Lookup instruction yields element Index of collection map X.
+// Index is the appropriate key type.
+//
+// If CommaOk, the result is a 2-tuple of the value above and a
+// boolean indicating the result of a map membership test for the key.
+// The components of the tuple are accessed using Extract.
+//
+// Pos() returns the ast.IndexExpr.Lbrack, if explicit in the source.
+//
+// Example printed form:
+//
+// t2 = t0[t1]
+// t5 = t3[t4],ok
+type Lookup struct {
+ register
+ X Value // map
+ Index Value // key-typed index
+ CommaOk bool // return a value,ok pair
+}
+
+// SelectState is a helper for Select.
+// It represents one goal state and its corresponding communication.
+type SelectState struct {
+ Dir types.ChanDir // direction of case (SendOnly or RecvOnly)
+ Chan Value // channel to use (for send or receive)
+ Send Value // value to send (for send)
+ Pos token.Pos // position of token.ARROW
+ DebugNode ast.Node // ast.SendStmt or ast.UnaryExpr(<-) [debug mode]
+}
+
+// The Select instruction tests whether (or blocks until) one
+// of the specified sent or received states is entered.
+//
+// Let n be the number of States for which Dir==RECV and T_i (0<=i<n)
+// be the element type of each such state's Chan.
+// Select returns an n+2-tuple
+//
+// (index int, recvOk bool, r_0 T_0, ... r_n-1 T_n-1)
+//
+// The tuple's components, described below, must be accessed via the
+// Extract instruction.
+//
+// If Blocking, select waits until exactly one state holds, i.e. a
+// channel becomes ready for the designated operation of sending or
+// receiving; select chooses one among the ready states
+// pseudorandomly, performs the send or receive operation, and sets
+// 'index' to the index of the chosen channel.
+//
+// If !Blocking, select doesn't block if no states hold; instead it
+// returns immediately with index equal to -1.
+//
+// If the chosen channel was used for a receive, the r_i component is
+// set to the received value, where i is the index of that state among
+// all n receive states; otherwise r_i has the zero value of type T_i.
+// Note that the receive index i is not the same as the state
+// index index.
+//
+// The second component of the triple, recvOk, is a boolean whose value
+// is true iff the selected operation was a receive and the receive
+// successfully yielded a value.
+//
+// Pos() returns the ast.SelectStmt.Select.
+//
+// Example printed form:
+//
+// t3 = select nonblocking [<-t0, t1<-t2]
+// t4 = select blocking []
+type Select struct {
+ register
+ States []*SelectState
+ Blocking bool
+}
+
+// The Range instruction yields an iterator over the domain and range
+// of X, which must be a string or map.
+//
+// Elements are accessed via Next.
+//
+// Type() returns an opaque and degenerate "rangeIter" type.
+//
+// Pos() returns the ast.RangeStmt.For.
+//
+// Example printed form:
+//
+// t0 = range "hello":string
+type Range struct {
+ register
+ X Value // string or map
+}
+
+// The Next instruction reads and advances the (map or string)
+// iterator Iter and returns a 3-tuple value (ok, k, v). If the
+// iterator is not exhausted, ok is true and k and v are the next
+// elements of the domain and range, respectively. Otherwise ok is
+// false and k and v are undefined.
+//
+// Components of the tuple are accessed using Extract.
+//
+// The IsString field distinguishes iterators over strings from those
+// over maps, as the Type() alone is insufficient: consider
+// map[int]rune.
+//
+// Type() returns a *types.Tuple for the triple (ok, k, v).
+// The types of k and/or v may be types.Invalid.
+//
+// Example printed form:
+//
+// t1 = next t0
+type Next struct {
+ register
+ Iter Value
+ IsString bool // true => string iterator; false => map iterator.
+}
+
+// The TypeAssert instruction tests whether interface value X has type
+// AssertedType.
+//
+// If !CommaOk, on success it returns v, the result of the conversion
+// (defined below); on failure it panics.
+//
+// If CommaOk: on success it returns a pair (v, true) where v is the
+// result of the conversion; on failure it returns (z, false) where z
+// is AssertedType's zero value. The components of the pair must be
+// accessed using the Extract instruction.
+//
+// If Underlying: tests whether interface value X has the underlying
+// type AssertedType.
+//
+// If AssertedType is a concrete type, TypeAssert checks whether the
+// dynamic type in interface X is equal to it, and if so, the result
+// of the conversion is a copy of the value in the interface.
+//
+// If AssertedType is an interface, TypeAssert checks whether the
+// dynamic type of the interface is assignable to it, and if so, the
+// result of the conversion is a copy of the interface value X.
+// If AssertedType is a superinterface of X.Type(), the operation will
+// fail iff the operand is nil. (Contrast with ChangeInterface, which
+// performs no nil-check.)
+//
+// Type() reflects the actual type of the result, possibly a
+// 2-types.Tuple; AssertedType is the asserted type.
+//
+// Depending on the TypeAssert's purpose, Pos may return:
+// - the ast.CallExpr.Lparen of an explicit T(e) conversion;
+// - the ast.TypeAssertExpr.Lparen of an explicit e.(T) operation;
+// - the ast.CaseClause.Case of a case of a type-switch statement;
+// - the Ident(m).NamePos of an interface method value i.m
+// (for which TypeAssert may be used to effect the nil check).
+//
+// Example printed form:
+//
+// t1 = typeassert t0.(int)
+// t3 = typeassert,ok t2.(T)
+type TypeAssert struct {
+ register
+ X Value
+ AssertedType types.Type
+ CommaOk bool
+}
+
+// The Extract instruction yields component Index of Tuple.
+//
+// This is used to access the results of instructions with multiple
+// return values, such as Call, TypeAssert, Next, UnOp(ARROW) and
+// IndexExpr(Map).
+//
+// Example printed form:
+//
+// t1 = extract t0 #1
+type Extract struct {
+ register
+ Tuple Value
+ Index int
+}
+
+// Instructions executed for effect. They do not yield a value. --------------------
+
+// The Jump instruction transfers control to the sole successor of its
+// owning block.
+//
+// A Jump must be the last instruction of its containing BasicBlock.
+//
+// Pos() returns NoPos.
+//
+// Example printed form:
+//
+// jump done
+type Jump struct {
+ anInstruction
+}
+
+// The If instruction transfers control to one of the two successors
+// of its owning block, depending on the boolean Cond: the first if
+// true, the second if false.
+//
+// An If instruction must be the last instruction of its containing
+// BasicBlock.
+//
+// Pos() returns NoPos.
+//
+// Example printed form:
+//
+// if t0 goto done else body
+type If struct {
+ anInstruction
+ Cond Value
+}
+
+// The Return instruction returns values and control back to the calling
+// function.
+//
+// len(Results) is always equal to the number of results in the
+// function's signature.
+//
+// If len(Results) > 1, Return returns a tuple value with the specified
+// components which the caller must access using Extract instructions.
+//
+// There is no instruction to return a ready-made tuple like those
+// returned by a "value,ok"-mode TypeAssert, Lookup or UnOp(ARROW) or
+// a tail-call to a function with multiple result parameters.
+//
+// Return must be the last instruction of its containing BasicBlock.
+// Such a block has no successors.
+//
+// Pos() returns the ast.ReturnStmt.Return, if explicit in the source.
+//
+// Example printed form:
+//
+// return
+// return nil:I, 2:int
+type Return struct {
+ anInstruction
+ Results []Value
+ pos token.Pos
+}
+
+// The RunDefers instruction pops and invokes the entire stack of
+// procedure calls pushed by Defer instructions in this function.
+//
+// It is legal to encounter multiple 'rundefers' instructions in a
+// single control-flow path through a function; this is useful in
+// the combined init() function, for example.
+//
+// Pos() returns NoPos.
+//
+// Example printed form:
+//
+// rundefers
+type RunDefers struct {
+ anInstruction
+}
+
+// The Panic instruction initiates a panic with value X.
+//
+// A Panic instruction must be the last instruction of its containing
+// BasicBlock, which must have no successors.
+//
+// NB: 'go panic(x)' and 'defer panic(x)' do not use this instruction;
+// they are treated as calls to a built-in function.
+//
+// Pos() returns the ast.CallExpr.Lparen if this panic was explicit
+// in the source.
+//
+// Example printed form:
+//
+// panic t0
+type Panic struct {
+ anInstruction
+ X Value // an interface{}
+ pos token.Pos
+}
+
+// The Go instruction creates a new goroutine and calls the specified
+// function within it.
+//
+// See CallCommon for generic function call documentation.
+//
+// Pos() returns the ast.GoStmt.Go.
+//
+// Example printed form:
+//
+// go println(t0, t1)
+// go t3()
+// go invoke t5.Println(...t6)
+type Go struct {
+ anInstruction
+ Call CallCommon
+ pos token.Pos
+}
+
+// The Defer instruction pushes the specified call onto a stack of
+// functions to be called by a RunDefers instruction or by a panic.
+//
+// If DeferStack != nil, it indicates the defer list that the defer is
+// added to. Defer list values come from the Builtin function
+// ssa:deferstack. Calls to ssa:deferstack() produces the defer stack
+// of the current function frame. DeferStack allows for deferring into an
+// alternative function stack than the current function.
+//
+// See CallCommon for generic function call documentation.
+//
+// Pos() returns the ast.DeferStmt.Defer.
+//
+// Example printed form:
+//
+// defer println(t0, t1)
+// defer t3()
+// defer invoke t5.Println(...t6)
+type Defer struct {
+ anInstruction
+ Call CallCommon
+ DeferStack Value // stack of deferred functions (from ssa:deferstack() intrinsic) onto which this function is pushed
+ pos token.Pos
+}
+
+// The Send instruction sends X on channel Chan.
+//
+// Pos() returns the ast.SendStmt.Arrow, if explicit in the source.
+//
+// Example printed form:
+//
+// send t0 <- t1
+type Send struct {
+ anInstruction
+ Chan, X Value
+ pos token.Pos
+}
+
+// The Store instruction stores Val at address Addr.
+// Stores can be of arbitrary types.
+//
+// Pos() returns the position of the source-level construct most closely
+// associated with the memory store operation.
+// Since implicit memory stores are numerous and varied and depend upon
+// implementation choices, the details are not specified.
+//
+// Example printed form:
+//
+// *x = y
+type Store struct {
+ anInstruction
+ Addr Value
+ Val Value
+ pos token.Pos
+}
+
+// The MapUpdate instruction updates the association of Map[Key] to
+// Value.
+//
+// Pos() returns the ast.KeyValueExpr.Colon or ast.IndexExpr.Lbrack,
+// if explicit in the source.
+//
+// Example printed form:
+//
+// t0[t1] = t2
+type MapUpdate struct {
+ anInstruction
+ Map Value
+ Key Value
+ Value Value
+ pos token.Pos
+}
+
+// A DebugRef instruction maps a source-level expression Expr to the
+// SSA value X that represents the value (!IsAddr) or address (IsAddr)
+// of that expression.
+//
+// DebugRef is a pseudo-instruction: it has no dynamic effect.
+//
+// Pos() returns Expr.Pos(), the start position of the source-level
+// expression. This is not the same as the "designated" token as
+// documented at Value.Pos(). e.g. CallExpr.Pos() does not return the
+// position of the ("designated") Lparen token.
+//
+// If Expr is an *ast.Ident denoting a var or func, Object() returns
+// the object; though this information can be obtained from the type
+// checker, including it here greatly facilitates debugging.
+// For non-Ident expressions, Object() returns nil.
+//
+// DebugRefs are generated only for functions built with debugging
+// enabled; see Package.SetDebugMode() and the GlobalDebug builder
+// mode flag.
+//
+// DebugRefs are not emitted for ast.Idents referring to constants or
+// predeclared identifiers, since they are trivial and numerous.
+// Nor are they emitted for ast.ParenExprs.
+//
+// (By representing these as instructions, rather than out-of-band,
+// consistency is maintained during transformation passes by the
+// ordinary SSA renaming machinery.)
+//
+// Example printed form:
+//
+// ; *ast.CallExpr @ 102:9 is t5
+// ; var x float64 @ 109:72 is x
+// ; address of *ast.CompositeLit @ 216:10 is t0
+type DebugRef struct {
+ // TODO(generics): Reconsider what DebugRefs are for generics.
+ anInstruction
+ Expr ast.Expr // the referring expression (never *ast.ParenExpr)
+ object types.Object // the identity of the source var/func
+ IsAddr bool // Expr is addressable and X is the address it denotes
+ X Value // the value or address of Expr
+}
+
+// Embeddable mix-ins and helpers for common parts of other structs. -----------
+
+// register is a mix-in embedded by all SSA values that are also
+// instructions, i.e. virtual registers, and provides a uniform
+// implementation of most of the Value interface: Value.Name() is a
+// numbered register (e.g. "t0"); the other methods are field accessors.
+//
+// Temporary names are automatically assigned to each register on
+// completion of building a function in SSA form.
+//
+// Clients must not assume that the 'id' value (and the Name() derived
+// from it) is unique within a function. As always in this API,
+// semantics are determined only by identity; names exist only to
+// facilitate debugging.
+type register struct {
+ anInstruction
+ num int // "name" of virtual register, e.g. "t0". Not guaranteed unique.
+ typ types.Type // type of virtual register
+ pos token.Pos // position of source expression, or NoPos
+ referrers []Instruction
+}
+
+// anInstruction is a mix-in embedded by all Instructions.
+// It provides the implementations of the Block and setBlock methods.
+type anInstruction struct {
+ block *BasicBlock // the basic block of this instruction
+}
+
+// CallCommon is contained by Go, Defer and Call to hold the
+// common parts of a function or method call.
+//
+// Each CallCommon exists in one of two modes, function call and
+// interface method invocation, or "call" and "invoke" for short.
+//
+// 1. "call" mode: when Method is nil (!IsInvoke), a CallCommon
+// represents an ordinary function call of the value in Value,
+// which may be a *Builtin, a *Function or any other value of kind
+// 'func'.
+//
+// Value may be one of:
+//
+// (a) a *Function, indicating a statically dispatched call
+// to a package-level function, an anonymous function, or
+// a method of a named type.
+// (b) a *MakeClosure, indicating an immediately applied
+// function literal with free variables.
+// (c) a *Builtin, indicating a statically dispatched call
+// to a built-in function.
+// (d) any other value, indicating a dynamically dispatched
+// function call.
+//
+// StaticCallee returns the identity of the callee in cases
+// (a) and (b), nil otherwise.
+//
+// Args contains the arguments to the call. If Value is a method,
+// Args[0] contains the receiver parameter.
+//
+// Example printed form:
+//
+// t2 = println(t0, t1)
+// go t3()
+// defer t5(...t6)
+//
+// 2. "invoke" mode: when Method is non-nil (IsInvoke), a CallCommon
+// represents a dynamically dispatched call to an interface method.
+// In this mode, Value is the interface value and Method is the
+// interface's abstract method. The interface value may be a type
+// parameter. Note: an interface method may be shared by multiple
+// interfaces due to embedding; Value.Type() provides the specific
+// interface used for this call.
+//
+// Value is implicitly supplied to the concrete method implementation
+// as the receiver parameter; in other words, Args[0] holds not the
+// receiver but the first true argument.
+//
+// Example printed form:
+//
+// t1 = invoke t0.String()
+// go invoke t3.Run(t2)
+// defer invoke t4.Handle(...t5)
+//
+// For all calls to variadic functions (Signature().Variadic()),
+// the last element of Args is a slice.
+type CallCommon struct {
+ Value Value // receiver (invoke mode) or func value (call mode)
+ Method *types.Func // interface method (invoke mode)
+ Args []Value // actual parameters (in static method call, includes receiver)
+ pos token.Pos // position of CallExpr.Lparen, iff explicit in source
+}
+
+// IsInvoke returns true if this call has "invoke" (not "call") mode.
+func (c *CallCommon) IsInvoke() bool {
+ return c.Method != nil
+}
+
+func (c *CallCommon) Pos() token.Pos { return c.pos }
+
+// Signature returns the signature of the called function.
+//
+// For an "invoke"-mode call, the signature of the interface method is
+// returned.
+//
+// In either "call" or "invoke" mode, if the callee is a method, its
+// receiver is represented by sig.Recv, not sig.Params().At(0).
+func (c *CallCommon) Signature() *types.Signature {
+ if c.Method != nil {
+ return c.Method.Type().(*types.Signature)
+ }
+ return typeparams.CoreType(c.Value.Type()).(*types.Signature)
+}
+
+// StaticCallee returns the callee if this is a trivially static
+// "call"-mode call to a function.
+func (c *CallCommon) StaticCallee() *Function {
+ switch fn := c.Value.(type) {
+ case *Function:
+ return fn
+ case *MakeClosure:
+ return fn.Fn.(*Function)
+ }
+ return nil
+}
+
+// Description returns a description of the mode of this call suitable
+// for a user interface, e.g., "static method call".
+func (c *CallCommon) Description() string {
+ switch fn := c.Value.(type) {
+ case *Builtin:
+ return "built-in function call"
+ case *MakeClosure:
+ return "static function closure call"
+ case *Function:
+ if fn.Signature.Recv() != nil {
+ return "static method call"
+ }
+ return "static function call"
+ }
+ if c.IsInvoke() {
+ return "dynamic method call" // ("invoke" mode)
+ }
+ return "dynamic function call"
+}
+
+// The CallInstruction interface, implemented by *Go, *Defer and *Call,
+// exposes the common parts of function-calling instructions,
+// yet provides a way back to the Value defined by *Call alone.
+type CallInstruction interface {
+ Instruction
+ Common() *CallCommon // returns the common parts of the call
+ Value() *Call // returns the result value of the call (*Call) or nil (*Go, *Defer)
+}
+
+func (s *Call) Common() *CallCommon { return &s.Call }
+func (s *Defer) Common() *CallCommon { return &s.Call }
+func (s *Go) Common() *CallCommon { return &s.Call }
+
+func (s *Call) Value() *Call { return s }
+func (s *Defer) Value() *Call { return nil }
+func (s *Go) Value() *Call { return nil }
+
+func (v *Builtin) Type() types.Type { return v.sig }
+func (v *Builtin) Name() string { return v.name }
+func (*Builtin) Referrers() *[]Instruction { return nil }
+func (v *Builtin) Pos() token.Pos { return token.NoPos }
+func (v *Builtin) Object() types.Object { return types.Universe.Lookup(v.name) }
+func (v *Builtin) Parent() *Function { return nil }
+
+func (v *FreeVar) Type() types.Type { return v.typ }
+func (v *FreeVar) Name() string { return v.name }
+func (v *FreeVar) Referrers() *[]Instruction { return &v.referrers }
+func (v *FreeVar) Pos() token.Pos { return v.pos }
+func (v *FreeVar) Parent() *Function { return v.parent }
+
+func (v *Global) Type() types.Type { return v.typ }
+func (v *Global) Name() string { return v.name }
+func (v *Global) Parent() *Function { return nil }
+func (v *Global) Pos() token.Pos { return v.pos }
+func (v *Global) Referrers() *[]Instruction { return nil }
+func (v *Global) Token() token.Token { return token.VAR }
+func (v *Global) Object() types.Object { return v.object }
+func (v *Global) String() string { return v.RelString(nil) }
+func (v *Global) Package() *Package { return v.Pkg }
+func (v *Global) RelString(from *types.Package) string { return relString(v, from) }
+
+func (v *Function) Name() string { return v.name }
+func (v *Function) Type() types.Type { return v.Signature }
+func (v *Function) Pos() token.Pos { return v.pos }
+func (v *Function) Token() token.Token { return token.FUNC }
+func (v *Function) Object() types.Object {
+ if v.object != nil {
+ return types.Object(v.object)
+ }
+ return nil
+}
+func (v *Function) String() string { return v.RelString(nil) }
+func (v *Function) Package() *Package { return v.Pkg }
+func (v *Function) Parent() *Function { return v.parent }
+func (v *Function) Referrers() *[]Instruction {
+ if v.parent != nil {
+ return &v.referrers
+ }
+ return nil
+}
+
+// TypeParams are the function's type parameters if generic or the
+// type parameters that were instantiated if fn is an instantiation.
+func (fn *Function) TypeParams() *types.TypeParamList {
+ return fn.typeparams
+}
+
+// TypeArgs are the types that TypeParams() were instantiated by to create fn
+// from fn.Origin().
+func (fn *Function) TypeArgs() []types.Type { return fn.typeargs }
+
+// Origin returns the generic function from which fn was instantiated,
+// or nil if fn is not an instantiation.
+func (fn *Function) Origin() *Function {
+ if fn.parent != nil && len(fn.typeargs) > 0 {
+ // Nested functions are BUILT at a different time than their instances.
+ // Build declared package if not yet BUILT. This is not an expected use
+ // case, but is simple and robust.
+ fn.declaredPackage().Build()
+ }
+ return origin(fn)
+}
+
+// origin is the function that fn is an instantiation of. Returns nil if fn is
+// not an instantiation.
+//
+// Precondition: fn and the origin function are done building.
+func origin(fn *Function) *Function {
+ if fn.parent != nil && len(fn.typeargs) > 0 {
+ return origin(fn.parent).AnonFuncs[fn.anonIdx]
+ }
+ return fn.topLevelOrigin
+}
+
+func (v *Parameter) Type() types.Type { return v.typ }
+func (v *Parameter) Name() string { return v.name }
+func (v *Parameter) Object() types.Object { return v.object }
+func (v *Parameter) Referrers() *[]Instruction { return &v.referrers }
+func (v *Parameter) Pos() token.Pos { return v.object.Pos() }
+func (v *Parameter) Parent() *Function { return v.parent }
+
+func (v *Alloc) Type() types.Type { return v.typ }
+func (v *Alloc) Referrers() *[]Instruction { return &v.referrers }
+func (v *Alloc) Pos() token.Pos { return v.pos }
+
+func (v *register) Type() types.Type { return v.typ }
+func (v *register) setType(typ types.Type) { v.typ = typ }
+func (v *register) Name() string { return fmt.Sprintf("t%d", v.num) }
+func (v *register) setNum(num int) { v.num = num }
+func (v *register) Referrers() *[]Instruction { return &v.referrers }
+func (v *register) Pos() token.Pos { return v.pos }
+func (v *register) setPos(pos token.Pos) { v.pos = pos }
+
+func (v *anInstruction) Parent() *Function { return v.block.parent }
+func (v *anInstruction) Block() *BasicBlock { return v.block }
+func (v *anInstruction) setBlock(block *BasicBlock) { v.block = block }
+func (v *anInstruction) Referrers() *[]Instruction { return nil }
+
+func (t *Type) Name() string { return t.object.Name() }
+func (t *Type) Pos() token.Pos { return t.object.Pos() }
+func (t *Type) Type() types.Type { return t.object.Type() }
+func (t *Type) Token() token.Token { return token.TYPE }
+func (t *Type) Object() types.Object { return t.object }
+func (t *Type) String() string { return t.RelString(nil) }
+func (t *Type) Package() *Package { return t.pkg }
+func (t *Type) RelString(from *types.Package) string { return relString(t, from) }
+
+func (c *NamedConst) Name() string { return c.object.Name() }
+func (c *NamedConst) Pos() token.Pos { return c.object.Pos() }
+func (c *NamedConst) String() string { return c.RelString(nil) }
+func (c *NamedConst) Type() types.Type { return c.object.Type() }
+func (c *NamedConst) Token() token.Token { return token.CONST }
+func (c *NamedConst) Object() types.Object { return c.object }
+func (c *NamedConst) Package() *Package { return c.pkg }
+func (c *NamedConst) RelString(from *types.Package) string { return relString(c, from) }
+
+func (d *DebugRef) Object() types.Object { return d.object }
+
+// Func returns the package-level function of the specified name,
+// or nil if not found.
+func (p *Package) Func(name string) (f *Function) {
+ f, _ = p.Members[name].(*Function)
+ return
+}
+
+// Var returns the package-level variable of the specified name,
+// or nil if not found.
+func (p *Package) Var(name string) (g *Global) {
+ g, _ = p.Members[name].(*Global)
+ return
+}
+
+// Const returns the package-level constant of the specified name,
+// or nil if not found.
+func (p *Package) Const(name string) (c *NamedConst) {
+ c, _ = p.Members[name].(*NamedConst)
+ return
+}
+
+// Type returns the package-level type of the specified name,
+// or nil if not found.
+func (p *Package) Type(name string) (t *Type) {
+ t, _ = p.Members[name].(*Type)
+ return
+}
+
+func (v *Call) Pos() token.Pos { return v.Call.pos }
+func (s *Defer) Pos() token.Pos { return s.pos }
+func (s *Go) Pos() token.Pos { return s.pos }
+func (s *MapUpdate) Pos() token.Pos { return s.pos }
+func (s *Panic) Pos() token.Pos { return s.pos }
+func (s *Return) Pos() token.Pos { return s.pos }
+func (s *Send) Pos() token.Pos { return s.pos }
+func (s *Store) Pos() token.Pos { return s.pos }
+func (s *If) Pos() token.Pos { return token.NoPos }
+func (s *Jump) Pos() token.Pos { return token.NoPos }
+func (s *RunDefers) Pos() token.Pos { return token.NoPos }
+func (s *DebugRef) Pos() token.Pos { return s.Expr.Pos() }
+
+// Operands.
+
+func (v *Alloc) Operands(rands []*Value) []*Value {
+ return rands
+}
+
+func (v *BinOp) Operands(rands []*Value) []*Value {
+ return append(rands, &v.X, &v.Y)
+}
+
+func (c *CallCommon) Operands(rands []*Value) []*Value {
+ rands = append(rands, &c.Value)
+ for i := range c.Args {
+ rands = append(rands, &c.Args[i])
+ }
+ return rands
+}
+
+func (s *Go) Operands(rands []*Value) []*Value {
+ return s.Call.Operands(rands)
+}
+
+func (s *Call) Operands(rands []*Value) []*Value {
+ return s.Call.Operands(rands)
+}
+
+func (s *Defer) Operands(rands []*Value) []*Value {
+ return append(s.Call.Operands(rands), &s.DeferStack)
+}
+
+func (v *ChangeInterface) Operands(rands []*Value) []*Value {
+ return append(rands, &v.X)
+}
+
+func (v *ChangeType) Operands(rands []*Value) []*Value {
+ return append(rands, &v.X)
+}
+
+func (v *Convert) Operands(rands []*Value) []*Value {
+ return append(rands, &v.X)
+}
+
+func (v *MultiConvert) Operands(rands []*Value) []*Value {
+ return append(rands, &v.X)
+}
+
+func (v *SliceToArrayPointer) Operands(rands []*Value) []*Value {
+ return append(rands, &v.X)
+}
+
+func (s *DebugRef) Operands(rands []*Value) []*Value {
+ return append(rands, &s.X)
+}
+
+func (v *Extract) Operands(rands []*Value) []*Value {
+ return append(rands, &v.Tuple)
+}
+
+func (v *Field) Operands(rands []*Value) []*Value {
+ return append(rands, &v.X)
+}
+
+func (v *FieldAddr) Operands(rands []*Value) []*Value {
+ return append(rands, &v.X)
+}
+
+func (s *If) Operands(rands []*Value) []*Value {
+ return append(rands, &s.Cond)
+}
+
+func (v *Index) Operands(rands []*Value) []*Value {
+ return append(rands, &v.X, &v.Index)
+}
+
+func (v *IndexAddr) Operands(rands []*Value) []*Value {
+ return append(rands, &v.X, &v.Index)
+}
+
+func (*Jump) Operands(rands []*Value) []*Value {
+ return rands
+}
+
+func (v *Lookup) Operands(rands []*Value) []*Value {
+ return append(rands, &v.X, &v.Index)
+}
+
+func (v *MakeChan) Operands(rands []*Value) []*Value {
+ return append(rands, &v.Size)
+}
+
+func (v *MakeClosure) Operands(rands []*Value) []*Value {
+ rands = append(rands, &v.Fn)
+ for i := range v.Bindings {
+ rands = append(rands, &v.Bindings[i])
+ }
+ return rands
+}
+
+func (v *MakeInterface) Operands(rands []*Value) []*Value {
+ return append(rands, &v.X)
+}
+
+func (v *MakeMap) Operands(rands []*Value) []*Value {
+ return append(rands, &v.Reserve)
+}
+
+func (v *MakeSlice) Operands(rands []*Value) []*Value {
+ return append(rands, &v.Len, &v.Cap)
+}
+
+func (v *MapUpdate) Operands(rands []*Value) []*Value {
+ return append(rands, &v.Map, &v.Key, &v.Value)
+}
+
+func (v *Next) Operands(rands []*Value) []*Value {
+ return append(rands, &v.Iter)
+}
+
+func (s *Panic) Operands(rands []*Value) []*Value {
+ return append(rands, &s.X)
+}
+
+func (v *Phi) Operands(rands []*Value) []*Value {
+ for i := range v.Edges {
+ rands = append(rands, &v.Edges[i])
+ }
+ return rands
+}
+
+func (v *Range) Operands(rands []*Value) []*Value {
+ return append(rands, &v.X)
+}
+
+func (s *Return) Operands(rands []*Value) []*Value {
+ for i := range s.Results {
+ rands = append(rands, &s.Results[i])
+ }
+ return rands
+}
+
+func (*RunDefers) Operands(rands []*Value) []*Value {
+ return rands
+}
+
+func (v *Select) Operands(rands []*Value) []*Value {
+ for i := range v.States {
+ rands = append(rands, &v.States[i].Chan, &v.States[i].Send)
+ }
+ return rands
+}
+
+func (s *Send) Operands(rands []*Value) []*Value {
+ return append(rands, &s.Chan, &s.X)
+}
+
+func (v *Slice) Operands(rands []*Value) []*Value {
+ return append(rands, &v.X, &v.Low, &v.High, &v.Max)
+}
+
+func (s *Store) Operands(rands []*Value) []*Value {
+ return append(rands, &s.Addr, &s.Val)
+}
+
+func (v *TypeAssert) Operands(rands []*Value) []*Value {
+ return append(rands, &v.X)
+}
+
+func (v *UnOp) Operands(rands []*Value) []*Value {
+ return append(rands, &v.X)
+}
+
+// Non-Instruction Values:
+func (v *Builtin) Operands(rands []*Value) []*Value { return rands }
+func (v *FreeVar) Operands(rands []*Value) []*Value { return rands }
+func (v *Const) Operands(rands []*Value) []*Value { return rands }
+func (v *Function) Operands(rands []*Value) []*Value { return rands }
+func (v *Global) Operands(rands []*Value) []*Value { return rands }
+func (v *Parameter) Operands(rands []*Value) []*Value { return rands }
diff --git a/vendor/golang.org/x/tools/go/ssa/ssautil/load.go b/vendor/golang.org/x/tools/go/ssa/ssautil/load.go
new file mode 100644
index 0000000..3daa67a
--- /dev/null
+++ b/vendor/golang.org/x/tools/go/ssa/ssautil/load.go
@@ -0,0 +1,214 @@
+// Copyright 2015 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package ssautil
+
+// This file defines utility functions for constructing programs in SSA form.
+
+import (
+ "go/ast"
+ "go/token"
+ "go/types"
+
+ "golang.org/x/tools/go/loader"
+ "golang.org/x/tools/go/packages"
+ "golang.org/x/tools/go/ssa"
+ "golang.org/x/tools/internal/versions"
+)
+
+// Packages creates an SSA program for a set of packages.
+//
+// The packages must have been loaded from source syntax using the
+// [packages.Load] function in [packages.LoadSyntax] or
+// [packages.LoadAllSyntax] mode.
+//
+// Packages creates an SSA package for each well-typed package in the
+// initial list, plus all their dependencies. The resulting list of
+// packages corresponds to the list of initial packages, and may contain
+// a nil if SSA code could not be constructed for the corresponding initial
+// package due to type errors.
+//
+// Code for bodies of functions is not built until [Program.Build] is
+// called on the resulting Program. SSA code is constructed only for
+// the initial packages with well-typed syntax trees.
+//
+// The mode parameter controls diagnostics and checking during SSA construction.
+func Packages(initial []*packages.Package, mode ssa.BuilderMode) (*ssa.Program, []*ssa.Package) {
+ // TODO(adonovan): opt: this calls CreatePackage far more than
+ // necessary: for all dependencies, not just the (non-initial)
+ // direct dependencies of the initial packages.
+ //
+ // But can it reasonably be changed without breaking the
+ // spirit and/or letter of the law above? Clients may notice
+ // if we call CreatePackage less, as methods like
+ // Program.FuncValue will return nil. Or must we provide a new
+ // function (and perhaps deprecate this one)? Is it worth it?
+ //
+ // Tim King makes the interesting point that it would be
+ // possible to entirely alleviate the client from the burden
+ // of calling CreatePackage for non-syntax packages, if we
+ // were to treat vars and funcs lazily in the same way we now
+ // treat methods. (In essence, try to move away from the
+ // notion of ssa.Packages, and make the Program answer
+ // all reasonable questions about any types.Object.)
+
+ return doPackages(initial, mode, false)
+}
+
+// AllPackages creates an SSA program for a set of packages plus all
+// their dependencies.
+//
+// The packages must have been loaded from source syntax using the
+// [packages.Load] function in [packages.LoadAllSyntax] mode.
+//
+// AllPackages creates an SSA package for each well-typed package in the
+// initial list, plus all their dependencies. The resulting list of
+// packages corresponds to the list of initial packages, and may contain
+// a nil if SSA code could not be constructed for the corresponding
+// initial package due to type errors.
+//
+// Code for bodies of functions is not built until Build is called on
+// the resulting Program. SSA code is constructed for all packages with
+// well-typed syntax trees.
+//
+// The mode parameter controls diagnostics and checking during SSA construction.
+func AllPackages(initial []*packages.Package, mode ssa.BuilderMode) (*ssa.Program, []*ssa.Package) {
+ return doPackages(initial, mode, true)
+}
+
+func doPackages(initial []*packages.Package, mode ssa.BuilderMode, deps bool) (*ssa.Program, []*ssa.Package) {
+
+ var fset *token.FileSet
+ if len(initial) > 0 {
+ fset = initial[0].Fset
+ }
+
+ prog := ssa.NewProgram(fset, mode)
+
+ isInitial := make(map[*packages.Package]bool, len(initial))
+ for _, p := range initial {
+ isInitial[p] = true
+ }
+
+ ssamap := make(map[*packages.Package]*ssa.Package)
+ packages.Visit(initial, nil, func(p *packages.Package) {
+ if p.Types != nil && !p.IllTyped {
+ var files []*ast.File
+ var info *types.Info
+ if deps || isInitial[p] {
+ files = p.Syntax
+ info = p.TypesInfo
+ }
+ ssamap[p] = prog.CreatePackage(p.Types, files, info, true)
+ }
+ })
+
+ var ssapkgs []*ssa.Package
+ for _, p := range initial {
+ ssapkgs = append(ssapkgs, ssamap[p]) // may be nil
+ }
+ return prog, ssapkgs
+}
+
+// CreateProgram returns a new program in SSA form, given a program
+// loaded from source. An SSA package is created for each transitively
+// error-free package of lprog.
+//
+// Code for bodies of functions is not built until Build is called
+// on the result.
+//
+// The mode parameter controls diagnostics and checking during SSA construction.
+//
+// Deprecated: Use [golang.org/x/tools/go/packages] and the [Packages]
+// function instead; see ssa.Example_loadPackages.
+func CreateProgram(lprog *loader.Program, mode ssa.BuilderMode) *ssa.Program {
+ prog := ssa.NewProgram(lprog.Fset, mode)
+
+ for _, info := range lprog.AllPackages {
+ if info.TransitivelyErrorFree {
+ prog.CreatePackage(info.Pkg, info.Files, &info.Info, info.Importable)
+ }
+ }
+
+ return prog
+}
+
+// BuildPackage builds an SSA program with SSA intermediate
+// representation (IR) for all functions of a single package.
+//
+// It populates pkg by type-checking the specified file syntax trees. All
+// dependencies are loaded using the importer specified by tc, which
+// typically loads compiler export data; SSA code cannot be built for
+// those packages. BuildPackage then constructs an [ssa.Program] with all
+// dependency packages created, and builds and returns the SSA package
+// corresponding to pkg.
+//
+// The caller must have set pkg.Path to the import path.
+//
+// The operation fails if there were any type-checking or import errors.
+//
+// See ../example_test.go for an example.
+func BuildPackage(tc *types.Config, fset *token.FileSet, pkg *types.Package, files []*ast.File, mode ssa.BuilderMode) (*ssa.Package, *types.Info, error) {
+ if fset == nil {
+ panic("no token.FileSet")
+ }
+ if pkg.Path() == "" {
+ panic("package has no import path")
+ }
+
+ info := &types.Info{
+ Types: make(map[ast.Expr]types.TypeAndValue),
+ Defs: make(map[*ast.Ident]types.Object),
+ Uses: make(map[*ast.Ident]types.Object),
+ Implicits: make(map[ast.Node]types.Object),
+ Instances: make(map[*ast.Ident]types.Instance),
+ Scopes: make(map[ast.Node]*types.Scope),
+ Selections: make(map[*ast.SelectorExpr]*types.Selection),
+ }
+ versions.InitFileVersions(info)
+ if err := types.NewChecker(tc, fset, pkg, info).Files(files); err != nil {
+ return nil, nil, err
+ }
+
+ prog := ssa.NewProgram(fset, mode)
+
+ // Create SSA packages for all imports.
+ // Order is not significant.
+ created := make(map[*types.Package]bool)
+ var createAll func(pkgs []*types.Package)
+ createAll = func(pkgs []*types.Package) {
+ for _, p := range pkgs {
+ if !created[p] {
+ created[p] = true
+ prog.CreatePackage(p, nil, nil, true)
+ createAll(p.Imports())
+ }
+ }
+ }
+ createAll(pkg.Imports())
+
+ // TODO(adonovan): we could replace createAll with just:
+ //
+ // // Create SSA packages for all imports.
+ // for _, p := range pkg.Imports() {
+ // prog.CreatePackage(p, nil, nil, true)
+ // }
+ //
+ // (with minor changes to changes to ../builder_test.go as
+ // shown in CL 511715 PS 10.) But this would strictly violate
+ // the letter of the doc comment above, which says "all
+ // dependencies created".
+ //
+ // Tim makes the good point with some extra work we could
+ // remove the need for any CreatePackage calls except the
+ // ones with syntax (i.e. primary packages). Of course
+ // You wouldn't have ssa.Packages and Members for as
+ // many things but no-one really uses that anyway.
+ // I wish I had done this from the outset.
+
+ // Create and build the primary package.
+ ssapkg := prog.CreatePackage(pkg, files, info, false)
+ ssapkg.Build()
+ return ssapkg, info, nil
+}
diff --git a/vendor/golang.org/x/tools/go/ssa/ssautil/switch.go b/vendor/golang.org/x/tools/go/ssa/ssautil/switch.go
new file mode 100644
index 0000000..dd4b04e
--- /dev/null
+++ b/vendor/golang.org/x/tools/go/ssa/ssautil/switch.go
@@ -0,0 +1,230 @@
+// Copyright 2013 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package ssautil
+
+// This file implements discovery of switch and type-switch constructs
+// from low-level control flow.
+//
+// Many techniques exist for compiling a high-level switch with
+// constant cases to efficient machine code. The optimal choice will
+// depend on the data type, the specific case values, the code in the
+// body of each case, and the hardware.
+// Some examples:
+// - a lookup table (for a switch that maps constants to constants)
+// - a computed goto
+// - a binary tree
+// - a perfect hash
+// - a two-level switch (to partition constant strings by their first byte).
+
+import (
+ "bytes"
+ "fmt"
+ "go/token"
+ "go/types"
+
+ "golang.org/x/tools/go/ssa"
+)
+
+// A ConstCase represents a single constant comparison.
+// It is part of a Switch.
+type ConstCase struct {
+ Block *ssa.BasicBlock // block performing the comparison
+ Body *ssa.BasicBlock // body of the case
+ Value *ssa.Const // case comparand
+}
+
+// A TypeCase represents a single type assertion.
+// It is part of a Switch.
+type TypeCase struct {
+ Block *ssa.BasicBlock // block performing the type assert
+ Body *ssa.BasicBlock // body of the case
+ Type types.Type // case type
+ Binding ssa.Value // value bound by this case
+}
+
+// A Switch is a logical high-level control flow operation
+// (a multiway branch) discovered by analysis of a CFG containing
+// only if/else chains. It is not part of the ssa.Instruction set.
+//
+// One of ConstCases and TypeCases has length >= 2;
+// the other is nil.
+//
+// In a value switch, the list of cases may contain duplicate constants.
+// A type switch may contain duplicate types, or types assignable
+// to an interface type also in the list.
+// TODO(adonovan): eliminate such duplicates.
+type Switch struct {
+ Start *ssa.BasicBlock // block containing start of if/else chain
+ X ssa.Value // the switch operand
+ ConstCases []ConstCase // ordered list of constant comparisons
+ TypeCases []TypeCase // ordered list of type assertions
+ Default *ssa.BasicBlock // successor if all comparisons fail
+}
+
+func (sw *Switch) String() string {
+ // We represent each block by the String() of its
+ // first Instruction, e.g. "print(42:int)".
+ var buf bytes.Buffer
+ if sw.ConstCases != nil {
+ fmt.Fprintf(&buf, "switch %s {\n", sw.X.Name())
+ for _, c := range sw.ConstCases {
+ fmt.Fprintf(&buf, "case %s: %s\n", c.Value, c.Body.Instrs[0])
+ }
+ } else {
+ fmt.Fprintf(&buf, "switch %s.(type) {\n", sw.X.Name())
+ for _, c := range sw.TypeCases {
+ fmt.Fprintf(&buf, "case %s %s: %s\n",
+ c.Binding.Name(), c.Type, c.Body.Instrs[0])
+ }
+ }
+ if sw.Default != nil {
+ fmt.Fprintf(&buf, "default: %s\n", sw.Default.Instrs[0])
+ }
+ fmt.Fprintf(&buf, "}")
+ return buf.String()
+}
+
+// Switches examines the control-flow graph of fn and returns the
+// set of inferred value and type switches. A value switch tests an
+// ssa.Value for equality against two or more compile-time constant
+// values. Switches involving link-time constants (addresses) are
+// ignored. A type switch type-asserts an ssa.Value against two or
+// more types.
+//
+// The switches are returned in dominance order.
+//
+// The resulting switches do not necessarily correspond to uses of the
+// 'switch' keyword in the source: for example, a single source-level
+// switch statement with non-constant cases may result in zero, one or
+// many Switches, one per plural sequence of constant cases.
+// Switches may even be inferred from if/else- or goto-based control flow.
+// (In general, the control flow constructs of the source program
+// cannot be faithfully reproduced from the SSA representation.)
+func Switches(fn *ssa.Function) []Switch {
+ // Traverse the CFG in dominance order, so we don't
+ // enter an if/else-chain in the middle.
+ var switches []Switch
+ seen := make(map[*ssa.BasicBlock]bool) // TODO(adonovan): opt: use ssa.blockSet
+ for _, b := range fn.DomPreorder() {
+ if x, k := isComparisonBlock(b); x != nil {
+ // Block b starts a switch.
+ sw := Switch{Start: b, X: x}
+ valueSwitch(&sw, k, seen)
+ if len(sw.ConstCases) > 1 {
+ switches = append(switches, sw)
+ }
+ }
+
+ if y, x, T := isTypeAssertBlock(b); y != nil {
+ // Block b starts a type switch.
+ sw := Switch{Start: b, X: x}
+ typeSwitch(&sw, y, T, seen)
+ if len(sw.TypeCases) > 1 {
+ switches = append(switches, sw)
+ }
+ }
+ }
+ return switches
+}
+
+func valueSwitch(sw *Switch, k *ssa.Const, seen map[*ssa.BasicBlock]bool) {
+ b := sw.Start
+ x := sw.X
+ for x == sw.X {
+ if seen[b] {
+ break
+ }
+ seen[b] = true
+
+ sw.ConstCases = append(sw.ConstCases, ConstCase{
+ Block: b,
+ Body: b.Succs[0],
+ Value: k,
+ })
+ b = b.Succs[1]
+ if len(b.Instrs) > 2 {
+ // Block b contains not just 'if x == k',
+ // so it may have side effects that
+ // make it unsafe to elide.
+ break
+ }
+ if len(b.Preds) != 1 {
+ // Block b has multiple predecessors,
+ // so it cannot be treated as a case.
+ break
+ }
+ x, k = isComparisonBlock(b)
+ }
+ sw.Default = b
+}
+
+func typeSwitch(sw *Switch, y ssa.Value, T types.Type, seen map[*ssa.BasicBlock]bool) {
+ b := sw.Start
+ x := sw.X
+ for x == sw.X {
+ if seen[b] {
+ break
+ }
+ seen[b] = true
+
+ sw.TypeCases = append(sw.TypeCases, TypeCase{
+ Block: b,
+ Body: b.Succs[0],
+ Type: T,
+ Binding: y,
+ })
+ b = b.Succs[1]
+ if len(b.Instrs) > 4 {
+ // Block b contains not just
+ // {TypeAssert; Extract #0; Extract #1; If}
+ // so it may have side effects that
+ // make it unsafe to elide.
+ break
+ }
+ if len(b.Preds) != 1 {
+ // Block b has multiple predecessors,
+ // so it cannot be treated as a case.
+ break
+ }
+ y, x, T = isTypeAssertBlock(b)
+ }
+ sw.Default = b
+}
+
+// isComparisonBlock returns the operands (v, k) if a block ends with
+// a comparison v==k, where k is a compile-time constant.
+func isComparisonBlock(b *ssa.BasicBlock) (v ssa.Value, k *ssa.Const) {
+ if n := len(b.Instrs); n >= 2 {
+ if i, ok := b.Instrs[n-1].(*ssa.If); ok {
+ if binop, ok := i.Cond.(*ssa.BinOp); ok && binop.Block() == b && binop.Op == token.EQL {
+ if k, ok := binop.Y.(*ssa.Const); ok {
+ return binop.X, k
+ }
+ if k, ok := binop.X.(*ssa.Const); ok {
+ return binop.Y, k
+ }
+ }
+ }
+ }
+ return
+}
+
+// isTypeAssertBlock returns the operands (y, x, T) if a block ends with
+// a type assertion "if y, ok := x.(T); ok {".
+func isTypeAssertBlock(b *ssa.BasicBlock) (y, x ssa.Value, T types.Type) {
+ if n := len(b.Instrs); n >= 4 {
+ if i, ok := b.Instrs[n-1].(*ssa.If); ok {
+ if ext1, ok := i.Cond.(*ssa.Extract); ok && ext1.Block() == b && ext1.Index == 1 {
+ if ta, ok := ext1.Tuple.(*ssa.TypeAssert); ok && ta.Block() == b {
+ // hack: relies upon instruction ordering.
+ if ext0, ok := b.Instrs[n-3].(*ssa.Extract); ok {
+ return ext0, ta.X, ta.AssertedType
+ }
+ }
+ }
+ }
+ }
+ return
+}
diff --git a/vendor/golang.org/x/tools/go/ssa/ssautil/visit.go b/vendor/golang.org/x/tools/go/ssa/ssautil/visit.go
new file mode 100644
index 0000000..b4feb42
--- /dev/null
+++ b/vendor/golang.org/x/tools/go/ssa/ssautil/visit.go
@@ -0,0 +1,157 @@
+// Copyright 2013 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package ssautil // import "golang.org/x/tools/go/ssa/ssautil"
+
+import (
+ "go/ast"
+ "go/types"
+
+ "golang.org/x/tools/go/ssa"
+
+ _ "unsafe" // for linkname hack
+)
+
+// This file defines utilities for visiting the SSA representation of
+// a Program.
+//
+// TODO(adonovan): test coverage.
+
+// AllFunctions finds and returns the set of functions potentially
+// needed by program prog, as determined by a simple linker-style
+// reachability algorithm starting from the members and method-sets of
+// each package. The result may include anonymous functions and
+// synthetic wrappers.
+//
+// Precondition: all packages are built.
+//
+// TODO(adonovan): this function is underspecified. It doesn't
+// actually work like a linker, which computes reachability from main
+// using something like go/callgraph/cha (without materializing the
+// call graph). In fact, it treats all public functions and all
+// methods of public non-parameterized types as roots, even though
+// they may be unreachable--but only in packages created from syntax.
+//
+// I think we should deprecate AllFunctions function in favor of two
+// clearly defined ones:
+//
+// 1. The first would efficiently compute CHA reachability from a set
+// of main packages, making it suitable for a whole-program
+// analysis context with InstantiateGenerics, in conjunction with
+// Program.Build.
+//
+// 2. The second would return only the set of functions corresponding
+// to source Func{Decl,Lit} syntax, like SrcFunctions in
+// go/analysis/passes/buildssa; this is suitable for
+// package-at-a-time (or handful of packages) context.
+// ssa.Package could easily expose it as a field.
+//
+// We could add them unexported for now and use them via the linkname hack.
+func AllFunctions(prog *ssa.Program) map[*ssa.Function]bool {
+ seen := make(map[*ssa.Function]bool)
+
+ var function func(fn *ssa.Function)
+ function = func(fn *ssa.Function) {
+ if !seen[fn] {
+ seen[fn] = true
+ var buf [10]*ssa.Value // avoid alloc in common case
+ for _, b := range fn.Blocks {
+ for _, instr := range b.Instrs {
+ for _, op := range instr.Operands(buf[:0]) {
+ if fn, ok := (*op).(*ssa.Function); ok {
+ function(fn)
+ }
+ }
+ }
+ }
+ }
+ }
+
+ // TODO(adonovan): opt: provide a way to share a builder
+ // across a sequence of MethodValue calls.
+
+ methodsOf := func(T types.Type) {
+ if !types.IsInterface(T) {
+ mset := prog.MethodSets.MethodSet(T)
+ for i := 0; i < mset.Len(); i++ {
+ function(prog.MethodValue(mset.At(i)))
+ }
+ }
+ }
+
+ // Historically, Program.RuntimeTypes used to include the type
+ // of any exported member of a package loaded from syntax that
+ // has a non-parameterized type, plus all types
+ // reachable from that type using reflection, even though
+ // these runtime types may not be required for them.
+ //
+ // Rather than break existing programs that rely on
+ // AllFunctions visiting extra methods that are unreferenced
+ // by IR and unreachable via reflection, we moved the logic
+ // here, unprincipled though it is.
+ // (See doc comment for better ideas.)
+ //
+ // Nonetheless, after the move, we no longer visit every
+ // method of any type recursively reachable from T, only the
+ // methods of T and *T themselves, and we only apply this to
+ // named types T, and not to the type of every exported
+ // package member.
+ exportedTypeHack := func(t *ssa.Type) {
+ if isSyntactic(t.Package()) &&
+ ast.IsExported(t.Name()) &&
+ !types.IsInterface(t.Type()) {
+ // Consider only named types.
+ // (Ignore aliases and unsafe.Pointer.)
+ if named, ok := t.Type().(*types.Named); ok {
+ if named.TypeParams() == nil {
+ methodsOf(named) // T
+ methodsOf(types.NewPointer(named)) // *T
+ }
+ }
+ }
+ }
+
+ for _, pkg := range prog.AllPackages() {
+ for _, mem := range pkg.Members {
+ switch mem := mem.(type) {
+ case *ssa.Function:
+ // Visit all package-level declared functions.
+ function(mem)
+
+ case *ssa.Type:
+ exportedTypeHack(mem)
+ }
+ }
+ }
+
+ // Visit all methods of types for which runtime types were
+ // materialized, as they are reachable through reflection.
+ for _, T := range prog.RuntimeTypes() {
+ methodsOf(T)
+ }
+
+ return seen
+}
+
+// MainPackages returns the subset of the specified packages
+// named "main" that define a main function.
+// The result may include synthetic "testmain" packages.
+func MainPackages(pkgs []*ssa.Package) []*ssa.Package {
+ var mains []*ssa.Package
+ for _, pkg := range pkgs {
+ if pkg.Pkg.Name() == "main" && pkg.Func("main") != nil {
+ mains = append(mains, pkg)
+ }
+ }
+ return mains
+}
+
+// TODO(adonovan): propose a principled API for this. One possibility
+// is a new field, Package.SrcFunctions []*Function, which would
+// contain the list of SrcFunctions described in point 2 of the
+// AllFunctions doc comment, or nil if the package is not from syntax.
+// But perhaps overloading nil vs empty slice is too subtle.
+//
+//go:linkname isSyntactic golang.org/x/tools/go/ssa.isSyntactic
+func isSyntactic(pkg *ssa.Package) bool
diff --git a/vendor/golang.org/x/tools/go/ssa/subst.go b/vendor/golang.org/x/tools/go/ssa/subst.go
new file mode 100644
index 0000000..4dcb871
--- /dev/null
+++ b/vendor/golang.org/x/tools/go/ssa/subst.go
@@ -0,0 +1,642 @@
+// Copyright 2022 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package ssa
+
+import (
+ "go/types"
+
+ "golang.org/x/tools/go/types/typeutil"
+ "golang.org/x/tools/internal/aliases"
+)
+
+// subster defines a type substitution operation of a set of type parameters
+// to type parameter free replacement types. Substitution is done within
+// the context of a package-level function instantiation. *Named types
+// declared in the function are unique to the instantiation.
+//
+// For example, given a parameterized function F
+//
+// func F[S, T any]() any {
+// type X struct{ s S; next *X }
+// var p *X
+// return p
+// }
+//
+// calling the instantiation F[string, int]() returns an interface
+// value (*X[string,int], nil) where the underlying value of
+// X[string,int] is a struct{s string; next *X[string,int]}.
+//
+// A nil *subster is a valid, empty substitution map. It always acts as
+// the identity function. This allows for treating parameterized and
+// non-parameterized functions identically while compiling to ssa.
+//
+// Not concurrency-safe.
+//
+// Note: Some may find it helpful to think through some of the most
+// complex substitution cases using lambda calculus inspired notation.
+// subst.typ() solves evaluating a type expression E
+// within the body of a function Fn[m] with the type parameters m
+// once we have applied the type arguments N.
+// We can succinctly write this as a function application:
+//
+// ((λm. E) N)
+//
+// go/types does not provide this interface directly.
+// So what subster provides is a type substitution operation
+//
+// E[m:=N]
+type subster struct {
+ replacements map[*types.TypeParam]types.Type // values should contain no type params
+ cache map[types.Type]types.Type // cache of subst results
+ origin *types.Func // types.Objects declared within this origin function are unique within this context
+ ctxt *types.Context // speeds up repeated instantiations
+ uniqueness typeutil.Map // determines the uniqueness of the instantiations within the function
+ // TODO(taking): consider adding Pos
+}
+
+// Returns a subster that replaces tparams[i] with targs[i]. Uses ctxt as a cache.
+// targs should not contain any types in tparams.
+// fn is the generic function for which we are substituting.
+func makeSubster(ctxt *types.Context, fn *types.Func, tparams *types.TypeParamList, targs []types.Type, debug bool) *subster {
+ assert(tparams.Len() == len(targs), "makeSubster argument count must match")
+
+ subst := &subster{
+ replacements: make(map[*types.TypeParam]types.Type, tparams.Len()),
+ cache: make(map[types.Type]types.Type),
+ origin: fn.Origin(),
+ ctxt: ctxt,
+ }
+ for i := 0; i < tparams.Len(); i++ {
+ subst.replacements[tparams.At(i)] = targs[i]
+ }
+ return subst
+}
+
+// typ returns the type of t with the type parameter tparams[i] substituted
+// for the type targs[i] where subst was created using tparams and targs.
+func (subst *subster) typ(t types.Type) (res types.Type) {
+ if subst == nil {
+ return t // A nil subst is type preserving.
+ }
+ if r, ok := subst.cache[t]; ok {
+ return r
+ }
+ defer func() {
+ subst.cache[t] = res
+ }()
+
+ switch t := t.(type) {
+ case *types.TypeParam:
+ if r := subst.replacements[t]; r != nil {
+ return r
+ }
+ return t
+
+ case *types.Basic:
+ return t
+
+ case *types.Array:
+ if r := subst.typ(t.Elem()); r != t.Elem() {
+ return types.NewArray(r, t.Len())
+ }
+ return t
+
+ case *types.Slice:
+ if r := subst.typ(t.Elem()); r != t.Elem() {
+ return types.NewSlice(r)
+ }
+ return t
+
+ case *types.Pointer:
+ if r := subst.typ(t.Elem()); r != t.Elem() {
+ return types.NewPointer(r)
+ }
+ return t
+
+ case *types.Tuple:
+ return subst.tuple(t)
+
+ case *types.Struct:
+ return subst.struct_(t)
+
+ case *types.Map:
+ key := subst.typ(t.Key())
+ elem := subst.typ(t.Elem())
+ if key != t.Key() || elem != t.Elem() {
+ return types.NewMap(key, elem)
+ }
+ return t
+
+ case *types.Chan:
+ if elem := subst.typ(t.Elem()); elem != t.Elem() {
+ return types.NewChan(t.Dir(), elem)
+ }
+ return t
+
+ case *types.Signature:
+ return subst.signature(t)
+
+ case *types.Union:
+ return subst.union(t)
+
+ case *types.Interface:
+ return subst.interface_(t)
+
+ case *aliases.Alias:
+ return subst.alias(t)
+
+ case *types.Named:
+ return subst.named(t)
+
+ case *opaqueType:
+ return t // opaque types are never substituted
+
+ default:
+ panic("unreachable")
+ }
+}
+
+// types returns the result of {subst.typ(ts[i])}.
+func (subst *subster) types(ts []types.Type) []types.Type {
+ res := make([]types.Type, len(ts))
+ for i := range ts {
+ res[i] = subst.typ(ts[i])
+ }
+ return res
+}
+
+func (subst *subster) tuple(t *types.Tuple) *types.Tuple {
+ if t != nil {
+ if vars := subst.varlist(t); vars != nil {
+ return types.NewTuple(vars...)
+ }
+ }
+ return t
+}
+
+type varlist interface {
+ At(i int) *types.Var
+ Len() int
+}
+
+// fieldlist is an adapter for structs for the varlist interface.
+type fieldlist struct {
+ str *types.Struct
+}
+
+func (fl fieldlist) At(i int) *types.Var { return fl.str.Field(i) }
+func (fl fieldlist) Len() int { return fl.str.NumFields() }
+
+func (subst *subster) struct_(t *types.Struct) *types.Struct {
+ if t != nil {
+ if fields := subst.varlist(fieldlist{t}); fields != nil {
+ tags := make([]string, t.NumFields())
+ for i, n := 0, t.NumFields(); i < n; i++ {
+ tags[i] = t.Tag(i)
+ }
+ return types.NewStruct(fields, tags)
+ }
+ }
+ return t
+}
+
+// varlist returns subst(in[i]) or return nils if subst(v[i]) == v[i] for all i.
+func (subst *subster) varlist(in varlist) []*types.Var {
+ var out []*types.Var // nil => no updates
+ for i, n := 0, in.Len(); i < n; i++ {
+ v := in.At(i)
+ w := subst.var_(v)
+ if v != w && out == nil {
+ out = make([]*types.Var, n)
+ for j := 0; j < i; j++ {
+ out[j] = in.At(j)
+ }
+ }
+ if out != nil {
+ out[i] = w
+ }
+ }
+ return out
+}
+
+func (subst *subster) var_(v *types.Var) *types.Var {
+ if v != nil {
+ if typ := subst.typ(v.Type()); typ != v.Type() {
+ if v.IsField() {
+ return types.NewField(v.Pos(), v.Pkg(), v.Name(), typ, v.Embedded())
+ }
+ return types.NewVar(v.Pos(), v.Pkg(), v.Name(), typ)
+ }
+ }
+ return v
+}
+
+func (subst *subster) union(u *types.Union) *types.Union {
+ var out []*types.Term // nil => no updates
+
+ for i, n := 0, u.Len(); i < n; i++ {
+ t := u.Term(i)
+ r := subst.typ(t.Type())
+ if r != t.Type() && out == nil {
+ out = make([]*types.Term, n)
+ for j := 0; j < i; j++ {
+ out[j] = u.Term(j)
+ }
+ }
+ if out != nil {
+ out[i] = types.NewTerm(t.Tilde(), r)
+ }
+ }
+
+ if out != nil {
+ return types.NewUnion(out)
+ }
+ return u
+}
+
+func (subst *subster) interface_(iface *types.Interface) *types.Interface {
+ if iface == nil {
+ return nil
+ }
+
+ // methods for the interface. Initially nil if there is no known change needed.
+ // Signatures for the method where recv is nil. NewInterfaceType fills in the receivers.
+ var methods []*types.Func
+ initMethods := func(n int) { // copy first n explicit methods
+ methods = make([]*types.Func, iface.NumExplicitMethods())
+ for i := 0; i < n; i++ {
+ f := iface.ExplicitMethod(i)
+ norecv := changeRecv(f.Type().(*types.Signature), nil)
+ methods[i] = types.NewFunc(f.Pos(), f.Pkg(), f.Name(), norecv)
+ }
+ }
+ for i := 0; i < iface.NumExplicitMethods(); i++ {
+ f := iface.ExplicitMethod(i)
+ // On interfaces, we need to cycle break on anonymous interface types
+ // being in a cycle with their signatures being in cycles with their receivers
+ // that do not go through a Named.
+ norecv := changeRecv(f.Type().(*types.Signature), nil)
+ sig := subst.typ(norecv)
+ if sig != norecv && methods == nil {
+ initMethods(i)
+ }
+ if methods != nil {
+ methods[i] = types.NewFunc(f.Pos(), f.Pkg(), f.Name(), sig.(*types.Signature))
+ }
+ }
+
+ var embeds []types.Type
+ initEmbeds := func(n int) { // copy first n embedded types
+ embeds = make([]types.Type, iface.NumEmbeddeds())
+ for i := 0; i < n; i++ {
+ embeds[i] = iface.EmbeddedType(i)
+ }
+ }
+ for i := 0; i < iface.NumEmbeddeds(); i++ {
+ e := iface.EmbeddedType(i)
+ r := subst.typ(e)
+ if e != r && embeds == nil {
+ initEmbeds(i)
+ }
+ if embeds != nil {
+ embeds[i] = r
+ }
+ }
+
+ if methods == nil && embeds == nil {
+ return iface
+ }
+ if methods == nil {
+ initMethods(iface.NumExplicitMethods())
+ }
+ if embeds == nil {
+ initEmbeds(iface.NumEmbeddeds())
+ }
+ return types.NewInterfaceType(methods, embeds).Complete()
+}
+
+func (subst *subster) alias(t *aliases.Alias) types.Type {
+ // See subster.named. This follows the same strategy.
+ tparams := aliases.TypeParams(t)
+ targs := aliases.TypeArgs(t)
+ tname := t.Obj()
+ torigin := aliases.Origin(t)
+
+ if !declaredWithin(tname, subst.origin) {
+ // t is declared outside of the function origin. So t is a package level type alias.
+ if targs.Len() == 0 {
+ // No type arguments so no instantiation needed.
+ return t
+ }
+
+ // Instantiate with the substituted type arguments.
+ newTArgs := subst.typelist(targs)
+ return subst.instantiate(torigin, newTArgs)
+ }
+
+ if targs.Len() == 0 {
+ // t is declared within the function origin and has no type arguments.
+ //
+ // Example: This corresponds to A or B in F, but not A[int]:
+ //
+ // func F[T any]() {
+ // type A[S any] = struct{t T, s S}
+ // type B = T
+ // var x A[int]
+ // ...
+ // }
+ //
+ // This is somewhat different than *Named as *Alias cannot be created recursively.
+
+ // Copy and substitute type params.
+ var newTParams []*types.TypeParam
+ for i := 0; i < tparams.Len(); i++ {
+ cur := tparams.At(i)
+ cobj := cur.Obj()
+ cname := types.NewTypeName(cobj.Pos(), cobj.Pkg(), cobj.Name(), nil)
+ ntp := types.NewTypeParam(cname, nil)
+ subst.cache[cur] = ntp // See the comment "Note: Subtle" in subster.named.
+ newTParams = append(newTParams, ntp)
+ }
+
+ // Substitute rhs.
+ rhs := subst.typ(aliases.Rhs(t))
+
+ // Create the fresh alias.
+ obj := aliases.NewAlias(true, tname.Pos(), tname.Pkg(), tname.Name(), rhs)
+ fresh := obj.Type()
+ if fresh, ok := fresh.(*aliases.Alias); ok {
+ // TODO: assume ok when aliases are always materialized (go1.27).
+ aliases.SetTypeParams(fresh, newTParams)
+ }
+
+ // Substitute into all of the constraints after they are created.
+ for i, ntp := range newTParams {
+ bound := tparams.At(i).Constraint()
+ ntp.SetConstraint(subst.typ(bound))
+ }
+ return fresh
+ }
+
+ // t is declared within the function origin and has type arguments.
+ //
+ // Example: This corresponds to A[int] in F. Cases A and B are handled above.
+ // func F[T any]() {
+ // type A[S any] = struct{t T, s S}
+ // type B = T
+ // var x A[int]
+ // ...
+ // }
+ subOrigin := subst.typ(torigin)
+ subTArgs := subst.typelist(targs)
+ return subst.instantiate(subOrigin, subTArgs)
+}
+
+func (subst *subster) named(t *types.Named) types.Type {
+ // A Named type is a user defined type.
+ // Ignoring generics, Named types are canonical: they are identical if
+ // and only if they have the same defining symbol.
+ // Generics complicate things, both if the type definition itself is
+ // parameterized, and if the type is defined within the scope of a
+ // parameterized function. In this case, two named types are identical if
+ // and only if their identifying symbols are identical, and all type
+ // arguments bindings in scope of the named type definition (including the
+ // type parameters of the definition itself) are equivalent.
+ //
+ // Notably:
+ // 1. For type definition type T[P1 any] struct{}, T[A] and T[B] are identical
+ // only if A and B are identical.
+ // 2. Inside the generic func Fn[m any]() any { type T struct{}; return T{} },
+ // the result of Fn[A] and Fn[B] have identical type if and only if A and
+ // B are identical.
+ // 3. Both 1 and 2 could apply, such as in
+ // func F[m any]() any { type T[x any] struct{}; return T{} }
+ //
+ // A subster replaces type parameters within a function scope, and therefore must
+ // also replace free type parameters in the definitions of local types.
+ //
+ // Note: There are some detailed notes sprinkled throughout that borrow from
+ // lambda calculus notation. These contain some over simplifying math.
+ //
+ // LC: One way to think about subster is that it is a way of evaluating
+ // ((λm. E) N) as E[m:=N].
+ // Each Named type t has an object *TypeName within a scope S that binds an
+ // underlying type expression U. U can refer to symbols within S (+ S's ancestors).
+ // Let x = t.TypeParams() and A = t.TypeArgs().
+ // Each Named type t is then either:
+ // U where len(x) == 0 && len(A) == 0
+ // λx. U where len(x) != 0 && len(A) == 0
+ // ((λx. U) A) where len(x) == len(A)
+ // In each case, we will evaluate t[m:=N].
+ tparams := t.TypeParams() // x
+ targs := t.TypeArgs() // A
+
+ if !declaredWithin(t.Obj(), subst.origin) {
+ // t is declared outside of Fn[m].
+ //
+ // In this case, we can skip substituting t.Underlying().
+ // The underlying type cannot refer to the type parameters.
+ //
+ // LC: Let free(E) be the set of free type parameters in an expression E.
+ // Then whenever m ∉ free(E), then E = E[m:=N].
+ // t ∉ Scope(fn) so therefore m ∉ free(U) and m ∩ x = ∅.
+ if targs.Len() == 0 {
+ // t has no type arguments. So it does not need to be instantiated.
+ //
+ // This is the normal case in real Go code, where t is not parameterized,
+ // declared at some package scope, and m is a TypeParam from a parameterized
+ // function F[m] or method.
+ //
+ // LC: m ∉ free(A) lets us conclude m ∉ free(t). So t=t[m:=N].
+ return t
+ }
+
+ // t is declared outside of Fn[m] and has type arguments.
+ // The type arguments may contain type parameters m so
+ // substitute the type arguments, and instantiate the substituted
+ // type arguments.
+ //
+ // LC: Evaluate this as ((λx. U) A') where A' = A[m := N].
+ newTArgs := subst.typelist(targs)
+ return subst.instantiate(t.Origin(), newTArgs)
+ }
+
+ // t is declared within Fn[m].
+
+ if targs.Len() == 0 { // no type arguments?
+ assert(t == t.Origin(), "local parameterized type abstraction must be an origin type")
+
+ // t has no type arguments.
+ // The underlying type of t may contain the function's type parameters,
+ // replace these, and create a new type.
+ //
+ // Subtle: We short circuit substitution and use a newly created type in
+ // subst, i.e. cache[t]=fresh, to preemptively replace t with fresh
+ // in recursive types during traversal. This both breaks infinite cycles
+ // and allows for constructing types with the replacement applied in
+ // subst.typ(U).
+ //
+ // A new copy of the Named and Typename (and constraints) per function
+ // instantiation matches the semantics of Go, which treats all function
+ // instantiations F[N] as having distinct local types.
+ //
+ // LC: x.Len()=0 can be thought of as a special case of λx. U.
+ // LC: Evaluate (λx. U)[m:=N] as (λx'. U') where U'=U[x:=x',m:=N].
+ tname := t.Obj()
+ obj := types.NewTypeName(tname.Pos(), tname.Pkg(), tname.Name(), nil)
+ fresh := types.NewNamed(obj, nil, nil)
+ var newTParams []*types.TypeParam
+ for i := 0; i < tparams.Len(); i++ {
+ cur := tparams.At(i)
+ cobj := cur.Obj()
+ cname := types.NewTypeName(cobj.Pos(), cobj.Pkg(), cobj.Name(), nil)
+ ntp := types.NewTypeParam(cname, nil)
+ subst.cache[cur] = ntp
+ newTParams = append(newTParams, ntp)
+ }
+ fresh.SetTypeParams(newTParams)
+ subst.cache[t] = fresh
+ subst.cache[fresh] = fresh
+ fresh.SetUnderlying(subst.typ(t.Underlying()))
+ // Substitute into all of the constraints after they are created.
+ for i, ntp := range newTParams {
+ bound := tparams.At(i).Constraint()
+ ntp.SetConstraint(subst.typ(bound))
+ }
+ return fresh
+ }
+
+ // t is defined within Fn[m] and t has type arguments (an instantiation).
+ // We reduce this to the two cases above:
+ // (1) substitute the function's type parameters into t.Origin().
+ // (2) substitute t's type arguments A and instantiate the updated t.Origin() with these.
+ //
+ // LC: Evaluate ((λx. U) A)[m:=N] as (t' A') where t' = (λx. U)[m:=N] and A'=A [m:=N]
+ subOrigin := subst.typ(t.Origin())
+ subTArgs := subst.typelist(targs)
+ return subst.instantiate(subOrigin, subTArgs)
+}
+
+func (subst *subster) instantiate(orig types.Type, targs []types.Type) types.Type {
+ i, err := types.Instantiate(subst.ctxt, orig, targs, false)
+ assert(err == nil, "failed to Instantiate named (Named or Alias) type")
+ if c, _ := subst.uniqueness.At(i).(types.Type); c != nil {
+ return c.(types.Type)
+ }
+ subst.uniqueness.Set(i, i)
+ return i
+}
+
+func (subst *subster) typelist(l *types.TypeList) []types.Type {
+ res := make([]types.Type, l.Len())
+ for i := 0; i < l.Len(); i++ {
+ res[i] = subst.typ(l.At(i))
+ }
+ return res
+}
+
+func (subst *subster) signature(t *types.Signature) types.Type {
+ tparams := t.TypeParams()
+
+ // We are choosing not to support tparams.Len() > 0 until a need has been observed in practice.
+ //
+ // There are some known usages for types.Types coming from types.{Eval,CheckExpr}.
+ // To support tparams.Len() > 0, we just need to do the following [psuedocode]:
+ // targs := {subst.replacements[tparams[i]]]}; Instantiate(ctxt, t, targs, false)
+
+ assert(tparams.Len() == 0, "Substituting types.Signatures with generic functions are currently unsupported.")
+
+ // Either:
+ // (1)non-generic function.
+ // no type params to substitute
+ // (2)generic method and recv needs to be substituted.
+
+ // Receivers can be either:
+ // named
+ // pointer to named
+ // interface
+ // nil
+ // interface is the problematic case. We need to cycle break there!
+ recv := subst.var_(t.Recv())
+ params := subst.tuple(t.Params())
+ results := subst.tuple(t.Results())
+ if recv != t.Recv() || params != t.Params() || results != t.Results() {
+ return types.NewSignatureType(recv, nil, nil, params, results, t.Variadic())
+ }
+ return t
+}
+
+// reaches returns true if a type t reaches any type t' s.t. c[t'] == true.
+// It updates c to cache results.
+//
+// reaches is currently only part of the wellFormed debug logic, and
+// in practice c is initially only type parameters. It is not currently
+// relied on in production.
+func reaches(t types.Type, c map[types.Type]bool) (res bool) {
+ if c, ok := c[t]; ok {
+ return c
+ }
+
+ // c is populated with temporary false entries as types are visited.
+ // This avoids repeat visits and break cycles.
+ c[t] = false
+ defer func() {
+ c[t] = res
+ }()
+
+ switch t := t.(type) {
+ case *types.TypeParam, *types.Basic:
+ return false
+ case *types.Array:
+ return reaches(t.Elem(), c)
+ case *types.Slice:
+ return reaches(t.Elem(), c)
+ case *types.Pointer:
+ return reaches(t.Elem(), c)
+ case *types.Tuple:
+ for i := 0; i < t.Len(); i++ {
+ if reaches(t.At(i).Type(), c) {
+ return true
+ }
+ }
+ case *types.Struct:
+ for i := 0; i < t.NumFields(); i++ {
+ if reaches(t.Field(i).Type(), c) {
+ return true
+ }
+ }
+ case *types.Map:
+ return reaches(t.Key(), c) || reaches(t.Elem(), c)
+ case *types.Chan:
+ return reaches(t.Elem(), c)
+ case *types.Signature:
+ if t.Recv() != nil && reaches(t.Recv().Type(), c) {
+ return true
+ }
+ return reaches(t.Params(), c) || reaches(t.Results(), c)
+ case *types.Union:
+ for i := 0; i < t.Len(); i++ {
+ if reaches(t.Term(i).Type(), c) {
+ return true
+ }
+ }
+ case *types.Interface:
+ for i := 0; i < t.NumEmbeddeds(); i++ {
+ if reaches(t.Embedded(i), c) {
+ return true
+ }
+ }
+ for i := 0; i < t.NumExplicitMethods(); i++ {
+ if reaches(t.ExplicitMethod(i).Type(), c) {
+ return true
+ }
+ }
+ case *types.Named, *aliases.Alias:
+ return reaches(t.Underlying(), c)
+ default:
+ panic("unreachable")
+ }
+ return false
+}
diff --git a/vendor/golang.org/x/tools/go/ssa/task.go b/vendor/golang.org/x/tools/go/ssa/task.go
new file mode 100644
index 0000000..5024985
--- /dev/null
+++ b/vendor/golang.org/x/tools/go/ssa/task.go
@@ -0,0 +1,103 @@
+// Copyright 2024 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package ssa
+
+import (
+ "sync/atomic"
+)
+
+// Each task has two states: it is initially "active",
+// and transitions to "done".
+//
+// tasks form a directed graph. An edge from x to y (with y in x.edges)
+// indicates that the task x waits on the task y to be done.
+// Cycles are permitted.
+//
+// Calling x.wait() blocks the calling goroutine until task x,
+// and all the tasks transitively reachable from x are done.
+//
+// The nil *task is always considered done.
+type task struct {
+ done chan unit // close when the task is done.
+ edges map[*task]unit // set of predecessors of this task.
+ transitive atomic.Bool // true once it is known all predecessors are done.
+}
+
+func (x *task) isTransitivelyDone() bool { return x == nil || x.transitive.Load() }
+
+// addEdge creates an edge from x to y, indicating that
+// x.wait() will not return before y is done.
+// All calls to x.addEdge(...) should happen before x.markDone().
+func (x *task) addEdge(y *task) {
+ if x == y || y.isTransitivelyDone() {
+ return // no work remaining
+ }
+
+ // heuristic done check
+ select {
+ case <-x.done:
+ panic("cannot add an edge to a done task")
+ default:
+ }
+
+ if x.edges == nil {
+ x.edges = make(map[*task]unit)
+ }
+ x.edges[y] = unit{}
+}
+
+// markDone changes the task's state to markDone.
+func (x *task) markDone() {
+ if x != nil {
+ close(x.done)
+ }
+}
+
+// wait blocks until x and all the tasks it can reach through edges are done.
+func (x *task) wait() {
+ if x.isTransitivelyDone() {
+ return // already known to be done. Skip allocations.
+ }
+
+ // Use BFS to wait on u.done to be closed, for all u transitively
+ // reachable from x via edges.
+ //
+ // This work can be repeated by multiple workers doing wait().
+ //
+ // Note: Tarjan's SCC algorithm is able to mark SCCs as transitively done
+ // as soon as the SCC has been visited. This is theoretically faster, but is
+ // a more complex algorithm. Until we have evidence, we need the more complex
+ // algorithm, the simpler algorithm BFS is implemented.
+ //
+ // In Go 1.23, ssa/TestStdlib reaches <=3 *tasks per wait() in most schedules
+ // On some schedules, there is a cycle building net/http and internal/trace/testtrace
+ // due to slices functions.
+ work := []*task{x}
+ enqueued := map[*task]unit{x: {}}
+ for i := 0; i < len(work); i++ {
+ u := work[i]
+ if u.isTransitivelyDone() { // already transitively done
+ work[i] = nil
+ continue
+ }
+ <-u.done // wait for u to be marked done.
+
+ for v := range u.edges {
+ if _, ok := enqueued[v]; !ok {
+ enqueued[v] = unit{}
+ work = append(work, v)
+ }
+ }
+ }
+
+ // work is transitively closed over dependencies.
+ // u in work is done (or transitively done and skipped).
+ // u is transitively done.
+ for _, u := range work {
+ if u != nil {
+ x.transitive.Store(true)
+ }
+ }
+}
diff --git a/vendor/golang.org/x/tools/go/ssa/util.go b/vendor/golang.org/x/tools/go/ssa/util.go
new file mode 100644
index 0000000..549c9c8
--- /dev/null
+++ b/vendor/golang.org/x/tools/go/ssa/util.go
@@ -0,0 +1,430 @@
+// Copyright 2013 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package ssa
+
+// This file defines a number of miscellaneous utility functions.
+
+import (
+ "fmt"
+ "go/ast"
+ "go/token"
+ "go/types"
+ "io"
+ "os"
+ "sync"
+
+ "golang.org/x/tools/go/ast/astutil"
+ "golang.org/x/tools/go/types/typeutil"
+ "golang.org/x/tools/internal/aliases"
+ "golang.org/x/tools/internal/typeparams"
+ "golang.org/x/tools/internal/typesinternal"
+)
+
+type unit struct{}
+
+//// Sanity checking utilities
+
+// assert panics with the mesage msg if p is false.
+// Avoid combining with expensive string formatting.
+func assert(p bool, msg string) {
+ if !p {
+ panic(msg)
+ }
+}
+
+//// AST utilities
+
+func unparen(e ast.Expr) ast.Expr { return astutil.Unparen(e) }
+
+// isBlankIdent returns true iff e is an Ident with name "_".
+// They have no associated types.Object, and thus no type.
+func isBlankIdent(e ast.Expr) bool {
+ id, ok := e.(*ast.Ident)
+ return ok && id.Name == "_"
+}
+
+// rangePosition is the position to give for the `range` token in a RangeStmt.
+var rangePosition = func(rng *ast.RangeStmt) token.Pos {
+ // Before 1.20, this is unreachable.
+ // rng.For is a close, but incorrect position.
+ return rng.For
+}
+
+//// Type utilities. Some of these belong in go/types.
+
+// isNonTypeParamInterface reports whether t is an interface type but not a type parameter.
+func isNonTypeParamInterface(t types.Type) bool {
+ return !typeparams.IsTypeParam(t) && types.IsInterface(t)
+}
+
+// isBasic reports whether t is a basic type.
+// t is assumed to be an Underlying type (not Named or Alias).
+func isBasic(t types.Type) bool {
+ _, ok := t.(*types.Basic)
+ return ok
+}
+
+// isString reports whether t is exactly a string type.
+// t is assumed to be an Underlying type (not Named or Alias).
+func isString(t types.Type) bool {
+ basic, ok := t.(*types.Basic)
+ return ok && basic.Info()&types.IsString != 0
+}
+
+// isByteSlice reports whether t is of the form []~bytes.
+// t is assumed to be an Underlying type (not Named or Alias).
+func isByteSlice(t types.Type) bool {
+ if b, ok := t.(*types.Slice); ok {
+ e, _ := b.Elem().Underlying().(*types.Basic)
+ return e != nil && e.Kind() == types.Byte
+ }
+ return false
+}
+
+// isRuneSlice reports whether t is of the form []~runes.
+// t is assumed to be an Underlying type (not Named or Alias).
+func isRuneSlice(t types.Type) bool {
+ if b, ok := t.(*types.Slice); ok {
+ e, _ := b.Elem().Underlying().(*types.Basic)
+ return e != nil && e.Kind() == types.Rune
+ }
+ return false
+}
+
+// isBasicConvTypes returns true when a type set can be
+// one side of a Convert operation. This is when:
+// - All are basic, []byte, or []rune.
+// - At least 1 is basic.
+// - At most 1 is []byte or []rune.
+func isBasicConvTypes(tset termList) bool {
+ basics := 0
+ all := underIs(tset, func(t types.Type) bool {
+ if isBasic(t) {
+ basics++
+ return true
+ }
+ return isByteSlice(t) || isRuneSlice(t)
+ })
+ return all && basics >= 1 && tset.Len()-basics <= 1
+}
+
+// isPointer reports whether t's underlying type is a pointer.
+func isPointer(t types.Type) bool {
+ return is[*types.Pointer](t.Underlying())
+}
+
+// isPointerCore reports whether t's core type is a pointer.
+//
+// (Most pointer manipulation is related to receivers, in which case
+// isPointer is appropriate. tecallers can use isPointer(t).
+func isPointerCore(t types.Type) bool {
+ return is[*types.Pointer](typeparams.CoreType(t))
+}
+
+func is[T any](x any) bool {
+ _, ok := x.(T)
+ return ok
+}
+
+// recvType returns the receiver type of method obj.
+func recvType(obj *types.Func) types.Type {
+ return obj.Type().(*types.Signature).Recv().Type()
+}
+
+// fieldOf returns the index'th field of the (core type of) a struct type;
+// otherwise returns nil.
+func fieldOf(typ types.Type, index int) *types.Var {
+ if st, ok := typeparams.CoreType(typ).(*types.Struct); ok {
+ if 0 <= index && index < st.NumFields() {
+ return st.Field(index)
+ }
+ }
+ return nil
+}
+
+// isUntyped reports whether typ is the type of an untyped constant.
+func isUntyped(typ types.Type) bool {
+ // No Underlying/Unalias: untyped constant types cannot be Named or Alias.
+ b, ok := typ.(*types.Basic)
+ return ok && b.Info()&types.IsUntyped != 0
+}
+
+// declaredWithin reports whether an object is declared within a function.
+//
+// obj must not be a method or a field.
+func declaredWithin(obj types.Object, fn *types.Func) bool {
+ if obj.Pos() != token.NoPos {
+ return fn.Scope().Contains(obj.Pos()) // trust the positions if they exist.
+ }
+ if fn.Pkg() != obj.Pkg() {
+ return false // fast path for different packages
+ }
+
+ // Traverse Parent() scopes for fn.Scope().
+ for p := obj.Parent(); p != nil; p = p.Parent() {
+ if p == fn.Scope() {
+ return true
+ }
+ }
+ return false
+}
+
+// logStack prints the formatted "start" message to stderr and
+// returns a closure that prints the corresponding "end" message.
+// Call using 'defer logStack(...)()' to show builder stack on panic.
+// Don't forget trailing parens!
+func logStack(format string, args ...interface{}) func() {
+ msg := fmt.Sprintf(format, args...)
+ io.WriteString(os.Stderr, msg)
+ io.WriteString(os.Stderr, "\n")
+ return func() {
+ io.WriteString(os.Stderr, msg)
+ io.WriteString(os.Stderr, " end\n")
+ }
+}
+
+// newVar creates a 'var' for use in a types.Tuple.
+func newVar(name string, typ types.Type) *types.Var {
+ return types.NewParam(token.NoPos, nil, name, typ)
+}
+
+// anonVar creates an anonymous 'var' for use in a types.Tuple.
+func anonVar(typ types.Type) *types.Var {
+ return newVar("", typ)
+}
+
+var lenResults = types.NewTuple(anonVar(tInt))
+
+// makeLen returns the len builtin specialized to type func(T)int.
+func makeLen(T types.Type) *Builtin {
+ lenParams := types.NewTuple(anonVar(T))
+ return &Builtin{
+ name: "len",
+ sig: types.NewSignature(nil, lenParams, lenResults, false),
+ }
+}
+
+// receiverTypeArgs returns the type arguments to a method's receiver.
+// Returns an empty list if the receiver does not have type arguments.
+func receiverTypeArgs(method *types.Func) []types.Type {
+ recv := method.Type().(*types.Signature).Recv()
+ _, named := typesinternal.ReceiverNamed(recv)
+ if named == nil {
+ return nil // recv is anonymous struct/interface
+ }
+ ts := named.TypeArgs()
+ if ts.Len() == 0 {
+ return nil
+ }
+ targs := make([]types.Type, ts.Len())
+ for i := 0; i < ts.Len(); i++ {
+ targs[i] = ts.At(i)
+ }
+ return targs
+}
+
+// recvAsFirstArg takes a method signature and returns a function
+// signature with receiver as the first parameter.
+func recvAsFirstArg(sig *types.Signature) *types.Signature {
+ params := make([]*types.Var, 0, 1+sig.Params().Len())
+ params = append(params, sig.Recv())
+ for i := 0; i < sig.Params().Len(); i++ {
+ params = append(params, sig.Params().At(i))
+ }
+ return types.NewSignatureType(nil, nil, nil, types.NewTuple(params...), sig.Results(), sig.Variadic())
+}
+
+// instance returns whether an expression is a simple or qualified identifier
+// that is a generic instantiation.
+func instance(info *types.Info, expr ast.Expr) bool {
+ // Compare the logic here against go/types.instantiatedIdent,
+ // which also handles *IndexExpr and *IndexListExpr.
+ var id *ast.Ident
+ switch x := expr.(type) {
+ case *ast.Ident:
+ id = x
+ case *ast.SelectorExpr:
+ id = x.Sel
+ default:
+ return false
+ }
+ _, ok := info.Instances[id]
+ return ok
+}
+
+// instanceArgs returns the Instance[id].TypeArgs as a slice.
+func instanceArgs(info *types.Info, id *ast.Ident) []types.Type {
+ targList := info.Instances[id].TypeArgs
+ if targList == nil {
+ return nil
+ }
+
+ targs := make([]types.Type, targList.Len())
+ for i, n := 0, targList.Len(); i < n; i++ {
+ targs[i] = targList.At(i)
+ }
+ return targs
+}
+
+// Mapping of a type T to a canonical instance C s.t. types.Indentical(T, C).
+// Thread-safe.
+type canonizer struct {
+ mu sync.Mutex
+ types typeutil.Map // map from type to a canonical instance
+ lists typeListMap // map from a list of types to a canonical instance
+}
+
+func newCanonizer() *canonizer {
+ c := &canonizer{}
+ h := typeutil.MakeHasher()
+ c.types.SetHasher(h)
+ c.lists.hasher = h
+ return c
+}
+
+// List returns a canonical representative of a list of types.
+// Representative of the empty list is nil.
+func (c *canonizer) List(ts []types.Type) *typeList {
+ if len(ts) == 0 {
+ return nil
+ }
+
+ unaliasAll := func(ts []types.Type) []types.Type {
+ // Is there some top level alias?
+ var found bool
+ for _, t := range ts {
+ if _, ok := t.(*aliases.Alias); ok {
+ found = true
+ break
+ }
+ }
+ if !found {
+ return ts // no top level alias
+ }
+
+ cp := make([]types.Type, len(ts)) // copy with top level aliases removed.
+ for i, t := range ts {
+ cp[i] = aliases.Unalias(t)
+ }
+ return cp
+ }
+ l := unaliasAll(ts)
+
+ c.mu.Lock()
+ defer c.mu.Unlock()
+ return c.lists.rep(l)
+}
+
+// Type returns a canonical representative of type T.
+// Removes top-level aliases.
+//
+// For performance, reasons the canonical instance is order-dependent,
+// and may contain deeply nested aliases.
+func (c *canonizer) Type(T types.Type) types.Type {
+ T = aliases.Unalias(T) // remove the top level alias.
+
+ c.mu.Lock()
+ defer c.mu.Unlock()
+
+ if r := c.types.At(T); r != nil {
+ return r.(types.Type)
+ }
+ c.types.Set(T, T)
+ return T
+}
+
+// A type for representing a canonized list of types.
+type typeList []types.Type
+
+func (l *typeList) identical(ts []types.Type) bool {
+ if l == nil {
+ return len(ts) == 0
+ }
+ n := len(*l)
+ if len(ts) != n {
+ return false
+ }
+ for i, left := range *l {
+ right := ts[i]
+ if !types.Identical(left, right) {
+ return false
+ }
+ }
+ return true
+}
+
+type typeListMap struct {
+ hasher typeutil.Hasher
+ buckets map[uint32][]*typeList
+}
+
+// rep returns a canonical representative of a slice of types.
+func (m *typeListMap) rep(ts []types.Type) *typeList {
+ if m == nil || len(ts) == 0 {
+ return nil
+ }
+
+ if m.buckets == nil {
+ m.buckets = make(map[uint32][]*typeList)
+ }
+
+ h := m.hash(ts)
+ bucket := m.buckets[h]
+ for _, l := range bucket {
+ if l.identical(ts) {
+ return l
+ }
+ }
+
+ // not present. create a representative.
+ cp := make(typeList, len(ts))
+ copy(cp, ts)
+ rep := &cp
+
+ m.buckets[h] = append(bucket, rep)
+ return rep
+}
+
+func (m *typeListMap) hash(ts []types.Type) uint32 {
+ if m == nil {
+ return 0
+ }
+ // Some smallish prime far away from typeutil.Hash.
+ n := len(ts)
+ h := uint32(13619) + 2*uint32(n)
+ for i := 0; i < n; i++ {
+ h += 3 * m.hasher.Hash(ts[i])
+ }
+ return h
+}
+
+// instantiateMethod instantiates m with targs and returns a canonical representative for this method.
+func (canon *canonizer) instantiateMethod(m *types.Func, targs []types.Type, ctxt *types.Context) *types.Func {
+ recv := recvType(m)
+ if p, ok := aliases.Unalias(recv).(*types.Pointer); ok {
+ recv = p.Elem()
+ }
+ named := aliases.Unalias(recv).(*types.Named)
+ inst, err := types.Instantiate(ctxt, named.Origin(), targs, false)
+ if err != nil {
+ panic(err)
+ }
+ rep := canon.Type(inst)
+ obj, _, _ := types.LookupFieldOrMethod(rep, true, m.Pkg(), m.Name())
+ return obj.(*types.Func)
+}
+
+// Exposed to ssautil using the linkname hack.
+func isSyntactic(pkg *Package) bool { return pkg.syntax }
+
+// mapValues returns a new unordered array of map values.
+func mapValues[K comparable, V any](m map[K]V) []V {
+ vals := make([]V, 0, len(m))
+ for _, fn := range m {
+ vals = append(vals, fn)
+ }
+ return vals
+
+}
diff --git a/vendor/golang.org/x/tools/go/ssa/util_go120.go b/vendor/golang.org/x/tools/go/ssa/util_go120.go
new file mode 100644
index 0000000..9e8ea87
--- /dev/null
+++ b/vendor/golang.org/x/tools/go/ssa/util_go120.go
@@ -0,0 +1,17 @@
+// Copyright 2024 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+//go:build go1.20
+// +build go1.20
+
+package ssa
+
+import (
+ "go/ast"
+ "go/token"
+)
+
+func init() {
+ rangePosition = func(rng *ast.RangeStmt) token.Pos { return rng.Range }
+}
diff --git a/vendor/golang.org/x/tools/go/ssa/wrappers.go b/vendor/golang.org/x/tools/go/ssa/wrappers.go
new file mode 100644
index 0000000..d09b4f2
--- /dev/null
+++ b/vendor/golang.org/x/tools/go/ssa/wrappers.go
@@ -0,0 +1,348 @@
+// Copyright 2013 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package ssa
+
+// This file defines synthesis of Functions that delegate to declared
+// methods; they come in three kinds:
+//
+// (1) wrappers: methods that wrap declared methods, performing
+// implicit pointer indirections and embedded field selections.
+//
+// (2) thunks: funcs that wrap declared methods. Like wrappers,
+// thunks perform indirections and field selections. The thunk's
+// first parameter is used as the receiver for the method call.
+//
+// (3) bounds: funcs that wrap declared methods. The bound's sole
+// free variable, supplied by a closure, is used as the receiver
+// for the method call. No indirections or field selections are
+// performed since they can be done before the call.
+
+import (
+ "fmt"
+
+ "go/token"
+ "go/types"
+
+ "golang.org/x/tools/internal/typeparams"
+)
+
+// -- wrappers -----------------------------------------------------------
+
+// createWrapper returns a synthetic method that delegates to the
+// declared method denoted by meth.Obj(), first performing any
+// necessary pointer indirections or field selections implied by meth.
+//
+// The resulting method's receiver type is meth.Recv().
+//
+// This function is versatile but quite subtle! Consider the
+// following axes of variation when making changes:
+// - optional receiver indirection
+// - optional implicit field selections
+// - meth.Obj() may denote a concrete or an interface method
+// - the result may be a thunk or a wrapper.
+func createWrapper(prog *Program, sel *selection) *Function {
+ obj := sel.obj.(*types.Func) // the declared function
+ sig := sel.typ.(*types.Signature) // type of this wrapper
+
+ var recv *types.Var // wrapper's receiver or thunk's params[0]
+ name := obj.Name()
+ var description string
+ if sel.kind == types.MethodExpr {
+ name += "$thunk"
+ description = "thunk"
+ recv = sig.Params().At(0)
+ } else {
+ description = "wrapper"
+ recv = sig.Recv()
+ }
+
+ description = fmt.Sprintf("%s for %s", description, sel.obj)
+ if prog.mode&LogSource != 0 {
+ defer logStack("create %s to (%s)", description, recv.Type())()
+ }
+ /* method wrapper */
+ return &Function{
+ name: name,
+ method: sel,
+ object: obj,
+ Signature: sig,
+ Synthetic: description,
+ Prog: prog,
+ pos: obj.Pos(),
+ // wrappers have no syntax
+ build: (*builder).buildWrapper,
+ syntax: nil,
+ info: nil,
+ goversion: "",
+ }
+}
+
+// buildWrapper builds fn.Body for a method wrapper.
+func (b *builder) buildWrapper(fn *Function) {
+ var recv *types.Var // wrapper's receiver or thunk's params[0]
+ var start int // first regular param
+ if fn.method.kind == types.MethodExpr {
+ recv = fn.Signature.Params().At(0)
+ start = 1
+ } else {
+ recv = fn.Signature.Recv()
+ }
+
+ fn.startBody()
+ fn.addSpilledParam(recv)
+ createParams(fn, start)
+
+ indices := fn.method.index
+
+ var v Value = fn.Locals[0] // spilled receiver
+ if isPointer(fn.method.recv) {
+ v = emitLoad(fn, v)
+
+ // For simple indirection wrappers, perform an informative nil-check:
+ // "value method (T).f called using nil *T pointer"
+ if len(indices) == 1 && !isPointer(recvType(fn.object)) {
+ var c Call
+ c.Call.Value = &Builtin{
+ name: "ssa:wrapnilchk",
+ sig: types.NewSignature(nil,
+ types.NewTuple(anonVar(fn.method.recv), anonVar(tString), anonVar(tString)),
+ types.NewTuple(anonVar(fn.method.recv)), false),
+ }
+ c.Call.Args = []Value{
+ v,
+ stringConst(typeparams.MustDeref(fn.method.recv).String()),
+ stringConst(fn.method.obj.Name()),
+ }
+ c.setType(v.Type())
+ v = fn.emit(&c)
+ }
+ }
+
+ // Invariant: v is a pointer, either
+ // value of *A receiver param, or
+ // address of A spilled receiver.
+
+ // We use pointer arithmetic (FieldAddr possibly followed by
+ // Load) in preference to value extraction (Field possibly
+ // preceded by Load).
+
+ v = emitImplicitSelections(fn, v, indices[:len(indices)-1], token.NoPos)
+
+ // Invariant: v is a pointer, either
+ // value of implicit *C field, or
+ // address of implicit C field.
+
+ var c Call
+ if r := recvType(fn.object); !types.IsInterface(r) { // concrete method
+ if !isPointer(r) {
+ v = emitLoad(fn, v)
+ }
+ c.Call.Value = fn.Prog.objectMethod(fn.object, b)
+ c.Call.Args = append(c.Call.Args, v)
+ } else {
+ c.Call.Method = fn.object
+ c.Call.Value = emitLoad(fn, v) // interface (possibly a typeparam)
+ }
+ for _, arg := range fn.Params[1:] {
+ c.Call.Args = append(c.Call.Args, arg)
+ }
+ emitTailCall(fn, &c)
+ fn.finishBody()
+}
+
+// createParams creates parameters for wrapper method fn based on its
+// Signature.Params, which do not include the receiver.
+// start is the index of the first regular parameter to use.
+func createParams(fn *Function, start int) {
+ tparams := fn.Signature.Params()
+ for i, n := start, tparams.Len(); i < n; i++ {
+ fn.addParamVar(tparams.At(i))
+ }
+}
+
+// -- bounds -----------------------------------------------------------
+
+// createBound returns a bound method wrapper (or "bound"), a synthetic
+// function that delegates to a concrete or interface method denoted
+// by obj. The resulting function has no receiver, but has one free
+// variable which will be used as the method's receiver in the
+// tail-call.
+//
+// Use MakeClosure with such a wrapper to construct a bound method
+// closure. e.g.:
+//
+// type T int or: type T interface { meth() }
+// func (t T) meth()
+// var t T
+// f := t.meth
+// f() // calls t.meth()
+//
+// f is a closure of a synthetic wrapper defined as if by:
+//
+// f := func() { return t.meth() }
+//
+// Unlike createWrapper, createBound need perform no indirection or field
+// selections because that can be done before the closure is
+// constructed.
+func createBound(prog *Program, obj *types.Func) *Function {
+ description := fmt.Sprintf("bound method wrapper for %s", obj)
+ if prog.mode&LogSource != 0 {
+ defer logStack("%s", description)()
+ }
+ /* bound method wrapper */
+ fn := &Function{
+ name: obj.Name() + "$bound",
+ object: obj,
+ Signature: changeRecv(obj.Type().(*types.Signature), nil), // drop receiver
+ Synthetic: description,
+ Prog: prog,
+ pos: obj.Pos(),
+ // wrappers have no syntax
+ build: (*builder).buildBound,
+ syntax: nil,
+ info: nil,
+ goversion: "",
+ }
+ fn.FreeVars = []*FreeVar{{name: "recv", typ: recvType(obj), parent: fn}} // (cyclic)
+ return fn
+}
+
+// buildBound builds fn.Body for a bound method closure.
+func (b *builder) buildBound(fn *Function) {
+ fn.startBody()
+ createParams(fn, 0)
+ var c Call
+
+ recv := fn.FreeVars[0]
+ if !types.IsInterface(recvType(fn.object)) { // concrete
+ c.Call.Value = fn.Prog.objectMethod(fn.object, b)
+ c.Call.Args = []Value{recv}
+ } else {
+ c.Call.Method = fn.object
+ c.Call.Value = recv // interface (possibly a typeparam)
+ }
+ for _, arg := range fn.Params {
+ c.Call.Args = append(c.Call.Args, arg)
+ }
+ emitTailCall(fn, &c)
+ fn.finishBody()
+}
+
+// -- thunks -----------------------------------------------------------
+
+// createThunk returns a thunk, a synthetic function that delegates to a
+// concrete or interface method denoted by sel.obj. The resulting
+// function has no receiver, but has an additional (first) regular
+// parameter.
+//
+// Precondition: sel.kind == types.MethodExpr.
+//
+// type T int or: type T interface { meth() }
+// func (t T) meth()
+// f := T.meth
+// var t T
+// f(t) // calls t.meth()
+//
+// f is a synthetic wrapper defined as if by:
+//
+// f := func(t T) { return t.meth() }
+func createThunk(prog *Program, sel *selection) *Function {
+ if sel.kind != types.MethodExpr {
+ panic(sel)
+ }
+
+ fn := createWrapper(prog, sel)
+ if fn.Signature.Recv() != nil {
+ panic(fn) // unexpected receiver
+ }
+
+ return fn
+}
+
+func changeRecv(s *types.Signature, recv *types.Var) *types.Signature {
+ return types.NewSignature(recv, s.Params(), s.Results(), s.Variadic())
+}
+
+// A local version of *types.Selection.
+// Needed for some additional control, such as creating a MethodExpr for an instantiation.
+type selection struct {
+ kind types.SelectionKind
+ recv types.Type
+ typ types.Type
+ obj types.Object
+ index []int
+ indirect bool
+}
+
+func toSelection(sel *types.Selection) *selection {
+ return &selection{
+ kind: sel.Kind(),
+ recv: sel.Recv(),
+ typ: sel.Type(),
+ obj: sel.Obj(),
+ index: sel.Index(),
+ indirect: sel.Indirect(),
+ }
+}
+
+// -- instantiations --------------------------------------------------
+
+// buildInstantiationWrapper builds the body of an instantiation
+// wrapper fn. The body calls the original generic function,
+// bracketed by ChangeType conversions on its arguments and results.
+func (b *builder) buildInstantiationWrapper(fn *Function) {
+ orig := fn.topLevelOrigin
+ sig := fn.Signature
+
+ fn.startBody()
+ if sig.Recv() != nil {
+ fn.addParamVar(sig.Recv())
+ }
+ createParams(fn, 0)
+
+ // Create body. Add a call to origin generic function
+ // and make type changes between argument and parameters,
+ // as well as return values.
+ var c Call
+ c.Call.Value = orig
+ if res := orig.Signature.Results(); res.Len() == 1 {
+ c.typ = res.At(0).Type()
+ } else {
+ c.typ = res
+ }
+
+ // parameter of instance becomes an argument to the call
+ // to the original generic function.
+ argOffset := 0
+ for i, arg := range fn.Params {
+ var typ types.Type
+ if i == 0 && sig.Recv() != nil {
+ typ = orig.Signature.Recv().Type()
+ argOffset = 1
+ } else {
+ typ = orig.Signature.Params().At(i - argOffset).Type()
+ }
+ c.Call.Args = append(c.Call.Args, emitTypeCoercion(fn, arg, typ))
+ }
+
+ results := fn.emit(&c)
+ var ret Return
+ switch res := sig.Results(); res.Len() {
+ case 0:
+ // no results, do nothing.
+ case 1:
+ ret.Results = []Value{emitTypeCoercion(fn, results, res.At(0).Type())}
+ default:
+ for i := 0; i < sig.Results().Len(); i++ {
+ v := emitExtract(fn, results, i)
+ ret.Results = append(ret.Results, emitTypeCoercion(fn, v, res.At(i).Type()))
+ }
+ }
+
+ fn.emit(&ret)
+ fn.currentBlock = nil
+
+ fn.finishBody()
+}
diff --git a/vendor/golang.org/x/tools/go/types/objectpath/objectpath.go b/vendor/golang.org/x/tools/go/types/objectpath/objectpath.go
new file mode 100644
index 0000000..9ada177
--- /dev/null
+++ b/vendor/golang.org/x/tools/go/types/objectpath/objectpath.go
@@ -0,0 +1,788 @@
+// Copyright 2018 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// Package objectpath defines a naming scheme for types.Objects
+// (that is, named entities in Go programs) relative to their enclosing
+// package.
+//
+// Type-checker objects are canonical, so they are usually identified by
+// their address in memory (a pointer), but a pointer has meaning only
+// within one address space. By contrast, objectpath names allow the
+// identity of an object to be sent from one program to another,
+// establishing a correspondence between types.Object variables that are
+// distinct but logically equivalent.
+//
+// A single object may have multiple paths. In this example,
+//
+// type A struct{ X int }
+// type B A
+//
+// the field X has two paths due to its membership of both A and B.
+// The For(obj) function always returns one of these paths, arbitrarily
+// but consistently.
+package objectpath
+
+import (
+ "fmt"
+ "go/types"
+ "strconv"
+ "strings"
+
+ "golang.org/x/tools/internal/aliases"
+ "golang.org/x/tools/internal/typesinternal"
+)
+
+// TODO(adonovan): think about generic aliases.
+
+// A Path is an opaque name that identifies a types.Object
+// relative to its package. Conceptually, the name consists of a
+// sequence of destructuring operations applied to the package scope
+// to obtain the original object.
+// The name does not include the package itself.
+type Path string
+
+// Encoding
+//
+// An object path is a textual and (with training) human-readable encoding
+// of a sequence of destructuring operators, starting from a types.Package.
+// The sequences represent a path through the package/object/type graph.
+// We classify these operators by their type:
+//
+// PO package->object Package.Scope.Lookup
+// OT object->type Object.Type
+// TT type->type Type.{Elem,Key,{,{,Recv}Type}Params,Results,Underlying,Rhs} [EKPRUTrCa]
+// TO type->object Type.{At,Field,Method,Obj} [AFMO]
+//
+// All valid paths start with a package and end at an object
+// and thus may be defined by the regular language:
+//
+// objectpath = PO (OT TT* TO)*
+//
+// The concrete encoding follows directly:
+// - The only PO operator is Package.Scope.Lookup, which requires an identifier.
+// - The only OT operator is Object.Type,
+// which we encode as '.' because dot cannot appear in an identifier.
+// - The TT operators are encoded as [EKPRUTrCa];
+// two of these ({,Recv}TypeParams) require an integer operand,
+// which is encoded as a string of decimal digits.
+// - The TO operators are encoded as [AFMO];
+// three of these (At,Field,Method) require an integer operand,
+// which is encoded as a string of decimal digits.
+// These indices are stable across different representations
+// of the same package, even source and export data.
+// The indices used are implementation specific and may not correspond to
+// the argument to the go/types function.
+//
+// In the example below,
+//
+// package p
+//
+// type T interface {
+// f() (a string, b struct{ X int })
+// }
+//
+// field X has the path "T.UM0.RA1.F0",
+// representing the following sequence of operations:
+//
+// p.Lookup("T") T
+// .Type().Underlying().Method(0). f
+// .Type().Results().At(1) b
+// .Type().Field(0) X
+//
+// The encoding is not maximally compact---every R or P is
+// followed by an A, for example---but this simplifies the
+// encoder and decoder.
+const (
+ // object->type operators
+ opType = '.' // .Type() (Object)
+
+ // type->type operators
+ opElem = 'E' // .Elem() (Pointer, Slice, Array, Chan, Map)
+ opKey = 'K' // .Key() (Map)
+ opParams = 'P' // .Params() (Signature)
+ opResults = 'R' // .Results() (Signature)
+ opUnderlying = 'U' // .Underlying() (Named)
+ opTypeParam = 'T' // .TypeParams.At(i) (Named, Signature)
+ opRecvTypeParam = 'r' // .RecvTypeParams.At(i) (Signature)
+ opConstraint = 'C' // .Constraint() (TypeParam)
+ opRhs = 'a' // .Rhs() (Alias)
+
+ // type->object operators
+ opAt = 'A' // .At(i) (Tuple)
+ opField = 'F' // .Field(i) (Struct)
+ opMethod = 'M' // .Method(i) (Named or Interface; not Struct: "promoted" names are ignored)
+ opObj = 'O' // .Obj() (Named, TypeParam)
+)
+
+// For is equivalent to new(Encoder).For(obj).
+//
+// It may be more efficient to reuse a single Encoder across several calls.
+func For(obj types.Object) (Path, error) {
+ return new(Encoder).For(obj)
+}
+
+// An Encoder amortizes the cost of encoding the paths of multiple objects.
+// The zero value of an Encoder is ready to use.
+type Encoder struct {
+ scopeMemo map[*types.Scope][]types.Object // memoization of scopeObjects
+}
+
+// For returns the path to an object relative to its package,
+// or an error if the object is not accessible from the package's Scope.
+//
+// The For function guarantees to return a path only for the following objects:
+// - package-level types
+// - exported package-level non-types
+// - methods
+// - parameter and result variables
+// - struct fields
+// These objects are sufficient to define the API of their package.
+// The objects described by a package's export data are drawn from this set.
+//
+// The set of objects accessible from a package's Scope depends on
+// whether the package was produced by type-checking syntax, or
+// reading export data; the latter may have a smaller Scope since
+// export data trims objects that are not reachable from an exported
+// declaration. For example, the For function will return a path for
+// an exported method of an unexported type that is not reachable
+// from any public declaration; this path will cause the Object
+// function to fail if called on a package loaded from export data.
+// TODO(adonovan): is this a bug or feature? Should this package
+// compute accessibility in the same way?
+//
+// For does not return a path for predeclared names, imported package
+// names, local names, and unexported package-level names (except
+// types).
+//
+// Example: given this definition,
+//
+// package p
+//
+// type T interface {
+// f() (a string, b struct{ X int })
+// }
+//
+// For(X) would return a path that denotes the following sequence of operations:
+//
+// p.Scope().Lookup("T") (TypeName T)
+// .Type().Underlying().Method(0). (method Func f)
+// .Type().Results().At(1) (field Var b)
+// .Type().Field(0) (field Var X)
+//
+// where p is the package (*types.Package) to which X belongs.
+func (enc *Encoder) For(obj types.Object) (Path, error) {
+ pkg := obj.Pkg()
+
+ // This table lists the cases of interest.
+ //
+ // Object Action
+ // ------ ------
+ // nil reject
+ // builtin reject
+ // pkgname reject
+ // label reject
+ // var
+ // package-level accept
+ // func param/result accept
+ // local reject
+ // struct field accept
+ // const
+ // package-level accept
+ // local reject
+ // func
+ // package-level accept
+ // init functions reject
+ // concrete method accept
+ // interface method accept
+ // type
+ // package-level accept
+ // local reject
+ //
+ // The only accessible package-level objects are members of pkg itself.
+ //
+ // The cases are handled in four steps:
+ //
+ // 1. reject nil and builtin
+ // 2. accept package-level objects
+ // 3. reject obviously invalid objects
+ // 4. search the API for the path to the param/result/field/method.
+
+ // 1. reference to nil or builtin?
+ if pkg == nil {
+ return "", fmt.Errorf("predeclared %s has no path", obj)
+ }
+ scope := pkg.Scope()
+
+ // 2. package-level object?
+ if scope.Lookup(obj.Name()) == obj {
+ // Only exported objects (and non-exported types) have a path.
+ // Non-exported types may be referenced by other objects.
+ if _, ok := obj.(*types.TypeName); !ok && !obj.Exported() {
+ return "", fmt.Errorf("no path for non-exported %v", obj)
+ }
+ return Path(obj.Name()), nil
+ }
+
+ // 3. Not a package-level object.
+ // Reject obviously non-viable cases.
+ switch obj := obj.(type) {
+ case *types.TypeName:
+ if _, ok := aliases.Unalias(obj.Type()).(*types.TypeParam); !ok {
+ // With the exception of type parameters, only package-level type names
+ // have a path.
+ return "", fmt.Errorf("no path for %v", obj)
+ }
+ case *types.Const, // Only package-level constants have a path.
+ *types.Label, // Labels are function-local.
+ *types.PkgName: // PkgNames are file-local.
+ return "", fmt.Errorf("no path for %v", obj)
+
+ case *types.Var:
+ // Could be:
+ // - a field (obj.IsField())
+ // - a func parameter or result
+ // - a local var.
+ // Sadly there is no way to distinguish
+ // a param/result from a local
+ // so we must proceed to the find.
+
+ case *types.Func:
+ // A func, if not package-level, must be a method.
+ if recv := obj.Type().(*types.Signature).Recv(); recv == nil {
+ return "", fmt.Errorf("func is not a method: %v", obj)
+ }
+
+ if path, ok := enc.concreteMethod(obj); ok {
+ // Fast path for concrete methods that avoids looping over scope.
+ return path, nil
+ }
+
+ default:
+ panic(obj)
+ }
+
+ // 4. Search the API for the path to the var (field/param/result) or method.
+
+ // First inspect package-level named types.
+ // In the presence of path aliases, these give
+ // the best paths because non-types may
+ // refer to types, but not the reverse.
+ empty := make([]byte, 0, 48) // initial space
+ objs := enc.scopeObjects(scope)
+ for _, o := range objs {
+ tname, ok := o.(*types.TypeName)
+ if !ok {
+ continue // handle non-types in second pass
+ }
+
+ path := append(empty, o.Name()...)
+ path = append(path, opType)
+
+ T := o.Type()
+ if alias, ok := T.(*aliases.Alias); ok {
+ if r := findTypeParam(obj, aliases.TypeParams(alias), path, opTypeParam, nil); r != nil {
+ return Path(r), nil
+ }
+ if r := find(obj, aliases.Rhs(alias), append(path, opRhs), nil); r != nil {
+ return Path(r), nil
+ }
+
+ } else if tname.IsAlias() {
+ // legacy alias
+ if r := find(obj, T, path, nil); r != nil {
+ return Path(r), nil
+ }
+
+ } else if named, ok := T.(*types.Named); ok {
+ // defined (named) type
+ if r := findTypeParam(obj, named.TypeParams(), path, opTypeParam, nil); r != nil {
+ return Path(r), nil
+ }
+ if r := find(obj, named.Underlying(), append(path, opUnderlying), nil); r != nil {
+ return Path(r), nil
+ }
+ }
+ }
+
+ // Then inspect everything else:
+ // non-types, and declared methods of defined types.
+ for _, o := range objs {
+ path := append(empty, o.Name()...)
+ if _, ok := o.(*types.TypeName); !ok {
+ if o.Exported() {
+ // exported non-type (const, var, func)
+ if r := find(obj, o.Type(), append(path, opType), nil); r != nil {
+ return Path(r), nil
+ }
+ }
+ continue
+ }
+
+ // Inspect declared methods of defined types.
+ if T, ok := aliases.Unalias(o.Type()).(*types.Named); ok {
+ path = append(path, opType)
+ // The method index here is always with respect
+ // to the underlying go/types data structures,
+ // which ultimately derives from source order
+ // and must be preserved by export data.
+ for i := 0; i < T.NumMethods(); i++ {
+ m := T.Method(i)
+ path2 := appendOpArg(path, opMethod, i)
+ if m == obj {
+ return Path(path2), nil // found declared method
+ }
+ if r := find(obj, m.Type(), append(path2, opType), nil); r != nil {
+ return Path(r), nil
+ }
+ }
+ }
+ }
+
+ return "", fmt.Errorf("can't find path for %v in %s", obj, pkg.Path())
+}
+
+func appendOpArg(path []byte, op byte, arg int) []byte {
+ path = append(path, op)
+ path = strconv.AppendInt(path, int64(arg), 10)
+ return path
+}
+
+// concreteMethod returns the path for meth, which must have a non-nil receiver.
+// The second return value indicates success and may be false if the method is
+// an interface method or if it is an instantiated method.
+//
+// This function is just an optimization that avoids the general scope walking
+// approach. You are expected to fall back to the general approach if this
+// function fails.
+func (enc *Encoder) concreteMethod(meth *types.Func) (Path, bool) {
+ // Concrete methods can only be declared on package-scoped named types. For
+ // that reason we can skip the expensive walk over the package scope: the
+ // path will always be package -> named type -> method. We can trivially get
+ // the type name from the receiver, and only have to look over the type's
+ // methods to find the method index.
+ //
+ // Methods on generic types require special consideration, however. Consider
+ // the following package:
+ //
+ // L1: type S[T any] struct{}
+ // L2: func (recv S[A]) Foo() { recv.Bar() }
+ // L3: func (recv S[B]) Bar() { }
+ // L4: type Alias = S[int]
+ // L5: func _[T any]() { var s S[int]; s.Foo() }
+ //
+ // The receivers of methods on generic types are instantiations. L2 and L3
+ // instantiate S with the type-parameters A and B, which are scoped to the
+ // respective methods. L4 and L5 each instantiate S with int. Each of these
+ // instantiations has its own method set, full of methods (and thus objects)
+ // with receivers whose types are the respective instantiations. In other
+ // words, we have
+ //
+ // S[A].Foo, S[A].Bar
+ // S[B].Foo, S[B].Bar
+ // S[int].Foo, S[int].Bar
+ //
+ // We may thus be trying to produce object paths for any of these objects.
+ //
+ // S[A].Foo and S[B].Bar are the origin methods, and their paths are S.Foo
+ // and S.Bar, which are the paths that this function naturally produces.
+ //
+ // S[A].Bar, S[B].Foo, and both methods on S[int] are instantiations that
+ // don't correspond to the origin methods. For S[int], this is significant.
+ // The most precise object path for S[int].Foo, for example, is Alias.Foo,
+ // not S.Foo. Our function, however, would produce S.Foo, which would
+ // resolve to a different object.
+ //
+ // For S[A].Bar and S[B].Foo it could be argued that S.Bar and S.Foo are
+ // still the correct paths, since only the origin methods have meaningful
+ // paths. But this is likely only true for trivial cases and has edge cases.
+ // Since this function is only an optimization, we err on the side of giving
+ // up, deferring to the slower but definitely correct algorithm. Most users
+ // of objectpath will only be giving us origin methods, anyway, as referring
+ // to instantiated methods is usually not useful.
+
+ if meth.Origin() != meth {
+ return "", false
+ }
+
+ _, named := typesinternal.ReceiverNamed(meth.Type().(*types.Signature).Recv())
+ if named == nil {
+ return "", false
+ }
+
+ if types.IsInterface(named) {
+ // Named interfaces don't have to be package-scoped
+ //
+ // TODO(dominikh): opt: if scope.Lookup(name) == named, then we can apply this optimization to interface
+ // methods, too, I think.
+ return "", false
+ }
+
+ // Preallocate space for the name, opType, opMethod, and some digits.
+ name := named.Obj().Name()
+ path := make([]byte, 0, len(name)+8)
+ path = append(path, name...)
+ path = append(path, opType)
+
+ // Method indices are w.r.t. the go/types data structures,
+ // ultimately deriving from source order,
+ // which is preserved by export data.
+ for i := 0; i < named.NumMethods(); i++ {
+ if named.Method(i) == meth {
+ path = appendOpArg(path, opMethod, i)
+ return Path(path), true
+ }
+ }
+
+ // Due to golang/go#59944, go/types fails to associate the receiver with
+ // certain methods on cgo types.
+ //
+ // TODO(rfindley): replace this panic once golang/go#59944 is fixed in all Go
+ // versions gopls supports.
+ return "", false
+ // panic(fmt.Sprintf("couldn't find method %s on type %s; methods: %#v", meth, named, enc.namedMethods(named)))
+}
+
+// find finds obj within type T, returning the path to it, or nil if not found.
+//
+// The seen map is used to short circuit cycles through type parameters. If
+// nil, it will be allocated as necessary.
+func find(obj types.Object, T types.Type, path []byte, seen map[*types.TypeName]bool) []byte {
+ switch T := T.(type) {
+ case *aliases.Alias:
+ return find(obj, aliases.Unalias(T), path, seen)
+ case *types.Basic, *types.Named:
+ // Named types belonging to pkg were handled already,
+ // so T must belong to another package. No path.
+ return nil
+ case *types.Pointer:
+ return find(obj, T.Elem(), append(path, opElem), seen)
+ case *types.Slice:
+ return find(obj, T.Elem(), append(path, opElem), seen)
+ case *types.Array:
+ return find(obj, T.Elem(), append(path, opElem), seen)
+ case *types.Chan:
+ return find(obj, T.Elem(), append(path, opElem), seen)
+ case *types.Map:
+ if r := find(obj, T.Key(), append(path, opKey), seen); r != nil {
+ return r
+ }
+ return find(obj, T.Elem(), append(path, opElem), seen)
+ case *types.Signature:
+ if r := findTypeParam(obj, T.RecvTypeParams(), path, opRecvTypeParam, nil); r != nil {
+ return r
+ }
+ if r := findTypeParam(obj, T.TypeParams(), path, opTypeParam, seen); r != nil {
+ return r
+ }
+ if r := find(obj, T.Params(), append(path, opParams), seen); r != nil {
+ return r
+ }
+ return find(obj, T.Results(), append(path, opResults), seen)
+ case *types.Struct:
+ for i := 0; i < T.NumFields(); i++ {
+ fld := T.Field(i)
+ path2 := appendOpArg(path, opField, i)
+ if fld == obj {
+ return path2 // found field var
+ }
+ if r := find(obj, fld.Type(), append(path2, opType), seen); r != nil {
+ return r
+ }
+ }
+ return nil
+ case *types.Tuple:
+ for i := 0; i < T.Len(); i++ {
+ v := T.At(i)
+ path2 := appendOpArg(path, opAt, i)
+ if v == obj {
+ return path2 // found param/result var
+ }
+ if r := find(obj, v.Type(), append(path2, opType), seen); r != nil {
+ return r
+ }
+ }
+ return nil
+ case *types.Interface:
+ for i := 0; i < T.NumMethods(); i++ {
+ m := T.Method(i)
+ path2 := appendOpArg(path, opMethod, i)
+ if m == obj {
+ return path2 // found interface method
+ }
+ if r := find(obj, m.Type(), append(path2, opType), seen); r != nil {
+ return r
+ }
+ }
+ return nil
+ case *types.TypeParam:
+ name := T.Obj()
+ if name == obj {
+ return append(path, opObj)
+ }
+ if seen[name] {
+ return nil
+ }
+ if seen == nil {
+ seen = make(map[*types.TypeName]bool)
+ }
+ seen[name] = true
+ if r := find(obj, T.Constraint(), append(path, opConstraint), seen); r != nil {
+ return r
+ }
+ return nil
+ }
+ panic(T)
+}
+
+func findTypeParam(obj types.Object, list *types.TypeParamList, path []byte, op byte, seen map[*types.TypeName]bool) []byte {
+ for i := 0; i < list.Len(); i++ {
+ tparam := list.At(i)
+ path2 := appendOpArg(path, op, i)
+ if r := find(obj, tparam, path2, seen); r != nil {
+ return r
+ }
+ }
+ return nil
+}
+
+// Object returns the object denoted by path p within the package pkg.
+func Object(pkg *types.Package, p Path) (types.Object, error) {
+ pathstr := string(p)
+ if pathstr == "" {
+ return nil, fmt.Errorf("empty path")
+ }
+
+ var pkgobj, suffix string
+ if dot := strings.IndexByte(pathstr, opType); dot < 0 {
+ pkgobj = pathstr
+ } else {
+ pkgobj = pathstr[:dot]
+ suffix = pathstr[dot:] // suffix starts with "."
+ }
+
+ obj := pkg.Scope().Lookup(pkgobj)
+ if obj == nil {
+ return nil, fmt.Errorf("package %s does not contain %q", pkg.Path(), pkgobj)
+ }
+
+ // abstraction of *types.{Pointer,Slice,Array,Chan,Map}
+ type hasElem interface {
+ Elem() types.Type
+ }
+ // abstraction of *types.{Named,Signature}
+ type hasTypeParams interface {
+ TypeParams() *types.TypeParamList
+ }
+ // abstraction of *types.{Named,TypeParam}
+ type hasObj interface {
+ Obj() *types.TypeName
+ }
+
+ // The loop state is the pair (t, obj),
+ // exactly one of which is non-nil, initially obj.
+ // All suffixes start with '.' (the only object->type operation),
+ // followed by optional type->type operations,
+ // then a type->object operation.
+ // The cycle then repeats.
+ var t types.Type
+ for suffix != "" {
+ code := suffix[0]
+ suffix = suffix[1:]
+
+ // Codes [AFMTr] have an integer operand.
+ var index int
+ switch code {
+ case opAt, opField, opMethod, opTypeParam, opRecvTypeParam:
+ rest := strings.TrimLeft(suffix, "0123456789")
+ numerals := suffix[:len(suffix)-len(rest)]
+ suffix = rest
+ i, err := strconv.Atoi(numerals)
+ if err != nil {
+ return nil, fmt.Errorf("invalid path: bad numeric operand %q for code %q", numerals, code)
+ }
+ index = int(i)
+ case opObj:
+ // no operand
+ default:
+ // The suffix must end with a type->object operation.
+ if suffix == "" {
+ return nil, fmt.Errorf("invalid path: ends with %q, want [AFMO]", code)
+ }
+ }
+
+ if code == opType {
+ if t != nil {
+ return nil, fmt.Errorf("invalid path: unexpected %q in type context", opType)
+ }
+ t = obj.Type()
+ obj = nil
+ continue
+ }
+
+ if t == nil {
+ return nil, fmt.Errorf("invalid path: code %q in object context", code)
+ }
+
+ // Inv: t != nil, obj == nil
+
+ t = aliases.Unalias(t)
+ switch code {
+ case opElem:
+ hasElem, ok := t.(hasElem) // Pointer, Slice, Array, Chan, Map
+ if !ok {
+ return nil, fmt.Errorf("cannot apply %q to %s (got %T, want pointer, slice, array, chan or map)", code, t, t)
+ }
+ t = hasElem.Elem()
+
+ case opKey:
+ mapType, ok := t.(*types.Map)
+ if !ok {
+ return nil, fmt.Errorf("cannot apply %q to %s (got %T, want map)", code, t, t)
+ }
+ t = mapType.Key()
+
+ case opParams:
+ sig, ok := t.(*types.Signature)
+ if !ok {
+ return nil, fmt.Errorf("cannot apply %q to %s (got %T, want signature)", code, t, t)
+ }
+ t = sig.Params()
+
+ case opResults:
+ sig, ok := t.(*types.Signature)
+ if !ok {
+ return nil, fmt.Errorf("cannot apply %q to %s (got %T, want signature)", code, t, t)
+ }
+ t = sig.Results()
+
+ case opUnderlying:
+ named, ok := t.(*types.Named)
+ if !ok {
+ return nil, fmt.Errorf("cannot apply %q to %s (got %T, want named)", code, t, t)
+ }
+ t = named.Underlying()
+
+ case opRhs:
+ if alias, ok := t.(*aliases.Alias); ok {
+ t = aliases.Rhs(alias)
+ } else if false && aliases.Enabled() {
+ // The Enabled check is too expensive, so for now we
+ // simply assume that aliases are not enabled.
+ // TODO(adonovan): replace with "if true {" when go1.24 is assured.
+ return nil, fmt.Errorf("cannot apply %q to %s (got %T, want alias)", code, t, t)
+ }
+
+ case opTypeParam:
+ hasTypeParams, ok := t.(hasTypeParams) // Named, Signature
+ if !ok {
+ return nil, fmt.Errorf("cannot apply %q to %s (got %T, want named or signature)", code, t, t)
+ }
+ tparams := hasTypeParams.TypeParams()
+ if n := tparams.Len(); index >= n {
+ return nil, fmt.Errorf("tuple index %d out of range [0-%d)", index, n)
+ }
+ t = tparams.At(index)
+
+ case opRecvTypeParam:
+ sig, ok := t.(*types.Signature) // Signature
+ if !ok {
+ return nil, fmt.Errorf("cannot apply %q to %s (got %T, want signature)", code, t, t)
+ }
+ rtparams := sig.RecvTypeParams()
+ if n := rtparams.Len(); index >= n {
+ return nil, fmt.Errorf("tuple index %d out of range [0-%d)", index, n)
+ }
+ t = rtparams.At(index)
+
+ case opConstraint:
+ tparam, ok := t.(*types.TypeParam)
+ if !ok {
+ return nil, fmt.Errorf("cannot apply %q to %s (got %T, want type parameter)", code, t, t)
+ }
+ t = tparam.Constraint()
+
+ case opAt:
+ tuple, ok := t.(*types.Tuple)
+ if !ok {
+ return nil, fmt.Errorf("cannot apply %q to %s (got %T, want tuple)", code, t, t)
+ }
+ if n := tuple.Len(); index >= n {
+ return nil, fmt.Errorf("tuple index %d out of range [0-%d)", index, n)
+ }
+ obj = tuple.At(index)
+ t = nil
+
+ case opField:
+ structType, ok := t.(*types.Struct)
+ if !ok {
+ return nil, fmt.Errorf("cannot apply %q to %s (got %T, want struct)", code, t, t)
+ }
+ if n := structType.NumFields(); index >= n {
+ return nil, fmt.Errorf("field index %d out of range [0-%d)", index, n)
+ }
+ obj = structType.Field(index)
+ t = nil
+
+ case opMethod:
+ switch t := t.(type) {
+ case *types.Interface:
+ if index >= t.NumMethods() {
+ return nil, fmt.Errorf("method index %d out of range [0-%d)", index, t.NumMethods())
+ }
+ obj = t.Method(index) // Id-ordered
+
+ case *types.Named:
+ if index >= t.NumMethods() {
+ return nil, fmt.Errorf("method index %d out of range [0-%d)", index, t.NumMethods())
+ }
+ obj = t.Method(index)
+
+ default:
+ return nil, fmt.Errorf("cannot apply %q to %s (got %T, want interface or named)", code, t, t)
+ }
+ t = nil
+
+ case opObj:
+ hasObj, ok := t.(hasObj)
+ if !ok {
+ return nil, fmt.Errorf("cannot apply %q to %s (got %T, want named or type param)", code, t, t)
+ }
+ obj = hasObj.Obj()
+ t = nil
+
+ default:
+ return nil, fmt.Errorf("invalid path: unknown code %q", code)
+ }
+ }
+
+ if obj == nil {
+ panic(p) // path does not end in an object-valued operator
+ }
+
+ if obj.Pkg() != pkg {
+ return nil, fmt.Errorf("path denotes %s, which belongs to a different package", obj)
+ }
+
+ return obj, nil // success
+}
+
+// scopeObjects is a memoization of scope objects.
+// Callers must not modify the result.
+func (enc *Encoder) scopeObjects(scope *types.Scope) []types.Object {
+ m := enc.scopeMemo
+ if m == nil {
+ m = make(map[*types.Scope][]types.Object)
+ enc.scopeMemo = m
+ }
+ objs, ok := m[scope]
+ if !ok {
+ names := scope.Names() // allocates and sorts
+ objs = make([]types.Object, len(names))
+ for i, name := range names {
+ objs[i] = scope.Lookup(name)
+ }
+ m[scope] = objs
+ }
+ return objs
+}
diff --git a/vendor/golang.org/x/tools/go/types/typeutil/callee.go b/vendor/golang.org/x/tools/go/types/typeutil/callee.go
new file mode 100644
index 0000000..90dc541
--- /dev/null
+++ b/vendor/golang.org/x/tools/go/types/typeutil/callee.go
@@ -0,0 +1,69 @@
+// Copyright 2018 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package typeutil
+
+import (
+ "go/ast"
+ "go/types"
+
+ "golang.org/x/tools/go/ast/astutil"
+ "golang.org/x/tools/internal/typeparams"
+)
+
+// Callee returns the named target of a function call, if any:
+// a function, method, builtin, or variable.
+//
+// Functions and methods may potentially have type parameters.
+func Callee(info *types.Info, call *ast.CallExpr) types.Object {
+ fun := astutil.Unparen(call.Fun)
+
+ // Look through type instantiation if necessary.
+ isInstance := false
+ switch fun.(type) {
+ case *ast.IndexExpr, *ast.IndexListExpr:
+ // When extracting the callee from an *IndexExpr, we need to check that
+ // it is a *types.Func and not a *types.Var.
+ // Example: Don't match a slice m within the expression `m[0]()`.
+ isInstance = true
+ fun, _, _, _ = typeparams.UnpackIndexExpr(fun)
+ }
+
+ var obj types.Object
+ switch fun := fun.(type) {
+ case *ast.Ident:
+ obj = info.Uses[fun] // type, var, builtin, or declared func
+ case *ast.SelectorExpr:
+ if sel, ok := info.Selections[fun]; ok {
+ obj = sel.Obj() // method or field
+ } else {
+ obj = info.Uses[fun.Sel] // qualified identifier?
+ }
+ }
+ if _, ok := obj.(*types.TypeName); ok {
+ return nil // T(x) is a conversion, not a call
+ }
+ // A Func is required to match instantiations.
+ if _, ok := obj.(*types.Func); isInstance && !ok {
+ return nil // Was not a Func.
+ }
+ return obj
+}
+
+// StaticCallee returns the target (function or method) of a static function
+// call, if any. It returns nil for calls to builtins.
+//
+// Note: for calls of instantiated functions and methods, StaticCallee returns
+// the corresponding generic function or method on the generic type.
+func StaticCallee(info *types.Info, call *ast.CallExpr) *types.Func {
+ if f, ok := Callee(info, call).(*types.Func); ok && !interfaceMethod(f) {
+ return f
+ }
+ return nil
+}
+
+func interfaceMethod(f *types.Func) bool {
+ recv := f.Type().(*types.Signature).Recv()
+ return recv != nil && types.IsInterface(recv.Type())
+}
diff --git a/vendor/golang.org/x/tools/go/types/typeutil/imports.go b/vendor/golang.org/x/tools/go/types/typeutil/imports.go
new file mode 100644
index 0000000..b81ce0c
--- /dev/null
+++ b/vendor/golang.org/x/tools/go/types/typeutil/imports.go
@@ -0,0 +1,30 @@
+// Copyright 2014 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package typeutil
+
+import "go/types"
+
+// Dependencies returns all dependencies of the specified packages.
+//
+// Dependent packages appear in topological order: if package P imports
+// package Q, Q appears earlier than P in the result.
+// The algorithm follows import statements in the order they
+// appear in the source code, so the result is a total order.
+func Dependencies(pkgs ...*types.Package) []*types.Package {
+ var result []*types.Package
+ seen := make(map[*types.Package]bool)
+ var visit func(pkgs []*types.Package)
+ visit = func(pkgs []*types.Package) {
+ for _, p := range pkgs {
+ if !seen[p] {
+ seen[p] = true
+ visit(p.Imports())
+ result = append(result, p)
+ }
+ }
+ }
+ visit(pkgs)
+ return result
+}
diff --git a/vendor/golang.org/x/tools/go/types/typeutil/map.go b/vendor/golang.org/x/tools/go/types/typeutil/map.go
new file mode 100644
index 0000000..a92f80d
--- /dev/null
+++ b/vendor/golang.org/x/tools/go/types/typeutil/map.go
@@ -0,0 +1,518 @@
+// Copyright 2014 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// Package typeutil defines various utilities for types, such as Map,
+// a mapping from types.Type to any values.
+package typeutil // import "golang.org/x/tools/go/types/typeutil"
+
+import (
+ "bytes"
+ "fmt"
+ "go/types"
+ "reflect"
+
+ "golang.org/x/tools/internal/aliases"
+ "golang.org/x/tools/internal/typeparams"
+)
+
+// Map is a hash-table-based mapping from types (types.Type) to
+// arbitrary any values. The concrete types that implement
+// the Type interface are pointers. Since they are not canonicalized,
+// == cannot be used to check for equivalence, and thus we cannot
+// simply use a Go map.
+//
+// Just as with map[K]V, a nil *Map is a valid empty map.
+//
+// Not thread-safe.
+type Map struct {
+ hasher Hasher // shared by many Maps
+ table map[uint32][]entry // maps hash to bucket; entry.key==nil means unused
+ length int // number of map entries
+}
+
+// entry is an entry (key/value association) in a hash bucket.
+type entry struct {
+ key types.Type
+ value any
+}
+
+// SetHasher sets the hasher used by Map.
+//
+// All Hashers are functionally equivalent but contain internal state
+// used to cache the results of hashing previously seen types.
+//
+// A single Hasher created by MakeHasher() may be shared among many
+// Maps. This is recommended if the instances have many keys in
+// common, as it will amortize the cost of hash computation.
+//
+// A Hasher may grow without bound as new types are seen. Even when a
+// type is deleted from the map, the Hasher never shrinks, since other
+// types in the map may reference the deleted type indirectly.
+//
+// Hashers are not thread-safe, and read-only operations such as
+// Map.Lookup require updates to the hasher, so a full Mutex lock (not a
+// read-lock) is require around all Map operations if a shared
+// hasher is accessed from multiple threads.
+//
+// If SetHasher is not called, the Map will create a private hasher at
+// the first call to Insert.
+func (m *Map) SetHasher(hasher Hasher) {
+ m.hasher = hasher
+}
+
+// Delete removes the entry with the given key, if any.
+// It returns true if the entry was found.
+func (m *Map) Delete(key types.Type) bool {
+ if m != nil && m.table != nil {
+ hash := m.hasher.Hash(key)
+ bucket := m.table[hash]
+ for i, e := range bucket {
+ if e.key != nil && types.Identical(key, e.key) {
+ // We can't compact the bucket as it
+ // would disturb iterators.
+ bucket[i] = entry{}
+ m.length--
+ return true
+ }
+ }
+ }
+ return false
+}
+
+// At returns the map entry for the given key.
+// The result is nil if the entry is not present.
+func (m *Map) At(key types.Type) any {
+ if m != nil && m.table != nil {
+ for _, e := range m.table[m.hasher.Hash(key)] {
+ if e.key != nil && types.Identical(key, e.key) {
+ return e.value
+ }
+ }
+ }
+ return nil
+}
+
+// Set sets the map entry for key to val,
+// and returns the previous entry, if any.
+func (m *Map) Set(key types.Type, value any) (prev any) {
+ if m.table != nil {
+ hash := m.hasher.Hash(key)
+ bucket := m.table[hash]
+ var hole *entry
+ for i, e := range bucket {
+ if e.key == nil {
+ hole = &bucket[i]
+ } else if types.Identical(key, e.key) {
+ prev = e.value
+ bucket[i].value = value
+ return
+ }
+ }
+
+ if hole != nil {
+ *hole = entry{key, value} // overwrite deleted entry
+ } else {
+ m.table[hash] = append(bucket, entry{key, value})
+ }
+ } else {
+ if m.hasher.memo == nil {
+ m.hasher = MakeHasher()
+ }
+ hash := m.hasher.Hash(key)
+ m.table = map[uint32][]entry{hash: {entry{key, value}}}
+ }
+
+ m.length++
+ return
+}
+
+// Len returns the number of map entries.
+func (m *Map) Len() int {
+ if m != nil {
+ return m.length
+ }
+ return 0
+}
+
+// Iterate calls function f on each entry in the map in unspecified order.
+//
+// If f should mutate the map, Iterate provides the same guarantees as
+// Go maps: if f deletes a map entry that Iterate has not yet reached,
+// f will not be invoked for it, but if f inserts a map entry that
+// Iterate has not yet reached, whether or not f will be invoked for
+// it is unspecified.
+func (m *Map) Iterate(f func(key types.Type, value any)) {
+ if m != nil {
+ for _, bucket := range m.table {
+ for _, e := range bucket {
+ if e.key != nil {
+ f(e.key, e.value)
+ }
+ }
+ }
+ }
+}
+
+// Keys returns a new slice containing the set of map keys.
+// The order is unspecified.
+func (m *Map) Keys() []types.Type {
+ keys := make([]types.Type, 0, m.Len())
+ m.Iterate(func(key types.Type, _ any) {
+ keys = append(keys, key)
+ })
+ return keys
+}
+
+func (m *Map) toString(values bool) string {
+ if m == nil {
+ return "{}"
+ }
+ var buf bytes.Buffer
+ fmt.Fprint(&buf, "{")
+ sep := ""
+ m.Iterate(func(key types.Type, value any) {
+ fmt.Fprint(&buf, sep)
+ sep = ", "
+ fmt.Fprint(&buf, key)
+ if values {
+ fmt.Fprintf(&buf, ": %q", value)
+ }
+ })
+ fmt.Fprint(&buf, "}")
+ return buf.String()
+}
+
+// String returns a string representation of the map's entries.
+// Values are printed using fmt.Sprintf("%v", v).
+// Order is unspecified.
+func (m *Map) String() string {
+ return m.toString(true)
+}
+
+// KeysString returns a string representation of the map's key set.
+// Order is unspecified.
+func (m *Map) KeysString() string {
+ return m.toString(false)
+}
+
+////////////////////////////////////////////////////////////////////////
+// Hasher
+
+// A Hasher maps each type to its hash value.
+// For efficiency, a hasher uses memoization; thus its memory
+// footprint grows monotonically over time.
+// Hashers are not thread-safe.
+// Hashers have reference semantics.
+// Call MakeHasher to create a Hasher.
+type Hasher struct {
+ memo map[types.Type]uint32
+
+ // ptrMap records pointer identity.
+ ptrMap map[any]uint32
+
+ // sigTParams holds type parameters from the signature being hashed.
+ // Signatures are considered identical modulo renaming of type parameters, so
+ // within the scope of a signature type the identity of the signature's type
+ // parameters is just their index.
+ //
+ // Since the language does not currently support referring to uninstantiated
+ // generic types or functions, and instantiated signatures do not have type
+ // parameter lists, we should never encounter a second non-empty type
+ // parameter list when hashing a generic signature.
+ sigTParams *types.TypeParamList
+}
+
+// MakeHasher returns a new Hasher instance.
+func MakeHasher() Hasher {
+ return Hasher{
+ memo: make(map[types.Type]uint32),
+ ptrMap: make(map[any]uint32),
+ sigTParams: nil,
+ }
+}
+
+// Hash computes a hash value for the given type t such that
+// Identical(t, t') => Hash(t) == Hash(t').
+func (h Hasher) Hash(t types.Type) uint32 {
+ hash, ok := h.memo[t]
+ if !ok {
+ hash = h.hashFor(t)
+ h.memo[t] = hash
+ }
+ return hash
+}
+
+// hashString computes the Fowler–Noll–Vo hash of s.
+func hashString(s string) uint32 {
+ var h uint32
+ for i := 0; i < len(s); i++ {
+ h ^= uint32(s[i])
+ h *= 16777619
+ }
+ return h
+}
+
+// hashFor computes the hash of t.
+func (h Hasher) hashFor(t types.Type) uint32 {
+ // See Identical for rationale.
+ switch t := t.(type) {
+ case *types.Basic:
+ return uint32(t.Kind())
+
+ case *aliases.Alias:
+ return h.Hash(aliases.Unalias(t))
+
+ case *types.Array:
+ return 9043 + 2*uint32(t.Len()) + 3*h.Hash(t.Elem())
+
+ case *types.Slice:
+ return 9049 + 2*h.Hash(t.Elem())
+
+ case *types.Struct:
+ var hash uint32 = 9059
+ for i, n := 0, t.NumFields(); i < n; i++ {
+ f := t.Field(i)
+ if f.Anonymous() {
+ hash += 8861
+ }
+ hash += hashString(t.Tag(i))
+ hash += hashString(f.Name()) // (ignore f.Pkg)
+ hash += h.Hash(f.Type())
+ }
+ return hash
+
+ case *types.Pointer:
+ return 9067 + 2*h.Hash(t.Elem())
+
+ case *types.Signature:
+ var hash uint32 = 9091
+ if t.Variadic() {
+ hash *= 8863
+ }
+
+ // Use a separate hasher for types inside of the signature, where type
+ // parameter identity is modified to be (index, constraint). We must use a
+ // new memo for this hasher as type identity may be affected by this
+ // masking. For example, in func[T any](*T), the identity of *T depends on
+ // whether we are mapping the argument in isolation, or recursively as part
+ // of hashing the signature.
+ //
+ // We should never encounter a generic signature while hashing another
+ // generic signature, but defensively set sigTParams only if h.mask is
+ // unset.
+ tparams := t.TypeParams()
+ if h.sigTParams == nil && tparams.Len() != 0 {
+ h = Hasher{
+ // There may be something more efficient than discarding the existing
+ // memo, but it would require detecting whether types are 'tainted' by
+ // references to type parameters.
+ memo: make(map[types.Type]uint32),
+ // Re-using ptrMap ensures that pointer identity is preserved in this
+ // hasher.
+ ptrMap: h.ptrMap,
+ sigTParams: tparams,
+ }
+ }
+
+ for i := 0; i < tparams.Len(); i++ {
+ tparam := tparams.At(i)
+ hash += 7 * h.Hash(tparam.Constraint())
+ }
+
+ return hash + 3*h.hashTuple(t.Params()) + 5*h.hashTuple(t.Results())
+
+ case *types.Union:
+ return h.hashUnion(t)
+
+ case *types.Interface:
+ // Interfaces are identical if they have the same set of methods, with
+ // identical names and types, and they have the same set of type
+ // restrictions. See go/types.identical for more details.
+ var hash uint32 = 9103
+
+ // Hash methods.
+ for i, n := 0, t.NumMethods(); i < n; i++ {
+ // Method order is not significant.
+ // Ignore m.Pkg().
+ m := t.Method(i)
+ // Use shallow hash on method signature to
+ // avoid anonymous interface cycles.
+ hash += 3*hashString(m.Name()) + 5*h.shallowHash(m.Type())
+ }
+
+ // Hash type restrictions.
+ terms, err := typeparams.InterfaceTermSet(t)
+ // if err != nil t has invalid type restrictions.
+ if err == nil {
+ hash += h.hashTermSet(terms)
+ }
+
+ return hash
+
+ case *types.Map:
+ return 9109 + 2*h.Hash(t.Key()) + 3*h.Hash(t.Elem())
+
+ case *types.Chan:
+ return 9127 + 2*uint32(t.Dir()) + 3*h.Hash(t.Elem())
+
+ case *types.Named:
+ hash := h.hashPtr(t.Obj())
+ targs := t.TypeArgs()
+ for i := 0; i < targs.Len(); i++ {
+ targ := targs.At(i)
+ hash += 2 * h.Hash(targ)
+ }
+ return hash
+
+ case *types.TypeParam:
+ return h.hashTypeParam(t)
+
+ case *types.Tuple:
+ return h.hashTuple(t)
+ }
+
+ panic(fmt.Sprintf("%T: %v", t, t))
+}
+
+func (h Hasher) hashTuple(tuple *types.Tuple) uint32 {
+ // See go/types.identicalTypes for rationale.
+ n := tuple.Len()
+ hash := 9137 + 2*uint32(n)
+ for i := 0; i < n; i++ {
+ hash += 3 * h.Hash(tuple.At(i).Type())
+ }
+ return hash
+}
+
+func (h Hasher) hashUnion(t *types.Union) uint32 {
+ // Hash type restrictions.
+ terms, err := typeparams.UnionTermSet(t)
+ // if err != nil t has invalid type restrictions. Fall back on a non-zero
+ // hash.
+ if err != nil {
+ return 9151
+ }
+ return h.hashTermSet(terms)
+}
+
+func (h Hasher) hashTermSet(terms []*types.Term) uint32 {
+ hash := 9157 + 2*uint32(len(terms))
+ for _, term := range terms {
+ // term order is not significant.
+ termHash := h.Hash(term.Type())
+ if term.Tilde() {
+ termHash *= 9161
+ }
+ hash += 3 * termHash
+ }
+ return hash
+}
+
+// hashTypeParam returns a hash of the type parameter t, with a hash value
+// depending on whether t is contained in h.sigTParams.
+//
+// If h.sigTParams is set and contains t, then we are in the process of hashing
+// a signature, and the hash value of t must depend only on t's index and
+// constraint: signatures are considered identical modulo type parameter
+// renaming. To avoid infinite recursion, we only hash the type parameter
+// index, and rely on types.Identical to handle signatures where constraints
+// are not identical.
+//
+// Otherwise the hash of t depends only on t's pointer identity.
+func (h Hasher) hashTypeParam(t *types.TypeParam) uint32 {
+ if h.sigTParams != nil {
+ i := t.Index()
+ if i >= 0 && i < h.sigTParams.Len() && t == h.sigTParams.At(i) {
+ return 9173 + 3*uint32(i)
+ }
+ }
+ return h.hashPtr(t.Obj())
+}
+
+// hashPtr hashes the pointer identity of ptr. It uses h.ptrMap to ensure that
+// pointers values are not dependent on the GC.
+func (h Hasher) hashPtr(ptr any) uint32 {
+ if hash, ok := h.ptrMap[ptr]; ok {
+ return hash
+ }
+ hash := uint32(reflect.ValueOf(ptr).Pointer())
+ h.ptrMap[ptr] = hash
+ return hash
+}
+
+// shallowHash computes a hash of t without looking at any of its
+// element Types, to avoid potential anonymous cycles in the types of
+// interface methods.
+//
+// When an unnamed non-empty interface type appears anywhere among the
+// arguments or results of an interface method, there is a potential
+// for endless recursion. Consider:
+//
+// type X interface { m() []*interface { X } }
+//
+// The problem is that the Methods of the interface in m's result type
+// include m itself; there is no mention of the named type X that
+// might help us break the cycle.
+// (See comment in go/types.identical, case *Interface, for more.)
+func (h Hasher) shallowHash(t types.Type) uint32 {
+ // t is the type of an interface method (Signature),
+ // its params or results (Tuples), or their immediate
+ // elements (mostly Slice, Pointer, Basic, Named),
+ // so there's no need to optimize anything else.
+ switch t := t.(type) {
+ case *aliases.Alias:
+ return h.shallowHash(aliases.Unalias(t))
+
+ case *types.Signature:
+ var hash uint32 = 604171
+ if t.Variadic() {
+ hash *= 971767
+ }
+ // The Signature/Tuple recursion is always finite
+ // and invariably shallow.
+ return hash + 1062599*h.shallowHash(t.Params()) + 1282529*h.shallowHash(t.Results())
+
+ case *types.Tuple:
+ n := t.Len()
+ hash := 9137 + 2*uint32(n)
+ for i := 0; i < n; i++ {
+ hash += 53471161 * h.shallowHash(t.At(i).Type())
+ }
+ return hash
+
+ case *types.Basic:
+ return 45212177 * uint32(t.Kind())
+
+ case *types.Array:
+ return 1524181 + 2*uint32(t.Len())
+
+ case *types.Slice:
+ return 2690201
+
+ case *types.Struct:
+ return 3326489
+
+ case *types.Pointer:
+ return 4393139
+
+ case *types.Union:
+ return 562448657
+
+ case *types.Interface:
+ return 2124679 // no recursion here
+
+ case *types.Map:
+ return 9109
+
+ case *types.Chan:
+ return 9127
+
+ case *types.Named:
+ return h.hashPtr(t.Obj())
+
+ case *types.TypeParam:
+ return h.hashPtr(t.Obj())
+ }
+ panic(fmt.Sprintf("shallowHash: %T: %v", t, t))
+}
diff --git a/vendor/golang.org/x/tools/go/types/typeutil/methodsetcache.go b/vendor/golang.org/x/tools/go/types/typeutil/methodsetcache.go
new file mode 100644
index 0000000..bd71aaf
--- /dev/null
+++ b/vendor/golang.org/x/tools/go/types/typeutil/methodsetcache.go
@@ -0,0 +1,73 @@
+// Copyright 2014 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// This file implements a cache of method sets.
+
+package typeutil
+
+import (
+ "go/types"
+ "sync"
+
+ "golang.org/x/tools/internal/aliases"
+)
+
+// A MethodSetCache records the method set of each type T for which
+// MethodSet(T) is called so that repeat queries are fast.
+// The zero value is a ready-to-use cache instance.
+type MethodSetCache struct {
+ mu sync.Mutex
+ named map[*types.Named]struct{ value, pointer *types.MethodSet } // method sets for named N and *N
+ others map[types.Type]*types.MethodSet // all other types
+}
+
+// MethodSet returns the method set of type T. It is thread-safe.
+//
+// If cache is nil, this function is equivalent to types.NewMethodSet(T).
+// Utility functions can thus expose an optional *MethodSetCache
+// parameter to clients that care about performance.
+func (cache *MethodSetCache) MethodSet(T types.Type) *types.MethodSet {
+ if cache == nil {
+ return types.NewMethodSet(T)
+ }
+ cache.mu.Lock()
+ defer cache.mu.Unlock()
+
+ switch T := aliases.Unalias(T).(type) {
+ case *types.Named:
+ return cache.lookupNamed(T).value
+
+ case *types.Pointer:
+ if N, ok := aliases.Unalias(T.Elem()).(*types.Named); ok {
+ return cache.lookupNamed(N).pointer
+ }
+ }
+
+ // all other types
+ // (The map uses pointer equivalence, not type identity.)
+ mset := cache.others[T]
+ if mset == nil {
+ mset = types.NewMethodSet(T)
+ if cache.others == nil {
+ cache.others = make(map[types.Type]*types.MethodSet)
+ }
+ cache.others[T] = mset
+ }
+ return mset
+}
+
+func (cache *MethodSetCache) lookupNamed(named *types.Named) struct{ value, pointer *types.MethodSet } {
+ if cache.named == nil {
+ cache.named = make(map[*types.Named]struct{ value, pointer *types.MethodSet })
+ }
+ // Avoid recomputing mset(*T) for each distinct Pointer
+ // instance whose underlying type is a named type.
+ msets, ok := cache.named[named]
+ if !ok {
+ msets.value = types.NewMethodSet(named)
+ msets.pointer = types.NewMethodSet(types.NewPointer(named))
+ cache.named[named] = msets
+ }
+ return msets
+}
diff --git a/vendor/golang.org/x/tools/go/types/typeutil/ui.go b/vendor/golang.org/x/tools/go/types/typeutil/ui.go
new file mode 100644
index 0000000..a0c1a60
--- /dev/null
+++ b/vendor/golang.org/x/tools/go/types/typeutil/ui.go
@@ -0,0 +1,55 @@
+// Copyright 2014 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package typeutil
+
+// This file defines utilities for user interfaces that display types.
+
+import (
+ "go/types"
+
+ "golang.org/x/tools/internal/aliases"
+)
+
+// IntuitiveMethodSet returns the intuitive method set of a type T,
+// which is the set of methods you can call on an addressable value of
+// that type.
+//
+// The result always contains MethodSet(T), and is exactly MethodSet(T)
+// for interface types and for pointer-to-concrete types.
+// For all other concrete types T, the result additionally
+// contains each method belonging to *T if there is no identically
+// named method on T itself.
+//
+// This corresponds to user intuition about method sets;
+// this function is intended only for user interfaces.
+//
+// The order of the result is as for types.MethodSet(T).
+func IntuitiveMethodSet(T types.Type, msets *MethodSetCache) []*types.Selection {
+ isPointerToConcrete := func(T types.Type) bool {
+ ptr, ok := aliases.Unalias(T).(*types.Pointer)
+ return ok && !types.IsInterface(ptr.Elem())
+ }
+
+ var result []*types.Selection
+ mset := msets.MethodSet(T)
+ if types.IsInterface(T) || isPointerToConcrete(T) {
+ for i, n := 0, mset.Len(); i < n; i++ {
+ result = append(result, mset.At(i))
+ }
+ } else {
+ // T is some other concrete type.
+ // Report methods of T and *T, preferring those of T.
+ pmset := msets.MethodSet(types.NewPointer(T))
+ for i, n := 0, pmset.Len(); i < n; i++ {
+ meth := pmset.At(i)
+ if m := mset.Lookup(meth.Obj().Pkg(), meth.Obj().Name()); m != nil {
+ meth = m
+ }
+ result = append(result, meth)
+ }
+
+ }
+ return result
+}